1
|
Alaniz-Fabián J, Xiang D, Del Toro-De León G, Gao P, Abreu-Goodger C, Datla R, Gillmor CS. A maternal transcriptome bias in early Arabidopsis embryogenesis. Development 2025; 152:dev204449. [PMID: 40067256 DOI: 10.1242/dev.204449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025]
Abstract
After fertilization in animals, maternal mRNAs and proteins regulate development until the onset of zygotic transcription. In plants, the extent of maternal regulation of early embryo development has been less clear: two hybrid combinations of rice zygotes have a strong maternal transcript bias, zygotes of a third rice hybrid produced by gamete fusion show a small percentage of maternally biased genes, while Arabidopsis Col/Cvi and Col/Ler hybrid embryos display symmetric and asymmetric parental genome activation, respectively. Here, we explore parent-of-origin transcriptome behavior in the Arabidopsis Col/Tsu hybrid, which was previously shown to display maternal effects for embryo defective mutants indistinguishable from those of the reference ecotype, Col. Analysis of Col/Tsu transcriptomes revealed a reciprocal maternal bias in thousands of genes in zygotes and octant stage embryos. Several lines of evidence suggest that this transient maternal bias is due to preferential transcription of maternal alleles in the zygote, rather than inheritance of transcripts from the egg. Our results extend previous observations that parent-of-origin contributions to early embryogenesis differ between hybrids of Arabidopsis, show that the maternal genome plays a predominant role in early embryos of Col/Tsu, and point to a maternal transcriptome bias in early embryos of the Arabidopsis reference ecotype Columbia.
Collapse
Affiliation(s)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | | | - Peng Gao
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - C Stewart Gillmor
- Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato 36824, Mexico
| |
Collapse
|
2
|
Voichek Y, Hurieva B, Michaud C, Schmücker A, Vergara Z, Desvoyes B, Gutierrez C, Nizhynska V, Jaegle B, Borg M, Berger F, Nordborg M, Ingouff M. Cell cycle status of male and female gametes during Arabidopsis reproduction. PLANT PHYSIOLOGY 2023; 194:412-421. [PMID: 37757882 PMCID: PMC10756760 DOI: 10.1093/plphys/kiad512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Fertilization in Arabidopsis (Arabidopsis thaliana) is a highly coordinated process that begins with a pollen tube delivering the 2 sperm cells into the embryo sac. Each sperm cell can then fertilize either the egg or the central cell to initiate embryo or endosperm development, respectively. The success of this double fertilization process requires a tight cell cycle synchrony between the male and female gametes to allow karyogamy (nuclei fusion). However, the cell cycle status of the male and female gametes during fertilization remains elusive as DNA quantification and DNA replication assays have given conflicting results. Here, to reconcile these results, we quantified the DNA replication state by DNA sequencing and performed microscopic analyses of fluorescent markers covering all phases of the cell cycle. We show that male and female Arabidopsis gametes are both arrested prior to DNA replication at maturity and initiate their DNA replication only during fertilization.
Collapse
Affiliation(s)
- Yoav Voichek
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Bohdana Hurieva
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | | | - Anna Schmücker
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Zaida Vergara
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | | | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Benjamin Jaegle
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Mathieu Ingouff
- DIADE, IRD, CIRAD, University Montpellier, Montpellier, France
| |
Collapse
|
3
|
Grin IR, Petrova DV, Endutkin AV, Ma C, Yu B, Li H, Zharkov DO. Base Excision DNA Repair in Plants: Arabidopsis and Beyond. Int J Mol Sci 2023; 24:14746. [PMID: 37834194 PMCID: PMC10573277 DOI: 10.3390/ijms241914746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.
Collapse
Affiliation(s)
- Inga R. Grin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Schröder JA, Bonnet DMV, Jullien PE. Non-cell-autonomous small RNA silencing in Arabidopsis female gametes. Curr Biol 2023; 33:183-188.e3. [PMID: 36516850 DOI: 10.1016/j.cub.2022.11.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/13/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
In recent years, small RNA movement has been both hypothesized and shown to be an integral part of the epigenetic DNA methylation reprogramming occurring during plant reproduction.1It was suggested that the release of epigenetic silencing in accessory cell types or tissues is necessary to reinforce epigenetic silencing in the gametes (egg cell and sperm cells), which would in turn ensure the genomic stability of the next generation plant.2,3 In Arabidopsis thaliana, small RNA (sRNA) movement was indeed shown to occur during male gametogenesis.4,5,6 However, the situation within the female gametophyte and in early seed development is mostly unknown. Here, we show that small RNAs can induce non-cell-autonomous silencing from the central cell toward the egg cell but also from the synergids to the egg cell and central cell. Our data show that in addition to the movement of sRNAs during pollen development, hairpin RNAs can have non-cell-autonomous effects in the female gametes.
Collapse
Affiliation(s)
- Jens A Schröder
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Diane M V Bonnet
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Pauline E Jullien
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
5
|
Zhang H, Gong Z, Zhu JK. Active DNA demethylation in plants: 20 years of discovery and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2217-2239. [PMID: 36478523 DOI: 10.1111/jipb.13423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA. However, removing the methyl group from a modified cytosine is chemically difficult and therefore, the underlying mechanism of demethylation had remained unclear for many years. The discovery of the first eukaryotic DNA demethylase, Arabidopsis thaliana REPRESSOR OF SILENCING 1 (ROS1), led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation. In the 20 years since ROS1 was discovered, our understanding of this active DNA demethylation pathway, as well as its regulation and biological functions in plants, has greatly expanded. These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation, with potential applications in epigenome editing to facilitate crop breeding and gene therapy.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Centre for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Alaniz-Fabián J, Orozco-Nieto A, Abreu-Goodger C, Gillmor CS. Hybridization alters maternal and paternal genome contributions to early plant embryogenesis. Development 2022; 149:281772. [PMID: 36314727 DOI: 10.1242/dev.201025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
After fertilization, zygotic genome activation results in a transcriptionally competent embryo. Hybrid transcriptome experiments in Arabidopsis have concluded that the maternal and paternal genomes make equal contributions to zygotes and embryos, yet embryo defective (emb) mutants in the Columbia (Col) ecotype display early maternal effects. Here, we show that hybridization of Col with Landsberg erecta (Ler) or Cape Verde Islands (Cvi) ecotypes decreases the maternal effects of emb mutants. Reanalysis of Col/Ler and Col/Cvi transcriptomes confirmed equal parental contributions in Col/Cvi early embryos. By contrast, thousands of genes in Col/Ler zygotes and one-cell embryos were biallelic in one cross and monoallelic in the reciprocal cross, with analysis of intron reads pointing to active transcription as responsible for this parent-of-origin bias. Our analysis shows that, contrary to previous conclusions, the maternal and paternal genomes in Col/Ler zygotes are activated in an asymmetric manner. The decrease in maternal effects in hybrid embryos compared with those in isogenic Col along with differences in genome activation between Col/Cvi and Col/Ler suggest that neither of these hybrids accurately reflects the general trends of parent-of-origin regulation in Arabidopsis embryogenesis.
Collapse
Affiliation(s)
- Jaime Alaniz-Fabián
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| | - Axel Orozco-Nieto
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - C Stewart Gillmor
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| |
Collapse
|
7
|
Ramtekey V, Cherukuri S, Kumar S, V. SK, Sheoran S, K. UB, K. BN, Kumar S, Singh AN, Singh HV. Seed Longevity in Legumes: Deeper Insights Into Mechanisms and Molecular Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:918206. [PMID: 35968115 PMCID: PMC9364935 DOI: 10.3389/fpls.2022.918206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Sustainable agricultural production largely depends upon the viability and longevity of high-quality seeds during storage. Legumes are considered as rich source of dietary protein that helps to ensure nutritional security, but associated with poor seed longevity that hinders their performance and productivity in farmer's fields. Seed longevity is the key determinant to assure proper seed plant value and crop yield. Thus, maintenance of seed longevity during storage is of prime concern and a pre-requisite for enhancing crop productivity of legumes. Seed longevity is significantly correlated with other seed quality parameters such as germination, vigor, viability and seed coat permeability that affect crop growth and development, consequently distressing crop yield. Therefore, information on genetic basis and regulatory networks associated with seed longevity, as well as molecular dissection of traits linked to longevity could help in developing crop varieties with good storability. Keeping this in view, the present review focuses towards highlighting the molecular basis of seed longevity, with special emphasis on candidate genes and proteins associated with seed longevity and their interplay with other quality parameters. Further, an attempt was made to provide information on 3D structures of various genetic loci (genes/proteins) associated to seed longevity that could facilitate in understanding the interactions taking place within the seed at molecular level. This review compiles and provides information on genetic and genomic approaches for the identification of molecular pathways and key players involved in the maintenance of seed longevity in legumes, in a holistic manner. Finally, a hypothetical fast-forward breeding pipeline has been provided, that could assist the breeders to successfully develop varieties with improved seed longevity in legumes.
Collapse
Affiliation(s)
| | | | - Sunil Kumar
- Indian Agricultural Statistics Research Institute-IASRI, New Delhi, India
| | | | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, India
| | - Udaya Bhaskar K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Bhojaraja Naik K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Sanjay Kumar
- ICAR-Indian Institute of Seed Science, Mau, India
| | | | | |
Collapse
|
8
|
Telomerase Interaction Partners-Insight from Plants. Int J Mol Sci 2021; 23:ijms23010368. [PMID: 35008793 PMCID: PMC8745574 DOI: 10.3390/ijms23010368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Telomerase, an essential enzyme that maintains chromosome ends, is important for genome integrity and organism development. Various hypotheses have been proposed in human, ciliate and yeast systems to explain the coordination of telomerase holoenzyme assembly and the timing of telomerase performance at telomeres during DNA replication or repair. However, a general model is still unclear, especially pathways connecting telomerase with proposed non-telomeric functions. To strengthen our understanding of telomerase function during its intracellular life, we report on interactions of several groups of proteins with the Arabidopsis telomerase protein subunit (AtTERT) and/or a component of telomerase holoenzyme, POT1a protein. Among these are the nucleosome assembly proteins (NAP) and the minichromosome maintenance (MCM) system, which reveal new insights into the telomerase interaction network with links to telomere chromatin assembly and replication. A targeted investigation of 176 candidate proteins demonstrated numerous interactions with nucleolar, transport and ribosomal proteins, as well as molecular chaperones, shedding light on interactions during telomerase biogenesis. We further identified protein domains responsible for binding and analyzed the subcellular localization of these interactions. Moreover, additional interaction networks of NAP proteins and the DOMINO1 protein were identified. Our data support an image of functional telomerase contacts with multiprotein complexes including chromatin remodeling and cell differentiation pathways.
Collapse
|
9
|
Casati P, Gomez MS. Chromatin dynamics during DNA damage and repair in plants: new roles for old players. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4119-4131. [PMID: 33206978 DOI: 10.1093/jxb/eraa551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
The genome of plants is organized into chromatin. The chromatin structure regulates the rates of DNA metabolic processes such as replication, transcription, DNA recombination, and repair. Different aspects of plant growth and development are regulated by changes in chromatin status by the action of chromatin-remodeling activities. Recent data have also shown that many of these chromatin-associated proteins participate in different aspects of the DNA damage response, regulating DNA damage and repair, cell cycle progression, programmed cell death, and entry into the endocycle. In this review, we present different examples of proteins and chromatin-modifying enzymes with roles during DNA damage responses, demonstrating that rapid changes in chromatin structure are essential to maintain genome stability.
Collapse
Affiliation(s)
- Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha, Rosario, Argentina
| | - Maria Sol Gomez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera, Cantoblanco, Madrid, Spain
| |
Collapse
|
10
|
Hou XL, Chen WQ, Hou Y, Gong HQ, Sun J, Wang Z, Zhao H, Cao X, Song XF, Liu CM. DEAD-BOX RNA HELICASE 27 regulates microRNA biogenesis, zygote division, and stem cell homeostasis. THE PLANT CELL 2021; 33:66-84. [PMID: 33751089 PMCID: PMC8136522 DOI: 10.1093/plcell/koaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
After double fertilization, zygotic embryogenesis initiates a new life cycle, and stem cell homeostasis in the shoot apical meristem (SAM) and root apical meristem (RAM) allows plants to produce new tissues and organs continuously. Here, we report that mutations in DEAD-BOX RNA HELICASE 27 (RH27) affect zygote division and stem cell homeostasis in Arabidopsis (Arabidopsis thaliana). The strong mutant allele rh27-1 caused a zygote-lethal phenotype, while the weak mutant allele rh27-2 led to minor defects in embryogenesis and severely compromised stem cell homeostasis in the SAM and RAM. RH27 is expressed in embryos from the zygote stage, and in both the SAM and RAM, and RH27 is a nucleus-localized protein. The expression levels of genes related to stem cell homeostasis were elevated in rh27-2 plants, alongside down-regulation of their regulatory microRNAs (miRNAs). Further analyses of rh27-2 plants revealed reduced levels of a large subset of miRNAs and their pri-miRNAs in shoot apices and root tips. In addition, biochemical studies showed that RH27 associates with pri-miRNAs and interacts with miRNA-biogenesis components, including DAWDLE, HYPONASTIC LEAVES 1, and SERRATE. Therefore, we propose that RH27 is a component of the microprocessor complex and is critical for zygote division and stem cell homeostasis.
Collapse
Affiliation(s)
- Xiu-Li Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Qiang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifeng Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua-Qin Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heng Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofeng Cao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Deushi R, Toda E, Koshimizu S, Yano K, Okamoto T. Effect of Paternal Genome Excess on the Developmental and Gene Expression Profiles of Polyspermic Zygotes in Rice. PLANTS (BASEL, SWITZERLAND) 2021; 10:255. [PMID: 33525652 PMCID: PMC7911625 DOI: 10.3390/plants10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
Polyploid zygotes with a paternal gamete/genome excess exhibit arrested development, whereas polyploid zygotes with a maternal excess develop normally. These observations indicate that paternal and maternal genomes synergistically influence zygote development via distinct functions. In this study, to clarify how paternal genome excess affects zygotic development, the developmental and gene expression profiles of polyspermic rice zygotes were analyzed. The results indicated that polyspermic zygotes were mostly arrested at the one-cell stage after karyogamy had completed. Through comparison of transcriptomes between polyspermic zygotes and diploid zygotes, 36 and 43 genes with up-regulated and down-regulated expression levels, respectively, were identified in the polyspermic zygotes relative to the corresponding expression in the diploid zygotes. Notably, OsASGR-BBML1, which encodes an AP2 transcription factor possibly involved in initiating rice zygote development, was expressed at a much lower level in the polyspermic zygotes than in the diploid zygotes.
Collapse
Affiliation(s)
- Ryouya Deushi
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0392, Japan; (R.D.); (E.T.)
| | - Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0392, Japan; (R.D.); (E.T.)
| | - Shizuka Koshimizu
- Department of Life Sciences, Meiji University, Kanagawa 214-8571, Japan; (S.K.); (K.Y.)
| | - Kentaro Yano
- Department of Life Sciences, Meiji University, Kanagawa 214-8571, Japan; (S.K.); (K.Y.)
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0392, Japan; (R.D.); (E.T.)
| |
Collapse
|
12
|
Borg M, Papareddy RK, Dombey R, Axelsson E, Nodine MD, Twell D, Berger F. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis. eLife 2021; 10:e61894. [PMID: 33491647 PMCID: PMC7920552 DOI: 10.7554/elife.61894] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Alternation between morphologically distinct haploid and diploid life forms is a defining feature of most plant and algal life cycles, yet the underlying molecular mechanisms that govern these transitions remain unclear. Here, we explore the dynamic relationship between chromatin accessibility and epigenetic modifications during life form transitions in Arabidopsis. The diploid-to-haploid life form transition is governed by the loss of H3K9me2 and DNA demethylation of transposon-associated cis-regulatory elements. This event is associated with dramatic changes in chromatin accessibility and transcriptional reprogramming. In contrast, the global loss of H3K27me3 in the haploid form shapes a chromatin accessibility landscape that is poised to re-initiate the transition back to diploid life after fertilisation. Hence, distinct epigenetic reprogramming events rewire transcription through major reorganisation of the regulatory epigenome to guide the alternation of generations in flowering plants.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | | | - Rodolphe Dombey
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Elin Axelsson
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - David Twell
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
- Department of Genetics, University of LeicesterLeicesterUnited Kingdom
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| |
Collapse
|
13
|
Jullien PE, Grob S, Marchais A, Pumplin N, Chevalier C, Bonnet DMV, Otto C, Schott G, Voinnet O. Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1796-1809. [PMID: 32506562 DOI: 10.1111/tpj.14868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/08/2020] [Accepted: 05/20/2020] [Indexed: 05/03/2023]
Abstract
Arabidopsis encodes 10 ARGONAUTE (AGO) effectors of RNA silencing, canonically loaded with either 21-22 nucleotide (nt) long small RNAs (sRNAs) to mediate post-transcriptional gene silencing (PTGS) or 24 nt sRNAs to promote RNA-directed DNA methylation. Using full-locus constructs, we characterized the expression, biochemical properties and possible modes of action of AGO3. Although AGO3 arose from a recent duplication at the AGO2 locus, their expression patterns differ drastically, with AGO2 being expressed in both male and female gametes whereas AGO3 accumulates in aerial vascular terminations and specifically in chalazal seed integuments. Accordingly, AGO3 downregulation alters gene expression in siliques. Similar to AGO2, AGO3 binds sRNAs with a strong 5' adenosine bias, but unlike Arabidopsis AGO2, it binds 24 nt sRNAs most efficiently. AGO3 immunoprecipitation experiments in siliques revealed that these sRNAs mostly correspond to genes and intergenic regions in a manner reflecting their respective accumulation from their loci of origin. AGO3 localizes to the cytoplasm and co-fractionates with polysomes to possibly mediate PTGS via translation inhibition.
Collapse
Affiliation(s)
- Pauline E Jullien
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Universitätstrasse 2, Zurich, 8092, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Stefan Grob
- Department of Plant and Microbial Biology, University of Zurich and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Antonin Marchais
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Nathan Pumplin
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Clement Chevalier
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Diane M V Bonnet
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Caroline Otto
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Gregory Schott
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Olivier Voinnet
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Universitätstrasse 2, Zurich, 8092, Switzerland
| |
Collapse
|
14
|
Parrilla-Doblas JT, Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. Active DNA Demethylation in Plants. Int J Mol Sci 2019; 20:E4683. [PMID: 31546611 PMCID: PMC6801703 DOI: 10.3390/ijms20194683] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methylation of cytosine (5-meC) is a critical epigenetic modification in many eukaryotes, and genomic DNA methylation landscapes are dynamically regulated by opposed methylation and demethylation processes. Plants are unique in possessing a mechanism for active DNA demethylation involving DNA glycosylases that excise 5-meC and initiate its replacement with unmodified C through a base excision repair (BER) pathway. Plant BER-mediated DNA demethylation is a complex process involving numerous proteins, as well as additional regulatory factors that avoid accumulation of potentially harmful intermediates and coordinate demethylation and methylation to maintain balanced yet flexible DNA methylation patterns. Active DNA demethylation counteracts excessive methylation at transposable elements (TEs), mainly in euchromatic regions, and one of its major functions is to avoid methylation spreading to nearby genes. It is also involved in transcriptional activation of TEs and TE-derived sequences in companion cells of male and female gametophytes, which reinforces transposon silencing in gametes and also contributes to gene imprinting in the endosperm. Plant 5-meC DNA glycosylases are additionally involved in many other physiological processes, including seed development and germination, fruit ripening, and plant responses to a variety of biotic and abiotic environmental stimuli.
Collapse
Affiliation(s)
- Jara Teresa Parrilla-Doblas
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| |
Collapse
|
15
|
Abstract
DNA methylation is a conserved epigenetic modification that is important for gene regulation and genome stability. Aberrant patterns of DNA methylation can lead to plant developmental abnormalities. A specific DNA methylation state is an outcome of dynamic regulation by de novo methylation, maintenance of methylation and active demethylation, which are catalysed by various enzymes that are targeted by distinct regulatory pathways. In this Review, we discuss DNA methylation in plants, including methylating and demethylating enzymes and regulatory factors, and the coordination of methylation and demethylation activities by a so-called methylstat mechanism; the functions of DNA methylation in regulating transposon silencing, gene expression and chromosome interactions; the roles of DNA methylation in plant development; and the involvement of DNA methylation in plant responses to biotic and abiotic stress conditions.
Collapse
|
16
|
Li Y, Kumar S, Qian W. Active DNA demethylation: mechanism and role in plant development. PLANT CELL REPORTS 2018; 37:77-85. [PMID: 29026973 PMCID: PMC5758694 DOI: 10.1007/s00299-017-2215-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/05/2017] [Indexed: 05/18/2023]
Abstract
Active DNA demethylation (enzymatic removal of methylated cytosine) regulates many plant developmental processes. In Arabidopsis, active DNA demethylation entails the base excision repair pathway initiated by the Repressor of silencing 1/Demeter family of bifunctional DNA glycosylases. In this review, we first present an introduction to the recent advances in our understanding about the mechanisms of active DNA demethylation. We then focus on the role of active DNA demethylation in diverse developmental processes in various plant species, including the regulation of seed development, pollen tube formation, stomatal development, fruit ripening, and nodule development. Finally, we discuss future directions of research in the area of active DNA demethylation.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Nisarga KN, Vemanna RS, Kodekallu Chandrashekar B, Rao H, Vennapusa AR, Narasimaha A, Makarla U, Basavaiah MR. Aldo-ketoreductase 1 (AKR1) improves seed longevity in tobacco and rice by detoxifying reactive cytotoxic compounds generated during ageing. RICE (NEW YORK, N.Y.) 2017; 10:11. [PMID: 28409435 PMCID: PMC5391344 DOI: 10.1186/s12284-017-0148-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/17/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Maintenance of seed viability is an important factor for seedling vigour and plant establishment. Lipid peroxidation mediated reactive carbonyl compounds (RCC's) and non-enzymatic modifications of proteins through Maillard and Amadori products reduce seed viability and seedling vigour. RESULTS In this study, the relevance of RCCs on genotypic variation in rice seed viability and overexpression of an aldo-ketoreductase (AKR1) enzyme that detoxify cytotoxic compounds to improve seed viability and vigour was studied. Physiological and biochemical approaches were integrated to quantify the variation in seed viability and seedling vigour in rice genotypes after exposing to ageing treatment. AKR1 was overexpressed in a susceptible rice genotype and tobacco to study the relevance of reduced RCC's on seed viability and seedling vigour. The glycation and lipid peroxidation compounds accumulated after accelerated ageing treatments in rice genotypes. The accumulation of malondialdehyde, methyl glyoxal, Maillard and Amadori products affected the seed viability and germination as they showed a significant negative relationship. The transgenic rice and tobacco seeds expressing AKR1 showed lower levels of cytotoxic compounds and glycation products that resulted in improved seed viability and seedling vigour in rice and tobacco. CONCLUSIONS The study demonstrates that, reactive cytotoxic compounds affect the seed viability during storage. Detoxification of reactive cytotoxic compounds by Aldo-keto reductases is one of the mechanisms to improve the seed longevity during storage.
Collapse
Affiliation(s)
| | - Ramu S Vemanna
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru, 560065, India
| | | | - Hanumantha Rao
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru, 560065, India
| | | | - Ashwini Narasimaha
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru, 560065, India
| | - Udayakumar Makarla
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru, 560065, India.
| | - Mohan Raju Basavaiah
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru, 560065, India
| |
Collapse
|
18
|
Yang KJ, Guo L, Hou XL, Gong HQ, Liu CM. ZYGOTE-ARREST 3 that encodes the tRNA ligase is essential for zygote division in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:680-692. [PMID: 28631407 DOI: 10.1111/jipb.12561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/16/2017] [Indexed: 05/28/2023]
Abstract
In sexual organisms, division of the zygote initiates a new life cycle. Although several genes involved in zygote division are known in plants, how the zygote is activated to start embryogenesis has remained elusive. Here, we showed that a mutation in ZYGOTE-ARREST 3 (ZYG3) in Arabidopsis led to a tight zygote-lethal phenotype. Map-based cloning revealed that ZYG3 encodes the transfer RNA (tRNA) ligase AtRNL, which is a single-copy gene in the Arabidopsis genome. Expression analyses showed that AtRNL is expressed throughout zygotic embryogenesis, and in meristematic tissues. Using pAtRNL::cAtRNL-sYFP-complemented zyg3/zyg3 plants, we showed that AtRNL is localized exclusively in the cytoplasm, suggesting that tRNA splicing occurs primarily in the cytoplasm. Analyses using partially rescued embryos showed that mutation in AtRNL compromised splicing of intron-containing tRNA. Mutations of two tRNA endonuclease genes, SEN1 and SEN2, also led to a zygote-lethal phenotype. These results together suggest that tRNA splicing is critical for initiating zygote division in Arabidopsis.
Collapse
Affiliation(s)
- Ke-Jin Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
| | - Lei Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Li Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Qin Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Knoch D, Riewe D, Meyer RC, Boudichevskaia A, Schmidt R, Altmann T. Genetic dissection of metabolite variation in Arabidopsis seeds: evidence for mQTL hotspots and a master regulatory locus of seed metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1655-1667. [PMID: 28338798 PMCID: PMC5444479 DOI: 10.1093/jxb/erx049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To gain insight into genetic factors controlling seed metabolic composition and its relationship to major seed properties, an Arabidopsis recombinant inbred line (RIL) population, derived from accessions Col-0 and C24, was studied using an MS-based metabolic profiling approach. Relative intensities of 311 polar primary metabolites were used to identify associated genomic loci and to elucidate their interactions by quantitative trait locus (QTL) mapping. A total of 786 metabolic QTLs (mQTLs) were unequally distributed across the genome, forming several hotspots. For the branched-chain amino acid leucine, mQTLs and candidate genes were elucidated in detail. Correlation studies displayed links between metabolite levels, seed protein content, and seed weight. Principal component analysis revealed a clustering of samples, with PC1 mapping to a region on the short arm of chromosome IV. The overlap of this region with mQTL hotspots indicates the presence of a potential master regulatory locus of seed metabolism. As a result of database queries, a series of candidate regulatory genes, including bZIP10, were identified within this region. Depending on the search conditions, metabolic pathway-derived candidate genes for 40-61% of tested mQTLs could be determined, providing an extensive basis for further identification and characterization of hitherto unknown genes causal for natural variation of Arabidopsis seed metabolism.
Collapse
Affiliation(s)
- Dominic Knoch
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - David Riewe
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Rhonda Christiane Meyer
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Anastassia Boudichevskaia
- Department of Breeding Research/Genome Plasticity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Renate Schmidt
- Department of Breeding Research/Genome Plasticity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Thomas Altmann
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| |
Collapse
|
20
|
Satyaki PRV, Gehring M. DNA methylation and imprinting in plants: machinery and mechanisms. Crit Rev Biochem Mol Biol 2017; 52:163-175. [PMID: 28118754 DOI: 10.1080/10409238.2017.1279119] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Imprinting is an epigenetic phenomenon in which genes are expressed selectively from either the maternal or paternal alleles. In plants, imprinted gene expression is found in a tissue called the endosperm. Imprinting is often set by a unique epigenomic configuration in which the maternal chromosomes are less DNA methylated than their paternal counterparts. In this review, we synthesize studies that paint a detailed molecular portrait of the distinctive endosperm methylome. We will also discuss the molecular machinery that shapes and modifies this methylome, and the role of DNA methylation in imprinting.
Collapse
Affiliation(s)
- P R V Satyaki
- a Whitehead Institute for Biomedical Research , Cambridge , MA , USA
| | - Mary Gehring
- a Whitehead Institute for Biomedical Research , Cambridge , MA , USA.,b Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
21
|
Affiliation(s)
- Mariana Diaz
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research
- Max Planck Institute for Plant Breeding Research (MPIPZ)
| | - Ales Pecinka
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research
| |
Collapse
|
22
|
Buzas DM. Emerging links between iron-sulfur clusters and 5-methylcytosine base excision repair in plants. Genes Genet Syst 2016; 91:51-62. [PMID: 27592684 DOI: 10.1266/ggs.16-00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are ancient cofactors present in all kingdoms of life. Both the Fe-S cluster assembly machineries and target apoproteins are distributed across different subcellular compartments. The essential function of Fe-S clusters in nuclear enzymes is particularly difficult to study. The base excision repair (BER) pathway guards the integrity of DNA; enzymes from the DEMETER family of DNA glycosylases in plants are Fe-S cluster-dependent and extend the BER repertowere to excision of 5-methylcytosine (5mC). Recent studies in plants genetically link the majority of proteins from the cytosolic Fe-S cluster biogenesis (CIA) pathway with 5mC BER and DNA repair. This link can now be further explored. First, it opens new possibilities for understanding how Fe-S clusters participate in 5mC BER and related processes. I describe DNA-mediated charge transfer, an Fe-S cluster-based mechanism for locating base lesions with high efficiency, which is used by bacterial DNA glycosylases encoding Fe-S cluster binding domains that are also conserved in the DEMETER family. Second, because detailed analysis of the mutant phenotype of CIA proteins relating to 5mC BER revealed that they formed two groups, we may also gain new insights into both the composition of the Fe-S assembly pathway and the biological contexts of Fe-S proteins.
Collapse
Affiliation(s)
- Diana Mihaela Buzas
- Faculty of Life and Environmental Sciences, Gene Research Center, University of Tsukuba
| |
Collapse
|
23
|
Guo L, Jiang L, Zhang Y, Lu XL, Xie Q, Weijers D, Liu CM. The anaphase-promoting complex initiates zygote division in Arabidopsis through degradation of cyclin B1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:161-74. [PMID: 26952278 DOI: 10.1111/tpj.13158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 05/03/2023]
Abstract
As the start of a new life cycle, activation of the first division of the zygote is a critical event in both plants and animals. Because the zygote in plants is difficult to access, our understanding of how this process is achieved remains poor. Here we report genetic and cell biological analyses of the zygote-arrest 1 (zyg1) mutant in Arabidopsis, which showed zygote-lethal and over-accumulation of cyclin B1 D-box-GUS in ovules. Map-based cloning showed that ZYG1 encodes the anaphase-promoting complex/cyclosome (APC/C) subunit 11 (APC11). Live-cell imaging studies showed that APC11 is expressed in both egg and sperm cells, in zygotes and during early embryogenesis. Using a GFP-APC11 fusion construct that fully complements zyg1, we showed that GFP-APC11 expression persisted throughout the mitotic cell cycle, and localized to cell plates during cytokinesis. Expression of non-degradable cyclin B1 in the zygote, or mutations of either APC1 or APC4, also led to a zyg1-like phenotype. Biochemical studies showed that APC11 has self-ubiquitination activity and is able to ubiquitinate cyclin B1 and promote degradation of cyclin B1. These results together suggest that APC/C-mediated degradation of cyclin B1 in Arabidopsis is critical for initiating the first division of the zygote.
Collapse
Affiliation(s)
- Lei Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ying Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiu-Li Lu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
24
|
Li Y, Duan CG, Zhu X, Qian W, Zhu JK. A DNA ligase required for active DNA demethylation and genomic imprinting in Arabidopsis. Cell Res 2015; 25:757-60. [PMID: 25906993 DOI: 10.1038/cr.2015.45] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yan Li
- 1] Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China [2] State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China
| | - Cheng-Guo Duan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Xiaohong Zhu
- 1] Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China [2] Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China
| | - Jian-Kang Zhu
- 1] Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China [2] Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
25
|
Herridge RP, Day RC, Macknight RC. The role of the MCM2-7 helicase complex during Arabidopsis seed development. PLANT MOLECULAR BIOLOGY 2014; 86:69-84. [PMID: 24947836 DOI: 10.1007/s11103-014-0213-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/08/2014] [Indexed: 05/27/2023]
Abstract
The MINICHROMOSOME MAINTENANCE 2-7 (MCM2-7) complex, a ring-shaped heterohexamer, unwinds the DNA double helix ahead of the other replication machinery. Although there is evidence that individual components might have other roles, the essential nature of the MCM2-7 complex in DNA replication has made it difficult to uncover these. Here, we present a detailed analysis of Arabidopsis thaliana mcm2-7 mutants and reveal phenotypic differences. The MCM2-7 genes are coordinately expressed during development, although MCM7 is expressed at a higher level in the egg cell. Consistent with a role in the egg cell, heterozygous mcm7 mutants resulted in frequent ovule abortion, a phenotype that does not occur in other mcm mutants. All mutants showed a maternal effect, whereby seeds inheriting a maternal mutant allele occasionally aborted later in seed development with defects in embryo patterning, endosperm nuclear size, and cellularization, a phenotype that is variable between subunit mutants. We provide evidence that this maternal effect is due to the necessity of a maternal store of MCM protein in the central cell that is sufficient for maintaining seed viability and size in the absence of de novo MCM transcription. Reducing MCM levels using endosperm-specific RNAi constructs resulted in the up-regulation of DNA repair transcripts, consistent with the current hypothesis that excess MCM2-7 complexes are loaded during G1 phase, and are required during S phase to overcome replicative stress or DNA damage. Overall, this study demonstrates the importance of the MCM2-7 subunits during seed development and suggests that there are functional differences between the subunits.
Collapse
Affiliation(s)
- Rowan P Herridge
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | | | | |
Collapse
|
26
|
Ingouff M. Imaging sexual reproduction in Arabidopsis using fluorescent markers. Methods Mol Biol 2014; 1112:117-24. [PMID: 24478011 DOI: 10.1007/978-1-62703-773-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sexual reproduction in higher plants is a stealth process as most events occur within tissues protected by multiple surrounding cell layers. Female gametes are produced inside the embryo sac surrounded by layers of ovule integument cells. Upon double fertilization, two male gametes are released at one end of the embryo sac and migrate towards their respective female partner to generate the embryo and its feeding tissue, the endosperm, within a seed. Since the early discovery of plant reproduction, advances in microscopy have contributed enormously to our understanding of this process (Faure and Dumas, Plant Physiol 125:102-104, 2001). Recently, live imaging of double fertilization has been possible using a set of fluorescent markers for gametes in Arabidopsis. The following chapter will detail protocols to study male and female gametogenesis and double fertilization in living tissues using fluorescent markers.
Collapse
Affiliation(s)
- Mathieu Ingouff
- Faculté des Sciences, Université Montpellier2, Montpellier, France
| |
Collapse
|
27
|
Ohnishi T, Sekine D, Kinoshita T. Genomic Imprinting in Plants. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:1-25. [DOI: 10.1016/b978-0-12-800222-3.00001-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proc Natl Acad Sci U S A 2013; 110:15479-84. [PMID: 24003120 DOI: 10.1073/pnas.1305175110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of seeds in flowering plants is placed under complex interactions between maternal tissues, the embryo, and the endosperm. The endosperm plays a major role in the regulation of seed size. In Arabidopsis thaliana, endosperm size depends on the coordination of the genetic pathway HAIKU (IKU) with epigenetic controls comprising genome dosage, DNA methylation, and trimethylated lysine 27 on histone H3 (H3K27me3) deposition. However, the effectors that integrate these pathways have remained unknown. Here, we identify a target of the IKU pathway, the cytokinin oxidase CKX2, that affects cytokinin signaling. CKX2 expression is activated by the IKU transcription factor WRKY10 directly and promotes endosperm growth. CKX2 expression also depends on H3K27me3 deposition, which fluctuates in response to maternal genome dosage imbalance and DNA demethylation of male gametes. Hence, the control of endosperm growth by CKX2 integrates genetic and epigenetic regulations. In angiosperms, cytokinins are highly active in endosperm, and we propose that IKU effectors coordinate environmental and physiological factors, resulting in modulation of seed size.
Collapse
|
29
|
Zhang H, Wang B, Duan CG, Zhu JK. Chemical probes in plant epigenetics studies. PLANT SIGNALING & BEHAVIOR 2013; 8:25364. [PMID: 23838953 PMCID: PMC4002629 DOI: 10.4161/psb.25364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 06/01/2023]
Abstract
Transcription potential is determined by the accessibility of DNA sequences within the context of chromatin, which is coordinately controlled by various epigenetic modifications. Chemical inhibition of epigenetic regulators provides a quick and effective approach to investigate the roles of epigenetic modifications in controlling many biological processes, especially for species in which genetic information is limited. This mini-review provides a brief overview of epigenetic regulators in the model organism Arabidopsis thaliana and summarizes compounds that have been applied in plant epigenetics studies, with highlights in the applications of these chemical probes in mechanistic and functional investigations.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA
| | - Bangshing Wang
- Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA
| | - Cheng-Guo Duan
- Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA
- Shanghai Center for Plant Stress Biology; Shanghai Institutes of Biological Sciences; Chinese Academy of Sciences; Shanghai, PR China
| |
Collapse
|
30
|
Martínez-Macías MI, Córdoba-Cañero D, Ariza RR, Roldán-Arjona T. The DNA repair protein XRCC1 functions in the plant DNA demethylation pathway by stimulating cytosine methylation (5-meC) excision, gap tailoring, and DNA ligation. J Biol Chem 2013; 288:5496-505. [PMID: 23316050 DOI: 10.1074/jbc.m112.427617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA methylation patterns are the dynamic outcome of antagonist methylation and demethylation mechanisms, but the latter are still poorly understood. Active DNA demethylation in plants is mediated by a family of DNA glycosylases typified by Arabidopsis ROS1 (repressor of silencing 1). ROS1 and its homologs remove 5-methylcytosine and incise the sugar backbone at the abasic site, thus initiating a base excision repair pathway that finally inserts an unmethylated cytosine. The DNA 3'-phosphatase ZDP processes some of the incision products generated by ROS1, allowing subsequent DNA polymerization and ligation steps. In this work, we examined the possible role of plant XRCC1 (x-ray cross-complementing group protein 1) in DNA demethylation. We found that XRCC1 interacts in vitro with ROS1 and ZDP and stimulates the enzymatic activity of both proteins. Furthermore, extracts from xrcc1 mutant plants exhibit a reduced capacity to complete DNA demethylation initiated by ROS1. An anti-XRCC1 antibody inhibits removal of the blocking 3'-phosphate in the single-nucleotide gap generated during demethylation and reduces the capacity of Arabidopsis cell extracts to ligate a nicked DNA intermediate. Our results suggest that XRCC1 is a component of plant base excision repair and functions at several stages during active DNA demethylation in Arabidopsis.
Collapse
Affiliation(s)
- María Isabel Martínez-Macías
- Department of Genetics, University of Córdoba/Maimónides Institute of Biomedical Research (IMIBIC), 14071 Córdoba, Spain
| | | | | | | |
Collapse
|
31
|
Zhang H, Zhu JK. Active DNA demethylation in plants and animals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2012. [PMID: 23197304 DOI: 10.1101/sqb.2012.77.014936] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders.
Collapse
Affiliation(s)
- H Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
32
|
Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A. Understanding the molecular pathways associated with seed vigor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:196-206. [PMID: 22995217 DOI: 10.1016/j.plaphy.2012.07.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/31/2012] [Indexed: 05/17/2023]
Abstract
Farmers and growers are constantly looking for high quality seeds able to ensure uniform field establishment and increased production. Seed priming is used to induce pre-germinative metabolism and then enhance germination efficiency and crop yields. It has been hypothesized that priming treatments might also improve stress tolerance in germinating seeds, leaving a sort of 'stress memory'. However, the molecular bases of priming still need to be clarified and the identification of molecular indicators of seed vigor is nowadays a relevant goal for the basic and applied research in seed biology. It is generally acknowledged that enhanced seed vigor and successful priming depend on DNA repair mechanisms, activated during imbibition. The complexity of the networks of DNA damage control/repair functions has been only partially elucidated in plants and the specific literature that address seeds remains scanty. The DNA repair pathways hereby described (Nucleotide and Base Excision Repair, Non-Homologous End Joining, Homologous Recombination) play specific roles, all of them being critical to ensure genome stability. This review also focuses on some novel regulatory mechanisms of DNA repair (chromatin remodeling and small RNAs) while the possible use of telomere sequences as markers of aging in seed banks is discussed. The significant contribution provided by Electron Paramagnetic Resonance in elucidating the kinetics of seed aging, in terms of free radical profiles and membrane integrity is reported.
Collapse
Affiliation(s)
- Lorenzo Ventura
- Dipartimento di Chimica, via Taramelli 12, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ikeda Y. Plant imprinted genes identified by genome-wide approaches and their regulatory mechanisms. PLANT & CELL PHYSIOLOGY 2012; 53:809-816. [PMID: 22492232 DOI: 10.1093/pcp/pcs049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon found in mammals and flowering plants that leads to differential allelic gene expression depending on their parent of origin. In plants, genomic imprinting primarily occurs in the endosperm, and it is associated with seed development. The imprinted expression is driven by the epigenetic memory programmed in each lineage of female and male germlines. Several imprinted genes have been identified based on genetic studies in maize and Arabidopsis. Recent advances in genome-wide analyses made it possible to identify multiple imprinted genes including many nuclear proteins, such as transcription factors and chromatin-related proteins in different plant species. Some of these genes are conserved in Arabidopsis, rice and maize, but many are species specific. Genome-wide analyses also clarified the regulation mechanism of imprinted genes orchestrated by DNA methylation and histone methylation marks. Additionally, genetic analyses using Arabidopsis revealed new regulatory factors of DNA demethylation and imprinting and shed light on the more precise mechanisms.
Collapse
Affiliation(s)
- Yoko Ikeda
- Plant Reproductive Genetics, GCOE Research Group, Graduate School of Biological Science, Nara Institute of Science and Technology, Japan.
| |
Collapse
|
34
|
Ikeda Y, Kinoshita Y, Susaki D, Ikeda Y, Iwano M, Takayama S, Higashiyama T, Kakutani T, Kinoshita T. HMG domain containing SSRP1 is required for DNA demethylation and genomic imprinting in Arabidopsis. Dev Cell 2011; 21:589-96. [PMID: 21920319 DOI: 10.1016/j.devcel.2011.08.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/14/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
In Arabidopsis, DEMETER (DME) DNA demethylase contributes to reprogramming of the epigenetic state of the genome in the central cell. However, other aspects of the active DNA demethylation processes remain elusive. Here we show that Arabidopsis SSRP1, known as an HMG domain-containing component of FACT histone chaperone, is required for DNA demethylation and for activation and repression of many parentally imprinted genes in the central cell. Although loss of DNA methylation releases silencing of the imprinted FWA-GFP, double ssrp1-3;met1-3 mutants surprisingly showed limited activation of maternal FWA-GFP in the central cell, and only became fully active after several nuclear divisions in the endosperm. This behavior was in contrast to the dme-1;met1 double mutant in which hypomethylation of FWA-GFP by met1 suppressed the DNA demethylation defect of dme-1. We propose that active DNA demethylation by DME requires SSRP1 function through a distinctly different process from direct DNA methylation control.
Collapse
Affiliation(s)
- Yoko Ikeda
- Plant Reproductive Genetics, GCOE Research Group, Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Córdoba-Cañero D, Roldán-Arjona T, Ariza RR. Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:693-702. [PMID: 21781197 DOI: 10.1111/j.1365-313x.2011.04720.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Base excision repair (BER) is an essential cellular defence mechanism against DNA damage, but it is poorly understood in plants. We used an assay that monitors repair of damaged bases and abasic (apurinic/apyrimidinic, AP) sites in Arabidopsis to characterize post-excision events during plant BER. We found that Apurinic endonuclease-redox protein (ARP) is the major AP endonuclease activity in Arabidopsis cell extracts, and is required for AP incision during uracil BER in vitro. Mutant plants that are deficient in ARP grow normally but are hypersensitive to 5-fluorouracil, a compound that favours mis-incorporation of uracil into DNA. We also found that, after AP incision, the choice between single-nucleotide or long-patch DNA synthesis (SN- or LP-BER) is influenced by the 5' end of the repair gap. When the 5' end is blocked and not amenable to β-elimination, the SN sub-pathway is abrogated, and repair is accomplished through LP-BER only. Finally, we provide evidence that Arabidopsis DNA ligase I (LIG1) is required for both SN- and LP-BER. lig1 RNAi-silenced lines show very reduced uracil BER, and anti-LIG1 antibody abolishes repair in wild-type cell extracts. In contrast, knockout lig4(-/-) mutants exhibit normal BER and nick ligation levels. Our results suggest that a branched BER pathway completed by a member of the DNA ligase I family may be an ancient feature in eukaryotic species.
Collapse
|
36
|
Dumont M, Massot S, Doutriaux MP, Gratias A. Characterization of Brca2-deficient plants excludes the role of NHEJ and SSA in the meiotic chromosomal defect phenotype. PLoS One 2011; 6:e26696. [PMID: 22039535 PMCID: PMC3198793 DOI: 10.1371/journal.pone.0026696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/02/2011] [Indexed: 12/22/2022] Open
Abstract
In somatic cells, three major pathways are involved in the repair of DNA double-strand breaks (DBS): Non-Homologous End Joining (NHEJ), Single-Strand Annealing (SSA) and Homologous Recombination (HR). In somatic and meiotic HR, DNA DSB are 5′ to 3′ resected, producing long 3′ single-stranded DNA extensions. Brca2 is essential to load the Rad51 recombinase onto these 3′ overhangs. The resulting nucleofilament can thus invade a homologous DNA sequence to copy and restore the original genetic information. In Arabidopsis, the inactivation of Brca2 specifically during meiosis by an RNAi approach results in aberrant chromosome aggregates, chromosomal fragmentation and missegregation leading to a sterility phenotype. We had previously suggested that such chromosomal behaviour could be due to NHEJ. In this study, we show that knock-out plants affected in both BRCA2 genes show the same meiotic phenotype as the RNAi-inactivated plants. Moreover, it is demonstrated that during meiosis, neither NHEJ nor SSA compensate for HR deficiency in BRCA2-inactivated plants. The role of the plant-specific DNA Ligase6 is also excluded. The possible mechanism(s) involved in the formation of these aberrant chromosomal bridges in the absence of HR during meiosis are discussed.
Collapse
Affiliation(s)
- Marilyn Dumont
- Institut de Biologie des Plantes, CNRS UMR8618, Université Paris Sud-11, Orsay, France
| | - Sophie Massot
- Institut de Biologie des Plantes, CNRS UMR8618, Université Paris Sud-11, Orsay, France
| | | | - Ariane Gratias
- Institut de Biologie des Plantes, CNRS UMR8618, Université Paris Sud-11, Orsay, France
- * E-mail:
| |
Collapse
|
37
|
Tarutani Y, Takayama S. Monoallelic gene expression and its mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:608-613. [PMID: 21807553 DOI: 10.1016/j.pbi.2011.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 05/31/2023]
Abstract
Although the majority of genes are expressed equally from both alleles, some genes are differentially expressed. Monoallelic gene expression, the differential gene expression of the alleles such as genomic imprinting, is reported in several organisms and plays significant roles in proper development and diversity in gene expression and phenotypic variation. Recent studies in flowering plants have greatly increased our understanding of the underlying mechanisms of monoallelic gene expression. They indicate that machineries of gene silencing such as DNA methylation, histone modifications, and noncoding RNAs function in monoallelic gene expression. A combination of genetics and high-throughput technologies expands the scope of study on monoallelic gene expression in flowering plants.
Collapse
Affiliation(s)
- Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.
| | | |
Collapse
|
38
|
Kirioukhova O, Johnston AJ, Kleen D, Kägi C, Baskar R, Moore JM, Bäumlein H, Gross-Hardt R, Grossniklaus U. Female gametophytic cell specification and seed development require the function of the putative Arabidopsis INCENP ortholog WYRD. Development 2011; 138:3409-20. [PMID: 21752930 DOI: 10.1242/dev.060384] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In plants, gametes, along with accessory cells, are formed by the haploid gametophytes through a series of mitotic divisions, cell specification and differentiation events. How the cells in the female gametophyte of flowering plants differentiate into gametes (the egg and central cell) and accessory cells remains largely unknown. In a screen for mutations that affect egg cell differentiation in Arabidopsis, we identified the wyrd (wyr) mutant, which produces additional egg cells at the expense of the accessory synergids. WYR not only restricts gametic fate in the egg apparatus, but is also necessary for central cell differentiation. In addition, wyr mutants impair mitotic divisions in the male gametophyte and endosperm, and have a parental effect on embryo cytokinesis, consistent with a function of WYR in cell cycle regulation. WYR is upregulated in gametic cells and encodes a putative plant ortholog of the inner centromere protein (INCENP), which is implicated in the control of chromosome segregation and cytokinesis in yeast and animals. Our data reveal a novel developmental function of the conserved cell cycle-associated INCENP protein in plant reproduction, in particular in the regulation of egg and central cell fate and differentiation.
Collapse
Affiliation(s)
- Olga Kirioukhova
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Analysis of stunter1, a maize mutant with reduced gametophyte size and maternal effects on seed development. Genetics 2011; 187:1085-97. [PMID: 21270392 DOI: 10.1534/genetics.110.125286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many higher eukaryotes have evolved strategies for the maternal control of growth and development of their offspring. In higher plants this is achieved in part by postmeiotic gene activity controlling the development of the haploid female gametophyte. stunter1 (stt1) is a novel, recessive, maternal effect mutant in maize that displays viable, miniature kernels. Maternal inheritance of stt1 results in seeds with reduced but otherwise normal endosperms and embryos. The stt1 mutation displays reduced transmission through the male and female parents and causes significant changes in the sizes of both male and female gametophytes. stt1 pollen grains are smaller than wild type, have reduced germination efficiency, and reduced pollen tube growth. stt1 embryo sacs have smaller central cells and abnormal antipodal cells that are larger, more vacuolated, and fewer in number than wild type. Embryos and endosperms produced by fertilization of stt1 embryo sacs develop and grow more slowly than wild type. The data suggest that the morphology of mutant embryo sacs influences endosperm development, leading to the production of miniature kernels in stt1. Analysis of seeds carrying a mutant maternal allele of stt1 over a deletion of the paternal allele demonstrates that both parental alleles are active after fertilization in both the endosperm and embryo. This analysis also indicates that embryo development until the globular stage in maize can proceed without endosperm development and is likely supported directly by the diploid mother plant.
Collapse
|
40
|
Tsukamoto T, Palanivelu R. Loss of LORELEI function in the pistil delays initiation but does not affect embryo development in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2010; 5:1487-1490. [PMID: 21051955 PMCID: PMC3115263 DOI: 10.4161/psb.5.11.13598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/11/2010] [Indexed: 05/29/2023]
Abstract
Double fertilization, uniquely observed in plants, requires successful sperm cell delivery by the pollen tube to the female gametophyte, followed by migration, recognition and fusion of the two sperm cells with two female gametic cells. The female gametophyte not only regulates these steps but also controls the subsequent initiation of seed development. Previously, we reported that loss of LORELEI, which encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein, in the female reproductive tissues causes a delay in initiation of seed development. From these studies, however, it was unclear if embryos derived from fertilization of lre-5 gametophytes continued to lag behind wild type during seed development. Additionally, it was not determined if the delay in initiation of seed development had any lingering effects during seed germination. Finally, it was not known if loss of LORELEI function affects seedling development given that LORELEI is expressed in eight-day-old seedlings. Here, we showed that despite a delay in initiation, lre-5/lre-5 embryos recover, becoming equivalent to the developing wild-type embryos beginning at 72 hours after pollination. Additionally, lre-5/lre-5 seed germination, and seedling and root development are indistinguishable from wild type indicating that loss of LORELEI is tolerated, at least under standard growth conditions, in vegetative tissues.
Collapse
|
41
|
Jullien PE, Berger F. DNA methylation reprogramming during plant sexual reproduction? Trends Genet 2010; 26:394-9. [DOI: 10.1016/j.tig.2010.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 02/02/2023]
|
42
|
Aw SJ, Hamamura Y, Chen Z, Schnittger A, Berger F. Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis. Development 2010; 137:2683-90. [PMID: 20610483 DOI: 10.1242/dev.052928] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fertilization in flowering plants involves two sperm cells and two female gametes, the egg cell and the central cell, progenitors of the embryo and the endosperm, respectively. The mechanisms triggering zygotic development are unknown and whether both parental genomes are required for zygotic development is unclear. In Arabidopsis, previous studies reported that loss-of-function mutations in CYCLIN DEPENDENT KINASE A1 (CDKA;1) impedes cell cycle progression in the pollen leading to the production of a single sperm cell. Here, we report that a significant proportion of single cdka;1 pollen delivers two sperm cells, leading to a new assessment of the cdka;1 phenotype. We performed fertilization of wild-type ovules with cdka;1 mutant sperm cells and monitored in vivo the fusion of the male and female nuclei using fluorescent markers. When a single cdka;1 sperm was delivered, either female gamete could be fertilized leading to similar proportions of seeds containing either a single endosperm or a single embryo. When two cdka;1 sperm cells were released, they fused to each female gamete. Embryogenesis was initiated but the fusion between the nuclei of the sperm cell and the central cell failed. The failure of karyogamy in the central cell prevented incorporation of the paternal genome, impaired endosperm development and caused seed abortion. Our results thus support that the paternal genome plays an essential role during early seed development. However, sperm entry was sufficient to trigger central cell mitotic division, suggesting the existence of signaling events associated with sperm cell fusion with female gametes.
Collapse
Affiliation(s)
- Sze Jet Aw
- Temasek Life Science Laboratory, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
43
|
Tsukamoto T, Qin Y, Huang Y, Dunatunga D, Palanivelu R. A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:571-88. [PMID: 20163554 DOI: 10.1111/j.1365-313x.2010.04177.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In plants, double fertilization requires successful sperm cell delivery into the female gametophyte followed by migration, recognition and fusion of the two sperm cells with two female gametes. We isolated a null allele (lre-5) of LORELEI, which encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein implicated in reception of the pollen tube by the female gametophyte. Although most lre-5 female gametophytes do not allow pollen tube reception, in those that do, early seed development is delayed. A fraction of lre-5/lre-5 seeds underwent abortion due to defect(s) in the female gametophyte. The aborted seeds contained endosperm but no zygote/embryo, reminiscent of autonomous endosperm development in the pollen tube reception mutants scylla and sirene. However, unpollinated lre-5/lre-5 ovules did not initiate autonomous endosperm development and endosperm development in aborted seeds began after central cell fertilization. Thus, the egg cell probably remained unfertilized in aborted lre-5/lre-5 seeds. The lre-5/lre-5 ovules that remain undeveloped due to defective pollen tube reception did not induce synergid degeneration and repulsion of supernumerary pollen tubes. In ovules, LORELEI is expressed during pollen tube reception, double fertilization and early seed development. Null mutants of LORELEI-like-GPI-anchored protein 1 (LLG1), the closest relative of LORELEI among three Arabidopsis LLG genes, are fully fertile and did not enhance reproductive defects in lre-5/lre-5 pistils, suggesting that LLG1 function is not redundant with that of LORELEI in the female gametophyte. Our results show that, besides pollen tube reception, LORELEI also functions during double fertilization and early seed development.
Collapse
Affiliation(s)
- Tatsuya Tsukamoto
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|