1
|
Li D, Tian Y, Vona B, Yu X, Lin J, Ma L, Lou S, Li X, Zhu G, Wang Y, Du M, Wang L, Pan Y. A TAF11 variant contributes to non-syndromic cleft lip only through modulating neural crest cell migration. Hum Mol Genet 2025; 34:392-401. [PMID: 39727181 DOI: 10.1093/hmg/ddae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The NC_000006.12: g.34887814C>G variant in TAF11 was identified as a potential functional variant in a Chinese pedigree including two non-syndromic cleft lip only (NSCLO) cases. Applying Chromatin Immunoprecipitation (ChIP), Electrophoretic mobility shift and super-shift assays, we found that the mutant G allele recruited more STAT1 and STAT3, and increased the expression of TAF11. RNA sequencing, GO and KEGG pathway enrichment, ChIP and dual-luciferase reporter assays revealed that TAF11 downregulated CDH1 and CTNND1 in the cell adhesion pathway by binding to their promoter regions and inhibiting transcriptional activities. Alcian blue staining, time-lapse photography, whole-mount in situ hybridization, phospho-Histone H3 immunofluorescence and TUNEL assays indicated that TAF11 and taf11 overexpression (TAF11OE and taf11OE, respectively) contributed to disturbed migration of cranial neural crest cells and abnormal craniofacial development, as well as increased death and deformity rates in zebrafish. In conclusion, a functionally relevant TAF11 variant, affecting cell migration via modulating CDH1 and CTNND1, was associated with etiology of NSCLO.
Collapse
Affiliation(s)
- Dandan Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Yu Tian
- Department of Stomatology, Zhenjiang First People's Hospital, People's Hospital Affiliated to Jiangsu University, No. 8 Electric Road, Runzhou District, Zhenjiang 212000, China
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany
| | - Xin Yu
- Department of Orthodontics, Affiliated Nantong Stomatological Hospital of Nantong University, No. 36 Yuelong South Road, Chongchuan District, Nantong 226006, China
| | - Junyan Lin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Lan Ma
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Shu Lou
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Xiaofeng Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Guirong Zhu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Yuting Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Lin Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Yongchu Pan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| |
Collapse
|
2
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and Developmental Divergence in the Neural Crest Program between Cichlid Fish Species. Mol Biol Evol 2024; 41:msae217. [PMID: 39412298 PMCID: PMC11558072 DOI: 10.1093/molbev/msae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic program in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to interspecific morphological differences, such as craniofacial structures and pigmentation. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared with teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes-particularly those controlled by sox10s-are involved in generating morphological diversification between species and lays the groundwork for further investigations into the mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | - Grégoire Vernaz
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Maxon J Ngochera
- Malawi Fisheries Department, Senga Bay Fisheries Research Center, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Williams AL, Bohnsack BL. Keratin 8/18a.1 Expression Influences Embryonic Neural Crest Cell Dynamics and Contributes to Postnatal Corneal Regeneration in Zebrafish. Cells 2024; 13:1473. [PMID: 39273043 PMCID: PMC11394277 DOI: 10.3390/cells13171473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
A complete understanding of neural crest cell mechanodynamics during ocular development will provide insight into postnatal neural crest cell contributions to ophthalmic abnormalities in adult tissues and inform regenerative strategies toward injury repair. Herein, single-cell RNA sequencing in zebrafish during early eye development revealed keratin intermediate filament genes krt8 and krt18a.1 as additional factors expressed during anterior segment development. In situ hybridization and immunofluorescence microscopy confirmed krt8 and krt18a.1 expression in the early neural plate border and migrating cranial neural crest cells. Morpholino oligonucleotide (MO)-mediated knockdown of K8 and K18a.1 markedly disrupted the migration of neural crest cell subpopulations and decreased neural crest cell marker gene expression in the craniofacial region and eye at 48 h postfertilization (hpf), resulting in severe phenotypic defects reminiscent of neurocristopathies. Interestingly, the expression of K18a.1, but not K8, is regulated by retinoic acid (RA) during early-stage development. Further, both keratin proteins were detected during postnatal corneal regeneration in adult zebrafish. Altogether, we demonstrated that both K8 and K18a.1 contribute to the early development and postnatal repair of neural crest cell-derived ocular tissues.
Collapse
Affiliation(s)
- Antionette L. Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| |
Collapse
|
4
|
Liu S, Kawanishi T, Shimada A, Ikeda N, Yamane M, Takeda H, Tasaki J. Identification of an adverse outcome pathway (AOP) for chemical-induced craniofacial anomalies using the transgenic zebrafish model. Toxicol Sci 2023; 196:38-51. [PMID: 37531284 PMCID: PMC10614053 DOI: 10.1093/toxsci/kfad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Craniofacial anomalies are one of the most frequent birth defects worldwide and are often caused by genetic and environmental factors such as pharmaceuticals and chemical agents. Although identifying adverse outcome pathways (AOPs) is a central issue for evaluating the teratogenicity, the AOP causing craniofacial anomalies has not been identified. Recently, zebrafish has gained interest as an emerging model for predicting teratogenicity because of high throughput, cost-effectiveness and availability of various tools for examining teratogenic mechanisms. Here, we established zebrafish sox10-EGFP reporter lines to visualize cranial neural crest cells (CNCCs) and have identified the AOPs for craniofacial anomalies. When we exposed the transgenic embryos to teratogens that were reported to cause craniofacial anomalies in mammals, CNCC migration and subsequent morphogenesis of the first pharyngeal arch were impaired at 24 hours post-fertilization. We also found that cell proliferation and apoptosis of the migratory CNCCs were disturbed, which would be key events of the AOP. From these results, we propose that our sox10-EGFP reporter lines serve as a valuable model for detecting craniofacial skeletal abnormalities, from early to late developmental stages. Given that the developmental process of CNCCs around this stage is highly conserved between zebrafish and mammals, our findings can be extrapolated to mammalian craniofacial development and thus help in predicting craniofacial anomalies in human.
Collapse
Affiliation(s)
- Shujie Liu
- R&D, Safety Science Research, Kao Corporation, Tochigi 321-3497, Japan
| | - Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Naohiro Ikeda
- R&D, Safety Science Research, Kao Corporation, Kanagawa 210-0821, Japan
| | - Masayuki Yamane
- R&D, Safety Science Research, Kao Corporation, Tochigi 321-3497, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Junichi Tasaki
- R&D, Safety Science Research, Kao Corporation, Kanagawa 210-0821, Japan
| |
Collapse
|
5
|
Pluimer BR, Harrison DL, Boonyavairoje C, Prinssen EP, Rogers-Evans M, Peterson RT, Thyme SB, Nath AK. Behavioral analysis through the lifespan of disc1 mutant zebrafish identifies defects in sensorimotor transformation. iScience 2023; 26:107099. [PMID: 37416451 PMCID: PMC10320522 DOI: 10.1016/j.isci.2023.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
DISC1 is a genetic risk factor for multiple psychiatric disorders. Compared to the dozens of murine Disc1 models, there is a paucity of zebrafish disc1 models-an organism amenable to high-throughput experimentation. We conducted the longitudinal neurobehavioral analysis of disc1 mutant zebrafish across key stages of life. During early developmental stages, disc1 mutants exhibited abrogated behavioral responses to sensory stimuli across multiple testing platforms. Moreover, during exposure to an acoustic sensory stimulus, loss of disc1 resulted in the abnormal activation of neurons in the pallium, cerebellum, and tectum-anatomical sites involved in the integration of sensory perception and motor control. In adulthood, disc1 mutants exhibited sexually dimorphic reduction in anxiogenic behavior in novel paradigms. Together, these findings implicate disc1 in sensorimotor processes and the genesis of anxiogenic behaviors, which could be exploited for the development of novel treatments in addition to investigating the biology of sensorimotor transformation in the context of disc1 deletion.
Collapse
Affiliation(s)
- Brock R. Pluimer
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Devin L. Harrison
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Chanon Boonyavairoje
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eric P. Prinssen
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mark Rogers-Evans
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Randall T. Peterson
- Deparment of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Summer B. Thyme
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | - Anjali K. Nath
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Fabian P, Crump JG. Reassessing the embryonic origin and potential of craniofacial ectomesenchyme. Semin Cell Dev Biol 2023; 138:45-53. [PMID: 35331627 PMCID: PMC9489819 DOI: 10.1016/j.semcdb.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
Of all the cell types arising from the neural crest, ectomesenchyme is likely the most unusual. In contrast to the neuroglial cells generated by neural crest throughout the embryo, consistent with its ectodermal origin, cranial neural crest-derived cells (CNCCs) generate many connective tissue and skeletal cell types in common with mesoderm. Whether this ectoderm-derived mesenchyme (ectomesenchyme) potential reflects a distinct developmental origin from other CNCC lineages, and/or epigenetic reprogramming of the ectoderm, remains debated. Whereas decades of lineage tracing studies have defined the potential of CNCC ectomesenchyme, these are being revisited by modern genetic techniques. Recent work is also shedding light on the extent to which intrinsic and extrinsic cues determine ectomesenchyme potential, and whether maintenance or reacquisition of CNCC multipotency influences craniofacial repair.
Collapse
Affiliation(s)
- Peter Fabian
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| |
Collapse
|
7
|
Yan H, Meng Y, Li X, Xiang R, Hou S, Wang J, Wang L, Yu X, Xu M, Chi Y, Yang J. FAM3A maintains metabolic homeostasis by interacting with F1-ATP synthase to regulate the activity and assembly of ATP synthase. Metabolism 2023; 139:155372. [PMID: 36470472 DOI: 10.1016/j.metabol.2022.155372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Reduced mitochondrial ATP synthase (ATPS) capacity plays crucial roles in the pathogenesis of metabolic disorders. However, there is currently no effective strategy for synchronously stimulating the expressions of ATPS key subunits to restore its assembly. This study determined the roles of mitochondrial protein FAM3A in regulating the activity and assembly of ATPS in hepatocytes. FAM3A is localized in mitochondrial matrix, where it interacts with F1-ATPS to initially activate ATP synthesis and release, and released ATP further activates P2 receptor-Akt-CREB pathway to induce FOXD3 expression. FOXD3 synchronously stimulates the transcriptions of ATPS key subunits and assembly genes to increase its assembly and capacity, augmenting ATP synthesis and inhibiting ROS production. FAM3A, FOXD3 and ATPS expressions were reduced in livers of diabetic mice and NAFLD patients. FOXD3 expression, ATPS capacity and ATP content were reduced in various tissues of FAM3A-deficient mice with dysregulated glucose and lipid metabolism. Hepatic FOXD3 activation increased ATPS assembly to ameliorate dysregulated glucose and lipid metabolism in obese mice. Hepatic FOXD3 inhibition or knockout reduced ATPS capacity to aggravate HFD-induced hyperglycemia and steatosis. In conclusion, FAM3A is an active ATPS component, and regulates its activity and assembly by activating FOXD3. Activating FAM3A-FOXD3 axis represents a viable strategy for restoring ATPS assembly to treat metabolic disorders.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoxing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing 100191, China
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
8
|
Okeke C, Paulding D, Riedel A, Paudel S, Phelan C, Teng CS, Barske L. Control of cranial ectomesenchyme fate by Nr2f nuclear receptors. Development 2022; 149:dev201133. [PMID: 36367707 PMCID: PMC10114104 DOI: 10.1242/dev.201133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Certain cranial neural crest cells are uniquely endowed with the ability to make skeletal cell types otherwise only derived from mesoderm. As these cells migrate into the pharyngeal arches, they downregulate neural crest specifier genes and upregulate so-called ectomesenchyme genes that are characteristic of skeletal progenitors. Although both external and intrinsic factors have been proposed as triggers of this transition, the details remain obscure. Here, we report the Nr2f nuclear receptors as intrinsic activators of the ectomesenchyme program: zebrafish nr2f5 single and nr2f2;nr2f5 double mutants show marked delays in upregulation of ectomesenchyme genes, such as dlx2a, prrx1a, prrx1b, sox9a, twist1a and fli1a, and in downregulation of sox10, which is normally restricted to early neural crest and non-ectomesenchyme lineages. Mutation of sox10 fully rescued skeletal development in nr2f5 single but not nr2f2;nr2f5 double mutants, but the initial ectomesenchyme delay persisted in both. Sox10 perdurance thus antagonizes the recovery but does not explain the impaired ectomesenchyme transition. Unraveling the mechanisms of Nr2f function will help solve the enduring puzzle of how cranial neural crest cells transition to the skeletal progenitor state.
Collapse
Affiliation(s)
- Chukwuebuka Okeke
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David Paulding
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexa Riedel
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sandhya Paudel
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Conrad Phelan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Camilla S. Teng
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
9
|
Wang B, Chen T, Wang A, Fang J, Wang J, Yao W, Wu Y. Anisodamine affects the pigmentation, mineral density, craniofacial area, and eye development in zebrafish embryos. J Appl Toxicol 2021; 42:1067-1077. [PMID: 34967033 DOI: 10.1002/jat.4278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022]
Abstract
Anisodamine is one of the major components of the tropine alkaloid family and is widely used in the treatment of pain, motion sickness, pupil dilatation, and detoxification of organophosphorus poisoning. As a muscarinic receptor antagonist, the low toxicity and moderate drug effect of anisodamine often result in high doses for clinical use, making it important to fully investigate its toxicity. In this study, zebrafish embryos were exposed to 1.3-, 2.6-, and 5.2-mM anisodamine for 7 days to study the toxic effects of drug exposure on pigmentation, mineral density, craniofacial area, and eye development. The results showed that exposure to anisodamine at 1.3 mM resulted in cranial malformations and abnormal pigmentation in zebrafish embryos; 2.6- and 5.2-mM anisodamine resulted in significant eye development defects and reduced bone density in zebrafish embryos. The associated toxicities were correlated with functional development of neural crest cells through gene expression (col1a2, ddb1, dicer1, mab21l1, mab21l2, sox10, tyrp1b, and mitfa) in the dose of 5.2-mM exposed group. In conclusion, this study provides new evidence of the developmental toxicity of high doses of anisodamine in aqueous solutions to organisms and provides a warning for the safe use of this drug.
Collapse
Affiliation(s)
- Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiakai Fang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China.,Thermo Fisher Scientific China Co Ltd, Hangzhou, Zhejiang, People's Republic of China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
García-González J, de Quadros B, Havelange W, Brock AJ, Brennan CH. Behavioral Effects of Developmental Exposure to JWH-018 in Wild-Type and Disrupted in Schizophrenia 1 ( disc1) Mutant Zebrafish. Biomolecules 2021; 11:biom11020319. [PMID: 33669793 PMCID: PMC7922669 DOI: 10.3390/biom11020319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Synthetic cannabinoids can cause acute adverse psychological effects, but the potential impact when exposure happens before birth is unknown. Use of synthetic cannabinoids during pregnancy may affect fetal brain development, and such effects could be moderated by the genetic makeup of an individual. Disrupted in schizophrenia 1 (DISC1) is a gene with important roles in neurodevelopment that has been associated with psychiatric disorders in pedigree analyses. Using zebrafish as a model, we investigated (1) the behavioral impact of developmental exposure to 3 μM 1-pentyl-3-(1-naphthoyl)-indole (JWH-018; a common psychoactive synthetic cannabinoid) and (2) whether disc1 moderates the effects of JWH-018. As altered anxiety responses are seen in several psychiatric disorders, we focused on zebrafish anxiety-like behavior. Zebrafish embryos were exposed to JWH-018 from one to six days post-fertilization. Anxiety-like behavior was assessed using forced light/dark and acoustic startle assays in larvae and novel tank diving in adults. Compared to controls, both acutely and developmentally exposed zebrafish larvae had impaired locomotion during the forced light/dark test, but anxiety levels and response to startle stimuli were unaltered. Adult zebrafish developmentally exposed to JWH-018 spent less time on the bottom of the tank, suggesting decreased anxiety. Loss-of-function in disc1 increased anxiety-like behavior in the tank diving assay but did not alter sensitivity to JWH-018. Results suggest developmental exposure to JWH-018 has a long-term behavioral impact in zebrafish, which is not moderated by disc1.
Collapse
Affiliation(s)
- Judit García-González
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK; (J.G.-G.); (B.d.Q.); (W.H.)
| | - Bruno de Quadros
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK; (J.G.-G.); (B.d.Q.); (W.H.)
| | - William Havelange
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK; (J.G.-G.); (B.d.Q.); (W.H.)
| | | | - Caroline H. Brennan
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK; (J.G.-G.); (B.d.Q.); (W.H.)
- Correspondence:
| |
Collapse
|
11
|
Langova V, Vales K, Horka P, Horacek J. The Role of Zebrafish and Laboratory Rodents in Schizophrenia Research. Front Psychiatry 2020; 11:703. [PMID: 33101067 PMCID: PMC7500259 DOI: 10.3389/fpsyt.2020.00703] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a severe disorder characterized by positive, negative and cognitive symptoms, which are still not fully understood. The development of efficient antipsychotics requires animal models of a strong validity, therefore the aims of the article were to summarize the construct, face and predictive validity of schizophrenia models based on rodents and zebrafish, to compare the advantages and disadvantages of these models, and to propose future directions in schizophrenia modeling and indicate when it is reasonable to combine these models. The advantages of rodent models stem primarily from the high homology between rodent and human physiology, neurochemistry, brain morphology and circuitry. The advantages of zebrafish models stem in the high fecundity, fast development and transparency of the embryo. Disadvantages of both models originate in behavioral repertoires not allowing specific symptoms to be modeled, even when the models are combined. Especially modeling the verbal component of certain positive, negative and cognitive symptoms is currently impossible.
Collapse
Affiliation(s)
- Veronika Langova
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Karel Vales
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
| | - Petra Horka
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia
| | - Jiri Horacek
- Third Faculty of Medicine, Charles University, Prague, Czechia
- Brain Electrophysiology, National Institute of Mental Health, Prague, Czechia
| |
Collapse
|
12
|
Ashrafizadeh M, Taeb S, Hushmandi K, Orouei S, Shahinozzaman M, Zabolian A, Moghadam ER, Raei M, Zarrabi A, Khan H, Najafi M. Cancer and SOX proteins: New insight into their role in ovarian cancer progression/inhibition. Pharmacol Res 2020; 161:105159. [PMID: 32818654 DOI: 10.1016/j.phrs.2020.105159] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Transcription factors are potential targets in disease therapy, particularly in cancer. This is due to the fact that transcription factors regulate a variety of cellular events, and their modulation has opened a new window in cancer therapy. Sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are potential transcription factors that are involved in developmental processes such as embryogenesis. It has been reported that abnormal expression of SOX proteins is associated with development of different cancers, particularly ovarian cancer (OC). In the present review, our aim is to provide a mechanistic review of involvement of SOX members in OC. SOX members may suppress and/or promote aggressiveness and proliferation of OC cells. Clinical studies have also confirmed the potential of transcription factors as diagnostic and prognostic factors in OC. Notably, studies have demonstrated the relationship between SOX members and other molecular pathways such as ST6Ga1-I, PI3K, ERK and so on, leading to more complexity. Furthermore, SOX members can be affected by upstream mediators such as microRNAs, long non-coding RNAs, and so on. It is worth mentioning that the expression of each member of SOX proteins is corelated with different stages of OC. Furthermore, their expression determines the response of OC cells to chemotherapy. These topics are discussed in this review to shed some light on role of SOX transcription factors in OC.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Van Der Meulen KL, Vöcking O, Weaver ML, Meshram NN, Famulski JK. Spatiotemporal Characterization of Anterior Segment Mesenchyme Heterogeneity During Zebrafish Ocular Anterior Segment Development. Front Cell Dev Biol 2020; 8:379. [PMID: 32528955 PMCID: PMC7266958 DOI: 10.3389/fcell.2020.00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Assembly of the ocular anterior segment (AS) is a critical event during development of the vertebrate visual system. Failure in this process leads to anterior segment dysgenesis (ASD), which is characterized by congenital blindness and predisposition to glaucoma. The anterior segment is largely formed via a neural crest-derived population, the Periocular Mesenchyme (POM). In this study, we aimed to characterize POM behaviors and transcriptional identities during early establishment of the zebrafish AS. Two-color fluorescent in situ hybridization suggested that early AS associated POM comprise of a heterogenous population. In vivo and time-course imaging analysis of POM distribution and migratory dynamics analyzed using transgenic zebrafish embryos (Tg[foxc1b:GFP], Tg[foxd3:GFP], Tg[pitx2:GFP], Tg[lmx1b.1:GFP], and Tg[sox10:GFP]) revealed unique AS distribution and migratory behavior among the reporter lines. Based on fixed timepoint and real-time analysis of POM cell behavior a comprehensive model for colonization of the zebrafish AS was assembled. Furthermore, we generated single cell transcriptomic profiles (scRNA) from our POM reporter lines and characterized unique subpopulation expression patterns. Based on scRNA clustering analysis we observed cluster overlap between neural crest associated (sox10/foxd3), POM (pitx2) and finally AS specified cells (lmx1b, and foxc1b). scRNA clustering also revealed several novel markers potentially associated with AS development and/or function including lum, fmoda, adcyap1b, tgfbi, and hmng2. Taken together, our data indicates that AS-associated POM, or Anterior Segment Mesenchyme (ASM), is not homogeneous but rather comprised of several subpopulations with differing colonization patterns, migration behavior, and transcriptomic profiles.
Collapse
Affiliation(s)
| | - Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Megan L Weaver
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Nishita N Meshram
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jakub K Famulski
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
14
|
Bobilev AM, Perez JM, Tamminga CA. Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr Res 2020; 217:71-85. [PMID: 31227207 DOI: 10.1016/j.schres.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Abstract
The medial temporal lobe (MTL) and its individual structures have been extensively implicated in schizophrenia pathophysiology, with considerable efforts aimed at identifying structural and functional differences in this brain region. The major structures of the MTL for which prominent differences have been revealed include the hippocampus, the amygdala and the superior temporal gyrus (STG). The different functions of each of these regions have been comprehensively characterized, and likely contribute differently to schizophrenia. While neuroimaging studies provide an essential framework for understanding the role of these MTL structures in various aspects of the disease, ongoing efforts have sought to employ molecular measurements in order to elucidate the biology underlying these macroscopic differences. This review provides a summary of the molecular findings in three major MTL structures, and discusses convergent findings in cellular architecture and inter-and intra-cellular networks. The findings of this effort have uncovered cell-type, network and gene-level specificity largely unique to each brain region, indicating distinct molecular origins of disease etiology. Future studies should test the functional implications of these molecular changes at the circuit level, and leverage new advances in sequencing technology to further refine our understanding of the differential contribution of MTL structures to schizophrenia.
Collapse
Affiliation(s)
- Anastasia M Bobilev
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Jessica M Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| |
Collapse
|
15
|
Gawel K, Banono NS, Michalak A, Esguerra CV. A critical review of zebrafish schizophrenia models: Time for validation? Neurosci Biobehav Rev 2019; 107:6-22. [PMID: 31381931 DOI: 10.1016/j.neubiorev.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/02/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a mental disorder that affects 1% of the population worldwide and is manifested as a broad spectrum of symptoms, from hallucinations to memory impairment. It is believed that genetic and/or environmental factors may contribute to the occurrence of this disease. Recently, the zebrafish has emerged as a valuable and attractive model for various neurological disorders including schizophrenia. In this review, we describe current pharmacological models of schizophrenia with special emphasis on providing insights into the pros and cons of using zebrafish as a behavioural model of this disease. Moreover, we highlight the advantages and utility of using zebrafish for elucidating the genetic mechanisms underlying this psychiatric disorder. We believe that the zebrafish has high potential also in the area of precision medicine and may complement the development of therapeutics, especially for pharmacoresistant patients.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway; Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090, Lublin, Poland.
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway
| | - Agnieszka Michalak
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki St. 4A, 20-093, Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
John JP, Thirunavukkarasu P, Ishizuka K, Parekh P, Sawa A. An in-silico approach for discovery of microRNA-TF regulation of DISC1 interactome mediating neuronal migration. NPJ Syst Biol Appl 2019; 5:17. [PMID: 31098296 PMCID: PMC6504871 DOI: 10.1038/s41540-019-0094-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/15/2019] [Indexed: 11/25/2022] Open
Abstract
Neuronal migration constitutes an important step in corticogenesis; dysregulation of the molecular mechanisms mediating this crucial step in neurodevelopment may result in various neuropsychiatric disorders. By curating experimental data from published literature, we identified eight functional modules involving Disrupted-in-schizophrenia 1 (DISC1) and its interacting proteins that regulate neuronal migration. We then identified miRNAs and transcription factors (TFs) that form functional feedback loops and regulate gene expression of the DISC1 interactome. Using this curated data, we conducted in-silico modeling of the DISC1 interactome involved in neuronal migration and identified the proteins that either facilitate or inhibit neuronal migrational processes. We also studied the effect of perturbation of miRNAs and TFs in feedback loops on the DISC1 interactome. From these analyses, we discovered that STAT3, TCF3, and TAL1 (through feedback loop with miRNAs) play a critical role in the transcriptional control of DISC1 interactome thereby regulating neuronal migration. To the best of our knowledge, regulation of the DISC1 interactome mediating neuronal migration by these TFs has not been previously reported. These potentially important TFs can serve as targets for undertaking validation studies, which in turn can reveal the molecular processes that cause neuronal migration defects underlying neurodevelopmental disorders. This underscores the importance of the use of in-silico techniques in aiding the discovery of mechanistic evidence governing important molecular and cellular processes. The present work is one such step towards the discovery of regulatory factors of the DISC1 interactome that mediates neuronal migration.
Collapse
Affiliation(s)
- John P. John
- Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
| | - Priyadarshini Thirunavukkarasu
- Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
| | - Koko Ishizuka
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Pravesh Parekh
- Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
| | - Akira Sawa
- Departments of Psychiatry, Mental Health, Neuroscience, and Biomedical Engineering, School of Medicine, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21287 USA
| |
Collapse
|
17
|
Patowary A, Won SY, Oh SJ, Nesbitt RR, Archer M, Nickerson D, Raskind WH, Bernier R, Lee JE, Brkanac Z. Family-based exome sequencing and case-control analysis implicate CEP41 as an ASD gene. Transl Psychiatry 2019; 9:4. [PMID: 30664616 PMCID: PMC6341097 DOI: 10.1038/s41398-018-0343-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/13/2018] [Indexed: 12/03/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. Although next-generation sequencing (NGS) technologies have been successfully applied to gene identification in de novo ASD, the genetic architecture of familial ASD remains largely unexplored. Our approach, which leverages the high specificity and sensitivity of NGS technology, has focused on rare variants in familial autism. We used NGS exome sequencing in 26 families with distantly related affected individuals to identify genes with private gene disrupting and missense variants of interest (VOI). We found that the genes carrying VOIs were enriched for biological processes related to cell projection organization and neuron development, which is consistent with the neurodevelopmental hypothesis of ASD. For a subset of genes carrying VOIs, we then used targeted NGS sequencing and gene-based variant burden case-control analysis to test for association with ASD. Missense variants in one gene, CEP41, associated significantly with ASD (p = 6.185e-05). Homozygous gene-disrupting variants in CEP41 were initially found to be responsible for recessive Joubert syndrome. Using a zebrafish model, we evaluated the mechanism by which the CEP41 variants might contribute to ASD. We found that CEP41 missense variants affect development of the axonal tract, cranial neural crest migration and social behavior phenotype. Our work demonstrates the involvement of CEP41 heterozygous missense variants in ASD and that biological processes involved in cell projection organization and neuron development are enriched in ASD families we have studied.
Collapse
Affiliation(s)
- Ashok Patowary
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - So Yeon Won
- 0000 0001 2181 989Xgrid.264381.aDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Shin Ji Oh
- 0000 0001 2181 989Xgrid.264381.aDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Ryan R Nesbitt
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Marilyn Archer
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Debbie Nickerson
- 0000000122986657grid.34477.33Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - Wendy H. Raskind
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA ,0000000122986657grid.34477.33Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA USA
| | - Raphael Bernier
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Ji Eun Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea. .,Division of Medical Science Research, Samsung Medical Center, Seoul, Korea.
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Chen J, Tan X, Wang Z, Liu Y, Zhou J, Rong X, Lu L, Li Y. The ribosome biogenesis protein Esf1 is essential for pharyngeal cartilage formation in zebrafish. FEBS J 2018; 285:3464-3484. [DOI: 10.1111/febs.14622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 06/10/2018] [Accepted: 08/01/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Jian‐Yang Chen
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Xungang Tan
- CAS Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Zheng‐Hua Wang
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
- CAS Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Yun‐Zhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Jian‐Feng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Xiao‐Zhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| |
Collapse
|
19
|
Katsel P, Fam P, Tan W, Khan S, Yang C, Jouroukhin Y, Rudchenko S, Pletnikov MV, Haroutunian V. Overexpression of Truncated Human DISC1 Induces Appearance of Hindbrain Oligodendroglia in the Forebrain During Development. Schizophr Bull 2018; 44:515-524. [PMID: 28981898 PMCID: PMC5890457 DOI: 10.1093/schbul/sbx106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic, neuroimaging, and gene expression studies suggest a role for oligodendrocyte (OLG) dysfunction in schizophrenia (SZ). Disrupted-in-schizophrenia 1 (DISC1) is a risk gene for major psychiatric disorders, including SZ. Overexpression of mutant truncated (hDISC1), but not full-length sequence of human DISC1 in forebrain influenced OLG differentiation and proliferation of glial progenitors in the developing cerebral cortex concurrently with reduction of OLG progenitor markers in the hindbrain. We examined gene and protein expression of the molecular determinants of hindbrain OLG development and their interactions with DISC1 in mutant hDISC1 mice. We found ectopic upregulation of hindbrain glial progenitor markers (early growth response 2 [Egr2] and NK2 homeobox 2 [Nkx2-2]) in the forebrain of hDISC1 (E15) embryos. DISC1 and Nkx2-2 were coexpressed and interacted in progenitor cells. Overexpression of truncated hDISC1 impaired interactions between DISC1 and Nkx2-2, which was associated with increased differentiation of OLG and upregulation of hindbrain mature OLG markers (laminin alpha-1 [LAMA1] and myelin protein zero [MPZ]) suggesting a suppressive function of endogenous DISC1 in OLG specialization of hindbrain glial progenitors during embryogenesis. Consistent with findings in hDISC1 mice, several hindbrain OLG markers (PRX, LAMA1, and MPZ) were significantly upregulated in the superior temporal cortex of persons with SZ. These findings show a significant effect of truncated hDISC1 on glial identity cells along the rostrocaudal axis and their OLG specification. Appearance of hindbrain OLG lineage cells and their premature differentiation may affect cerebrocortical organization and contribute to the pathophysiology of SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY,To whom correspondence should be addressed; JJ Peters VA Medical Center, 151 Research Build, Room 5F-04C, 130 West Kingsbridge Road, Bronx, NY 10468; tel: 718-584-9000 ext. 6067, fax: 718-741-4746, e-mail:
| | - Peter Fam
- Department of Psychiatry, James J Peters VA Medical Center, Bronx, NY
| | - Weilun Tan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sonia Khan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chunxia Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yan Jouroukhin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Mikhail V Pletnikov
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY,Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY,Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY
| |
Collapse
|
20
|
Chen Y, Lu X, Guo L, Ni W, Zhang Y, Zhao L, Wu L, Sun S, Zhang S, Tang M, Li W, Chai R, Li H. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea. Front Mol Neurosci 2017; 10:426. [PMID: 29311816 PMCID: PMC5742997 DOI: 10.3389/fnmol.2017.00426] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
Hair cell (HC) loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh) protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Yan Chen
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Wenli Ni
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Yanping Zhang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Liping Zhao
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Lingjie Wu
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, China
| |
Collapse
|
21
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
22
|
Murphy E, Benítez-Burraco A. Bridging the Gap between Genes and Language Deficits in Schizophrenia: An Oscillopathic Approach. Front Hum Neurosci 2016; 10:422. [PMID: 27601987 PMCID: PMC4993770 DOI: 10.3389/fnhum.2016.00422] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is characterized by marked language deficits, but it is not clear how these deficits arise from the alteration of genes related to the disease. The goal of this paper is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give support to the view that the abnormal presentation of language in this condition is heavily rooted in the evolutionary processes that brought about modern language. To that end we will focus on how the schizophrenic brain processes language and, particularly, on its distinctive oscillatory profile during language processing. Additionally, we will show that candidate genes for schizophrenia are overrepresented among the set of genes that are believed to be important for the evolution of the human faculty of language. These genes crucially include (and are related to) genes involved in brain rhythmicity. We will claim that this translational effort and the links we uncover may help develop an understanding of language evolution, along with the etiology of schizophrenia, its clinical/linguistic profile, and its high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| | | |
Collapse
|
23
|
Asad Z, Pandey A, Babu A, Sun Y, Shevade K, Kapoor S, Ullah I, Ranjan S, Scaria V, Bajpai R, Sachidanandan C. Rescue of neural crest-derived phenotypes in a zebrafish CHARGE model by Sox10 downregulation. Hum Mol Genet 2016; 25:3539-3554. [PMID: 27418670 PMCID: PMC5179949 DOI: 10.1093/hmg/ddw198] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 05/27/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
CHD7 mutations are implicated in a majority of cases of the congenital disorder, CHARGE syndrome. CHARGE, an autosomal dominant syndrome, is known to affect multiple tissues including eye, heart, ear, craniofacial nerves and skeleton and genital organs. Using a morpholino-antisense-oligonucleotide-based zebrafish model for CHARGE syndrome, we uncover a complex spectrum of abnormalities in the neural crest and the crest-derived cell types. We report for the first time, defects in myelinating Schwann cells, enteric neurons and pigment cells in a CHARGE model. We also observe defects in the specification of peripheral neurons and the craniofacial skeleton as previously reported. Chd7 morphants have impaired migration of neural crest cells and deregulation of sox10 expression from the early stages. Knocking down Sox10 in the zebrafish CHARGE model rescued the defects in Schwann cells and craniofacial cartilage. Our zebrafish CHARGE model thus reveals important regulatory roles for Chd7 at multiple points of neural crest development viz., migration, fate choice and differentiation and we suggest that sox10 deregulation is an important driver of the neural crest-derived aspects of Chd7 dependent CHARGE syndrome.
Collapse
Affiliation(s)
- Zainab Asad
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Aditi Pandey
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Aswini Babu
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Yuhan Sun
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kaivalya Shevade
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shruti Kapoor
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Ikram Ullah
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| |
Collapse
|
24
|
Sox10 expression in ovarian epithelial tumors is associated with poor overall survival. Virchows Arch 2016; 468:597-605. [PMID: 26951260 DOI: 10.1007/s00428-016-1918-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
Sox10 is a transcription factor regulating the development of several cell lineages and is involved in tumor development. However, the clinicopathological relevance of Sox10 expression in ovarian cancer has not been examined. We assessed expression of Sox10 in ovarian epithelial tumors by immunohistochemistry and assessed its prognostic value by analyzing the correlation between its expression and clinicopathological factors. We used tissue microarrays including 244 ovarian epithelial tumors. Sox10 staining was found in the cytoplasm or nucleus of tumor cells. Malignant serous, mucinous, and endometrioid tumors were significantly more likely to express Sox10 than benign and borderline tumors. Expression patterns in adenocarcinomas were different for histologic subtypes: nuclear Sox10 staining was common in clear-cell adenocarcinomas and serous adenocarcinomas, whereas all cases of mucinous and endometrioid tumors were negative for nuclear staining. Nuclear Sox10 staining was also associated with chemoresistance and shorter overall survival in ovarian adenocarcinomas, notably in high-grade serous adenocarcinoma. Sox10 is expressed in many ovarian carcinomas, suggesting that it might be involved in oncogenesis of ovarian carcinoma. Expression pattern of Sox10 differs between histological subtypes. Nuclear Sox10 expression is an independent indicator of poor prognosis in ovarian adenocarcinomas, notably in high-grade serous adenocarcinomas.
Collapse
|
25
|
Johansson MM, Lundin E, Qian X, Mirzazadeh M, Halvardson J, Darj E, Feuk L, Nilsson M, Jazin E. Spatial sexual dimorphism of X and Y homolog gene expression in the human central nervous system during early male development. Biol Sex Differ 2016; 7:5. [PMID: 26759715 PMCID: PMC4710049 DOI: 10.1186/s13293-015-0056-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/29/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Renewed attention has been directed to the functions of the Y chromosome in the central nervous system during early human male development, due to the recent proposed involvement in neurodevelopmental diseases. PCDH11Y and NLGN4Y are of special interest because they belong to gene families involved in cell fate determination and formation of dendrites and axon. METHODS We used RNA sequencing, immunocytochemistry and a padlock probing and rolling circle amplification strategy, to distinguish the expression of X and Y homologs in situ in the human brain for the first time. To minimize influence of androgens on the sex differences in the brain, we focused our investigation to human embryos at 8-11 weeks post-gestation. RESULTS We found that the X- and Y-encoded genes are expressed in specific and heterogeneous cellular sub-populations of both glial and neuronal origins. More importantly, we found differential distribution patterns of X and Y homologs in the male developing central nervous system. CONCLUSIONS This study has visualized the spatial distribution of PCDH11X/Y and NLGN4X/Y in human developing nervous tissue. The observed spatial distribution patterns suggest the existence of an additional layer of complexity in the development of the male CNS.
Collapse
Affiliation(s)
- Martin M Johansson
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Elin Lundin
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Elisabeth Darj
- Department of Women's and Children's Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden.,Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Boyd PJ, Cunliffe VT, Roy S, Wood JD. Sonic hedgehog functions upstream of disrupted-in-schizophrenia 1 (disc1): implications for mental illness. Biol Open 2015; 4:1336-43. [PMID: 26405049 PMCID: PMC4610215 DOI: 10.1242/bio.012005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DISRUPTED-IN-SCHIZOPHRENIA (DISC1) has been one of the most intensively studied genetic risk factors for mental illness since it was discovered through positional mapping of a translocation breakpoint in a large Scottish family where a balanced chromosomal translocation was found to segregate with schizophrenia and affective disorders. While the evidence for it being central to disease pathogenesis in the original Scottish family is compelling, recent genome-wide association studies have not found evidence for common variants at the DISC1 locus being associated with schizophrenia in the wider population. It may therefore be the case that DISC1 provides an indication of biological pathways that are central to mental health issues and functional studies have shown that it functions in multiple signalling pathways. However, there is little information regarding factors that function upstream of DISC1 to regulate its expression and function. We herein demonstrate that Sonic hedgehog (Shh) signalling promotes expression of disc1 in the zebrafish brain. Expression of disc1 is lost in smoothened mutants that have a complete loss of Shh signal transduction, and elevated in patched mutants which have constitutive activation of Shh signalling. We previously demonstrated that disc1 knockdown has a dramatic effect on the specification of oligodendrocyte precursor cells (OPC) in the hindbrain and Shh signalling is known to be essential for the specification of these cells. We show that disc1 is prominently expressed in olig2-positive midline progenitor cells that are absent in smo mutants, while cyclopamine treatment blocks disc1 expression in these cells and mimics the effect of disc1 knock down on OPC specification. Various features of a number of psychiatric conditions could potentially arise through aberrant Hedgehog signalling. We therefore suggest that altered Shh signalling may be an important neurodevelopmental factor in the pathobiology of mental illness.
Collapse
Affiliation(s)
- Penelope J Boyd
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore Bateson Centre, Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Vincent T Cunliffe
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119288, Singapore
| | - Jonathan D Wood
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK Bateson Centre, Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
27
|
McCammon JM, Sive H. Addressing the Genetics of Human Mental Health Disorders in Model Organisms. Annu Rev Genomics Hum Genet 2015; 16:173-97. [DOI: 10.1146/annurev-genom-090314-050048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jasmine M. McCammon
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142;
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
28
|
Zhao D, Lin M, Chen J, Pedrosa E, Hrabovsky A, Fourcade HM, Zheng D, Lachman HM. MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del. PLoS One 2015; 10:e0132387. [PMID: 26173148 PMCID: PMC4501820 DOI: 10.1371/journal.pone.0132387] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/12/2015] [Indexed: 01/03/2023] Open
Abstract
We are using induced pluripotent stem cell (iPSC) technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del), the most common known schizophrenia (SZ)-associated genetic factor. Several genes in the region have been implicated; a promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA) biogenesis. We carried out miRNA expression profiling (miRNA-seq) on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially expressed miRNAs were detected (13 lower in SZ and 32 higher). Of these, 6 were significantly down-regulated in patients after correcting for genome wide significance (FDR<0.05), including 4 miRNAs that map to the 22q11.2 del region. In addition, a nominally significant increase in the expression of several miRNAs was found in the 22q11.2 neurons that were previously found to be differentially expressed in autopsy samples and peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-3p, and miR-23a-5p). Pathway and function analysis of predicted mRNA targets of the differentially expressed miRNAs showed enrichment for genes involved in neurological disease and psychological disorders for both up and down regulated miRNAs. Our findings suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously identified using autopsy samples and peripheral cells, both of which have significant methodological problems, are indeed disrupted in neuropsychiatric disorders and likely have an underlying genetic basis.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Jian Chen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - H. Matthew Fourcade
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| |
Collapse
|
29
|
Pentimento: Neural Crest and the origin of mesectoderm. Dev Biol 2015; 401:37-61. [DOI: 10.1016/j.ydbio.2014.12.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/28/2014] [Accepted: 12/30/2014] [Indexed: 11/17/2022]
|
30
|
Shyamala K, Yanduri S, Girish HC, Murgod S. Neural crest: The fourth germ layer. J Oral Maxillofac Pathol 2015; 19:221-9. [PMID: 26604500 PMCID: PMC4611932 DOI: 10.4103/0973-029x.164536] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
The neural crest cells (NCCs), a transient group of cells that emerges from the dorsal aspect of the neural tube during early vertebrate development has been a fascinating group of cells because of its multipotency, long range migration through embryo and its capacity to generate a prodigious number of differentiated cell types. For these reasons, although derived from the ectoderm, the neural crest (NC) has been called the fourth germ layer. The non neural ectoderm, the neural plate and the underlying mesoderm are needed for the induction and formation of NC cells. Once formed, NC cells start migrating as a wave of cells, moving away from the neuroepithelium and quickly splitting into distinct streams. These migrating NCCs home in to different regions and give rise to plethora of tissues. Umpteen number of signaling molecules are essential for formation, epithelial mesenchymal transition, delamination, migration and localization of NCC. Authors believe that a clear understanding of steps and signals involved in NC formation, migration, etc., may help in understanding the pathogenesis behind cancer metastasis and many other diseases. Hence, we have taken this review to discuss the various aspects of the NC cells.
Collapse
Affiliation(s)
- K Shyamala
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| | - Sarita Yanduri
- Department of Oral and Maxillofacial Pathology, DAPMRV Dental College and Hospital, J P Nagar, Bengaluru, Karnataka, India
| | - HC Girish
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| | - Sanjay Murgod
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| |
Collapse
|
31
|
Mighdoll MI, Tao R, Kleinman JE, Hyde TM. Myelin, myelin-related disorders, and psychosis. Schizophr Res 2015; 161:85-93. [PMID: 25449713 DOI: 10.1016/j.schres.2014.09.040] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/18/2014] [Accepted: 09/21/2014] [Indexed: 12/14/2022]
Abstract
The neuropathological basis of schizophrenia and related psychoses remains elusive despite intensive scientific investigation. Symptoms of psychosis have been reported in a number of conditions where normal myelin development is interrupted. The nature, location, and timing of white matter pathology seem to be key factors in the development of psychosis, especially during the critical adolescent period of association area myelination. Numerous lines of evidence implicate myelin and oligodendrocyte function as critical processes that could affect neuronal connectivity, which has been implicated as a central abnormality in schizophrenia. Phenocopies of schizophrenia with a known pathological basis involving demyelination or dysmyelination may offer insights into the biology of schizophrenia itself. This article reviews the pathological changes in white matter of patients with schizophrenia, as well as demyelinating diseases associated with psychosis. In an attempt to understand the potential role of dysmyelination in schizophrenia, we outline the evidence from a number of both clinically-based and post-mortem studies that provide evidence that OMR genes are genetically associated with increased risk for schizophrenia. To further understand the implication of white matter dysfunction and dysmyelination in schizophrenia, we examine diffusion tensor imaging (DTI), which has shown volumetric and microstructural white matter differences in patients with schizophrenia. While classical clinical-neuropathological correlations have established that disruption in myelination can produce a high fidelity phenocopy of psychosis similar to schizophrenia, the role of dysmyelination in schizophrenia remains controversial.
Collapse
Affiliation(s)
- Michelle I Mighdoll
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA; Department of Psychiatry & Behavioral Sciences, Johns Hopkins Medical School, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins Medical School, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
The study of psychiatric disease genes and drugs in zebrafish. Curr Opin Neurobiol 2014; 30:122-30. [PMID: 25523356 DOI: 10.1016/j.conb.2014.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 01/28/2023]
Abstract
Mutations associated with psychiatric disease are being identified, but it remains unclear how the affected genes contribute to disease. Zebrafish is an emerging model to study psychiatric disease genes with a rich repertoire of phenotyping tools. Recent zebrafish research has uncovered potential developmental phenotypes for genes associated with psychiatric disorders, while drug screens have behaviorally characterized small molecules and identified new classes of drugs. Behavioral studies have led to promising models for endophenotypes of psychiatric diseases. While further research is needed to firmly link these models to psychiatric disorders, they are valuable tools for phenotyping genetic mutations and drugs. Recently developed tools in genome editing and in vivo imaging promise additional insights into the processes disrupted by mutations in psychiatric disease genes.
Collapse
|
33
|
Lugassy C, Zadran S, Bentolila LA, Wadehra M, Prakash R, Carmichael ST, Kleinman HK, Péault B, Larue L, Barnhill RL. Angiotropism, pericytic mimicry and extravascular migratory metastasis in melanoma: an alternative to intravascular cancer dissemination. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2014; 7:139-152. [PMID: 25304454 PMCID: PMC4275501 DOI: 10.1007/s12307-014-0156-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/01/2014] [Indexed: 01/05/2023]
Abstract
For more than 15 years, angiotropism in melanoma has been emphasized as a marker of extravascular migration of tumor cells along the abluminal vascular surface, unveiling an alternative mechanism of tumor spread distinct from intravascular dissemination. This mechanism has been termed extravascular migratory metastasis (EVMM). During EVMM, angiotropic tumor cells migrate in a 'pericytic-like' manner (pericytic mimicry) along the external surfaces of vascular channels, without intravasation. Through this pathway, melanoma cells may spread to nearby or more distant sites. Angiotropism is a prognostic factor predicting risk for metastasis in human melanoma, and a marker of EVMM in several experimental models. Importantly, analogies of EVMM and pericytic mimicry include neural crest cell migration, vasculogenesis and angiogenesis, and recent studies have suggested that the interaction between melanoma cells and the abluminal vascular surface induce differential expression of genes reminiscent of cancer migration and embryonic/stem cell state transitions. A recent work revealed that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression via angiotropism and migration along the abluminal vascular surface. Finally, recent data using imaging of melanoma cells in a murine model have shown the progression of tumor cells along the vascular surfaces. Taken together, these data provide support for the biological phenomenon of angiotropism and EVMM, which may open promising new strategies for reducing or preventing melanoma metastasis.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles UCLA, Los Angeles, CA, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fairchild CL, Conway JP, Schiffmacher AT, Taneyhill LA, Gammill LS. FoxD3 regulates cranial neural crest EMT via downregulation of tetraspanin18 independent of its functions during neural crest formation. Mech Dev 2014; 132:1-12. [PMID: 24582980 PMCID: PMC4001935 DOI: 10.1016/j.mod.2014.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 01/09/2023]
Abstract
The scaffolding protein tetraspanin18 (Tspan18) maintains epithelial cadherin-6B (Cad6B) to antagonize chick cranial neural crest epithelial-to-mesenchymal transition (EMT). For migration to take place, Tspan18 must be downregulated. Here, we characterize the role of the winged-helix transcription factor FoxD3 in the control of Tspan18 expression. Although we previously found that Tspan18 mRNA persists several hours past the stage it would normally be downregulated in FoxD3-deficient neural folds, we now show that Tspan18 expression eventually declines. This indicates that while FoxD3 is crucial for initial downregulation of Tspan18, other factors subsequently impact Tspan18 expression. Remarkably, the classical EMT transcription factor Snail2 is not one of these factors. As in other vertebrates, FoxD3 is required for chick cranial neural crest specification and migration, however, FoxD3 has surprisingly little impact on chick cranial neural crest cell survival. Strikingly, Tspan18 knockdown rescues FoxD3-dependent neural crest migration defects, although neural crest specification is still deficient. This indicates that FoxD3 promotes cranial neural crest EMT by eliciting Tspan18 downregulation separable from its Tspan18-independent activity during neural crest specification and survival.
Collapse
Affiliation(s)
- Corinne L Fairchild
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph P Conway
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew T Schiffmacher
- Department of Animal and Avian Sciences, 1405 Animal Sciences Center, University of Maryland, College Park, MD 20742, USA
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, 1405 Animal Sciences Center, University of Maryland, College Park, MD 20742, USA
| | - Laura S Gammill
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
35
|
Hattori T, Shimizu S, Koyama Y, Emoto H, Matsumoto Y, Kumamoto N, Yamada K, Takamura H, Matsuzaki S, Katayama T, Tohyama M, Ito A. DISC1 (disrupted-in-schizophrenia-1) regulates differentiation of oligodendrocytes. PLoS One 2014; 9:e88506. [PMID: 24516667 PMCID: PMC3917910 DOI: 10.1371/journal.pone.0088506] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 01/08/2014] [Indexed: 02/05/2023] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a gene disrupted by a translocation, t(1;11) (q42.1;q14.3), that segregates with major psychiatric disorders, including schizophrenia, recurrent major depression and bipolar affective disorder, in a Scottish family. Here we report that mammalian DISC1 endogenously expressed in oligodendroglial lineage cells negatively regulates differentiation of oligodendrocyte precursor cells into oligodendrocytes. DISC1 expression was detected in oligodendrocytes of the mouse corpus callosum at P14 and P70. DISC1 mRNA was expressed in primary cultured rat cortical oligodendrocyte precursor cells and decreased when oligodendrocyte precursor cells were induced to differentiate by PDGF deprivation. Immunocytochemical analysis showed that overexpressed DISC1 was localized in the cell bodies and processes of oligodendrocyte precursor cells and oligodendrocytes. We show that expression of the myelin related markers, CNPase and MBP, as well as the number of cells with a matured oligodendrocyte morphology, were decreased following full length DISC1 overexpression. Conversely, both expression of CNPase and the number of oligodendrocytes with a mature morphology were increased following knockdown of endogenous DISC1 by RNA interference. Overexpression of a truncated form of DISC1 also resulted in an increase in expression of myelin related proteins and the number of mature oligodendrocytes, potentially acting via a dominant negative mechanism. We also identified involvement of Sox10 and Nkx2.2 in the DISC1 regulatory pathway of oligodendrocyte differentiation, both well-known transcription factors involved in the regulation of myelin genes.
Collapse
Affiliation(s)
- Tsuyoshi Hattori
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Sayama, Osaka, Japan
| | - Yoshihisa Koyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisayo Emoto
- Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co, Ltd, Suita, Osaka, Japan
| | - Yuji Matsumoto
- Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co, Ltd, Suita, Osaka, Japan
| | - Natsuko Kumamoto
- Department of Neurobiology and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kohei Yamada
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Hironori Takamura
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Taiichi Katayama
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Masaya Tohyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Sayama, Osaka, Japan
| | - Akira Ito
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
36
|
Roussos P, Haroutunian V. Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities. Front Cell Neurosci 2014; 8:5. [PMID: 24478629 PMCID: PMC3896818 DOI: 10.3389/fncel.2014.00005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022] Open
Abstract
Given that the genetic risk for schizophrenia is highly polygenic and the effect sizes, even for rare or de novo events, are modest at best, it has been suggested that multiple biological pathways are likely to be involved in the etiopathogenesis of the disease. Most efforts in understanding the cellular basis of schizophrenia have followed a “neuron-centric” approach, focusing on alterations in neurotransmitter systems and synapse cytoarchitecture. However, multiple lines of evidence coming from genetics and systems biology approaches suggest that apart from neurons, oligodendrocytes and potentially other glia are affected from schizophrenia risk loci. Neurobiological abnormalities linked with genetic association signal could identify abnormalities that are more likely to be primary, versus environmentally induced changes or downstream events. Here, we summarize genetic data that support the involvement of oligodendrocytes in schizophrenia, providing additional evidence for a causal role with the disease. Given the undeniable evidence of both neuronal and glial abnormalities in schizophrenia, we propose a neuro-glial model that invokes abnormalities at the node of Ranvier as a functional unit in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Panos Roussos
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Vahram Haroutunian
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
37
|
Lugassy C, Barnhill RL. Angiotropism and extravascular migratory metastasis in melanoma: from concept to gene expression. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.11.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Lugassy C, Péault B, Wadehra M, Kleinman HK, Barnhill RL. Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties? Pigment Cell Melanoma Res 2013; 26:746-54. [PMID: 23789776 DOI: 10.1111/pcmr.12120] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
We hypothesize that the interaction between angiotropic melanoma cells and the abluminal vascular surface can induce or sustain embryonic and/or stem cell migratory properties in these tumor cells. As a result, such angiotropic melanoma cells may migrate along the abluminal vascular surface, demonstrating pericytic mimicry. Through these cellular interactions, melanoma cells may migrate toward secondary sites.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
39
|
Ivanov SV, Panaccione A, Nonaka D, Prasad ML, Boyd KL, Brown B, Guo Y, Sewell A, Yarbrough WG. Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast basal-like carcinomas. Br J Cancer 2013; 109:444-51. [PMID: 23799842 PMCID: PMC3721393 DOI: 10.1038/bjc.2013.326] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Salivary adenoid cystic carcinoma (ACC) is an insidious slow-growing cancer with the propensity to recur and metastasise to distant sites. Basal-like breast carcinoma (BBC) is a molecular subtype that constitutes 15-20% of breast cancers, shares histological similarities and basal cell markers with ACC, lacks expression of ER (oestrogen receptor), PR (progesterone receptor), and HER2 (human epidermal growth factor receptor 2), and, similar to ACC, metastasises predominantly to the lung and brain. Both cancers lack targeted therapies owing to poor understanding of their molecular drivers. METHODS Gene expression profiling, immunohistochemical staining, western blot, RT-PCR, and in silico analysis of massive cancer data sets were used to identify novel markers and potential therapeutic targets for ACC and BBC. For the detection and comparison of gene signatures, we performed co-expression analysis using a recently developed web-based multi-experiment matrix tool for visualisation and rank aggregation. RESULTS In ACC and BBC we identified characteristic and overlapping SOX10 gene signatures that contained a large set of novel potential molecular markers. SOX10 was validated as a sensitive diagnostic marker for both cancers and its expression was linked to normal and malignant myoepithelial/basal cells. In ACC, BBC, and melanoma (MEL), SOX10 expression strongly co-segregated with the expression of ROPN1B, GPM6B, COL9A3, and MIA. In ACC and breast cancers, SOX10 expression negatively correlated with FOXA1, a cell identity marker and major regulator of the luminal breast subtype. Diagnostic significance of several conserved elements of the SOX10 signature (MIA, TRIM2, ROPN1, and ROPN1B) was validated on BBC cell lines. CONCLUSION SOX10 expression in ACC and BBC appears to be a part of a highly coordinated transcriptional programme characteristic for cancers with basal/myoepithelial features. Comparison between ACC/BBC and other cancers, such as neuroblastomaand MEL, reveals potential molecular markers specific for these cancers that are likely linked to their cell identity. SOX10 as a novel diagnostic marker for ACC and BBC provides important molecular insight into their molecular aetiology and cell origin. Given that SOX10 was recently described as a principal driver of MEL, identification of conserved elements of the SOX10 signatures may help in better understanding of SOX10-related signalling and development of novel diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- S V Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 800 Howard Avenue, New Haven, CT 06519-1369, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yuan A, Li W, Yu T, Zhang C, Wang D, Liu D, Xu Y, Li H, Yu S. SOX10 rs139883 polymorphism is associated with the age of onset in schizophrenia. J Mol Neurosci 2013; 50:333-338. [PMID: 23456610 DOI: 10.1007/s12031-013-9982-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/15/2013] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a common psychiatric disorder with high heritability. The age of onset is an important phenotype of schizophrenia and may be under considerable genetic control. Our previous study showed that a single nucleotide polymorphism (SNP) rs139887 in sex-determining region Y-box 10 (SOX10) gene was associated with the age of onset in schizophrenia. The aim of this study was to evaluate the effect of another SNP rs139883 in the exon 4 of SOX10 on schizophrenia using an early-onset samples in the Han Chinese population. A total of 309 schizophrenic patients with onset before age 18 and 390 healthy controls were recruited for association study. No significant differences of allele or genotype frequencies were identified between the schizophrenic patients and controls. However, the C allele was significantly associated with an earlier age of onset in total patients and male patients (Kaplan-Meier log rank test P = 0.026; Kaplan-Meier log rank test P = 0.047, respectively), but not in females. In conclusion, the SOX10 rs139883 polymorphism influenced the age of onset of schizophrenia in a gender-specific manner and this may represent a vital genetic clue for the etiology of schizophrenia.
Collapse
Affiliation(s)
- Aihua Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Thomson PA, Malavasi ELV, Grünewald E, Soares DC, Borkowska M, Millar JK. DISC1 genetics, biology and psychiatric illness. FRONTIERS IN BIOLOGY 2013; 8:1-31. [PMID: 23550053 PMCID: PMC3580875 DOI: 10.1007/s11515-012-1254-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.
Collapse
Affiliation(s)
- Pippa A Thomson
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
42
|
Cacabelos R, Cacabelos P, Aliev G. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpsych.2013.31008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Rogers CD, Phillips JL, Bronner ME. Elk3 is essential for the progression from progenitor to definitive neural crest cell. Dev Biol 2012; 374:255-63. [PMID: 23266330 DOI: 10.1016/j.ydbio.2012.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
Elk3/Net/Sap2 (here referred to as Elk3) is an Ets ternary complex transcriptional repressor known for its involvement in angiogenesis during embryonic development. Although Elk3 is expressed in various tissues, additional roles for the protein outside of vasculature development have yet to be reported. Here, we characterize the early spatiotemporal expression pattern of Elk3 in the avian embryo using whole mount in situ hybridization and quantitative RT-PCR and examine the effects of its loss of function on neural crest development. At early stages, Elk3 is expressed in the head folds, head mesenchyme, intersomitic vessels, and migratory cranial neural crest (NC) cells. Loss of the Elk3 protein results in the retention of Pax7+ precursors in the dorsal neural tube that fail to upregulate neural crest specifier genes, FoxD3, Sox10 and Snail2, resulting in embryos with severe migration defects. The results putatively place Elk3 downstream of neural plate border genes, but upstream of neural crest specifier genes in the neural crest gene regulatory network (NC-GRN), suggesting that it is critical for the progression from progenitor to definitive neural crest cell.
Collapse
Affiliation(s)
- Crystal D Rogers
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
44
|
Xu J, Sun J, Chen J, Wang L, Li A, Helm M, Dubovsky SL, Bacanu SA, Zhao Z, Chen X. RNA-Seq analysis implicates dysregulation of the immune system in schizophrenia. BMC Genomics 2012; 13 Suppl 8:S2. [PMID: 23282246 PMCID: PMC3535722 DOI: 10.1186/1471-2164-13-s8-s2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND While genome-wide association studies identified some promising candidates for schizophrenia, the majority of risk genes remained unknown. We were interested in testing whether integration gene expression and other functional information could facilitate the identification of susceptibility genes and related biological pathways. RESULTS We conducted high throughput sequencing analyses to evaluate mRNA expression in blood samples isolated from 3 schizophrenia patients and 3 healthy controls. We also conducted pooled sequencing of 10 schizophrenic patients and matched controls. Differentially expressed genes were identified by t-test. In the individually sequenced dataset, we identified 198 genes differentially expressed between cases and controls, of them 19 had been verified by the pooled sequencing dataset and 21 reached nominal significance in gene-based association analyses of a genome wide association dataset. Pathway analysis of these differentially expressed genes revealed that they were highly enriched in the immune related pathways. Two genes, S100A8 and TYROBP, had consistent changes in expression in both individual and pooled sequencing datasets and were nominally significant in gene-based association analysis. CONCLUSIONS Integration of gene expression and pathway analyses with genome-wide association may be an efficient approach to identify risk genes for schizophrenia.
Collapse
Affiliation(s)
- Junzhe Xu
- Department of psychiatry, School of Medicine, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dee CT, Szymoniuk CR, Mills PED, Takahashi T. Defective neural crest migration revealed by a Zebrafish model of Alx1-related frontonasal dysplasia. Hum Mol Genet 2012; 22:239-51. [PMID: 23059813 DOI: 10.1093/hmg/dds423] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Frontonasal dysplasia (FND) refers to a class of midline facial malformations caused by abnormal development of the facial primordia. The term encompasses a spectrum of severities but characteristic features include combinations of ocular hypertelorism, malformations of the nose and forehead and clefting of the facial midline. Several recent studies have drawn attention to the importance of Alx homeobox transcription factors during craniofacial development. Most notably, loss of Alx1 has devastating consequences resulting in severe orofacial clefting and extreme microphthalmia. In contrast, mutations of Alx3 or Alx4 cause milder forms of FND. Whilst Alx1, Alx3 and Alx4 are all known to be expressed in the facial mesenchyme of vertebrate embryos, little is known about the function of these proteins during development. Here, we report the establishment of a zebrafish model of Alx-related FND. Morpholino knock-down of zebrafish alx1 expression causes a profound craniofacial phenotype including loss of the facial cartilages and defective ocular development. We demonstrate for the first time that Alx1 plays a crucial role in regulating the migration of cranial neural crest (CNC) cells into the frontonasal primordia. Abnormal neural crest migration is coincident with aberrant expression of foxd3 and sox10, two genes previously suggested to play key roles during neural crest development, including migration, differentiation and the maintenance of progenitor cells. This novel function is specific to Alx1, and likely explains the marked clinical severity of Alx1 mutation within the spectrum of Alx-related FND.
Collapse
Affiliation(s)
- Chris T Dee
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
46
|
Yuan A, Yi Z, Sun J, Du Y, Yu T, Zhang C, Liu Y, Zhou Y, Liu D, Li H, Xu Y, Cheng Z, Li W, Yu S. Effect of SOX10 gene polymorphism on early onset schizophrenia in Chinese Han population. Neurosci Lett 2012; 521:93-97. [PMID: 22640896 DOI: 10.1016/j.neulet.2012.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/24/2012] [Accepted: 05/11/2012] [Indexed: 01/12/2023]
Abstract
Schizophrenia is one of highly heritable psychiatric disorders. Patients with early onset schizophrenia tend to have a greater genetic loading and may be an attractive subpopulation for genetics studies. A single nucleotide polymorphism (SNP) rs139887 in sex-determining region Y-box 10 (SOX10), a candidate gene for schizophrenia, was suggested to be associated with schizophrenia although inconsistent results had been reported. The aim of this study was to evaluate the association between SOX10 rs139887 polymorphism and schizophrenia using an early onset sample in the Chinese Han population. A total of 321 schizophrenic patients with onset before age 18 and 400 healthy controls were recruited for association study. In addition, two populations involved in three studies were selected for meta-analysis to determine the effect of rs139887 on schizophrenia. Our association study results showed that the allele and genotype frequencies were significantly different between schizophrenic patients and controls (P=0.013 and P=0.034, respectively). Interestingly, a significant association in allele and genotype frequencies were found in male patients (P=0.017 and P=0.045, respectively), but not female patients. Moreover, the C/C genotype had a significant association with an earlier age of onset in male schizophrenic patients (Kaplan-Meier log-rank test P=0.029), but not in female patients (Kaplan-Meier log-rank test P=0.876). The meta-analysis result showed the same C allele was significantly associated with schizophrenia (P=0.007). In conclusion, the SOX10 rs139887 polymorphism was related to the development of schizophrenia in a gender-specific manner, and may be a significant genetic marker for managing subgroups and etiological clues in schizophrenia.
Collapse
Affiliation(s)
- Aihua Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shin J, Vincent JG, Cuda JD, Xu H, Kang S, Kim J, Taube JM. Sox10 is expressed in primary melanocytic neoplasms of various histologies but not in fibrohistiocytic proliferations and histiocytoses. J Am Acad Dermatol 2012; 67:717-26. [PMID: 22325460 DOI: 10.1016/j.jaad.2011.12.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/20/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sox10 is a transcription factor associated with neural crest development. Its expression has been reported in melanocytes and peripheral nerve sheath cells and their associated tumors. OBJECTIVE To assess Sox10 sensitivity in benign and malignant melanocytic neoplasms of various histologic subtypes and to discern the specificity of Sox10 in distinguishing between melanocytic neoplasms and fibrohistiocytic and histiocytic mimickers. METHODS Sox10 expression was examined by immunohistochemistry in 145 cases of formalin-fixed paraffin-embedded tissue, including benign and malignant melanocytic lesions of various histologies and stages (n = 83), fibrohistiocytic and histiocytic lesions (n = 33), and peripheral nerve sheath tumors (n = 19), among others (n = 10). RESULTS Immunoreactivity with Sox10 was observed in 100% (83/83) of benign and malignant melanocytic lesions of various subtypes, as well as in 100% (19/19) of benign and malignant peripheral nerve sheath lesions. Among the fibrohistiocytic proliferations and histiocytoses examined, Sox10 was negative in all cases (0/33). Sox10 expression did not vary by histologic subtype in nevi or melanoma; however, both the percentage of tumor nuclei demonstrating Sox10 expression and the intensity of expression were inversely correlated with malignant potential (nevi, melanoma in situ, invasive and metastatic melanoma) (P < .001, P = .016, respectively). Malignant peripheral nerve sheath tumors also showed decreased mean Sox10 expression and decreased intensity of expression when compared with benign counterparts (P < .001, P = .021, respectively). LIMITATIONS This is a retrospective study with 145 cases included. CONCLUSIONS Sox10 is a highly sensitive marker for melanocytic proliferations and may be useful diagnostically when the differential diagnosis includes fibrohistiocytic and histiocytic proliferations demonstrating S100 expression.
Collapse
MESH Headings
- Biological Specimen Banks
- Biomarkers, Tumor/metabolism
- Biopsy
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Diagnosis, Differential
- Histiocytoma, Malignant Fibrous/metabolism
- Histiocytoma, Malignant Fibrous/pathology
- Histiocytosis/metabolism
- Histiocytosis/pathology
- Humans
- Immunohistochemistry
- Lichenoid Eruptions/metabolism
- Lichenoid Eruptions/pathology
- Melanocytes/metabolism
- Melanocytes/pathology
- Melanoma/metabolism
- Melanoma/pathology
- Neoplasms, Adnexal and Skin Appendage/metabolism
- Neoplasms, Adnexal and Skin Appendage/pathology
- Nerve Sheath Neoplasms/metabolism
- Nerve Sheath Neoplasms/pathology
- Nevus, Pigmented/metabolism
- Nevus, Pigmented/pathology
- Retrospective Studies
- SOXE Transcription Factors/metabolism
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Vitiligo/metabolism
- Vitiligo/pathology
Collapse
Affiliation(s)
- Jeonghyun Shin
- Department of Dermatology, Johns Hopkins Hospital, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12:707-22. [PMID: 22095064 DOI: 10.1038/nrn3120] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in our understanding of the underlying genetic architecture of psychiatric disorders has blown away the diagnostic boundaries that are defined by currently used diagnostic manuals. The disrupted in schizophrenia 1 (DISC1) gene was originally discovered at the breakpoint of an inherited chromosomal translocation, which segregates with major mental illnesses. In addition, many biological studies have indicated a role for DISC1 in early neurodevelopment and synaptic regulation. Given that DISC1 is thought to drive a range of endophenotypes that underlie major mental conditions, elucidating the biology of DISC1 may enable the construction of new diagnostic categories for mental illnesses with a more meaningful biological foundation.
Collapse
|
49
|
Culbertson MD, Lewis ZR, Nechiporuk AV. Chondrogenic and gliogenic subpopulations of neural crest play distinct roles during the assembly of epibranchial ganglia. PLoS One 2011; 6:e24443. [PMID: 21931719 PMCID: PMC3170370 DOI: 10.1371/journal.pone.0024443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022] Open
Abstract
In vertebrates, the sensory neurons of the epibranchial (EB) ganglia transmit somatosensory signals from the periphery to the CNS. These ganglia are formed during embryogenesis by the convergence and condensation of two distinct populations of precursors: placode-derived neuroblasts and neural crest- (NC) derived glial precursors. In addition to the gliogenic crest, chondrogenic NC migrates into the pharyngeal arches, which lie in close proximity to the EB placodes and ganglia. Here, we examine the respective roles of these two distinct NC-derived populations during development of the EB ganglia using zebrafish morphant and mutants that lack one or both of these NC populations. Our analyses of mutant and morphant zebrafish that exhibit deficiencies in chondrogenic NC at early stages reveal a distinct requirement for this NC subpopulation during early EB ganglion assembly and segmentation. Furthermore, restoration of wildtype chondrogenic NC in one of these mutants, prdm1a, is sufficient to restore ganglion formation, indicating a specific requirement of the chondrogenic NC for EB ganglia assembly. By contrast, analysis of the sox10 mutant, which lacks gliogenic NC, reveals that the initial assembly of ganglia is not affected. However, during later stages of development, EB ganglia are dispersed in the sox10 mutant, suggesting that glia are required to maintain normal EB ganglion morphology. These results highlight novel roles for two subpopulations of NC cells in the formation and maintenance of EB ganglia: chondrogenic NC promotes the early-stage formation of the developing EB ganglia while glial NC is required for the late-stage maintenance of ganglion morphology.
Collapse
Affiliation(s)
- Maya D. Culbertson
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Zachary R. Lewis
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Alexei V. Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
50
|
De Rienzo G, Bishop JA, Mao Y, Pan L, Ma TP, Moens CB, Tsai LH, Sive H. Disc1 regulates both β-catenin-mediated and noncanonical Wnt signaling during vertebrate embryogenesis. FASEB J 2011; 25:4184-97. [PMID: 21859895 DOI: 10.1096/fj.11-186239] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disc1 is a schizophrenia risk gene that engages multiple signaling pathways during neurogenesis and brain development. Using the zebrafish as a tool, we analyze the function of zebrafish Disc1 (zDisc1) at the earliest stages of brain and body development. We define a "tool" as a biological system that gives insight into mechanisms underlying a human disorder, although the system does not phenocopy the disorder. A zDisc1 peptide binds to GSK3β, and zDisc1 directs early brain development and neurogenesis, by promoting β-catenin-mediated Wnt signaling and inhibiting GSK3β activity. zDisc1 loss-of-function embryos additionally display a convergence and extension phenotype, demonstrated by abnormal movement of dorsolateral cells during gastrulation, through changes in gene expression, and later through formation of abnormal, U-shaped muscle segments, and a truncated tail. These phenotypes are caused by alterations in the noncanonical Wnt pathway, via Daam and Rho signaling. The convergence and extension phenotype can be rescued by a dominant negative GSK3β construct, suggesting that zDisc1 inhibits GSK3β activity during noncanonical Wnt signaling. This is the first demonstration that Disc1 modulates the noncanonical Wnt pathway and suggests a previously unconsidered mechanism by which Disc1 may contribute to the etiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gianluca De Rienzo
- Whitehead institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|