1
|
Wang M, Feng G, Hao F, Nie G, Huang L, Zhang X. Integrated transcriptome and metabolome reveal hydroxypyruvate reductase DgHPR1 positively regulates flowering time in orchardgrass. Int J Biol Macromol 2025; 305:141164. [PMID: 39965689 DOI: 10.1016/j.ijbiomac.2025.141164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
The transition from the vegetative to the reproductive growth phase is a crucial development process in plants. However, the metabolic changes and the regulatory networks of related genes implicated in the floral transition of perennial plants are poorly understood. Orchardgrass (Dactylis glomerata), a perennial cool-season grass, is an economically important forage grass cultivated worldwide. We analyzed the transcriptome and metabolome data at seven different stages in two cultivars to systematically explore the regulatory network of flavonoid biosynthesis, starch and sucrose metabolism, carbon metabolism, and plant hormone signal transduction to better understand the floral transition of orchardgrass. The hydroxypyruvate reductase geneDgHPR1 of carbon metabolism may positively regulate flowering time by up-regulating key flowering genes, such as AtAP1, AtSOC1, AtFT, AtFUL, and AtLFY. The indole acetic acid gene DgIAA17 exhibited high expression levels from the vegetative growth stage to booting stage. Overexpression of DgIAA17 accelerated flowering time phenotype under both normal and long-day conditions, with significant upregulation of flowering genes such as AtAP1, AtCAL, AtFUL, AtLFY, AtSOC1, and AtSPL3 compared to wild-type plants. These results provide significant insight into the transcriptional control of major metabolites in floral transition and offer guidance for future yield and quality improvement of perennial plants.
Collapse
Affiliation(s)
- Miaoli Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Feixiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Xu X, Feng G, Li P, Yu S, Hao F, Nie G, Huang L, Zhang X. Genome-wide association analysis reveals the function of DgSAUR71 in plant height improvement. BMC PLANT BIOLOGY 2025; 25:240. [PMID: 39987023 PMCID: PMC11846171 DOI: 10.1186/s12870-025-06246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Orchardgrass (Dactylis glomerata L.) is one of the four most economically important forage grasses cultivated globally and serves as an excellent perennial forage with high ecological value. Plant height is a key determinant of both biomass and grain yield. While numerous genes regulating plant height have been identified in annual crops, no such genes have been reported for orchardgrass. RESULTS In this study, we analyzed the relationship between plant height and biomass yield in a natural population of 264 orchardgrass genotypes and found that a plant height of 90-110 cm contributed to the maximum biomass yield. Genome-wide association analysis (GWAS) identified 23 candidate loci associated with plant height, corresponding to 62 candidate genes. Among these, DgSAUR71, a member of the small auxin-up RNA (SAUR) gene family, emerged as a novel candidate gene associated with plant height. Functional analysis revealed that DgSAUR71 slightly reduced plant height in rice (Oryza sativa L.) and was involved in regulating plant height in orchardgrass. CONCLUSIONS This study demonstrates that plant height is an important contributor for optimizing biomass yield in orchardgrass, with an optimal range identified. DgSAUR71 was identified as a gene associated with plant height through GWAS and shown to negatively regulate plant height. These findings provide new insights into plant height regulation in orchardgrass and contribute to advancing crop height diversification research.
Collapse
Affiliation(s)
- Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuai Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feixiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Xu X, Jiang W, Chen Y, Tian H, Yang Z, Liu S, Li X, Song C, Ye Z, Guo W, Kong D, Hou C, Li L, Liu L. BRASSINAZOLE RESISTANT 1 delays photoperiodic flowering by repressing CONSTANS transcription. PLANT PHYSIOLOGY 2025; 197:kiaf032. [PMID: 39843222 DOI: 10.1093/plphys/kiaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Photoperiodic regulation of flowering time plays a critical role in plant reproductive success and crop yield. In Arabidopsis thaliana, the expression of the CONSTANS (CO) gene is closely regulated by day length and is modulated by both environmental and endogenous cues for precise control over flowering. Our findings reveal that the phytohormone brassinosteroid (BR) pathway represses flowering by inhibiting the expression of both CO and Flowering Locus T (FT). Additionally, we discovered that BRASSINAZOLE RESISTANT 1 (BZR1), a key transcription factor in the BR signaling pathway, directly binds to the proximal promoter region of CO to suppress its transcription during long days, thus regulating photoperiodic flowering. Genetically, BZR1 acts upstream of CO and FT to delay floral initiation depending on day length. Overall, our study reveals how a molecular module comprising BZR1-CO integrates signals from BR as well as photoperiodicity for appropriate adjustment of flowering time.
Collapse
Affiliation(s)
- Xingwen Xu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangbo Chen
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hao Tian
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zijian Yang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shuo Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiaopeng Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Chunhui Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhangli Ye
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Guo
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Dongdong Kong
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Congcong Hou
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Legong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liangyu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
4
|
Shah K, Zhu X, Zhang T, Chen J, Chen J, Qin Y. Transcriptome Analysis Reveals Sugar and Hormone Signaling Pathways Mediating Flower Induction in Pitaya ( Hylocereus polyrhizus). Int J Mol Sci 2025; 26:1250. [PMID: 39941017 PMCID: PMC11818635 DOI: 10.3390/ijms26031250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Flower induction in pitaya (Hylocereus polyrhizus) is regulated by complex gene networks involving multiple signaling pathways that ensure flower bud (FB) formation, but its molecular determinants remain largely unknown. In this study, we aimed to identify key genes and pathways involved in pitaya flower induction by analyzing transcriptomics profiles from differentiating buds. Our results indicate that the flower induction process is driven by a combination of sugar, hormone, transcription factor (TF), and flowering-related genes. We found that during the FB induction period, the levels of sugar, starch, auxin (AUX), cytokinin (CTK) active forms dihydrozeatin riboside (dhZR), zeatin riboside (ZR), N6-isopentenyladenosine (iPA), and brassinosteroid (BR) increase in the late stage (LS), while active gibberellins (GA3, GA4) decrease, signaling a metabolic and hormonal shift essential for flowering. Differential gene expression analysis identified key genes involved in starch and sugar metabolism, AUX, CTK, BR synthesis, and (GA) degradation, with notable differential expression in photoperiod (COL, CDF, TCP), age-related (SPL), and key flowering pathways (FT, FTIP, AGL, SOC1). This study reveals a multidimensional regulatory network for FB formation in pitaya, primarily mediated by the crosstalk between sugar and hormone signaling pathways, providing new insights into the molecular mechanism of FB formation in pitaya.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Jiang M, Zhan Z, Li X, Piao Z. Construction and evaluation of Brassica rapa orphan genes overexpression library. FRONTIERS IN PLANT SCIENCE 2025; 16:1532449. [PMID: 39912098 PMCID: PMC11794797 DOI: 10.3389/fpls.2025.1532449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
Orphan genes (OGs) are crucial for species-specific characteristics and stress responses and are restricted to a specific taxon. However, their functions within particular species are poorly understood. Previous research identified OGs in Brassica rapa (BrOGs). In this study, the BrOGs overexpression (BrOGsOE) library in Arabidopsis thaliana was constructed. Approximately 128 unknown functional BrOGs were selected from Chinese cabbage and were overexpressed. The analysis focused on the phenotypes of leaf morphology and flowering time against phenotypic differences between Chinese cabbage and Arabidopsis. Interestingly, 72.66% of the transgenic lines showed distinctive phenotypic changes. Chinese cabbage-specific features, including curved, hairy, upward or downward-curving leaves, serrated margins, and multiple leaves, were observed in the BrOGsOE lines. The BrOGs overexpression library was associated with numerous variations in flowering time, particularly delayed flowering. This suggested that the delayed flowering time caused by BrOGs may be associated with resistance to bolting seem in Chinese cabbage. Furthermore, the results of stress treatment of 24 BrOGsOE lines with no apparent significant phenotypes suggested that a number of BrOGs have both general and specific functions against environmental and pathogenic stress. The findings of this study provide a comprehensive overview of the roles of BrOGs, emphasizing their significance as a resource for identifying positive genes associated with species-specific characteristics and stress responses and offering a solid foundation for the functional analysis of BrOGs.
Collapse
Affiliation(s)
- Mingliang Jiang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Zhao Y, Lu J, Hu B, Jiao P, Gao B, Jiang Z, Liu S, Guan S, Ma Y. Cloning and functional analysis of ZmMADS42 gene in maize. GM CROPS & FOOD 2024; 15:105-117. [PMID: 38466176 PMCID: PMC10936638 DOI: 10.1080/21645698.2024.2328384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Maize (Zea mays L.) is the most important cereal crop in the world. Flowering period and photoperiod play important roles in the reproductive development of maize. This study, investigated ZmMADS42, a gene that is highly expressed in the shoot apical meristem. Agrobacterium infection was used to successfully obtain overexpressed ZmMADS42 plants. Fluorescence quantitative PCR revealed that the expression of the ZmMADS42 gene in the shoot apical meristem of transgenic plants was 2.8 times higher than that of the wild-type(WT). In addition, the expression of the ZmMADS42 gene in the endosperm was 2.4 times higher than that in the wild-type. The seed width of the T2 generation increased by 5.35%, whereas the seed length decreased by 7.78% compared with that of the wild-type. Dissection of the shoot tips of transgenic and wild-type plants from the 7-leaf stage to the 9-leaf stage revealed that the transgenic plants entered the differentiation stage earlier and exhibited more tassel meristems during their vegetative growth period. The mature transgenic plants were approximately 20 cm shorter in height and had a lower panicle position than the wild-type plants. Comparing the flowering period, the tasseling, powdering, and silking stages of the transgenic plants occurred 10 days earlier than those of the wild-type plants. The results showed that the ZmMADS42 gene played a significant role in regulating the flowering period and plant height of maize.
Collapse
Affiliation(s)
- Yang Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jianyu Lu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bo Hu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bai Gao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhenzhong Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Zolkiewicz K, Gruszka D. Take a deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress. PLANT PHYSIOLOGY 2024; 197:kiaf003. [PMID: 39761526 PMCID: PMC11781206 DOI: 10.1093/plphys/kiaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 02/01/2025]
Abstract
Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained. Thus, the urgent need for developing new cereal germplasm with improved stress tolerance could be fulfilled using semidwarf cereal mutants defective in brassinosteroid (BR) biosynthesis or signaling. BRs are steroid phytohormones that regulate various developmental and physiological processes throughout the plant life cycle. Mutants defective in BR biosynthesis or responses show reduced plant height (dwarfism or semi-dwarfism). Importantly, numerous reports indicate that genetic modification or biotechnological manipulation of BR biosynthesis or signaling genes in cereals such as rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare), which are of crucial importance for global agriculture, may facilitate the development of cereal germplasm with improved stress tolerance. This review presents a comprehensive overview of the genetic manipulation of BR homeostasis in the above-mentioned cereal crops aimed at improving plant responses to various environmental stresses, such as drought, salinity, oxidative stress, thermal stress, and biotic stresses. We highlight target BR-related genes and the effects of genetic manipulation (gene editing, overexpression, and silencing or microRNA-mediated regulation) on plant adaptability to various stresses and provide future perspectives.
Collapse
Affiliation(s)
- Karolina Zolkiewicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland
| | - Damian Gruszka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland
| |
Collapse
|
8
|
Chen L, Zhang Y, Bu Y, Zhou J, Man Y, Wu X, Yang H, Lin J, Wang X, Jing Y. Imaging the spatial distribution of structurally diverse plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6980-6997. [PMID: 39269320 DOI: 10.1093/jxb/erae384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Plant hormones are essential and structurally diverse molecules that regulate various aspects of plant growth, development, and stress responses. However, the precise analysis of plant hormones in complex biological samples poses a challenge due to their low concentrations, dynamic levels, and intricate spatial distribution. Moreover, the complexity and interconnectedness of hormone signaling networks make it difficult to simultaneously trace multiple hormone spatial distributions. In this review, we provide an overview of currently recognized small-molecule plant hormones, signal peptide hormones, and plant growth regulators, along with the analytical methods employed for their analysis. We delve into the latest advancements in mass spectrometry imaging and in situ fluorescence techniques, which enable the examination of the spatial distribution of plant hormones. The advantages and disadvantages of these imaging techniques are further discussed. Finally, we propose potential avenues in imaging techniques to further enhance our understanding of plant hormone biology.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Junhui Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yi Man
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
9
|
Song J, Zhang X, Jones T, Wang ML, Ming R. Identification of male sterility-related genes in Saccharum officinarum and Saccharum spontaneum. PLANT REPRODUCTION 2024; 37:489-506. [PMID: 38844561 DOI: 10.1007/s00497-024-00503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
KEY MESSAGE Candidate male sterility genes were identified in sugarcane, which interacts with kinase-related proteins, transcription factors, and plant hormone signaling pathways to regulate stamen and anther development. Saccharum officinarum is a cultivated sugarcane species that its predominant feature is high sucrose content in stems. Flowering is necessary for breeding new cultivars but will terminate plant growth and reduce sugar yield. The wild sugarcane species Saccharum spontaneum has robust and viable pollen, whereas most S. officinarum accessions are male sterile, which is a desirable trait of a maternal parent in sugarcane breeding. To study male sterility and related regulatory pathways in sugarcane, we carried out RNAseq using flowers in different developmental stages between male-sterile S. officinarum accession 'LA Purple' and fertile S. spontaneum accession 'SES208'. Gene expression profiles were used to detect how genes are differentially expressed between male sterile and fertile flowers and to identify candidate genes for male sterility. Weighted gene correlation networks analysis (WGCNA) was conducted to investigate the regulatory networks. Transcriptomic analyses showed that 988 genes and 2888 alleles were differentially expressed in S. officinarum compared to S. spontaneum. Ten differentially expressed genes and thirty alleles were identified as candidate genes and alleles for male sterility in sugarcane. The gene Sspon.03G0007630 and two alleles of the gene Sspon.08G0002270, Sspon.08G0002270-2B and Sspon.08G0014700-1A, were involved in the early stamen or carpel development stages, while the remaining genes were classified into the post-meiosis stage. Gibberellin, auxin, and jasmonic acid signaling pathways are involved in the stamen development in sugarcane. The results expanded our knowledge of male sterility-related genes in sugarcane and generated genomic resources to facilitate the selection of ideal maternal parents to improve breeding efficiency.
Collapse
Affiliation(s)
- Jinjin Song
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiaodan Zhang
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Tyler Jones
- Hawaii Agriculture Research Center, Waipahu, HI, 96797, USA
| | - Ming-Li Wang
- Hawaii Agriculture Research Center, Waipahu, HI, 96797, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
10
|
Gurung V, Muñoz-Gómez S, Jones DS. Putting heads together: Developmental genetics of the Asteraceae capitulum. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102589. [PMID: 38955094 DOI: 10.1016/j.pbi.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Inflorescence architecture is highly variable across plant lineages yet is critical for facilitating reproductive success. The capitulum-type inflorescence of the Asteraceae is marked as a key morphological innovation that preceded the family's diversification and expansion. Despite its evolutionary significance, our understanding of capitulum development and evolution is limited. This review highlights our current perspective on capitulum evolution through the lens of both its molecular and developmental underpinnings. We attempt to summarize our understanding of the capitulum by focusing on two key characteristics: patterning (arrangement of florets on a capitulum) and floret identity specification. Note that these two features are interconnected such that the identity of florets depends on their position along the inflorescence axis. Phytohormones such as auxin seemingly determine both pattern progression and floret identity specification through unknown mechanisms. Floret morphology in a head is controlled by differential expression of floral symmetry genes regulating floret identity specification. We briefly summarize the applicability of the ABCE quartet model of flower development in regulating the floret organ identity of a capitulum in Asteraceae. Overall, there have been promising advancements in our understanding of capitula; however, comprehensive functional genetic analyses are necessary to fully dissect the molecular pathways and mechanisms involved in capitulum development.
Collapse
Affiliation(s)
- Vandana Gurung
- Department of Biological Sciences, Auburn University, 36849, Auburn, AL, USA
| | - Sarita Muñoz-Gómez
- Department of Biological Sciences, Auburn University, 36849, Auburn, AL, USA
| | - Daniel S Jones
- Department of Biological Sciences, Auburn University, 36849, Auburn, AL, USA.
| |
Collapse
|
11
|
Zada A, Lv M, Li J. Molecular Lesions in BRI1 and Its Orthologs in the Plant Kingdom. Int J Mol Sci 2024; 25:8111. [PMID: 39125682 PMCID: PMC11312156 DOI: 10.3390/ijms25158111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Brassinosteroids (BRs) are an essential group of plant hormones regulating numerous aspects of plant growth, development, and stress responses. BRI1, along with its co-receptor BAK1, are involved in brassinosteroid sensing and early events in the BR signal transduction cascade. Mutational analysis of a particular gene is a powerful strategy for investigating its biochemical role. Molecular genetic studies, predominantly in Arabidopsis thaliana, but progressively in numerous other plants, have identified many mutants of the BRI1 gene and its orthologs to gain insight into its structure and function. So far, the plant kingdom has identified up to 40 bri1 alleles in Arabidopsis and up to 30 bri1 orthologs in different plants. These alleles exhibit phenotypes that are identical in terms of development and growth. Here, we have summarized bri1 alleles in Arabidopsis and its orthologs present in various plants including monocots and dicots. We have discussed the possible mechanism responsible for the specific allele. Finally, we have briefly debated the importance of these alleles in the research field and the agronomically valuable traits they offer to improve plant varieties.
Collapse
Affiliation(s)
- Ahmad Zada
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
12
|
Li X, Lin C, Lan C, Tao Z. Genetic and epigenetic basis of phytohormonal control of floral transition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4180-4194. [PMID: 38457356 DOI: 10.1093/jxb/erae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
The timing of the developmental transition from the vegetative to the reproductive stage is critical for angiosperms, and is fine-tuned by the integration of endogenous factors and external environmental cues to ensure successful reproduction. Plants have evolved sophisticated mechanisms to response to diverse environmental or stress signals, and these can be mediated by hormones to coordinate flowering time. Phytohormones such as gibberellin, auxin, cytokinin, jasmonate, abscisic acid, ethylene, and brassinosteroids and the cross-talk among them are critical for the precise regulation of flowering time. Recent studies of the model flowering plant Arabidopsis have revealed that diverse transcription factors and epigenetic regulators play key roles in relation to the phytohormones that regulate floral transition. This review aims to summarize our current knowledge of the genetic and epigenetic mechanisms that underlie the phytohormonal control of floral transition in Arabidopsis, offering insights into how these processes are regulated and their implications for plant biology.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenghao Lan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Fan H, Wang X, Zhong H, Quan K, Yu R, Ma S, Song S, Lin M. Integrated analysis of miRNAs, transcriptome and phytohormones in the flowering time regulatory network of tea oil camellia. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:945-956. [PMID: 38974357 PMCID: PMC11222345 DOI: 10.1007/s12298-024-01473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
Camellia oleifera is a crucial cash crop in the southern region of China. Timely flowering is a crucial characteristic for maximizing crop productivity. Nevertheless, the cold temperature and wet weather throughout the fall and winter seasons in South China impact the timing of flowering and the yield produced by C. oleifera. This study examined the miRNAs, transcriptomes, and phytohormones that are part of the flowering time regulatory networks in distinct varieties of C. oleifera (Sep, Oct, and Nov). This study provides evidence that phytohormones significantly impact the timing of flowering in C. oleifera leaves. There is a positive correlation between the accumulation variations of zeatin (cZ), brassinolide (BL), salicylic acid (SA), 1-amino cyclopropane carboxylic acid (ACC), and jasmonic acid (JA) and flowering time. This means that blooming occurs earlier when the quantity of these substances in leaves increases. Abscisic acid (ABA), trans-zeatin-riboside (tZR), dihydrozeatin (dh-Z), and IP (N6-Isopentenyladenine) exhibit contrasting effects. Furthermore, both miR156 and miR172 play a crucial function in regulating flowering time in C. oleifera leaves by modulating the expression of SOC1, primarily through the miR156-SPL and miR172-AP2 pathways. These findings establish a strong basis for future research endeavors focused on examining the molecular network associated with the flowering period of C. oleifera and controlling flowering time management through external treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01473-2.
Collapse
Affiliation(s)
- Haixiao Fan
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Xiaoling Wang
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Huiqi Zhong
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Kehui Quan
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Ruohan Yu
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Shiying Ma
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Siqiong Song
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| |
Collapse
|
14
|
Li R, Zhang B, Li T, Yao X, Feng T, Ai H, Huang X. Identification and Characterization of the BZR Transcription Factor Genes Family in Potato ( Solanum tuberosum L.) and Their Expression Profiles in Response to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:407. [PMID: 38337940 PMCID: PMC10856970 DOI: 10.3390/plants13030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Brassinazole resistant (BZR) genes act downstream of the brassinosteroid signaling pathway regulating plant growth and development and participating in plant stress responses. However, the BZR gene family has not systematically been characterized in potato. We identified eight BZR genes in Solanum tuberosum, which were distributed among seven chromosomes unequally and were classified into three subgroups. Potato and tomato BZR proteins were shown to be closely related with high levels of similarity. The BZR gene family members in each subgroup contained similar conserved motifs. StBZR genes exhibited tissue-specific expression patterns, suggesting their functional differentiation during evolution. StBZR4, StBZR7, and StBZR8 were highly expressed under white light in microtubers. StBZR1 showed a progressive up-regulation from 0 to 6 h and a progressive down-regulation from 6 to 24 h after drought and salt stress. StBZR1, StBZR2, StBZR4, StBZR5, StBZR6, StBZR7 and StBZR8 were significantly induced from 0 to 3 h under BR treatment. This implied StBZR genes are involved in phytohormone and stress response signaling pathways. Our results provide a theoretical basis for understanding the functional mechanisms of BZR genes in potato.
Collapse
Affiliation(s)
- Ruining Li
- Center for Crop Biotechnology, Anhui Science and Technology University, Chuzhou 239000, China
| | - Bolin Zhang
- Center for Crop Biotechnology, Anhui Science and Technology University, Chuzhou 239000, China
| | - Ting Li
- Center for Crop Biotechnology, Anhui Science and Technology University, Chuzhou 239000, China
| | - Xuyang Yao
- Center for Crop Biotechnology, Anhui Science and Technology University, Chuzhou 239000, China
| | - Tingting Feng
- Center for Crop Biotechnology, Anhui Science and Technology University, Chuzhou 239000, China
| | - Hao Ai
- Center for Crop Biotechnology, Anhui Science and Technology University, Chuzhou 239000, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, Anhui Science and Technology University, Chuzhou 239000, China
| |
Collapse
|
15
|
Zhang H, Liu Z, Wang Y, Mu S, Yue H, Luo Y, Zhang Z, Li Y, Chen P. A mutation in CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase leads to the phenotype of super compact in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:20. [PMID: 38221593 DOI: 10.1007/s00122-023-04518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
KEY MESSAGE A novel super compact mutant, scp-3, was identified using map-based cloning in cucumber. The CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase was the candidate gene of scp-3. Mining dwarf genes is important in understanding stem growth in crops. However, only a small number of dwarf genes have been cloned or characterized. Here, we characterized a cucumber (Cucumis sativus L.) dwarf mutant, super compact 3 (scp-3), which displays shortened internodes and dark green leaves with a wrinkled appearance. The photosynthetic rate of scp-3 is significantly lower than that of the wild type. The dwarf phenotype of scp-3 mutant can be partially rescued by the exogenous brassinolide (BL) application, and the endogenous brassinosteroids (BRs) levels in the scp-3 mutant were significantly lower compared to the wild type. Microscopic examination revealed that the reduced internode length in scp-3 resulted from a decrease in cell size. Genetic analysis showed that the dwarf phenotype of scp-3 was controlled by a single recessive gene. Combined with bulked segregant analysis and map-based cloning strategy, we delimited scp-3 locus into an 82.5 kb region harboring five putative genes, but only one non-synonymous mutation (A to T) was discovered between the mutant and its wild type in this region. This mutation occurred within the second exon of the CsGy4G017510 gene, leading to an amino acid alteration from Leu156 to His156. This gene encodes the CsDWF7 protein, an analog of the Arabidopsis DWF7 protein, which is known to be involved in the biosynthesis of BRs. The CsDWF7 protein was targeted to the cell membrane. In comparison to the wild type, scp-3 exhibited reduced CsDWF7 expression in different tissues. These findings imply that CsDWF7 is essential for both BR biosynthesis as well as growth and development of cucumber plants.
Collapse
Affiliation(s)
- Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zichen Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunxiao Wang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyu Mu
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yanjie Luo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengao Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Liu Y, Zhu QF, Li WY, Chen P, Xue J, Yu Y, Feng YZ. The Pivotal Role of Noncoding RNAs in Flowering Time Regulation. Genes (Basel) 2023; 14:2114. [PMID: 38136936 PMCID: PMC10742506 DOI: 10.3390/genes14122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Noncoding RNAs constitute a substantial portion of the transcriptome and play pivotal roles in plant growth and development. Among these processes, flowering stands out as a crucial trait, ensuring reproductive success and seed set, and is meticulously controlled by genetic and environmental factors. With remarkable advancements in the identification and characterization of noncoding RNAs in plants, it has become evident that noncoding RNAs are intricately linked to the regulation of flowering time. In this article, we present an overview of the classification of plant noncoding RNAs and delve into their functions in the regulation of flowering time. Furthermore, we review their molecular mechanisms and their involvement in flowering pathways. Our comprehensive review enhances the understanding of how noncoding RNAs contribute to the regulation of flowering time and sheds light on their potential implications in crop breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (Q.-F.Z.); (W.-Y.L.); (P.C.); (J.X.)
| | - Yan-Zhao Feng
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (Q.-F.Z.); (W.-Y.L.); (P.C.); (J.X.)
| |
Collapse
|
17
|
Cheng Y, Li Y, Yang J, He H, Zhang X, Liu J, Yang X. Multiplex CRISPR-Cas9 knockout of EIL3, EIL4, and EIN2L advances soybean flowering time and pod set. BMC PLANT BIOLOGY 2023; 23:519. [PMID: 37884905 PMCID: PMC10604859 DOI: 10.1186/s12870-023-04543-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Ethylene inhibitor treatment of soybean promotes flower bud differentiation and early flowering, suggested that there is a close relationship between ethylene signaling and soybean growth and development. The short-lived ETHYLENE INSENSITIVE2 (EIN2) and ETHYLENE INSENSITIVE3 (EIN3) proteins play central roles in plant development. The objective of this study was carried out gene editing of EIL family members in soybeans and to examine the effects on soybean yield and other markers of growth. METHODS AND RESULTS By editing key-node genes in the ethylene signaling pathway using a multi-sgRNA-in-one strategy, we obtained a series of gene edited lines with variable edit combinations among 15 target genes. EIL3, EIL4, and EIN2L were editable genes favored by the T0 soybean lines. Pot experiments also show that the early flowering stage R1 of the EIL3, EIL4, and EIN2L triple mutant was 7.05 d earlier than that of the wild-type control. The yield of the triple mutant was also increased, being 1.65-fold higher than that of the control. Comparative RNA-seq revealed that sucrose synthase, AUX28, MADS3, type-III polyketide synthase A/B, ABC transporter G family member 26, tetraketide alpha-pyrone reductase, and fatty acyl-CoA reductase 2 may be involved in regulating early flowering and high-yield phenotypes in triple mutant soybean plants. CONCLUSION Our results provide a scientific basis for genetic modification to promote the development of earlier-flowering and higher-yielding soybean cultivars.
Collapse
Affiliation(s)
- Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Yujie Li
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Xingzheng Zhang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China.
| |
Collapse
|
18
|
Li Y, Zhao M, Cai K, Liu L, Han R, Pei X, Zhang L, Zhao X. Phytohormone biosynthesis and transcriptional analyses provide insight into the main growth stage of male and female cones Pinus koraiensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1273409. [PMID: 37885661 PMCID: PMC10598626 DOI: 10.3389/fpls.2023.1273409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The cone is a crucial component of the whole life cycle of gymnosperm and an organ for sexual reproduction of gymnosperms. In Pinus koraiensis, the quantity and development process of male and female cones directly influence seed production, which in turn influences the tree's economic value. There are, however, due to the lack of genetic information and genomic data, the morphological development and molecular mechanism of female and male cones of P. koraiensis have not been analyzed. Long-term phenological observations were used in this study to document the main process of the growth of both male and female cones. Transcriptome sequencing and endogenous hormone levels at three critical developmental stages were then analyzed to identify the regulatory networks that control these stages of cones development. The most significant plant hormones influencing male and female cones growth were discovered to be gibberellin and brassinosteroids, according to measurements of endogenous hormone content. Additionally, transcriptome sequencing allowed the identification of 71,097 and 31,195 DEGs in male and female cones. The synthesis and control of plant hormones during cones growth were discovered via enrichment analysis of key enrichment pathways. FT and other flowering-related genes were discovered in the coexpression network of flower growth development, which contributed to the growth development of male and female cones of P. koraiensis. The findings of this work offer a cutting-edge foundation for understanding reproductive biology and the molecular mechanisms that control the growth development of male and female cones in P. koraiensis.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Minghui Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lin Liu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Lina Zhang
- School of Information Technology, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
19
|
Liu Y, Zhang H, Feng W, Lin X, Gao A, Cao Y, Yang Q, Wang Y, Li W, Fu F, Yu H. The Maize ZmBES1/BZR1-9 Transcription Factor Accelerates Flowering in Transgenic Arabidopsis and Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2995. [PMID: 37631206 PMCID: PMC10459471 DOI: 10.3390/plants12162995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
In model plants, the BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) transcription factors play vital roles in regulating growth, development, and stimuli response. However, the roles of maize ZmBES1/BZR1 members are largely unknown. In this research, the ZmBES1/BZR1-9 gene was ectopically expressed in Arabidopsis and rice for the phenotyping of flowering. We found that the complementation and overexpression of ZmBES1/BZR1-9 in bes1-D mutant and wild type Arabidopsis both resulted in early flowering that was about 10 days shorter than in the untransformed control under long-day conditions. In addition, there was no difference in the rosette leaf number between all transgenic lines and the control. Subsequently, the ZmBES1/BZR1-9 gene was overexpressed in rice. It was found that overexpression lines of rice exhibited early flowering with heading dates that were 8 days shorter compared with untransformed plants. Moreover, the results of RNA-seq and qRT-PCR showed that five flowering-regulated genes, namely At2-MMP, AtPCC1, AtMYB56, AtPELPK1, and AtPRP10, were significantly up-regulated in all complementary and overexpressing lines of Arabidopsis. Meanwhile, the results of RNA-seq showed that 69 and 33 differentially expressed genes (DEGs) were up- and down-regulated in transgenic rice, respectively. Four flowering-related genes, namely OsGA20OX1, OsCCR19, OsBTBN19, and OsRNS4 were significantly up-regulated in transgenic lines. To sum up, our findings demonstrate that ZmBES1/BZR1-9 is involved in controlling flowering and provide insights into further underlying roles of BES1/BZR1s in regulating growth and development in crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region; Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
20
|
Xu M, Li X, Xie W, Lin C, Wang Q, Tao Z. ETHYLENE INSENSITIVE3/EIN3-LIKE1 modulate FLOWERING LOCUS C expression via histone demethylase interaction. PLANT PHYSIOLOGY 2023; 192:2290-2300. [PMID: 36852894 PMCID: PMC10315263 DOI: 10.1093/plphys/kiad131] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Time to flowering (vegetative to reproductive phase) is tightly regulated by endogenous factors and environmental cues to ensure proper and successful reproduction. How endogenous factors coordinate with environmental signals to regulate flowering time in plants is unclear. Transcription factors ETHYLENE INSENSITIVE 3 (EIN3) and its homolog EIN3 LIKE 1 (EIL1) are the core downstream regulators in ethylene signal transduction, and their null mutants exhibit late flowering in Arabidopsis (Arabidopsis thaliana); however, the precise mechanism of floral transition remains unknown. Here, we reveal that FLOWERING LOCUS D (FLD), encoding a histone demethylase acting in the autonomous pathway of floral transition, physically associates with EIN3 and EIL1. Loss of EIN3 and EIL1 upregulated transcriptional expression of the floral repressor FLOWERING LOCUS C (FLC) and its homologs in Arabidopsis, and ethylene-insensitive mutants displayed inhibited flowering in an FLC-dependent manner. We further demonstrated that EIN3 and EIL1 directly bind to FLC loci, modulating their expression by recruiting FLD and thereafter removing di-methylation of lysine 4 on histone H3 (H3K4me2). In plants treated with 1-aminocyclopropane-1-carboxylic acid, decreased expression of FLD resulted in increased enrichment of H3K4me2 at FLC loci and transcriptional activation of FLC, leading to floral repression. Our study reveals the role of EIN3 and EIL1 in FLC-dependent and ethylene-induced floral repression and elucidates how phytohormone signals are transduced into chromatin-based transcriptional regulation.
Collapse
Affiliation(s)
- Mengting Xu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxiao Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Xie
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qiannan Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Singh P, Maurya SK, Singh D, Sane AP. The rose INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE genes, RbIDL1 and RbIDL4, regulate abscission in an ethylene-responsive manner. PLANT CELL REPORTS 2023; 42:1147-1161. [PMID: 37069436 DOI: 10.1007/s00299-023-03017-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 06/16/2023]
Abstract
KEY MESSAGE RbIDL1 and RbIDL4 are up-regulated in an ethylene-responsive manner during rose petal abscission and restored the Arabidopsis ida-2 mutant abscission defect suggesting functional conservation of the IDA pathway in rose. Abscission is an ethylene-regulated developmental process wherein plants shed unwanted organs in a controlled manner. The INFLORESCENCE DEFICIENT IN ABSCISSION family has been identified as a key regulator of abscission in Arabidopsis, encoding peptides that interact with receptor-like kinases to activate abscission. Loss of function ida mutants show abscission deficiency in Arabidopsis. Functional conservation of the IDA pathway in other plant abscission processes is a matter of interest given the discovery of these genes in several plants. We have identified four members of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE family from the ethylene-sensitive, early-abscising fragrant rose, Rosa bourboniana. All four are conserved in sequence and possess well-defined PIP, mIDa and EPIP motifs. Three of these, RbIDL1, RbIDL2 and RbIDL4 show a three-fourfold increase in transcript levels in petal abscission zones (AZ) during ethylene-induced petal abscission as well as natural abscission. The genes are also expressed in other floral tissues but respond differently to ethylene in these tissues. RbIDL1 and RbIDL4, the more prominently expressed IDL genes in rose, can complement the abscission defect of the Arabidopsis ida-2 mutant; while, promoters of both genes can drive AZ-specific expression in an ethylene-responsive manner even in Arabidopsis silique AZs indicating recognition of AZ-specific and ethylene-responsive cis elements in their promoters by the abscission machinery of rose as well as Arabidopsis.
Collapse
Affiliation(s)
- Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Kumar Maurya
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Botany, Kishori Raman (PG) College, Mathura, India
| | - Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Luo S, Zhang G, Zhang Z, Wan Z, Liu Z, Lv J, Yu J. Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2023; 23:214. [PMID: 37095428 PMCID: PMC10123990 DOI: 10.1186/s12870-023-04216-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND BRASSINAZOLE-RESISTANT (BZR) is a class of specific transcription factor (TFs) involved in brassinosteroid (BR) signal transduction. The regulatory mechanism of target genes mediated by BZR has become one of the key research areas in plant BR signaling networks. However, the functions of the BZR gene family in cucumber have not been well characterized. RESULTS In this study, six CsBZR gene family members were identified by analyzing the conserved domain of BES1 N in the cucumber genome. The size of CsBZR proteins ranges from 311 to 698 amino acids and are mostly located in the nucleus. Phylogenetic analysis divided CsBZR genes into three subgroups. The gene structure and conserved domain showed that the BZR genes domain in the same group was conserved. Cis-acting element analysis showed that cucumber BZR genes were mainly involved in hormone response, stress response and growth regulation. The qRT-PCR results also confirmed CsBZR response to hormones and abiotic stress. CONCLUSION Collectively, the CsBZR gene is involved in regulating cucumber growth and development, particularly in hormone response and response to abiotic stress. These findings provide valuable information for understanding the structure and expression patterns of BZR genes.
Collapse
Affiliation(s)
- Shilei Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeyu Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zilong Wan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China.
- College of Horticulture, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
23
|
Dai X, Zhang Y, Xu X, Ran M, Zhang J, Deng K, Ji G, Xiao L, Zhou X. Transcriptome and functional analysis revealed the intervention of brassinosteroid in regulation of cold induced early flowering in tobacco. FRONTIERS IN PLANT SCIENCE 2023; 14:1136884. [PMID: 37063233 PMCID: PMC10102362 DOI: 10.3389/fpls.2023.1136884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Cold environmental conditions may often lead to the early flowering of plants, and the mechanism by cold-induced flowering remains poorly understood. Microscopy analysis in this study demonstrated that cold conditioning led to early flower bud differentiation in two tobacco strains and an Agilent Tobacco Gene Expression microarray was adapted for transcriptomic analysis on the stem tips of cold treated tobacco to gain insight into the molecular process underlying flowering in tobacco. The transcriptomic analysis showed that cold treatment of two flue-cured tobacco varieties (Xingyan 1 and YunYan 85) yielded 4176 and 5773 genes that were differentially expressed, respectively, with 2623 being commonly detected. Functional distribution revealed that the differentially expressed genes (DEGs) were mainly enriched in protein metabolism, RNA, stress, transport, and secondary metabolism. Genes involved in secondary metabolism, cell wall, and redox were nearly all up-regulated in response to the cold conditioning. Further analysis demonstrated that the central genes related to brassinosteroid biosynthetic pathway, circadian system, and flowering pathway were significantly enhanced in the cold treated tobacco. Phytochemical measurement and qRT-PCR revealed an increased accumulation of brassinolide and a decreased expression of the flowering locus c gene. Furthermore, we found that overexpression of NtBRI1 could induce early flowering in tobacco under normal condition. And low-temperature-induced early flowering in NtBRI1 overexpression plants were similar to that of normal condition. Consistently, low-temperature-induced early flowering is partially suppressed in NtBRI1 mutant. Together, the results suggest that cold could induce early flowering of tobacco by activating brassinosteroid signaling.
Collapse
Affiliation(s)
- Xiumei Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yan Zhang
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Xiaohong Xu
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Mao Ran
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kexuan Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Guangxin Ji
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lizeng Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xue Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
24
|
Liu X, Gu M, Lv X, Sheng D, Wang X, Wang P, Huang S. High temperature defense-related pathways, mediating lodicule expansion and spikelet opening in maize tassel. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad115. [PMID: 36967717 DOI: 10.1093/jxb/erad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 06/18/2023]
Abstract
High temperature (HT) at flowering hinders pollen shedding, whereas mechanisms underlying stress-induced spikelet closure are poorly known in maize. Yield components, spikelet opening, and lodicule morphology/protein profiling upon HT stress during flowering were explored in maize inbred lines Chang 7-2 and Qi 319. HT induced spikelet closure and reduced pollen shed weight (PSW) and seed set. Qi 319 that had a 7-fold lower PSW than Chang 7-2 was more susceptible to HT. A small lodicule size reduced spikelet opening rate and angle, and more vascular bundles hastened lodicule shrinking in Qi 319. Lodicules were collected for proteomics. In HT-stressed lodicules, proteins involved in stress signal, cell wall, cell constructure, carbohydrate metabolism, and phytohormone signaling were associated with stress tolerance. Among these proteins, HT downregulated expression of ADP-ribosylation factor GTPase-activating protein domain2, SNAP receptor complex member11, and sterol methyltransferase2 in Qi 319 but not in Chang 7-2, agreeing well with protein abundance changes. Exogenous epibrassinolide enlarged spikelet opening angle and extended spikelet opening duration. These results suggest that dysfunction of actin cytoskeleton and membrane remodeling induced by HT likely limits lodicule expansion. Additionally, reduced vascular bundles in lodicule and application of epibrassinolide might confer spikelet tolerance to HT stress.
Collapse
Affiliation(s)
- Xiaoli Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingqi Gu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Dechang Sheng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Tong Z, Xu M, Zhang Q, Lin F, Fang D, Chen X, Zhu T, Liu Y, Xu H, Xiao B. Construction of a high-density genetic map and dissection of genetic architecture of six agronomic traits in tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1126529. [PMID: 36875609 PMCID: PMC9975568 DOI: 10.3389/fpls.2023.1126529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is an economic crop and a model organism for studies on plant biology and genetics. A population of 271 recombinant inbred lines (RIL) derived from K326 and Y3, two elite flue-cured tobacco parents, has been constructed to investigate the genetic basis of agronomic traits in tobacco. Six agronomic traits including natural plant height (nPH), natural leaf number (nLN), stem girth (SG), inter-node length (IL), length of the largest leaf (LL) and width of the largest leaf (LW) were measured in seven environments, spanning the period between 2018 and 2021. We firstly developed an integrated SNP-indel-SSR linkage map with 43,301 SNPs, 2,086 indels and 937 SSRs, which contained 7,107 bin markers mapped on 24 LGs and covered 3334.88 cM with an average genetic distance of 0.469cM. Based on this high-density genetic map, a total of 70 novel QTLs were detected for six agronomic traits by a full QTL model using the software QTLNetwork, of which 32 QTLs showed significant additive effects, 18 QTLs showed significant additive-by-environment interaction effects, 17 pairs showed significant additive-by-additive epistatic effects and 13 pairs showed significant epistasis-by-environment interaction effects. In addition to additive effect as a major contributor to genetic variation, both epistasis effects and genotype-by-environment interaction effects played an important role in explaining phenotypic variation for each trait. In particular, qnLN6-1 was detected with considerably large main effect and high heritability ( h a 2 =34.80%). Finally, four genes including Nt16g00284.1, Nt16g00767.1, Nt16g00853.1, Nt16g00877.1 were predicted as pleiotropic candidate genes for five traits.
Collapse
Affiliation(s)
- Zhijun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Manling Xu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qixin Zhang
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Lin
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dunhuang Fang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xuejun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Tianneng Zhu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingchao Liu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiming Xu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bingguang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
26
|
Jiang X, Yang X, Zhang F, Yang T, Yang C, He F, Gao T, Wang C, Yang Q, Wang Z, Kang J. Combining QTL mapping and RNA-Seq Unravels candidate genes for Alfalfa (Medicago sativa L.) leaf development. BMC PLANT BIOLOGY 2022; 22:485. [PMID: 36217123 PMCID: PMC9552516 DOI: 10.1186/s12870-022-03864-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Leaf size affects crop canopy morphology and photosynthetic efficiency, which can influence forage yield and quality. It is of great significance to mine the key genes controlling leaf development for breeding new alfalfa varieties. In this study, we mapped leaf length (LL), leaf width (LW), and leaf area (LA) in an F1 mapping population derived from a cultivar named ZhongmuNo.1 with larger leaf area and a landrace named Cangzhou with smaller leaf area. RESULTS This study showed that the larger LW was more conducive to increasing LA. A total of 24 significant quantitative trait loci (QTL) associated with leaf size were identified on both the paternal and maternal linkage maps. Among them, nine QTL explained about 11.50-22.45% phenotypic variation. RNA-seq analysis identified 2,443 leaf-specific genes and 3,770 differentially expressed genes. Combining QTL mapping, RNA-seq alalysis, and qRT-PCR, we identified seven candidate genes associated with leaf development in five major QTL regions. CONCLUSION Our study will provide a theoretical basis for marker-assisted breeding and lay a foundation for further revealing molecular mechanism of leaf development in alfalfa.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xijiang Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Changfu Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Choi JH, Oh ES, Min H, Chae WB, Mandadi KK, Oh MH. Role of tyrosine autophosphorylation and methionine residues in BRI1 function in Arabidopsis thaliana. Genes Genomics 2022; 44:833-841. [PMID: 35598220 DOI: 10.1007/s13258-022-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Brassinosteroids (BRs), a group of plant growth hormones, control biomass accumulation and biotic and abiotic stress tolerance, and therefore are highly relevant to agriculture. BRs bind to the BR receptor protein, brassinosteroid insensitive 1 (BRI1), which is classified as a serine/threonine (Ser/Thr) protein kinase. Recently, we reported that BRI1 acts as a dual-specificity kinase both in vitro and in vivo by undergoing autophosphorylation at tyrosine (Tyr) residues. OBJECTIVE In this study, we characterized the increased leaf growth and early flowering phenotypes of transgenic lines expressing the mutated recombinant protein, BRI1(Y831F)-Flag, compared with those expressing BRI1-Flag. BRI1(Y831F)-Flag transgenic plants showed a reduction in hypocotyl and petiole length compared with BRI1-Flag seedlings. Transcriptome analysis revealed differential expression of flowering time-associated genes (AP1, AP2, AG, FLC, and SMZ) between BRI1(Y831F)-Flag and BRI1-Flag transgenic seedlings. We also performed site-directed mutagenesis of the BRI1 gene, and investigated the effect of methionine (Met) substitution in the extracellular domain (ECD) of BRI1 on plant growth and BR sensitivity by evaluating hypocotyl elongation and root growth inhibition. METHODS The pBIB-Hyg+-pBR-BRI1-Flag construct(Li et al. 2002) was used as the template for SDM with QuickChange XL Site Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) to make the SDM mutants. After PCR with SDM kit, add 1 μl of Dpn1 to PCR reaction. Incubate at 37 °C for 2 h to digest parental DNA and then transformed into XL10-gold competent cells. Transcriptome analysis was carried out at the University of Illinois (Urbana-Champaign, Illinois, USA). RNA was prepared and hybridized to the Affymetrix GeneChip Arabidopsis ATH1 Genome Array using the Gene Chip Express Kit (Ambion, Austin, TX, USA). RESULTS Tyrosine 831 autophosphorylation of BRI1 regulates Arabidopsis flowering time, and mutation of methionine residues in the extracellular domain of BRI1 affects hypocotyl and root length. BRI1(M656Q)-Flag, BRI1(M657Q)-Flag, and BRI1(M661Q)-Flag seedlings were insensitive to the BL treatment and showed no inhibition of root elongation. However, BRI1(M665Q)-Flag and BRI1(M671Q)-Flag seedlings were sensitive to the BL treatment, and exhibited root elongation inhibition. the early flowering phenotype of BRI1(Y831F)-Flag transgenic plants is consistent with the expression levels of key flowering-related genes, including those promoting flowering (AP1, AP2, and AG) and repressing flowering (FLC and SMZ).
Collapse
Affiliation(s)
- Jae-Han Choi
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Eun-Seok Oh
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Hansol Min
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Won Byoung Chae
- Department of Environmental Horticulture, Dankook University, Cheonan, 31116, Korea
| | - Kranthi Kiran Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Man-Ho Oh
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
28
|
Lin YP, Wu TH, Chan YK, van Zonneveld M, Schafleitner R. De novo SNP calling reveals the genetic differentiation and morphological divergence in genus Amaranthus. THE PLANT GENOME 2022; 15:e20206. [PMID: 35470587 DOI: 10.1002/tpg2.20206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Amaranth species (Amaranthus spp.) serve as pseudo cereals and also as traditional leafy vegetables worldwide. In addition to high vigor and richness in nutrients, drought and salinity tolerance makes amaranth a promising vegetable to acclimatize to the effects of global climate change. The World Vegetable Center gene bank conserves ∼1,000 amaranth accessions, and various agronomic properties of these accessions were recorded during seed regeneration over decades. In this study, we verified the taxonomic annotation of the germplasm based on a 15K single-nucleotide polymorphism (SNP) set. Given that the yield components of grain amaranth are different from those of leaf amaranth, we observed that grain amaranth species presented larger inflorescences and earlier flowering than leaf amaranth species. Dual-purpose amaranth showed larger leaves than leaf amaranth and later flowering than grain amaranth, which seemed reasonable because farmers can harvest more leaves during the prolonged vegetable stage, which also provides recovery time to enrich grain production. Considering frequent interspecific hybridization among species of the grain amaranth complex, we performed an interspecific genome-wide association study (GWAS) for days to flowering, identifying a AGL20/SOC1 homolog. Another GWAS using only A. tricolor L. accessions revealed six candidate genes homologous to lba1, bri1, sgs1, and fca. These homologous genes were involved in the regulation of flowering time in Arabidopsis thaliana (L.) Heynh. This study revealed the usefulness of genotypic data for species demarcation in the genus Amaranthus and the potential of interspecific GWAS to detect quantitative trait loci (QTL) across different species, opening up the possibility of targeted introduction of specific genetic variants into different Amaranthus species.
Collapse
Affiliation(s)
- Ya-Ping Lin
- Biotechnology, World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
| | - Tien-Hor Wu
- Genetic Resources and Seed Unit, World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
| | - Yan-Kuang Chan
- Genetic Resources and Seed Unit, World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
| | - Maarten van Zonneveld
- Genetic Resources and Seed Unit, World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
| | - Roland Schafleitner
- Biotechnology, World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
| |
Collapse
|
29
|
Wang X, Song Q, Liu Y, Brestic M, Yang X. The network centered on ICEs play roles in plant cold tolerance, growth and development. PLANTA 2022; 255:81. [PMID: 35249133 DOI: 10.1007/s00425-022-03858-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ICEs are key transcription factors in response to cold in plant, they also balance plant growth and stress tolerance. Thus, we systematize the information about ICEs published to date. Low temperature is an important factor affecting plant growth and development. Exposing to cold condition results in a suit of effects on plants including reduction of plant growth and reproduction, and decrease in crop yield and quality. Plants have evolved a series of strategies to deal with cold stress such as reprogramming of the expression of genes and transcription factors. ICEs (Inducer of CBF Expression), as transcription factors regulating CBFs (C-repeat binding factor), play key roles in balancing plant growth and stress tolerance. Studies on ICEs focused on the function of ICEs on cold tolerance, growth and development; post-translational modifications of ICEs and crosstalk between the ICEs and phytohormones. In this review, we focus on systematizing the information published to date. We summarized the main advances of the functions of ICEs on the cold tolerance, growth and development. And we also elaborated the regulation of ICEs protein stability including phosphorylation, ubiquitination and SUMOylation of ICE. Finally, we described the function of ICEs in the crosstalk among different phytohormone signaling pathway and cold stress. This review provides perspectives for ongoing research about cold tolerance, growth and development in plant.
Collapse
Affiliation(s)
- Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
30
|
Ren H, Wu X, Zhao W, Wang Y, Sun D, Gao K, Tang W. Heat Shock-Induced Accumulation of the Glycogen Synthase Kinase 3-Like Kinase BRASSINOSTEROID INSENSITIVE 2 Promotes Early Flowering but Reduces Thermotolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:838062. [PMID: 35154235 PMCID: PMC8828572 DOI: 10.3389/fpls.2022.838062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 05/28/2023]
Abstract
Brassinosteroids (BRs) are essential plant growth- and development-regulating phytohormones. When applied exogenously, BRs ameliorate heat shock (HS)-induced cell damage and enhance plant thermotolerance; however, the molecular mechanism by which BRs regulate plant thermotolerance is unknown. In this study, by analyzing the thermotolerance of a series of BR signaling mutants and plants that overexpressed different BR signaling components, we obtained comprehensive data showing that BRASSINOSTEROID INSENSITIVE 2 (BIN2) plays a major role in mediating the crosstalk between BR signaling and plant HS responses. By RNA-Seq, 608 HS- and BIN2-regulated genes were identified. An analysis of the 1-kb promoter sequences of these genes showed enrichment of an abscisic acid (ABA) INSENSITIVE 5 (ABI5)-binding cis-element. Physiological studies showed that thermotolerance was reduced in bin2-1 mutant and ABI5-OX plants but increased in the abi5 mutant, and that the abi5 mutation could recover the thermotolerance of bin2-1 plants to a wild-type level, suggesting that ABI5 functions downstream of BIN2 in regulating plant thermotolerance. Further, HS treatment increased the cellular abundance of BIN2. Both bin2-1 mutant and BIN2-OX plants showed early flowering, while the BIN2 loss-of-function mutant bin2-3 bil1 bil2 flowered late. Given these findings, we propose that under HS conditions plants increase BIN2 activity to promote early flowering and ensure species survival; however, this reduces the thermotolerance and survivability of individual plants partially by activating ABI5.
Collapse
|
31
|
Chen G, Li Y, Qiao X, Duan W, Jin C, Cheng R, Wang J. Genome-wide survey of Gγ subunit gene family in eight Rosaceae and expression analysis of PbrGGs in pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2021; 21:471. [PMID: 34654373 PMCID: PMC8518290 DOI: 10.1186/s12870-021-03250-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/05/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Heterotrimeric G-proteins, composed of Gα, Gβ and Gγ subunits, are important signal transmitters, mediating the cellular response to multiple stimuli in animals and plants. The Gγ subunit is an essential component of the G-protein, providing appropriate functional specificity to the heterotrimer complex and has been well studied in many species. However, the evolutionary history, expression pattern and functional characteristics of Gγ subunits has not been explored in the Rosaceae, representing many important fruit crops. RESULTS In this study, 35 Gγ subunit genes were identified from the eight species belonging to the Rosaceae family. Based on the structural gene characteristics, conserved protein motifs and phylogenetic analysis of the Gγ subunit genes, the genes were classified into three clades. Purifying selection was shown to play an important role in the evolution of Gγ subunit genes, while a recent whole-genome duplication event was the principal force determining the expansion of the Gγ subunit gene family in the subfamily Maloideae. Gγ subunit genes exhibited diverse spatiotemporal expression patterns in Chinese white pear, including fruit, root, ovary and bud, and under abiotic stress conditions, the relative expression of Gγ subunit genes were up-regulated or down-regulated. In addition, seven of the Gγ subunit proteins in pear were located on the plasma membrane, in the cytoplasm or nucleus. CONCLUSION Overall, this study of the Gγ subunit gene family in eight Rosaceae species provided useful information to better understand the evolution and expression of these genes and facilitated further exploration of their functions in these important crop plants.
Collapse
Affiliation(s)
- Guodong Chen
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yang Li
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xin Qiao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weike Duan
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Cong Jin
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Rui Cheng
- Huai'an Key Laboratory for Facility Vegetables, Huaiyin Institute of Agricultural Sciences of Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Jizhong Wang
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| |
Collapse
|
32
|
Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115716. [PMID: 34071961 PMCID: PMC8198774 DOI: 10.3390/ijms22115716] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Flowering is one of the most critical developmental transitions in plants’ life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny’s success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.
Collapse
|
33
|
Wei X, Rahim MA, Zhao Y, Yang S, Wang Z, Su H, Li L, Niu L, Harun-Ur-Rashid M, Yuan Y, Zhang X. Comparative Transcriptome Analysis of Early- and Late-Bolting Traits in Chinese Cabbage ( Brassica rapa). Front Genet 2021; 12:590830. [PMID: 33747036 PMCID: PMC7969806 DOI: 10.3389/fgene.2021.590830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
Chinese cabbage is one of the most important and widely consumed vegetables in China. The developmental transition from the vegetative to reproductive phase is a crucial process in the life cycle of flowering plants. In spring-sown Chinese cabbage, late bolting is desirable over early bolting. In this study, we analyzed double haploid (DH) lines of late bolting (“Y410-1” and “SY2004”) heading Chinese cabbage (Brassica rapa var. pekinensis) and early-bolting Chinese cabbage (“CX14-1”) (B. rapa ssp. chinensis var. parachinensis) by comparative transcriptome profiling using the Illumina RNA-seq platform. We assembled 721.49 million clean high-quality paired-end reads into 47,363 transcripts and 47,363 genes, including 3,144 novel unigenes. There were 12,932, 4,732, and 4,732 differentially expressed genes (DEGs) in pairwise comparisons of Y410-1 vs. CX14-1, SY2004 vs. CX14-1, and Y410-1 vs. SY2004, respectively. The RNA-seq results were confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs revealed significant enrichment for plant hormone and signal transduction as well as starch and sucrose metabolism pathways. Among DEGs related to plant hormone and signal transduction, six unigenes encoding the indole-3-acetic acid-induced protein ARG7 (BraA02g009130), auxin-responsive protein SAUR41 (BraA09g058230), serine/threonine-protein kinase BSK11 (BraA07g032960), auxin-induced protein 15A (BraA10g019860), and abscisic acid receptor PYR1 (BraA08g012630 and BraA01g009450), were upregulated in both late bolting Chinese cabbage lines (Y410-1 and SY2004) and were identified as putative candidates for the trait. These results improve our understanding of the molecular mechanisms underlying flowering in Chinese cabbage and provide a foundation for studies of this key trait in related species.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Md Abdur Rahim
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Liujing Niu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Md Harun-Ur-Rashid
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
34
|
Gawarecka K, Ahn JH. Isoprenoid-Derived Metabolites and Sugars in the Regulation of Flowering Time: Does Day Length Matter? FRONTIERS IN PLANT SCIENCE 2021; 12:765995. [PMID: 35003159 PMCID: PMC8738093 DOI: 10.3389/fpls.2021.765995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 05/06/2023]
Abstract
In plants, a diverse set of pathways regulate the transition to flowering, leading to remarkable developmental flexibility. Although the importance of photoperiod in the regulation of flowering time is well known, increasing evidence suggests the existence of crosstalk among the flowering pathways regulated by photoperiod and metabolic pathways. For example, isoprenoid-derived phytohormones (abscisic acid, gibberellins, brassinosteroids, and cytokinins) play important roles in regulating flowering time. Moreover, emerging evidence reveals that other metabolites, such as chlorophylls and carotenoids, as well as sugar metabolism and sugar accumulation, also affect flowering time. In this review, we summarize recent findings on the roles of isoprenoid-derived metabolites and sugars in the regulation of flowering time and how day length affects these factors.
Collapse
|
35
|
Wang H, Jiao X, Kong X, Liu Y, Chen X, Fang R, Yan Y. The histone deacetylase HDA703 interacts with OsBZR1 to regulate rice brassinosteroid signaling, growth and heading date through repression of Ghd7 expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:447-459. [PMID: 33617099 DOI: 10.1111/tpj.14936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/08/2020] [Indexed: 06/12/2023]
Abstract
The plant steroid hormones brassinosteroids (BRs) play crucial roles in plant growth and development. The BR signal transduction pathway from perception to the key transcription factors has been well understood in Arabidopsis thaliana and in rice (Oryza sativa); however, the mechanisms conferring BR-mediated growth and flowering remain largely unknown, especially in rice. In this study, we show that HDA703 is a histone H4K8 and H4K12 deacetylase in rice. Hda703 mutants display a typical BR loss-of-function phenotype and reduced sensitivity to brassinolide, the most active BR. Rice plants overexpressing HDA703 exhibit some BR gain-of-function phenotypes dependent on BR biosynthesis and signaling. We also show that HDA703 is a direct target of BRASSINAZOLE-RESISTANT1 (OsBZR1), a primary regulator of rice BR signaling, and HDA703 interacts with OsBZR1 in rice. We further show that GRAIN NUMBER, PLANT HEIGHT, and HEADING DATE 7 (Ghd7), a central regulator of growth, development, and the stress response, is a direct target of OsBZR1. HDA703 directly targets Ghd7 and represses its expression through histone H4 deacetylation. HDA703-overexpressing rice plants phenocopy Ghd7-silencing rice plants in both growth and heading date. Together, our study suggests that HDA703, a histone H4 deacetylase, interacts with OsBZR1 to regulate rice BR signaling, growth, and heading date through epigenetic regulation of Ghd7.
Collapse
Affiliation(s)
- Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoming Jiao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyu Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, 100101, China
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
36
|
Li T, Kang X, Wei L, Zhang D, Lin H. A gain-of-function mutation in Brassinosteroid-insensitive 2 alters Arabidopsis floral organ development by altering auxin levels. PLANT CELL REPORTS 2020; 39:259-271. [PMID: 31820142 DOI: 10.1007/s00299-019-02489-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/11/2019] [Indexed: 05/28/2023]
Abstract
Auxin can alter the fertility of bin2-1 plants and depends on the expression of SHY2. Brassinosteroids (BRs) play important roles in plant growth and developmental processes. By systematically evaluating the phenotypes of BR biosynthesis and BR signaling mutants, researchers have reported that BRs positively regulate floral development. In this study, we found that brassinosteroid-insensitive 2 (bin2-1) and short-hypocotyl 2 (shy2-2) mutants exhibited significantly reduced fertility. These mutants had short inflorescences, decreased floral organ length (short petals, stamens, carpels, and stigmas), and short siliques. Exogenous auxin applications could partially rescue the shortened length of the floral organs and siliques of the bin2-1 mutants. Additional experiments revealed that a lack of SHY2 activity increased the fertility of the bin2-1 mutants. A search for downstream affected genes revealed that auxin influences the expression of ARFs and PINs in the bin2-1 mutants, suggesting that auxin plays a major role in the regulation of bin2-1 plant fertility. Thus, BIN2 plays a role in fertility by affecting auxin levels, mainly by altering the expression of SHY2.
Collapse
Affiliation(s)
- Taotao Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xinke Kang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Lin Wei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
37
|
Bao S, Hua C, Shen L, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:118-131. [PMID: 31785071 DOI: 10.1111/jipb.12892] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/28/2019] [Indexed: 05/18/2023]
Abstract
In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition.
Collapse
Affiliation(s)
- Shengjie Bao
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Changmei Hua
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Hao Yu
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| |
Collapse
|
38
|
Transcriptomic Identification of Floral Transition and Development-Associated Genes in Styrax japonicus. FORESTS 2019. [DOI: 10.3390/f11010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Styrax japonicus (S. japonicus) is an important flowering tree species in temperate regions, and it is regarded as a nectariferous plant. However, there have been few studies to date analyzing floral development in this species. In order to understand gene expression dynamics during S. japonicus flower development, we; therefore, prepared cDNA libraries from three distinct stages of S. japonicus. Illumina sequencing generated 31,471 differentially expressed unigenes during flower development. We additionally conducted pathway enrichment analyses using the GO and KEGG database in order to assess the functions of genes differentially expressed during different stages of the floral development process, revealing these genes to be associated with pathways including phytohormone signaling, Transcription factor, protein kinase, and circadian rhythms. In total, 4828 TF genes, 8402 protein kinase genes, and 78 DEGs related to hormone pathways were identified in flower development stages. Six genes were selected for confirmation of expression levels using quantitative real-time PCR. The gene expression data presented herein represent the most comprehensive dataset available regarding the flowering of S. japonicus, thus offering a reference for future studies of the flowering of this and other Styracaceae species.
Collapse
|
39
|
Zhou S, Cheng X, Li F, Feng P, Hu G, Chen G, Xie Q, Hu Z. Overexpression of SlOFP20 in Tomato Affects Plant Growth, Chlorophyll Accumulation, and Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2019; 10:1510. [PMID: 31850017 PMCID: PMC6896838 DOI: 10.3389/fpls.2019.01510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that OVATE family proteins (OFPs) participate in various aspects of plant growth and development. How OFPs affect leaf chlorophyll accumulation and leaf senescence has not been reported yet. Here, we found that overexpression of SlOFP20 in tomato not only impacted plant architecture but also enhanced the leaf chlorophyll accumulation and retarded leaf senescence. Gene expression analysis of SlGLK1, SlGLK2, and HY5, encoding transcription factors that are putatively involved in chloroplast development and chlorophyll levels, were significantly up-regulated in SlOFP20-OE lines. Both chlorophyll biosynthesis and degradation genes were distinctly regulated in transgenic plants. Moreover, SlOFP20-OE plants accumulated more starch and soluble sugar than wild-type plants, indicating that an increased chlorophyll content conferred some higher photosynthetic performance in SlOFP20-OE plants. Furthermore, The levels of leaf senescence-related indexes, such as hydrogen peroxide, malondialdehyde, and antioxidant enzymes activities, were differently altered, too. SlOFP20 overexpression repressed the expression of senescence-related genes, SAG12, RAV1, and WRKY53. Moreover, abscisic acid and ethylene synthesis genes were down-regulated in transgenic lines. These results provide new insights into how SlOFP20 regulates chlorophyll accumulation and leaf senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiaoli Xie
- *Correspondence: Qiaoli Xie, ; Zongli Hu,
| | - Zongli Hu
- *Correspondence: Qiaoli Xie, ; Zongli Hu,
| |
Collapse
|
40
|
Mátyás KK, Hegedűs G, Taller J, Farkas E, Decsi K, Kutasy B, Kálmán N, Nagy E, Kolics B, Virág E. Different expression pattern of flowering pathway genes contribute to male or female organ development during floral transition in the monoecious weed Ambrosia artemisiifolia L. ( Asteraceae). PeerJ 2019; 7:e7421. [PMID: 31598422 PMCID: PMC6779118 DOI: 10.7717/peerj.7421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022] Open
Abstract
The highly allergenic and invasive weed Ambrosia artemisiifolia L. is a monoecius plant with separated male and female flowers. The genetic regulation of floral morphogenesis is a less understood field in the reproduction biology of this species. Therefore the objective of this work was to investigate the genetic control of sex determination during floral organogenesis. To this end, we performed a genome-wide transcriptional profiling of vegetative and generative tissues during the plant development comparing wild-growing and in vitro cultivated plants. RNA-seq on Illumina NextSeq 500 platform with an integrative bioinformatics analysis indicated differences in 80 floral gene expressions depending on photoperiodic and endogenous initial signals. Sex specificity of genes was validated based on RT-qPCR experiments. We found 11 and 16 uniquely expressed genes in female and male transcriptomes that were responsible particularly to maintain fertility and against abiotic stress. High gene expression of homologous such as FD, FT, TFL1 and CAL, SOC1, AP1 were characteristic to male and female floral meristems during organogenesis. Homologues transcripts of LFY and FLC were not found in the investigated generative and vegetative tissues. The repression of AP1 by TFL1 homolog was demonstrated in male flowers resulting exclusive expression of AP2 and PI that controlled stamen and carpel formation in the generative phase. Alterations of male and female floral meristem differentiation were demonstrated under photoperiodic and hormonal condition changes by applying in vitro treatments.
Collapse
Affiliation(s)
- Kinga Klára Mátyás
- Department of Plant Science and Biotechnology, University of Pannonia, Georgikon Faculty, Keszthely, Hungary
| | - Géza Hegedűs
- Department of Economic Methodology, University of Pannonia, Georgikon Faculty, Keszthely, Hungary
| | - János Taller
- Department of Plant Science and Biotechnology, University of Pannonia, Georgikon Faculty, Keszthely, Hungary
| | - Eszter Farkas
- Department of Plant Science and Biotechnology, University of Pannonia, Georgikon Faculty, Keszthely, Hungary
| | - Kincső Decsi
- Department of Plant Science and Biotechnology, University of Pannonia, Georgikon Faculty, Keszthely, Hungary
| | - Barbara Kutasy
- Department of Plant Science and Biotechnology, University of Pannonia, Georgikon Faculty, Keszthely, Hungary
| | - Nikoletta Kálmán
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Szentagothai Research Center, Pecs, Hungary
| | - Erzsébet Nagy
- Department of Plant Science and Biotechnology, University of Pannonia, Georgikon Faculty, Keszthely, Hungary
| | - Balázs Kolics
- Department of Plant Science and Biotechnology, University of Pannonia, Georgikon Faculty, Keszthely, Hungary
| | - Eszter Virág
- Department of Plant Science and Biotechnology, University of Pannonia, Georgikon Faculty, Keszthely, Hungary
| |
Collapse
|
41
|
Wang F, Gao Y, Liu Y, Zhang X, Gu X, Ma D, Zhao Z, Yuan Z, Xue H, Liu H. BES1-regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:1407-1419. [PMID: 31009078 DOI: 10.1111/nph.15866] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/14/2019] [Indexed: 05/23/2023]
Abstract
BRI1-EMS-SUPPRESSOR 1 (BES1) functions as a key regulator in the brassinosteroid (BR) pathway that promotes plant growth. However, whether BES1 is involved in photoperiodic flowering is unknown. Here we report that BES1 acts as a positive regulator of photoperiodic flowering, but it cannot directly bind FLOWERING LOCUS T (FT) promoter. BR ENHANCED EXPRESSION 1 (BEE1) is the direct target of BES1 and acts downstream of BES1. BEE1 is also a positive regulator of photoperiodic flowering. BEE1 binds directly to the FT chromatin to activate the transcription of FT and promote flowering initiation. More importantly, BEE1 promotes flowering in a blue light photoreceptor CRYPTOCHROME 2 (CRY2) partially dependent manner, as it physically interacts with CRY2 under the blue light. Furthermore, BEE1 is regulated by both BRs and blue light. The transcription of BEE1 is induced by BRs, and the BEE1 protein is stabilized under the blue light. Our findings indicate that BEE1 is the integrator of BES1 and CRY2 mediating flowering, and BES1-BEE1-FT is a new signaling pathway in regulating photoperiodic flowering.
Collapse
Affiliation(s)
- Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongshun Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture/College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yawen Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xingxing Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dingbang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhiwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenjiang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hongwei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
42
|
Hong J, Lee H, Lee J, Kim H, Ryu H. ABSCISIC ACID-INSENSITIVE 3 is involved in brassinosteroid-mediated regulation of flowering in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:207-214. [PMID: 30908972 DOI: 10.1016/j.plaphy.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 05/22/2023]
Abstract
ABSCISIC ACID-INSENSITIVE 3 (ABI3) is one of the essential transcription factors of ABSCISIC ACID (ABA) signaling, functioning in seed germination, early seedling development, and abiotic stress tolerance. A recent study showed that epigenetic repression of ABI3 by brassinosteroid (BR)-activated BRI1 EMS SUPPRESSOR1 (BES1)-TOPLESS (TPL)HISTONE DEACETYLASE 19 (HDA19) repressor complex is a critical event for promoting seed germination and early seedling development. However, other physiological roles of the repression of ABI3 and ABA responses by BES1-mediated BR signaling pathways remain elusive. Here, we show that BES1-mediated suppression of ABI3 promotes floral transition and ABI3 acts as a negative regulator for flowering. Ectopic expression of ABI3 specifically compromised the early flowering phenotype of bes1-D and induced severe late-flowering phenotypes in wild-type Arabidopsis and Solanum lycopersicum plants. Both spatiotemporal expression patterns and global transcriptome analysis of ABI3-overexpressing plants supported the biological roles of ABI3 in the negative regulation of floral transition and reproduction. Finally, we confirmed that the loss of function of ABI3 induced early-flowering phenotypes in both long- and short-day conditions. In conclusion, our data suggest that BES1-mediated regulation of ABI3 is important in the reproductive phase transition of plants.
Collapse
Affiliation(s)
- Jeongeui Hong
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Horim Lee
- Department of Biotechnology, Duksung Women's University, Seoul, 01369, Republic of Korea.
| | - Jinsu Lee
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hyemin Kim
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
43
|
Jue D, Sang X, Liu L, Shu B, Wang Y, Liu C, Wang Y, Xie J, Shi S. Comprehensive analysis of the longan transcriptome reveals distinct regulatory programs during the floral transition. BMC Genomics 2019; 20:126. [PMID: 30744552 PMCID: PMC6371577 DOI: 10.1186/s12864-019-5461-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Longan (Dimocarpus longan Lour.) is an important fruit tree in the subtropical regions of Southeast Asia and Australia. Among the factors affecting D. longan fruit yield, the difficulty and instability of blossoming is one of the most challenging issues. Perpetual flowering (PF) is a crucial trait for fruit trees and is directly linked to production potential. Therefore, studying the molecular regulatory mechanism of longan PF traits is crucial for understanding and solving problems related to flowering. In this study, comparative transcriptome analysis was performed using two longan cultivars that display opposite flowering phenotypes during floral induction. Results We obtained 853.72 M clean reads comprising 125.08 Gb. After comparing these data with the longan genome, 27,266 known genes and 1913 new genes were detected. Significant differences in gene expression were observed between the two genotypes, with 6150 and 6202 differentially expressed genes (DEGs) for ‘SJ’ and ‘SX’, respectively. The transcriptional landscape of floral transition at the early stage was very different in these two longan genotypes with respect to key hormones, circadian rhythm, sugar metabolism, and transcription factors. Almost all flowering-related DEGs identified are involved in photoperiod and circadian clock pathways, such as CONSTANS-like (COL), two-component response regulator-like (APRRs), gigantea (GI), and early flowering (EFL). In addition, the leafy (LFY) gene, which is the central floral meristem identity gene, may inhibit PF formation in ‘SJ’. Conclusion This study provides a platform for understanding the molecular mechanisms responsible for changes between PF and seasonal flowering (SF) longan genotypes and may benefit studies on PF trait mechanisms of evergreen fruit trees. Electronic supplementary material The online version of this article (10.1186/s12864-019-5461-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dengwei Jue
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China.,School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Xuelian Sang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Liqin Liu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Bo Shu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Yicheng Wang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Chengming Liu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yi Wang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China.
| | - Shengyou Shi
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China. .,School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China.
| |
Collapse
|
44
|
Genome-wide identification and expression analysis of brassinosteroid action-related genes during the shoot growth of moso bamboo. Mol Biol Rep 2019; 46:1909-1930. [PMID: 30721422 DOI: 10.1007/s11033-019-04642-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Brassinosteroids (BRs) are a group of plant steroid hormones that play crucial roles in a range of plant growth and development processes. BR action includes active BR formation by a complex biosynthesis process and driving BR biological function through signal transduction. Although the characterization of several BR action-related genes has been conducted in a few model plants, systematic information about these genes in bamboo is still lacking. We identified 64 genes related to BR action from the genome of moso bamboo (Phyllostachys edulis), including twenty that participated in BR biosynthesis and forty-four involved in BR signal transduction. The characteristics of all these candidate genes were identified by bioinformatics methods, including the gene structures, basic physical and chemical properties of proteins, conserved domains and evolutionary relationships. Based on the transcriptome data, the candidate genes demonstrated different expression patterns, which were further validated by qRT-PCR using templates from bamboo shoots with different heights. Thirty-four positive and three negative co-expression modules were identified by 44 candidate genes in the newly emerging bamboo shoot. The gene expression patterns and co-expression modules of BR action-related genes in bamboo shoots indicated that they might function to promote bamboo growth through BR biosynthesis and signal transduction processes. This study provides the first step towards the cloning and functional dissection of the role of BR action-related genes in moso bamboo, which also presents an excellent opportunity for genetic engineering using the candidate genes to improve bamboo quantity and quality.
Collapse
|
45
|
Song GQ, Walworth A, Lin T, Chen Q, Han X, Irina Zaharia L, Zhong GY. VcFT-induced mobile florigenic signals in transgenic and transgrafted blueberries. HORTICULTURE RESEARCH 2019; 6:105. [PMID: 31645960 PMCID: PMC6804590 DOI: 10.1038/s41438-019-0188-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 05/03/2023]
Abstract
FLOWERING LOCUS T (FT) can promote early flowering in annual species, but such role has not been well demonstrated in woody species. We produced self and reciprocal grafts involving non-transgenic blueberry (NT) and transgenic blueberry (T) carrying a 35S-driven blueberry FT (VcFT-OX). We demonstrated that the transgenic VcFT-OX rootstock promoted flowering of non-transgenic blueberry scions in the NT (scion):T (rootstock) grafts. We further analyzed RNA-Seq profiles and six groups of phytohormones in both NT:T and NT:NT plants. We observed content changes of several hormone metabolites, in a descending order, in the transgenic NT:T, non-transgenic NT:T, and non-transgenic NT:NT leaves. By comparing differential expression transcripts (DETs) of these tissues in relative to their control, we found that the non-transgenic NT:T leaves had many DETs shared with the transgenic NT:T leaves, but very few with the transgenic NT:T roots. Interestingly, a number of these shared DETs belong to hormone pathway genes, concurring with the content changes of hormone metabolites in both transgenic and non-transgenic leaves of the NT:T plants. These results suggest that phytohormones induced by VcFT-OX in the transgenic leaves might serve as part of the signals that resulted in early flowering in both transgenic plants and the non-transgenic NT:T scions.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Aaron Walworth
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Tianyi Lin
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Qiuxia Chen
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Xiumei Han
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - L. Irina Zaharia
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva, NY 14456 USA
| |
Collapse
|
46
|
Susila H, Nasim Z, Ahn JH. Ambient Temperature-Responsive Mechanisms Coordinate Regulation of Flowering Time. Int J Mol Sci 2018; 19:ijms19103196. [PMID: 30332820 PMCID: PMC6214042 DOI: 10.3390/ijms19103196] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 12/23/2022] Open
Abstract
In plants, environmental conditions such as temperature affect survival, growth, and fitness, particularly during key stages such as seedling growth and reproduction. To survive and thrive in changing conditions, plants have evolved adaptive responses that tightly regulate developmental processes such as hypocotyl elongation and flowering time in response to environmental temperature changes. Increases in temperature, coupled with increasing fluctuations in local climate and weather, severely affect our agricultural systems; therefore, understanding the mechanisms by which plants perceive and respond to temperature is critical for agricultural sustainability. In this review, we summarize recent findings on the molecular mechanisms of ambient temperature perception as well as possible temperature sensing components in plants. Based on recent publications, we highlight several temperature response mechanisms, including the deposition and eviction of histone variants, DNA methylation, alternative splicing, protein degradation, and protein localization. We discuss roles of each proposed temperature-sensing mechanism that affects plant development, with an emphasis on flowering time. Studies of plant ambient temperature responses are advancing rapidly, and this review provides insights for future research aimed at understanding the mechanisms of temperature perception and responses in plants.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| |
Collapse
|
47
|
Feng G, Xu L, Wang J, Nie G, Bushman BS, Xie W, Yan H, Yang Z, Guan H, Huang L, Zhang X. Integration of small RNAs and transcriptome sequencing uncovers a complex regulatory network during vernalization and heading stages of orchardgrass (Dactylis glomerata L.). BMC Genomics 2018; 19:727. [PMID: 30285619 PMCID: PMC6171228 DOI: 10.1186/s12864-018-5104-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flowering is a critical reproductive process in higher plants. Timing of optimal flowering depends upon the coordination among seasonal environmental cues. For cool season grasses, such as Dactylis glomerata, vernalization induced by low temperature provides competence to initiate flowering after prolonged cold. We combined analyses of the transcriptome and microRNAs (miRNAs) to generate a comprehensive resource for regulatory miRNAs and their target circuits during vernalization and heading stages. RESULTS A total of 3,846 differentially expressed genes (DEGs) and 69 differentially expressed miRNAs were identified across five flowering stages. The expression of miR395, miR530, miR167, miR396, miR528, novel_42, novel_72, novel_107, and novel_123 demonstrated significant variations during vernalization. These miRNA targeted genes were involved in phytohormones, transmembrane transport, and plant morphogenesis in response to vernalization. The expression patterns of DEGs related to plant hormones, stress responses, energy metabolism, and signal transduction changed significantly in the transition from vegetative to reproductive phases. CONCLUSIONS Five hub genes, c136110_g1 (BRI1), c131375_g1 (BZR1), c133350_g1 (VRN1), c139830_g1 (VIN3), and c125792_g2 (FT), might play central roles in vernalization response. Our comprehensive analyses have provided a useful platform for investigating consecutive transcriptional and post-transcriptional regulation of critical phases in D. glomerata and provided insights into the genetic engineering of flowering-control in cereal crops.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Lei Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32611 USA
| | - Gang Nie
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | | | - Wengang Xie
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020 Gansu Province China
| | - Haidong Yan
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061 USA
| | - Zhongfu Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Hao Guan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Linkai Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Xinquan Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| |
Collapse
|
48
|
Li Z, Ou Y, Zhang Z, Li J, He Y. Brassinosteroid Signaling Recruits Histone 3 Lysine-27 Demethylation Activity to FLOWERING LOCUS C Chromatin to Inhibit the Floral Transition in Arabidopsis. MOLECULAR PLANT 2018; 11:1135-1146. [PMID: 29969683 DOI: 10.1016/j.molp.2018.06.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 05/22/2023]
Abstract
The steroid hormone brassinosteroid (BR) plays a broad role in plant growth and development. As the retarded growth in BR-insensitive and BR-deficient mutants causes a strong delay in days to flowering, BR signaling has been thought to promote the floral transition in Arabidopsis. In this study, using a developmental measure of flowering time, we show that BR signaling inhibits the floral transition and promotes vegetative growth in the Arabidopsis accessions Columbia and Enkheim-2. We found that BR signaling promotes the expression of the potent floral repressor FLOWERING LOCUS C (FLC) and three FLC homologs to inhibit flowering. In the presence of BR, the transcription factor BRASSINAZOLE-RESISTANT1 (BZR1), together with BES1-INTERACTING MYC-like proteins (BIMs), specifically binds a BR- responsive element in the first intron of FLC and further recruits a histone 3 lysine 27 (H3K27) demethylase to downregulate levels of the repressive H3K27 trimethylation mark and thus antagonize Polycomb silencing at FLC, leading to its activation. Taken together, our findings demonstrate that BR signaling inhibits the floral transition in Arabidopsis by a novel molecular mechanism in which BR signals are transduced into FLC activation and consequent floral repression.
Collapse
Affiliation(s)
- Zicong Li
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Yang Ou
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhicheng Zhang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Li
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China.
| |
Collapse
|
49
|
Pan R, Xu L, Wei Q, Wu C, Tang W, Oelmüller R, Zhang W. Piriformospora indica promotes early flowering in Arabidopsis through regulation of the photoperiod and gibberellin pathways. PLoS One 2017; 12:e0189791. [PMID: 29261746 PMCID: PMC5736186 DOI: 10.1371/journal.pone.0189791] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/03/2017] [Indexed: 11/19/2022] Open
Abstract
Flowering in plants is synchronized by both environmental cues and internal regulatory factors. Previous studies have shown that the endophytic fungus Piriformospora indica promotes the growth and early flowering in Coleus forskohlii (a medicinal plant) and Arabidopsis. To further dissect the impact of P. indica on pathways responsible for flowering time in Arabidopsis, we co-cultivated Arabidopsis with P. indica and used RT-qPCR to analyze the main gene regulation networks involved in flowering. Our results revealed that the symbiotic interaction of Arabidopsis with P. indica promotes early flower development and the number of siliques. In addition, expression of the core flowering regulatory gene FLOWERING LOCUS T (FT), of genes controlling the photoperiod [CRYPTOCHROMES (CRY1, CRY2) and PHYTOCHROME B (PHYB)] and those related to gibberellin (GA) functions (RGA1, AGL24, GA3, and MYB5) were induced by the fungus, while key genes controlling the age and autonomous pathways remained unchanged. Moreover, early flowering promotion conferred by P. indica was promoted by exogenous GA and inhabited by GA inhibitor, and this effect could be observed under long day and neutral day photoperiod. Therefore, our data suggested that P. indica promotes early flowering in Arabidopsis likely through photoperiod and GA rather than age or the autonomous pathway.
Collapse
Affiliation(s)
- Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Qiao Wei
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Wenlin Tang
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Friedrich-Schiller-University Jena, Institute of General Botany and Plant Physiology, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| |
Collapse
|
50
|
Duan D, Jia Y, Yang J, Li ZH. Comparative Transcriptome Analysis of Male and Female Conelets and Development of Microsatellite Markers in Pinus bungeana, an Endemic Conifer in China. Genes (Basel) 2017; 8:genes8120393. [PMID: 29257091 PMCID: PMC5748711 DOI: 10.3390/genes8120393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/02/2023] Open
Abstract
The sex determination in gymnosperms is still poorly characterized due to the lack of genomic/transcriptome resources and useful molecular genetic markers. To enhance our understanding of the molecular mechanisms of the determination of sexual recognition of reproductive structures in conifers, the transcriptome of male and female conelets were characterized in a Chinese endemic conifer species, Pinus bungeana Zucc. ex Endl. The 39.62 Gb high-throughput sequencing reads were obtained from two kinds of sexual conelets. After de novo assembly of the obtained reads, 85,305 unigenes were identified, 53,944 (63.23%) of which were annotated with public databases. A total of 12,073 differentially expressed genes were detected between the two types of sexes in P. bungeana, and 5766 (47.76%) of them were up-regulated in females. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched analysis suggested that some of the genes were significantly associated with the sex determination process of P. bungeana, such as those involved in tryptophan metabolism, zeatin biosynthesis, and cysteine and methionine metabolism, and the phenylpropanoid biosynthesis pathways. Meanwhile, some important plant hormone pathways (e.g., the gibberellin (GA) pathway, carotenoid biosynthesis, and brassinosteroid biosynthesis (BR) pathway) that affected sexual determination were also induced in P. bungeana. In addition, 8791 expressed sequence tag-simple sequence repeats (EST-SSRs) from 7859 unigenes were detected in P. bungeana. The most abundant repeat types were dinucleotides (1926), followed by trinucleotides (1711). The dominant classes of the sequence repeat were A/T (4942) in mononucleotides and AT/AT (1283) in dinucleotides. Among these EST-SSRs, 84 pairs of primers were randomly selected for the characterization of potential molecular genetic markers. Finally, 19 polymorphic EST-SSR primers were characterized. We found low to moderate levels of genetic diversity (NA = 1.754; HO = 0.206; HE = 0.205) across natural populations of P. bungeana. The cluster analysis revealed two distinct genetic groups for the six populations that were sampled in this endemic species, which might be caused by the fragmentation of habitats and long-term geographic isolation among different populations. Taken together, this work provides important insights into the molecular mechanisms of sexual identity in the reproductive organs of P. bungeana. The molecular genetic resources that were identified in this study will also facilitate further studies in functional genomics and population genetics in the Pinus species.
Collapse
Affiliation(s)
| | | | - Jie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|