1
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Li Z, Guo Z, Xiao H, Chen X, Liu W, Zhou H. Simulating neuronal development: exploring potential mechanisms for central nervous system metastasis in acute lymphoblastic leukemia. Front Oncol 2024; 13:1331802. [PMID: 38239636 PMCID: PMC10794646 DOI: 10.3389/fonc.2023.1331802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is prone to metastasize to the central nervous system (CNS), which is an important cause of poor treatment outcomes and unfavorable prognosis. However, the pathogenesis of CNS metastasis of ALL cells has not been fully illuminated. Recent reports have shed some light on the correlation between neural mechanisms and ALL CNS metastasis. These progressions prompt us to study the relationship between ALL central nervous system metastasis and neuronal development, exploring potential biomarkers and therapeutic targets of CNS metastasis. Materials and methods ALL central nervous system metastasis- and neuronal development-related differentially expressed genes (DEGs) were identified by analyzing gene expression datasets GSE60926 and GSE13715. Target prediction and network analysis methods were applied to assess protein-protein interaction networks. Gene Ontology (GO) terms and pathway enrichment for DEGs were assessed. Co-expressed differentially expressed genes (co-DEGs) coupled with corresponding predicted microRNAs (miRNAs) were studied as well. Reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were employed for the validation of key co-DEGs in primary ALL cells. Furthermore, ALL cells were treated with a vascular endothelial growth factor (VEGF) inhibitor to block neuronal development and assess changes in the co-DEGs. Results We identified 216, 208, and 204 DEGs in ALL CNS metastasis specimens and neuronal development samples (GSE60926 and GSE13715). CD2, CD3G, CD3D, and LCK may be implicated in ALL CNS metastasis. LAMB1, MATN3, IGFBP3, LGALS1, and NEUROD1 may be associated with neuronal development. Specifically, four co-DEGs (LGALS1, TMEM71, SHISA2, and S100A11) may link ALL central nervous system metastasis and neuronal development process. The miRNAs for each co-DEG could be potential biomarkers or therapeutic targets for ALL central nervous system metastasis, especially hsa-miR-22-3p, hsa-miR-548t-5p, and hsa-miR-6134. Additionally, four co-DEGs (LGALS1, TMEM71, SHISA2, and S100A11) were validated in CNS-infiltrated ALL cells. The VEGF inhibitor demonstrated a suppressive effect on mRNA and protein expression of key co-DEGs. Conclusion The bioinformatic survey and key gene validation suggest a possible correlation between ALL CNS metastasis and the neuronal development process. Simulating the neuronal development process might be a possible strategy for CNS metastasis in ALL. LGALS1, TMEM71, SHISA2, and S100A11 genes are promising and novel biomarkers and targets in ALL CNS metastasis.
Collapse
Affiliation(s)
- Ziping Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Haitao Xiao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuexing Chen
- Institute of Hematology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Wei Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Liu Y, Du N, Qian B, Zou C, Yu Z, Xu F, Wang L, Qin S, You F, Tan X. Characteristics of Shisa Family Genes in Zebrafish. Int J Mol Sci 2023; 24:14062. [PMID: 37762365 PMCID: PMC10531659 DOI: 10.3390/ijms241814062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Shisa represents a type of single-transmembrane adaptor protein containing an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Nine shisa subfamily genes have been proposed in most vertebrates; however, some might be species-specific. The number of shisa genes present in zebrafish remains unclear. This study aimed to investigate the evolutionary relationships among shisa family genes in zebrafish (TU strain) using phylogenetic and syntenic analyses. The function of shisa-2 was preliminarily examined via CRISPR/Cas13d-mediated knockdown. Following identification in zebrafish, 10 shisa family genes, namely shisa-1, 2, 3, 4, 5, 6, 7, 8, 9a, and 9b, were classified into three main clades and six subclades. Their encoding proteins contained a cysteine-rich N-terminal domain and a proline-rich C-terminal region containing different motifs. A specific syntenic block containing atp8a2 and shisa-2 was observed to be conserved across all species. Furthermore, all these genes were expressed during embryogenesis. Shisa-2 was expressed in the presomitic mesoderm, somites, and so on. Shisa-2 was identified as a regulator of the expression of the somite formation marker mesp-ab. Overall, our study provides new insights into the evolution of shisa family genes and the control of shisa-2 over the convergent extension cells of somitic precursors in zebrafish.
Collapse
Affiliation(s)
- Yansong Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.)
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Na Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Beibei Qian
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Congcong Zou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zhouxin Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.)
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Fei Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Lijuan Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Sishi Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Feng You
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xungang Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
4
|
Genome-Wide Association Study Based on Random Regression Model Reveals Candidate Genes Associated with Longitudinal Data in Chinese Simmental Beef Cattle. Animals (Basel) 2021; 11:ani11092524. [PMID: 34573489 PMCID: PMC8470172 DOI: 10.3390/ani11092524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Genome-wide association study (GWAS) has become the main approach for detecting functional genes that affects complex traits. For growth traits, the conventional GWAS method can only deal with the single-record traits observed at specific time points, rather than the longitudinal traits measured at multiple time points. Previous studies have reported the random regression model (RRM) for longitudinal data could overcome the limitation of the traditional GWAS model. Here, we present an association analysis based on RRM (GWAS-RRM) for 808 Chinese Simmental beef cattle at four stages of age. Ultimately, 37 significant single-nucleotide polymorphisms (SNPs) and several important candidate genes were screened to be associated with the body weight. Enrichment analysis showed these genes were significantly enriched in the signaling transduction pathway and lipid metabolism. This study not only offers a further understanding of the genetic basis for growth traits in beef cattle, but also provides a robust analytics tool for longitudinal traits in various species. Abstract Body weight (BW) is an important longitudinal trait that directly described the growth gain of bovine in production. However, previous genome-wide association study (GWAS) mainly focused on the single-record traits, with less attention paid to longitudinal traits. Compared with traditional GWAS models, the association studies based on the random regression model (GWAS-RRM) have better performance in the control of the false positive rate through considering time-stage effects. In this study, the BW trait data were collected from 808 Chinese Simmental beef cattle aged 0, 6, 12, and 18 months, then we performed a GWAS-RRM to fit the time-varied SNP effect. The results showed a total of 37 significant SNPs were associated with BW. Gene functional annotation and enrichment analysis indicated FGF4, ANGPT4, PLA2G4A, and ITGA5 were promising candidate genes for BW. Moreover, these genes were significantly enriched in the signaling transduction pathway and lipid metabolism. These findings will provide prior molecular information for bovine gene-based selection, as well as facilitate the extensive application of GWAS-RRM in domestic animals.
Collapse
|
5
|
Chan LC, Kalyanasundram J, Leong SW, Masarudin MJ, Veerakumarasivam A, Yusoff K, Chan SC, Chia SL. Persistent Newcastle disease virus infection in bladder cancer cells is associated with putative pro-survival and anti-viral transcriptomic changes. BMC Cancer 2021; 21:625. [PMID: 34044804 PMCID: PMC8161962 DOI: 10.1186/s12885-021-08345-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
Background Newcastle disease virus (NDV) is an oncolytic virus with excellent selectivity against cancer cells, both in vitro and in vivo. Unfortunately, prolonged in vitro NDV infection results in the development of persistent infection in the cancer cells which are then able to resist NDV-mediated oncolysis. However, the mechanism of persistency of infection remains poorly understood. Methods In this study, we established persistently NDV-infected EJ28 bladder cancer cells, designated as EJ28P. Global transcriptomic analysis was subsequently carried out by microarray analysis. Differentially expressed genes (DEGs) between EJ28 and EJ28P cells identified by the edgeR program were further analysed by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) analyses. In addition, the microarray data were validated by RT-qPCR. Results Persistently NDV-infected EJ28 bladder cancer cells were successfully established and confirmed by flow cytometry. Microarray analysis identified a total of 368 genes as differentially expressed in EJ28P cells when compared to the non-infected EJ28 cells. GSEA revealed that the Wnt/β-catenin and KRAS signalling pathways were upregulated while the TGF-β signalling pathway was downregulated. Findings from this study suggest that the upregulation of genes that are associated with cell growth, pro-survival, and anti-apoptosis may explain the survivability of EJ28P cells and the development of persistent infection of NDV. Conclusions This study provides insights into the transcriptomic changes that occur and the specific signalling pathways that are potentially involved in the development and maintenance of NDV persistency of infection in bladder cancer cells. These findings warrant further investigation and is crucial towards the development of effective NDV oncolytic therapy against cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08345-y.
Collapse
Affiliation(s)
- Lee-Chin Chan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000, Kajang, Selangor Darul Ehsan, Malaysia
| | - Jeevanathan Kalyanasundram
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sze-Wei Leong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Abhi Veerakumarasivam
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000, Kajang, Selangor Darul Ehsan, Malaysia.,Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000, Kajang, Selangor Darul Ehsan, Malaysia.,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Soon-Choy Chan
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000, Kajang, Selangor Darul Ehsan, Malaysia. .,Perdana University School of Liberal Arts, Science and Technology (PUScLST), Perdana University, 50490, Kuala Lumpur, Malaysia.
| | - Suet-Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Hu Z, Cao J, Zhang J, Ge L, Zhang H, Liu X. Skeletal Muscle Transcriptome Analysis of Hanzhong Ma Duck at Different Growth Stages Using RNA-Seq. Biomolecules 2021; 11:315. [PMID: 33669581 PMCID: PMC7927120 DOI: 10.3390/biom11020315] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/02/2023] Open
Abstract
As one of the most important poultry worldwide, ducks (Anas platyrhynchos) are raised mainly for meat and egg products, and muscle development in ducks is important for meat production. Therefore, an investigation of gene expression in duck skeletal muscle would significantly contribute to our understanding of muscle development. In this study, twenty-four cDNA libraries were constructed from breast and leg muscles of Hanzhong Ma ducks at day 17, 21, 27 of the embryo and postnatal at 6-month-old. High-throughput sequencing and bioinformatics were used to determine the abundances and characteristics of transcripts. A total of 632,172,628 (average 52,681,052) and 637,213,938 (average 53,101,162) reads were obtained from the sequencing data of breast and leg muscles, respectively. Over 71.63% and 77.36% of the reads could be mapped to the Anas platyrhynchos genome. In the skeletal muscle of Hanzhong duck, intron variant (INTRON), synonymous variant (SYNONYMOUS_CODING), and prime 3' UTR variant (UTR_3_PRIME) were the main single nucleotide polymorphisms (SNP) annotation information, and "INTRON", "UTR_3_PRIME", and downstream-gene variant (DOWNSTREAM) were the main insertion-deletion (InDel) annotation information. The predicted number of alternative splicing (AS) in all samples were mainly alternative 5' first exon (transcription start site)-the first exon splicing (TSS) and alternative 3' last exon (transcription terminal site)-the last exon splicing (TTS). Besides, there were 292 to 2801 annotated differentially expressed genes (DEGs) in breast muscle and 304 to 1950 annotated DEGs in leg muscle from different databases. It is worth noting that 75 DEGs in breast muscle and 49 DEGs in leg muscle were co-expressed at all developmental points of comparison, respectively. The RNA-Seq data were confirmed to be reliable by qPCR. The identified DEGs, such as CREBL2, RHEB, GDF6, SHISA2, MYLK2, ACTN3, RYR3, and STMN1, were specially highlighted, indicating their strong associations with muscle development in the Hanzhong Ma duck. KEGG pathway analysis suggested that regulation of actin cytoskeleton, oxidative phosphorylation, and focal adhesion were involved in the development of skeletal muscle. The findings from this study can contribute to future investigations of the growth and development mechanism in duck skeletal muscle.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (Z.H.); (J.C.); (J.Z.); (L.G.); (H.Z.)
| |
Collapse
|
7
|
Han W, Shepard RD, Lu W. Regulation of GABA ARs by Transmembrane Accessory Proteins. Trends Neurosci 2021; 44:152-165. [PMID: 33234346 PMCID: PMC7855156 DOI: 10.1016/j.tins.2020.10.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
The vast majority of fast inhibitory transmission in the brain is mediated by GABA acting on GABAA receptors (GABAARs), which provides inhibitory balance to excitatory drive and controls neuronal output. GABAARs are also effectively targeted by clinically important drugs for treatment in a number of neurological disorders. It has long been hypothesized that function and pharmacology of GABAARs are determined by the channel pore-forming subunits. However, recent studies have provided new dimensions in studying GABAARs due to several transmembrane proteins that interact with GABAARs and modulate their trafficking and function. In this review, we summarize recent findings on these novel GABAAR transmembrane regulators and highlight a potential avenue to develop new GABAAR psychopharmacology by targeting these receptor-associated membrane proteins.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
López-Delgado AC, Delgado I, Cadenas V, Sánchez-Cabo F, Torres M. Axial skeleton anterior-posterior patterning is regulated through feedback regulation between Meis transcription factors and retinoic acid. Development 2021; 148:dev.193813. [PMID: 33298461 DOI: 10.1242/dev.193813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/20/2020] [Indexed: 11/20/2022]
Abstract
Vertebrate axial skeletal patterning is controlled by co-linear expression of Hox genes and axial level-dependent activity of HOX protein combinations. MEIS transcription factors act as co-factors of HOX proteins and profusely bind to Hox complex DNA; however, their roles in mammalian axial patterning remain unknown. Retinoic acid (RA) is known to regulate axial skeletal element identity through the transcriptional activity of its receptors; however, whether this role is related to MEIS/HOX activity remains unknown. Here, we study the role of Meis in axial skeleton formation and its relationship to the RA pathway in mice. Meis elimination in the paraxial mesoderm produces anterior homeotic transformations and rib mis-patterning associated to alterations of the hypaxial myotome. Although Raldh2 and Meis positively regulate each other, Raldh2 elimination largely recapitulates the defects associated with Meis deficiency, and Meis overexpression rescues the axial skeletal defects in Raldh2 mutants. We propose a Meis-RA-positive feedback loop, the output of which is Meis levels, that is essential to establish anterior-posterior identities and patterning of the vertebrate axial skeleton.
Collapse
Affiliation(s)
- Alejandra C López-Delgado
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28003, Spain
| | - Irene Delgado
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28003, Spain
| | - Vanessa Cadenas
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28003, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28003, Spain
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28003, Spain
| |
Collapse
|
9
|
Chu NJ, Anders RA, Fertig EJ, Cao M, Hopkins AC, Keenan BP, Popovic A, Armstrong TD, Jaffee EM, Zimmerman JW. Inhibition of miR-21 Regulates Mutant KRAS Effector Pathways and Intercepts Pancreatic Ductal Adenocarcinoma Development. Cancer Prev Res (Phila) 2020; 13:569-582. [PMID: 32409593 PMCID: PMC7372516 DOI: 10.1158/1940-6207.capr-20-0053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
Almost all pancreatic ductal adenocarcinomas (PDA) develop following KRAS activation, which triggers epithelial transformation and recruitment of desmoplastic stroma through additional transcriptional and epigenetic regulation, but only a few of these regulatory mechanisms have been described. We profiled dysregulated miRNAs starting with the earliest premalignant pancreatic intraepithelial neoplasias (PanIN) in genetically engineered mutated KRAS and P53 (KPC) mice programmed to recapitulate human PDA tumorigenesis. We identified miR-21 and miR-224 as cell-specific and compartment-specific regulators in PanINs and PDA. miR-21 is overexpressed in tumor epithelial cells of premalignant ducts, while miR-224 is overexpressed in cancer-associated fibroblasts in PDA stroma. Inhibition of miR-21 reverted protumorigenic functionalities to baseline levels. Overexpression of miR-224 induced activated phenotypes in normal fibroblasts. In vivo miR-21 inhibition improved survival in established PDA. Importantly, early systemic miR-21 inhibition completely intercepted premalignant progression. Finally, an evaluation of miR-21 expression in the PDA cohort of The Cancer Genome Atlas identified a correlation between tumor epithelial cell content and miR-21 expression in human tumors providing further rationale for conducting human studies. Thus, miR-21 may be useful for early PanIN detection, and for intercepting developing premalignant pancreatic lesions and other KRAS-driven premalignancies.
Collapse
Affiliation(s)
- Nina J Chu
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Elana J Fertig
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Minwei Cao
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander C Hopkins
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bridget P Keenan
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Aleksandra Popovic
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd D Armstrong
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jacquelyn W Zimmerman
- Department of Oncology, Skip Viragh Center for Pancreas Cancer, Bloomberg Kimmel Institute for Cancer Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
10
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
11
|
Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degradation through metalloproteinase secretion at focal adhesions. Oncogene 2019; 38:5839-5859. [PMID: 31285548 PMCID: PMC6859949 DOI: 10.1038/s41388-019-0844-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
The cytoskeletal interacting protein Septin 9 (SEPT9), a member of the septin gene family, has been proposed to have oncogenic functions. It is a known hot spot of retroviral tagging insertion and a fusion partner of both de novo and therapy-induced mixed lineage leukemia (MLL). Of all septins, SEPT9 holds the strongest link to cancer, especially breast cancer. Murine models of breast cancer frequently exhibit Sept9 amplification in the form of double minute chromosomes, and about 20% of human breast cancer display genomic amplification and protein over expression at the SEPT9 locus. Yet, a clear mechanism by which SEPT9 elicits tumor-promoting functions is lacking. To obtain unbiased insights on molecular signatures of SEPT9 upregulation in breast tumors, we overexpressed several of its isoforms in breast cancer cell lines. Global transcriptomic profiling supports a role of SEPT9 in invasion. Functional studies reveal that SEPT9 upregulation is sufficient to increase degradation of the extracellular matrix, while SEPT9 downregulation inhibits this process. The degradation pattern is peripheral and associated with focal adhesions (FA), where it is coupled with increased expression of matrix metalloproteinases. SEPT9 overexpression induces MMP upregulation in human tumors and in culture models and promotes MMP3 secretion to the media at FAs. Downregulation of SEPT9 or chemical inhibition of septin filament assembly impairs recruitment of MMP3 to FAs. Our results indicate that SEPT9 promotes upregulation and both trafficking and secretion of MMPs near FAs, thus enhancing migration and invasion of breast cancer cells.
Collapse
|
12
|
AMPA Receptor Auxiliary Proteins of the CKAMP Family. Int J Mol Sci 2019; 20:ijms20061460. [PMID: 30909450 PMCID: PMC6470934 DOI: 10.3390/ijms20061460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/26/2022] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are assembled of four core subunits and several additional interacting proteins. Cystine-knot AMPA receptor-modulating proteins (CKAMPs) constitute a family of four proteins that influence the trafficking, subcellular localization and function of AMPA receptors. The four CKAMP family members CKAMP39/shisa8, CKAMP44/shisa9, CKAMP52/shisa6 and CKAMP59/shisa7 differ in their expression profile and their modulatory influence on AMPA receptor function. In this review, I report about recent findings on the differential roles of CKAMP family members.
Collapse
|
13
|
Liu Z, Wang C, Liu X, Kuang S. Shisa2 regulates the fusion of muscle progenitors. Stem Cell Res 2018; 31:31-41. [PMID: 30007221 PMCID: PMC6171505 DOI: 10.1016/j.scr.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
Adult skeletal muscles are comprised of multinuclear muscle cells called myofibers. During skeletal muscle development and regeneration, mononuclear progenitor cells (myoblasts) fuse to form multinuclear myotubes, which mature and become myofibers. The molecular events mediating myoblast fusion are not fully understood. Here we report that Shisa2, an endoplasmic reticulum (ER) localized protein, regulates the fusion of muscle satellite cell-derived primary myoblasts. Shisa2 expression is repressed by Notch signaling, elevated in activated compared to quiescent satellite cells, and further upregulated during myogenic differentiation. Knockdown of Shisa2 inhibits the fusion of myoblasts without affecting proliferation. Conversely, Shisa2 overexpression in proliferating myoblasts inhibits their proliferation but promotes premature fusion. Interestingly, Shisa2-overexpressing nascent myotubes actively recruit myoblasts to fuse with. At the molecular level, Rac1/Cdc42-mediated cytoskeletal F-actin remodeling is required for Shisa2 to promote myoblast fusion. These results provide a novel mechanism through which an ER protein regulates myogenesis.
Collapse
Affiliation(s)
- Zuojun Liu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoqi Liu
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
14
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
15
|
Tamura K, Furihata M, Satake H, Hashida H, Kawada C, Osakabe H, Fukuhara H, Kumagai N, Iiyama T, Shuin T, Inoue K. SHISA2 enhances the aggressive phenotype in prostate cancer through the regulation of WNT5A expression. Oncol Lett 2017; 14:6650-6658. [PMID: 29344118 PMCID: PMC5754837 DOI: 10.3892/ol.2017.7099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/23/2017] [Indexed: 12/15/2022] Open
Abstract
The present study aimed at identifying novel molecular cancer drug targets and biomarkers by analyzing the gene expression profiles of high-grade prostate cancer (PC), using a cDNA microarray combined with laser microbeam microdissection. A number of genes were identified that were transactivated in high-grade PC. First, a novel molecular target and diagnostic biomarker, shisa family member 2 (SHISA2), was identified as an overexpressed gene in high-grade PC cells. The reverse transcription-semi-quantitative polymerase chain reaction and immunohistochemical analysis validated the overexpression of SHISA2 (295 amino acids in length), specifically in high-grade PC cells with Gleason scores of between 8 and 10, relative to normal prostate epithelium. Knockdown of SHISA2 expression by short interfering RNA resulted in the marked suppression of PC cell viability. By contrast, exogenous SHISA2 expression in transfected cells promoted PC cell proliferation, indicating its oncogenic effects. Notably, as a result of cDNA microarray analysis, protein Wnt-5a (WNT5A) was focused upon and the expression of WNT5A was identified to be downregulated in SHISA2-knockdown. Western blot analysis validated significant downregulation of WNT5A by SHISA2-knockdown and upregulation of WNT5A by SHISA2 overexpression. The results of the present study indicated that SHISA2 may affect WNT5A synthesis. Furthermore, the secreted SHISA2 protein was determined in the culture medium of PC cells. We hypothesize that SHISA2 is involved in the regulation of WNT5A and in the aggressiveness of PC via the Wnt signaling pathway through WNT5A. Furthermore, SHISA2 may be a molecular target for cancer drugs, and a useful diagnostic biomarker for the prognosis and therapeutic effect in cancer.
Collapse
Affiliation(s)
- Kenji Tamura
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Mutsuo Furihata
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Hirofumi Satake
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Hatsune Hashida
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Chiaki Kawada
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Hiroto Osakabe
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Naoko Kumagai
- Clinical Trial Center, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Tatsuo Iiyama
- Clinical Trial Center, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Taro Shuin
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
16
|
Janesick A, Tang W, Nguyen TTL, Blumberg B. RARβ2 is required for vertebrate somitogenesis. Development 2017; 144:1997-2008. [PMID: 28432217 DOI: 10.1242/dev.144345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
Abstract
During vertebrate somitogenesis, retinoic acid is known to establish the position of the determination wavefront, controlling where new somites are permitted to form along the anteroposterior body axis. Less is understood about how RAR regulates somite patterning, rostral-caudal boundary setting, specialization of myotome subdivisions or the specific RAR subtype that is required for somite patterning. Characterizing the function of RARβ has been challenging due to the absence of embryonic phenotypes in murine loss-of-function studies. Using the Xenopus system, we show that RARβ2 plays a specific role in somite number and size, restriction of the presomitic mesoderm anterior border, somite chevron morphology and hypaxial myoblast migration. Rarβ2 is the RAR subtype whose expression is most upregulated in response to ligand and its localization in the trunk somites positions it at the right time and place to respond to embryonic retinoid levels during somitogenesis. RARβ2 positively regulates Tbx3 a marker of hypaxial muscle, and negatively regulates Tbx6 via Ripply2 to restrict the anterior boundaries of the presomitic mesoderm and caudal progenitor pool. These results demonstrate for the first time an early and essential role for RARβ2 in vertebrate somitogenesis.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Weiyi Tang
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Tuyen T L Nguyen
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
17
|
Tokue M, Ikami K, Mizuno S, Takagi C, Miyagi A, Takada R, Noda C, Kitadate Y, Hara K, Mizuguchi H, Sato T, Taketo MM, Sugiyama F, Ogawa T, Kobayashi S, Ueno N, Takahashi S, Takada S, Yoshida S. SHISA6 Confers Resistance to Differentiation-Promoting Wnt/β-Catenin Signaling in Mouse Spermatogenic Stem Cells. Stem Cell Reports 2017; 8:561-575. [PMID: 28196692 PMCID: PMC5355566 DOI: 10.1016/j.stemcr.2017.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/15/2023] Open
Abstract
In the seminiferous tubules of mouse testes, a population of glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα1)-positive spermatogonia harbors the stem cell functionality and supports continual spermatogenesis, likely independent of asymmetric division or definitive niche control. Here, we show that activation of Wnt/β-catenin signaling promotes spermatogonial differentiation and reduces the GFRα1+ cell pool. We further discovered that SHISA6 is a cell-autonomous Wnt inhibitor that is expressed in a restricted subset of GFRα1+ cells and confers resistance to the Wnt/β-catenin signaling. Shisa6+ cells appear to show stem cell-related characteristics, conjectured from the morphology and long-term fates of T (Brachyury)+ cells that are found largely overlapped with Shisa6+ cells. This study proposes a generic mechanism of stem cell regulation in a facultative (or open) niche environment, with which different levels of a cell-autonomous inhibitor (SHISA6, in this case) generates heterogeneous resistance to widely distributed differentiation-promoting extracellular signaling, such as WNTs. Wnt/β-catenin signaling promotes the differentiation of GFRα1+ spermatogonia SHISA6 is a cell-autonomous Wnt inhibitor expressed in subset GFRα1+ cells SHISA6 confers resistance to differentiation induction by Wnt/β-catenin signaling SHISA6+ spermatogonia show stem cell-related properties
Collapse
Affiliation(s)
- Moe Tokue
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan
| | - Kanako Ikami
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan
| | - Seiya Mizuno
- Laborarory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Chiyo Takagi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Asuka Miyagi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Ritsuko Takada
- Division of Molecular and Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Chiyo Noda
- Division of Developmental Genetics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Yu Kitadate
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan
| | - Kenshiro Hara
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Hiroko Mizuguchi
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Takuya Sato
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Fumihiro Sugiyama
- Laborarory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takehiko Ogawa
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Satoru Kobayashi
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Division of Developmental Genetics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Naoto Ueno
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Satoru Takahashi
- Laborarory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Shinji Takada
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Division of Molecular and Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan.
| |
Collapse
|
18
|
Cheishvili D, Stefanska B, Yi C, Li CC, Yu P, Arakelian A, Tanvir I, Khan HA, Rabbani S, Szyf M. A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel targets involved in cancer invasiveness. Oncotarget 2016; 6:33253-68. [PMID: 26427334 PMCID: PMC4741763 DOI: 10.18632/oncotarget.5291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/10/2015] [Indexed: 01/08/2023] Open
Abstract
Cancer invasion and metastasis is the most morbid aspect of cancer and is governed by different cellular mechanisms than those driving the deregulated growth of tumors. We addressed here the question of whether a common DNA methylation signature of invasion exists in cancer cells from different origins that differentiates invasive from non-invasive cells. We identified a common DNA methylation signature consisting of hyper- and hypomethylation and determined the overlap of differences in DNA methylation with differences in mRNA expression using expression array analyses. A pathway analysis reveals that the hypomethylation signature includes some of the major pathways that were previously implicated in cancer migration and invasion such as TGF beta and ERBB2 triggered pathways. The relevance of these hypomethylation events in human tumors was validated by identification of the signature in several publicly available databases of human tumor transcriptomes. We shortlisted novel invasion promoting candidates and tested the role of four genes in cellular invasiveness from the list C11orf68, G0S2, SHISA2 and TMEM156 in invasiveness using siRNA depletion. Importantly these genes are upregulated in human cancer specimens as determined by immunostaining of human normal and cancer breast, liver and prostate tissue arrays. Since these genes are activated in cancer they constitute a group of targets for specific pharmacological inhibitors of cancer invasiveness.
Collapse
Affiliation(s)
- David Cheishvili
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Barbara Stefanska
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.,Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Cao Yi
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Chen Chen Li
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Patricia Yu
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Ani Arakelian
- Departments of Medicine, Oncology, and Pharmacology, McGill University, Montreal, Quebec, Canada
| | - Imrana Tanvir
- Department of Pathology, Fatima Memorial Hospital System, Lahore, Pakistan
| | - Haseeb Ahmed Khan
- Department of Pathology, Fatima Memorial Hospital System, Lahore, Pakistan
| | - Shafaat Rabbani
- Departments of Medicine, Oncology, and Pharmacology, McGill University, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, Sackler Program for Epigenetics & Developmental Psychobiology, McGill University Medical School, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, Canadian Institute for Advanced Research, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Farrow P, Khodosevich K, Sapir Y, Schulmann A, Aslam M, Stern-Bach Y, Monyer H, von Engelhardt J. Auxiliary subunits of the CKAMP family differentially modulate AMPA receptor properties. eLife 2015; 4:e09693. [PMID: 26623514 PMCID: PMC4733035 DOI: 10.7554/elife.09693] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/30/2015] [Indexed: 01/01/2023] Open
Abstract
AMPA receptor (AMPAR) function is modulated by auxiliary subunits. Here, we report on three AMPAR interacting proteins—namely CKAMP39, CKAMP52 and CKAMP59—that, together with the previously characterized CKAMP44, constitute a novel family of auxiliary subunits distinct from other families of AMPAR interacting proteins. The new members of the CKAMP family display distinct regional and developmental expression profiles in the mouse brain. Notably, despite their structural similarities they exert diverse modulation on AMPAR gating by influencing deactivation, desensitization and recovery from desensitization, as well as glutamate and cyclothiazide potency to AMPARs. This study indicates that AMPAR function is very precisely controlled by the cell-type specific expression of the CKAMP family members. The brain processes and transmits information through large networks of cells called neurons. A neuron can pass the information it receives to other neurons by releasing chemicals called neurotransmitters across junctions known as synapses. These chemicals bind to receptor proteins on the surface of the neighboring neuron, which triggers changes that affect the activity of this neuron. Glutamate is the most commonly used neurotransmitter in the brain and binds to receptor proteins called AMPA receptors. If a neuron frequently sends glutamate across a particular synapse, the number of AMPA receptors in the second neuron will increase in response. This makes signaling across the synapse easier – a process known as synaptic strengthening. The ability to change the strength of synapses is important for learning and memory. Proteins called auxiliary subunits also bind to AMPA receptors and regulate their properties, and hence also affect the strength of the synapse. For instance, some auxiliary subunits increase the number of AMPA receptors at the synapse, while others have an effect on how the receptor protein works. In 2010, researchers identified a new auxiliary protein called CKAMP44 that modifies AMPA receptor activity. Now, Farrow, Khodosevich, Sapir, Schulmann et al. – including some of the researchers involved in the 2010 study – have identified three other auxiliary proteins that are similar to CKAMP44. Collectively, these four proteins are termed the CKAMP family. The sequences of all four proteins were found to share many common features, especially in the regions that bind to the AMPA receptors. Like CKAMP44, the new members of the CKAMP family are only present in the brain, although each protein is produced in different brain regions. Further investigation revealed that each member of the CKAMP family affects the AMPA receptor channels in a different way. Taken together, Farrow et al.’s results suggest that the different CKAMP family members allow the activity of the AMPA receptors to be precisely controlled. The next challenge is to understand in more detail how each CKAMP family member influences how AMPA receptors work.
Collapse
Affiliation(s)
- Paul Farrow
- Synaptic Signalling and Neurodegeneration, German Cancer Research Center, Heidelberg, Germany.,Synaptic Signalling and Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Konstantin Khodosevich
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University, Heidelberg, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Yechiam Sapir
- Department of Biochemistry and Molecular Biology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Anton Schulmann
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University, Heidelberg, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Muhammad Aslam
- Synaptic Signalling and Neurodegeneration, German Cancer Research Center, Heidelberg, Germany.,Synaptic Signalling and Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Yael Stern-Bach
- Department of Biochemistry and Molecular Biology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hannah Monyer
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Jakob von Engelhardt
- Synaptic Signalling and Neurodegeneration, German Cancer Research Center, Heidelberg, Germany.,Synaptic Signalling and Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
20
|
|
21
|
Chen CC, Chen HY, Su KY, Hong QS, Yan BS, Chen CH, Pan SH, Chang YL, Wang CJ, Hung PF, Yuan S, Chang GC, Chen JJW, Yang PC, Yang YC, Yu SL. Shisa3 is associated with prolonged survival through promoting β-catenin degradation in lung cancer. Am J Respir Crit Care Med 2014; 190:433-44. [PMID: 25036006 DOI: 10.1164/rccm.201312-2256oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Despite advances in treatment and prognosis of non-small cell lung cancer (NSCLC), patient outcomes are still unsatisfactory. OBJECTIVES To reduce the morbidity and mortality of patients with NSCLC, a more comprehensive understanding of mechanisms involved in cancer progression is urgently needed. METHODS By comparison of gene expression profiles in the cell line pair with differential invasion ability, CL1-0 and CL1-5, we found that Shisa3 was highly expressed in the low invasive cells. The effect of Shisa3 on invasion, migration, proliferation, apoptosis, epithelial-mesenchymal transition, and anchorage-independent growth activities in vitro and on tumor growth and metastasis in mice models were examined. The underlying mechanism of Shisa3 was explored by microarray and pathway analysis. Finally, the correlation of Shisa3 expression and clinical outcome was also calculated. MEASUREMENTS AND MAIN RESULTS We identified Shisa3 as a novel tumor suppressor, which induces β-catenin degradation resulting in suppression of tumorigenesis and invasion in vitro. Shisa3 decreased the tumor growth in mice with subcutaneous implantation and reduced the number of metastatic nodules in mice with tail vein injection and orthotopic implantation. Shisa3 performs the tumor suppression activity through WNT signaling predicted by microarray analysis. Our data found that Shisa3 accelerates β-catenin degradation and was positively associated with overall survival and progression-free survival of NSCLC. CONCLUSIONS Our results reveal that Shisa3 acts as a tumor suppressor by acceleration of β-catenin degradation and provide new insight for cancer prognosis and therapy.
Collapse
Affiliation(s)
- Chun-Chieh Chen
- 1 Department of Clinical Laboratory Sciences and Medical Biotechnology
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Khodosevich K, Jacobi E, Farrow P, Schulmann A, Rusu A, Zhang L, Sprengel R, Monyer H, von Engelhardt J. Coexpressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function. Neuron 2014; 83:601-15. [PMID: 25066086 DOI: 10.1016/j.neuron.2014.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 01/30/2023]
Abstract
Gating properties and surface trafficking of AMPA receptors (AMPARs) are modulated by auxiliary subunits. Here we studied the function of coexpressed auxiliary subunits belonging to two different classes. We focused on TARP γ-8 and CKAMP44 in dentate gyrus (DG) granule cells, since both subunits are highly expressed in this cell type. TARP γ-8 and CKAMP44 decrease the rate of deactivation but have an opposing influence on receptor desensitization, which accounts for their differential modulation of synaptic short-term plasticity. Furthermore, long-term plasticity (LTP) requires TARP γ-8 but not CKAMP44. The coexpression of both auxiliary subunits is necessary for the efficient targeting of AMPARs to the cell surface of DG granule cells. Finally, electrophysiological and biochemical evidence support the notion that CKAMP44 and TARP γ-8 can be contained in the same AMPAR complex.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Department of Clinical Neurobiology, University Hospital and DKFZ Heidelberg, 69120 Heidelberg, Germany
| | - Eric Jacobi
- Synaptic Signalling and Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany; Synaptic Signalling and Neurodegeneration, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Paul Farrow
- Synaptic Signalling and Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany; Synaptic Signalling and Neurodegeneration, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anton Schulmann
- Department of Clinical Neurobiology, University Hospital and DKFZ Heidelberg, 69120 Heidelberg, Germany
| | - Alexandru Rusu
- Department of Clinical Neurobiology, University Hospital and DKFZ Heidelberg, 69120 Heidelberg, Germany
| | - Ling Zhang
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, University Hospital and DKFZ Heidelberg, 69120 Heidelberg, Germany
| | - Jakob von Engelhardt
- Synaptic Signalling and Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany; Synaptic Signalling and Neurodegeneration, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013; 5:a015081. [PMID: 23085770 DOI: 10.1101/cshperspect.a015081] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | |
Collapse
|
24
|
Pei J, Grishin NV. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors. Cell Signal 2012; 24:758-69. [PMID: 22120523 PMCID: PMC3295595 DOI: 10.1016/j.cellsig.2011.11.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/05/2011] [Indexed: 12/20/2022]
Abstract
The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.
Collapse
Affiliation(s)
- Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| | | |
Collapse
|
25
|
Klymkowsky MW, Rossi CC, Artinger KB. Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis. Cell Adh Migr 2010; 4:595-608. [PMID: 20962584 PMCID: PMC3011258 DOI: 10.4161/cam.4.4.12962] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/09/2010] [Indexed: 01/09/2023] Open
Abstract
The neural crest is an evolutionary adaptation, with roots in the formation of mesoderm. Modification of neural crest behavior has been is critical for the evolutionary diversification of the vertebrates and defects in neural crest underlie a range of human birth defects. There has been a tremendous increase in our knowledge of the molecular, cellular, and inductive interactions that converge on defining the neural crest and determining its behavior. While there is a temptation to look for simple models to explain neural crest behavior, the reality is that the system is complex in its circuitry. In this review, our goal is to identify the broad features of neural crest origins (developmentally) and migration (cellularly) using data from the zebrafish (teleost) and Xenopus laevis (tetrapod amphibian) in order to illuminate where general mechanisms appear to be in play, and equally importantly, where disparities in experimental results suggest areas of profitable study.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Department of Molecular, Cellular and Developmental Biology; University of Colorado Boulder; Boulder, CO USA
| | - Christy Cortez Rossi
- Department of Craniofacial Biology; University of Colorado Denver; School of Dental Medicine; Aurora, CO USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology; University of Colorado Denver; School of Dental Medicine; Aurora, CO USA
| |
Collapse
|
26
|
Niehrs C. On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 2010; 137:845-57. [DOI: 10.1242/dev.039651] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The regulation of body axis specification in the common ancestor of bilaterians remains controversial. BMP signaling appears to be an ancient program for patterning the secondary, or dorsoventral, body axis, but any such program for the primary, or anteroposterior, body axis is debated. Recent work in invertebrates indicates that posterior Wnt/β-catenin signaling is such a mechanism and that it evolutionarily predates the cnidarian-bilaterian split. Here, I argue that a Cartesian coordinate system of positional information set up by gradients of perpendicular Wnt and BMP signaling is conserved in bilaterians, orchestrates body axis patterning and contributes to both the relative invariance and diversity of body forms.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
27
|
|
28
|
Yoshigai E, Kawamura S, Kuhara S, Tashiro K. Trim36/Haprin plays a critical role in the arrangement of somites during Xenopus embryogenesis. Biochem Biophys Res Commun 2008; 378:428-32. [PMID: 19032936 DOI: 10.1016/j.bbrc.2008.11.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
The TRIM family members contain a tripartite motif (TRIM), which includes RING, B-box, and coiled-coil domains, or collectively RBCC. They have been implicated in a variety of biological processes, such as the regulation of differentiation and development, and oncogenesis. In this study, we discovered a novel function of the TRIM family in early development. We report the expression of Trim36/Haprin during Xenopus laevis early embryogenesis and its involvement in somite formation. Temporal expression analysis indicated that Trim36/Haprin was present throughout embryogenesis. Spatial expression analysis showed that its expression was mainly confined to the nervous system and a portion of the posterior somite. Morpholino-mediated knockdown of Trim36/Haprin markedly and specifically inhibited the somite formation. We conclude that Trim36/Haprin plays an important role in the arrangement of somites during their formation.
Collapse
Affiliation(s)
- Emi Yoshigai
- Graduate School of Genetic Resources Technology, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
29
|
Freeman SD, Moore WM, Guiral EC, Holme AD, Turnbull JE, Pownall ME. Extracellular regulation of developmental cell signaling by XtSulf1. Dev Biol 2008; 320:436-45. [PMID: 18617162 DOI: 10.1016/j.ydbio.2008.05.554] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/28/2008] [Accepted: 05/28/2008] [Indexed: 02/06/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are synthesised and modified in the Golgi before they are presented at the cell surface. Modifications include the addition of sulfate groups at specific positions on sugar residues along the heparan sulfate (HS) chain which results in a structural heterogeneity that underpins the ability of HSPGs to bind with high affinity to many different proteins, including growth factors and their receptors. Sulf1 codes for a 6-0-endosulfatase that is present and active extracellularly, providing a further mechanism to generate structural diversity through the post-synthetic remodelling of HS. Here we use Xenopus embryos to demonstrate in vivo that Xtsulf1 plays an important role in modulating cell signaling during development. We show that while XtSulf1 can enhance the axis-inducing activity of Wnt11, XtSulf1 acts during embryogenesis to restrict BMP and FGF signaling.
Collapse
|
30
|
Abstract
Knowledge of muscle development in a vertebrate reflects strengths of the particular model system. For example, the origin of mesoderm is very well characterized in Xenopus laevis, where development of somites is less well understood. The major problem in muscle development, presented by frogs, is the complete replacement of larval muscles by adult muscles at thyroid hormone-dependent metamorphosis. All tail muscles die, all leg muscles form de novo, and muscles in the jaw and trunk show both processes. The nature of adult muscle progenitors remains unclear. Comparison of X. laevis development with divergent amphibian patterns, such as direct developers, which lack the larval tadpole, should highlight important steps in adult muscle formation.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| |
Collapse
|
31
|
Cinquin O. Understanding the somitogenesis clock: what's missing? Mech Dev 2007; 124:501-17. [PMID: 17643270 DOI: 10.1016/j.mod.2007.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 05/10/2007] [Accepted: 06/09/2007] [Indexed: 01/09/2023]
Abstract
The segmentation of vertebrate embryos depends on a complex genetic network that generates highly dynamic gene expression. Many of the elements of the network have been identified, but their interaction and their influence on segmentation remain poorly understood. A few mathematical models have been proposed to explain the dynamics of subsets of the network, but the mechanistic bases remain controversial. This review focuses on outstanding problems with the generation of somitogenesis clock oscillations, and the ways they could regulate segmentation. Proposals that oscillations are generated by a negative feedback loop formed by Lunatic fringe and Notch signaling are weighed against a model based on positive feedback, and the experimental basis for models of simple negative feedback involving Her/Hes genes or Wnt targets is evaluated. Differences are then made explicit between the many 'clock and wavefront' model variants that have been proposed to explain how the clock regulates segmentation. An understanding of the somitogenesis clock will require addressing experimentally the many questions that arise from the study of simple models.
Collapse
Affiliation(s)
- Olivier Cinquin
- Howard Hughes Medical Institute and Department of Biochemistry, University of Wisconsin - Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
32
|
Furushima K, Yamamoto A, Nagano T, Shibata M, Miyachi H, Abe T, Ohshima N, Kiyonari H, Aizawa S. Mouse homologues of Shisa antagonistic to Wnt and Fgf signalings. Dev Biol 2007; 306:480-92. [PMID: 17481602 DOI: 10.1016/j.ydbio.2007.03.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 03/12/2007] [Accepted: 03/19/2007] [Indexed: 12/28/2022]
Abstract
In an effort to identify Otx2 targets in mouse anterior neuroectoderm we identified a gene, mShisa, which is homologous to xShisa1 that we previously reported as a head inducer in Xenopus. mShisa encodes an antagonist against both Wnt and Fgf signalings; it inhibits these signalings cell-autonomously as xShisa1 does. The mShisa expression is lost or greatly reduced in Otx2 mutant visceral endoderm, anterior mesendoderm and anterior neuroectoderm. However, mShisa mutants exhibited no defects in head development. Shisa is composed of five subfamilies, but normal head development in mShisa mutants is unlikely to be explained in terms of the compensation of mShisa deficiency by its paralogues or by known Wnt antagonists in anterior visceral endoderm and/or anterior mesendoderm.
Collapse
Affiliation(s)
- Kenryo Furushima
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|