1
|
Biterge Sut B. Functional Evaluation of Neural Tube Defect-Related Missense Mutations Using In Silico Methods. Birth Defects Res 2025; 117:e2453. [PMID: 39950581 DOI: 10.1002/bdr2.2453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Neural tube formation is one of the most important developmental events as it gives rise to the key organs comprising the central nervous system. Failure in the proper closure of the neural tube results in congenital abnormalities, namely neural tube defects (NTDs). Previous studies have identified several single nucleotide variations that are considered risk factors and established a genetic background for the increased incidence of NTDs and factors. This study aims to provide a comprehensive functional analysis of NTD-related missense mutations in terms of their potential effects on pathogenicity, protein stability, and structure using predictive in silico analysis tools. METHODS Single nucleotide variations associated with NTD risk were identified by a systematic review of previous studies on Pubmed and ClinVar. Protein stability and pathogenicity scores were predicted using MUpro and PloyPhen2, respectively. Structural alterations were determined via the HOPE server. Predicted expression profiles in the brain were retrieved from the Human Protein Atlas. RESULTS Our analysis identified 43 NTD-related missense mutations in MTHFR, MTRR, PARD3, PACS1, MED12, VANGL1, VANGL2, FZD6, CELSR1, FUZ, DVL2, and LRP6 genes. We found that all of these genes are predicted to be expressed in different regions of the brain. We showed that single nucleotide variations resulted in decreased protein stability, and the majority of them were found to be damaging. We also report that the amino acid changes introduced by these mutations caused differences in size, charge, and hydrophobicity, which potentially resulted in structural alterations within the protein and affected their contacts with other proteins and ligands. CONCLUSIONS In conclusion, this study provides a comprehensive analysis of NTD-related missense mutations regarding their potential damaging effects, which might contribute to the pathogenesis of NTDs.
Collapse
Affiliation(s)
- Burcu Biterge Sut
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
2
|
Guo M, Lian Q, Mei Y, Yang W, Zhao S, Zhang S, Xing X, Zhang H, Gao K, He W, Wang Z, Wang H, Zhou J, Cheng L, Bao Z, Huang S, Yan J, Zhao X. Analyzes of pan-genome and resequencing atlas unveil the genetic basis of jujube domestication. Nat Commun 2024; 15:9320. [PMID: 39472552 PMCID: PMC11522667 DOI: 10.1038/s41467-024-53718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Jujube (Ziziphus jujuba Mill.), belonging to the Rhamnaceae family, is gaining increasing prominence as a perennial fruit crop with significant economic and medicinal values. Here, we conduct de novo assembly of four reference-grade genomes, encompassing one wild and three cultivated jujube accessions. We present insights into the population structure, genetic diversity, and genomic variations within a diverse collection of 1059 jujube accessions. Analyzes of the jujube pan-genome, based on our four assemblies and four previously released genomes, reveal extensive genomic variations within domestication-associated regions, potentially leading to the discovery of a candidate gene that regulates flowering and fruit ripening. By leveraging the pan-genome and a large-scale resequencing population, we identify two candidate genes involved in domestication traits, including the seed-setting rate, the bearing-shoot length and the leaf size in jujube. These genomic resources will accelerate evolutionary and functional genomics studies of jujube.
Collapse
Affiliation(s)
- Mingxin Guo
- College of Life Sciences, Luoyang Normal University, Luoyang, China.
| | - Qun Lian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Biology & Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Ye Mei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wangwang Yang
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Suna Zhao
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Siyuan Zhang
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Xinfeng Xing
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Haixiang Zhang
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Keying Gao
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Wentong He
- National Foundation for Improved Cultivar of Chinese Jujube, Bureau of Natural Resources and Planning of Cangxian County, Cangzhou, China
| | - Zhitong Wang
- National Foundation for Improved Cultivar of Chinese Jujube, Bureau of Natural Resources and Planning of Cangxian County, Cangzhou, China
| | - Huan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jun Zhou
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Lin Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Zhigui Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xusheng Zhao
- College of Life Sciences, Luoyang Normal University, Luoyang, China.
| |
Collapse
|
3
|
Yang S, Poretska O, Poppenberger B, Sieberer T. ALTERED MERISTEM PROGRAM1 sustains cellular differentiation by limiting HD-ZIP III transcription factor gene expression. PLANT PHYSIOLOGY 2024; 196:291-308. [PMID: 38781290 PMCID: PMC11376390 DOI: 10.1093/plphys/kiae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Plants show remarkable developmental and regenerative plasticity through the sustained activity of stem cells in meristems. Under certain conditions, pluripotency can even be reestablished in cells that have already entered differentiation. Mutation of the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) in Arabidopsis (Arabidopsis thaliana) causes a set of hypertrophic phenotypes, indicating a defect in the suppression of pluripotency. A role of AMP1 in the miRNA-mediated inhibition of translation has previously been reported; however, how this activity is related to its developmental functions is unclear. Here, we examined the functional interaction between AMP1 and the Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors, which are miRNA-controlled determinants of shoot meristem specification. We found that the HD-ZIP III transcriptional output is enhanced in the amp1 mutant and that plant lines with increased HD-ZIP III activity not only developed amp1 mutant-like phenotypes but also showed a synergistic genetic interaction with the mutant. Conversely, the reduction of HD-ZIP III function suppressed the shoot hypertrophy defects of the amp1 mutant. We further provide evidence that the expression domains of HD-ZIP III family members are expanded in the amp1 mutant and that this misexpression occurs at the transcriptional level and does not involve the function of miRNA165/166. Finally, amp1 mutant-specific phenotypes cannot be mimicked by a general inhibition of miRNA function in the AMP1 expression domain. These findings lead us to a model in which AMP1 restricts cellular pluripotency upstream of HD-ZIP III proteins, and this control appears to be not directly mediated by the canonical miRNA pathway.
Collapse
Affiliation(s)
- Saiqi Yang
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Olena Poretska
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Brigitte Poppenberger
- Professorship Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Tobias Sieberer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| |
Collapse
|
4
|
Hummel NFC, Markel K, Stefani J, Staller MV, Shih PM. Systematic identification of transcriptional activation domains from non-transcription factor proteins in plants and yeast. Cell Syst 2024; 15:662-672.e4. [PMID: 38866009 DOI: 10.1016/j.cels.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Transcription factors can promote gene expression through activation domains. Whole-genome screens have systematically mapped activation domains in transcription factors but not in non-transcription factor proteins (e.g., chromatin regulators and coactivators). To fill this knowledge gap, we employed the activation domain predictor PADDLE to analyze the proteomes of Arabidopsis thaliana and Saccharomyces cerevisiae. We screened 18,000 predicted activation domains from >800 non-transcription factor genes in both species, confirming that 89% of candidate proteins contain active fragments. Our work enables the annotation of hundreds of nuclear proteins as putative coactivators, many of which have never been ascribed any function in plants. Analysis of peptide sequence compositions reveals how the distribution of key amino acids dictates activity. Finally, we validated short, "universal" activation domains with comparable performance to state-of-the-art activation domains used for genome engineering. Our approach enables the genome-wide discovery and annotation of activation domains that can function across diverse eukaryotes.
Collapse
Affiliation(s)
- Niklas F C Hummel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jordan Stefani
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Max V Staller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 9415, USA.
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Freytes SN, Gobbini ML, Cerdán PD. The Plant Mediator Complex in the Initiation of Transcription by RNA Polymerase II. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:211-237. [PMID: 38277699 DOI: 10.1146/annurev-arplant-070623-114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Thirty years have passed since the discovery of the Mediator complex in yeast. We are witnessing breakthroughs and advances that have led to high-resolution structural models of yeast and mammalian Mediators in the preinitiation complex, showing how it is assembled and how it positions the RNA polymerase II and its C-terminal domain (CTD) to facilitate the CTD phosphorylation that initiates transcription. This information may be also used to guide future plant research on the mechanisms of Mediator transcriptional control. Here, we review what we know about the subunit composition and structure of plant Mediators, the roles of the individual subunits and the genetic analyses that pioneered Mediator research, and how transcription factors recruit Mediators to regulatory regions adjoining promoters. What emerges from the research is a Mediator that regulates transcription activity and recruits hormonal signaling modules and histone-modifying activities to set up an off or on transcriptional state that recruits general transcription factors for preinitiation complex assembly.
Collapse
Affiliation(s)
| | | | - Pablo D Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina; , ,
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
6
|
Zeng W, Wang X, Li M. PINOID-centered genetic interactions mediate auxin action in cotyledon formation. PLANT DIRECT 2024; 8:e587. [PMID: 38766507 PMCID: PMC11099747 DOI: 10.1002/pld3.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Auxin plays a key role in plant growth and development through auxin local synthesis, polar transport, and auxin signaling. Many previous reports on Arabidopsis have found that various types of auxin-related genes are involved in the development of the cotyledon, including the number, symmetry, and morphology of the cotyledon. However, the molecular mechanism by which auxin is involved in cotyledon formation remains to be elucidated. PID, which encodes a serine/threonine kinase localized to the plasma membrane, has been found to phosphorylate the PIN1 protein and regulate its polar distribution in the cell. The loss of function of pid resulted in an abnormal number of cotyledons and defects in inflorescence. It was interesting that the pid mutant interacted synergistically with various types of mutant to generate the severe developmental defect without cotyledon. PID and these genes were indicated to be strongly correlated with cotyledon formation. In this review, PID-centered genetic interactions, related gene functions, and corresponding possible pathways are discussed, providing a perspective that PID and its co-regulators control cotyledon formation through multiple pathways.
Collapse
Affiliation(s)
- Wei Zeng
- College of Life ScienceXinyang Normal UniversityXinyangChina
| | - Xiutao Wang
- College of Life ScienceXinyang Normal UniversityXinyangChina
| | - Mengyuan Li
- College of Life ScienceXinyang Normal UniversityXinyangChina
| |
Collapse
|
7
|
Zhao H, Liu Y, Zhu Z, Feng Q, Ye Y, Zhang J, Han J, Zhou C, Xu J, Yan X, Li X. Mediator subunit MED8 interacts with heat shock transcription factor HSF3 to promote fucoxanthin synthesis in the diatom Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:1574-1591. [PMID: 38062856 DOI: 10.1111/nph.19467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/18/2023] [Indexed: 01/26/2024]
Abstract
Fucoxanthin, a natural carotenoid that has substantial pharmaceutical value due to its anticancer, antioxidant, antiobesity, and antidiabetic properties, is biosynthesized from glyceraldehyde-3-phosphate (G3P) via a series of enzymatic reactions. However, our understanding of the transcriptional mechanisms involved in fucoxanthin biosynthesis remains limited. Using reverse genetics, the med8 mutant was identified based on its phenotype of reduced fucoxanthin content, and the biological functions of MED8 in fucoxanthin synthesis were characterized using approaches such as gene expression, protein subcellular localization, protein-protein interaction and chromatin immunoprecipitation assay. Gene-editing mutants of MED8 exhibited decreased fucoxanthin content as well as reduced expression levels of six key genes involved in fucoxanthin synthesis, namely DXS, PSY1, ZDS-like, CRTISO5, ZEP1, and ZEP3, when compared to the wild-type (WT) strain. Furthermore, we showed that MED8 interacts with HSF3, and genetic analysis revealed their shared involvement in the genetic pathway governing fucoxanthin synthesis. Additionally, HSF3 was required for MED8 association with the promoters of the six fucoxanthin synthesis genes. In conclusion, MED8 and HSF3 are involved in fucoxanthin synthesis by modulating the expression of the fucoxanthin synthesis genes. Our results increase the understanding of the molecular regulation mechanisms underlying fucoxanthin synthesis in the diatom P. tricornutum.
Collapse
Affiliation(s)
- Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yan Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhengjiang Zhu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Qingkai Feng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuemei Ye
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinrong Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
8
|
Crawford T, Siebler L, Sulkowska A, Nowack B, Jiang L, Pan Y, Lämke J, Kappel C, Bäurle I. The Mediator kinase module enhances polymerase activity to regulate transcriptional memory after heat stress in Arabidopsis. EMBO J 2024; 43:437-461. [PMID: 38228917 PMCID: PMC10897291 DOI: 10.1038/s44318-023-00024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.
Collapse
Affiliation(s)
- Tim Crawford
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Lara Siebler
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Bryan Nowack
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Li Jiang
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Yufeng Pan
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jörn Lämke
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
9
|
Raya-González J, Prado-Rodríguez JC, Ruiz-Herrera LF, López-Bucio J. Loss-of-function of MEDIATOR 12 or 13 subunits causes the swelling of root hairs in response to sucrose and abscisic acid in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2023; 18:2191460. [PMID: 36942634 PMCID: PMC10038024 DOI: 10.1080/15592324.2023.2191460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Root hairs are epidermal cell extensions that increase the root surface for water and nutrient acquisition. Thus, both the initiation and elongation of root hairs are critical for soil exploration and plant adaptation to ever changing growth conditions. Here, we describe the critical roles of two subunits of the Mediator complex, MED12 and MED13, in root hair growth in response to sucrose and abscisic acid, which are tightly linked to abiotic stress resistance. When compared to the WT, med12 and med13 mutants showed increased sensitivity to sucrose and ABA treatments on root meristem and elongation zones that were accompanied with alterations in root hair length and morphology, leading to the isodiametric growth of these structures. The swollen root hair phenotype appeared to be specific, since med8 or med16 mutants did not develop rounded hairs when supplied with 4.8% sucrose. Under standard growth medium, MED12 and MED13 were mainly expressed in root vascular tissues and cotyledons, and their expression was repressed by sucrose or ABA. Interestingly, med12 and med13 mutants manifested exacerbated levels of nitric oxide under normal growth conditions, and upon sucrose supplementation in trichoblast cells, which coincided with root hair deformation. Our results indicate that MED12 and MED13 play non-redundant functions for maintenance of root hair integrity in response to sucrose and ABA and involve nitric oxide as a cellular messenger in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - José Carlos Prado-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| |
Collapse
|
10
|
Hummel NFC, Markel K, Stefani J, Staller MV, Shih PM. Systematic identification of transcriptional activator domains from non-transcription factor proteins in plants and yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557247. [PMID: 37745555 PMCID: PMC10515812 DOI: 10.1101/2023.09.12.557247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Transcription factors promote gene expression via trans-regulatory activation domains. Although whole genome scale screens in model organisms (e.g. human, yeast, fly) have helped identify activation domains from transcription factors, such screens have been less extensively used to explore the occurrence of activation domains in non-transcription factor proteins, such as transcriptional coactivators, chromatin regulators and some cytosolic proteins, leaving a blind spot on what role activation domains in these proteins could play in regulating transcription. We utilized the activation domain predictor PADDLE to mine the entire proteomes of two model eukaryotes, Arabidopsis thaliana and Saccharomyces cerevisiae ( 1 ). We characterized 18,000 fragments covering predicted activation domains from >800 non-transcription factor genes in both species, and experimentally validated that 89% of proteins contained fragments capable of activating transcription in yeast. Peptides with similar sequence composition show a broad range of activities, which is explained by the arrangement of key amino acids. We also annotated hundreds of nuclear proteins with activation domains as putative coactivators; many of which have never been ascribed any function in plants. Furthermore, our library contains >250 non-nuclear proteins containing peptides with activation domain function across both eukaryotic lineages, suggesting that there are unknown biological roles of these peptides beyond transcription. Finally, we identify and validate short, 'universal' eukaryotic activation domains that activate transcription in both yeast and plants with comparable or stronger performance to state-of-the-art activation domains. Overall, our dual host screen provides a blueprint on how to systematically discover novel genetic parts for synthetic biology that function across a wide diversity of eukaryotes. Significance Statement Activation domains promote transcription and play a critical role in regulating gene expression. Although the mapping of activation domains from transcription factors has been carried out in previous genome-wide screens, their occurrence in non-transcription factors has been less explored. We utilize an activation domain predictor to mine the entire proteomes of Arabidopsis thaliana and Saccharomyces cerevisiae for new activation domains on non-transcription factor proteins. We validate peptides derived from >750 non-transcription factor proteins capable of activating transcription, discovering many potentially new coactivators in plants. Importantly, we identify novel genetic parts that can function across both species, representing unique synthetic biology tools.
Collapse
|
11
|
Zhang P, Ma X, Liu L, Mao C, Hu Y, Yan B, Guo J, Liu X, Shi J, Lee GS, Pan X, Deng Y, Zhang Z, Kang Z, Qiao Y. MEDIATOR SUBUNIT 16 negatively regulates rice immunity by modulating PATHOGENESIS RELATED 3 activity. PLANT PHYSIOLOGY 2023; 192:1132-1150. [PMID: 36815292 PMCID: PMC10231465 DOI: 10.1093/plphys/kiad120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/01/2023]
Abstract
Lesion mimic mutants (LMMs) are valuable genetic resources for unraveling plant defense responses including programmed cell death. Here, we identified a rice (Oryza sativa) LMM, spotted leaf 38 (spl38), and demonstrated that spl38 is essential for the formation of hypersensitive response-like lesions and innate immunity. Map-based cloning revealed that SPL38 encodes MEDIATOR SUBUNIT 16 (OsMED16). The spl38 mutant showed enhanced resistance to rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo) and exhibited delayed flowering, while OsMED16-overexpressing plants showed increased rice susceptibility to M. oryzae. The OsMED16-edited rice lines were phenotypically similar to the spl38 mutant but were extremely weak, exhibited growth retardation, and eventually died. The C-terminus of OsMED16 showed interaction with the positive immune regulator PATHOGENESIS RELATED 3 (OsPR3), resulting in the competitive repression of its chitinase and chitin-binding activities. Furthermore, the ospr3 osmed16 double mutants did not exhibit the lesion mimic phenotype of the spl38 mutant. Strikingly, OsMED16 exhibited an opposite function in plant defense relative to that of Arabidopsis (Arabidopsis thaliana) AtMED16, most likely because of 2 amino acid substitutions between the monocot and dicot MED16s tested. Collectively, our findings suggest that OsMED16 negatively regulates cell death and immunity in rice, probably via the OsPR3-mediated chitin signaling pathway.
Collapse
Affiliation(s)
- Peng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xiaoding Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lina Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chanjuan Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yongkang Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Bingxiao Yan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Gang-Seob Lee
- National Institute of Agricultural Science, Jeon Ju 54874, Republic of Korea
| | - Xiaowu Pan
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
12
|
Wang L, Guo J, Chu Y, Pan Q, Zhu Y. MdCo31 interacts with an RNA polymerase II transcription subunit 32 to regulate dwarf growth with short internodes in columnar apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111496. [PMID: 36240910 DOI: 10.1016/j.plantsci.2022.111496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/17/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The dominant Co locus controls the columnar growth phenotype of apple (Malus × domestica) trees. Candidate gene MdCo31, encoding 2-oxoglutarate-dependent dioxygenase, causes dwarf growth with short internodes in transgenic plants by reducing the abundance of biologically active gibberellin. However, the pathway regulating MdCo31 in the dwarfism of apple trees remains unclear. In this study, expression of MdCo31 was proved to be negatively correlated with internode length in F1 populations created by crossing columnar parents, and with dwarfism in transgenic apple plantlets. Yeast (Saccharomyces cerevisiae) two-hybrid screening identified the RNA polymerase II transcription subunit MdMED32 as putative interactor of MdCo31. Bimolecular fluorescence complementation, co-immunoprecipitation, and dual-luciferase reporter assays confirmed this interaction both in vivo and in vitro. Ectopic expression of MdMED32 in Nicotiana tabacum led to a dwarf phenotype, similar to that of MdCo31 transgenic apple plants. Expression of GA2ox1 and GA20ox1, encoding key enzymes of gibberellin metabolism, was upregulated in transgenic plants. Transient transcriptional activity demonstrated that MdMED32 functioned as an activator, promoting expression of MdGA2ox1 and MdGA20ox1. These findings indicate that the interaction between MdCo31 and MdMED32 functions in the regulation of internode length in columnar apple.
Collapse
Affiliation(s)
- Limin Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Jing Guo
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Yu Chu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Qi Pan
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Yuandi Zhu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
13
|
Agrawal R, Sharma M, Dwivedi N, Maji S, Thakur P, Junaid A, Fajkus J, Laxmi A, Thakur JK. MEDIATOR SUBUNIT17 integrates jasmonate and auxin signaling pathways to regulate thermomorphogenesis. PLANT PHYSIOLOGY 2022; 189:2259-2280. [PMID: 35567489 PMCID: PMC9342970 DOI: 10.1093/plphys/kiac220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/20/2022] [Indexed: 05/16/2023]
Abstract
Plant adjustment to environmental changes involves complex crosstalk between extrinsic and intrinsic cues. In the past two decades, extensive research has elucidated the key roles of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and the phytohormone auxin in thermomorphogenesis. In this study, we identified a previously unexplored role of jasmonate (JA) signaling components, the Mediator complex, and their integration with auxin signaling during thermomorphogenesis in Arabidopsis (Arabidopsis thaliana). Warm temperature induces expression of JA signaling genes including MYC2, but, surprisingly, this transcriptional activation is not JA dependent. Warm temperature also promotes accumulation of the JA signaling receptor CORONATINE INSENSITIVE1 (COI1) and degradation of the JA signaling repressor JASMONATE-ZIM-DOMAIN PROTEIN9, which probably leads to de-repression of MYC2, enabling it to contribute to the expression of MEDIATOR SUBUNIT17 (MED17). In response to warm temperature, MED17 occupies the promoters of thermosensory genes including PIF4, YUCCA8 (YUC8), INDOLE-3-ACETIC ACID INDUCIBLE19 (IAA19), and IAA29. Moreover, MED17 facilitates enrichment of H3K4me3 on the promoters of PIF4, YUC8, IAA19, and IAA29 genes. Interestingly, both occupancy of MED17 and enrichment of H3K4me3 on these thermomorphogenesis-related promoters are dependent on PIF4 (or PIFs). Altered accumulation of COI1 under warm temperature in the med17 mutant suggests the possibility of a feedback mechanism. Overall, this study reveals the role of the Mediator complex as an integrator of JA and auxin signaling pathways during thermomorphogenesis.
Collapse
Affiliation(s)
- Rekha Agrawal
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Mohan Sharma
- Signalling Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Nidhi Dwivedi
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Sourobh Maji
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Pallabi Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Alim Junaid
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ashverya Laxmi
- Signalling Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
- Plant Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
14
|
Yang S, de Haan M, Mayer J, Janacek DP, Hammes UZ, Poppenberger B, Sieberer T. A novel chemical inhibitor of polar auxin transport promotes shoot regeneration by local enhancement of HD-ZIP III transcription. THE NEW PHYTOLOGIST 2022; 235:1111-1128. [PMID: 35491431 DOI: 10.1111/nph.18196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
De novo shoot organogenesis is a prerequisite for numerous applications in plant research and breeding but is often a limiting factor, for example, in genome editing approaches. Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors have been characterized as crucial regulators of shoot specification, however up-stream components controlling their activity during shoot regeneration are only partially identified. In a chemical genetic screen, we isolated ZIC2, a novel activator of HD-ZIP III activity. Using molecular, physiological and hormone transport analyses in Arabidopsis and sunflower (Helianthus annuus), we examined the molecular mechanism by which the drug promotes HD-ZIP III expression. ZIC2-dependent upregulation of HD-ZIP III transcription promotes shoot regeneration in Arabidopsis and is accompanied by the induction of shoot specifying factors WUS and RAP2.6L and a subset of cytokinin biosynthesis enzymes. ZIC2's effect on HD-ZIP III expression and regeneration is based on its ability to limit polar auxin transport. We further provide evidence that chemical modulation of auxin efflux can enhance de novo shoot formation in the regeneration recalcitrant species sunflower. Activation of HD-ZIP III transcription during shoot regeneration depends on the local distribution of auxin and chemical modulation of auxin transport can be used to overcome poor shoot organogenesis in tissue culture.
Collapse
Affiliation(s)
- Saiqi Yang
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Marjolein de Haan
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Julius Mayer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Dorina P Janacek
- Plant Systems Biology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Ulrich Z Hammes
- Plant Systems Biology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Tobias Sieberer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
15
|
Zhang L, Song Y, Liu K, Gong F. The tomato Mediator subunit MED8 positively regulates plant response to Botrytis cinerea. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153533. [PMID: 34601339 DOI: 10.1016/j.jplph.2021.153533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Mediator complex acts as a bridge between specific transcription factors and the RNA polymerase II transcriptional machinery and plays a central role in plant immunity. Biological induction of plant resistance against pathogens requires endogenous hormone jasmonic acid (JA) and involves profound transcriptional changes controlled by the key transcription factor MYC2. Arabidopsis thaliana Mediator subunit 25 (AtMED25) regulates JA-dependent defense response through interacting with MYC2. Here, we report that the tomato (Solanum lycopersicum, Sl) Mediator subunit 8 (SlMED8) is another essential component in JA-dependent defense response. The transcript levels of SlMED8 could not be affected by treatment with MeJA, SA, ABA, and mechanical wounding. Yeast two-hybrid assays showed that SlMED8 could interact with itself, SlMYC2, and SlMED25, respectively. In addition, ectopic overexpression of SlMED8 complemented the late flowering and pathogen hypersensitivity phenotypes of Arabidopsis med8 mutant. Overexpression of SlMED8 rendered transgenic plants higher tolerance to necrotrophic pathogen Botrytis cinerea. Meanwhile, SlMED8 antisense plants displayed compromised resistance to Botrytis cinerea. Consistent with this, differential expression levels of several JA-responsive genes were detected within the transgenic plants. Overall, our results identified an important control point in the regulation of the JA signaling pathway within the transcriptional machinery.
Collapse
Affiliation(s)
- Lili Zhang
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Yunpeng Song
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Kaige Liu
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Fanrong Gong
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| |
Collapse
|
16
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
17
|
Suzuki G, Lucob-Agustin N, Kashihara K, Fujii Y, Inukai Y, Gomi K. Rice MEDIATOR25, OsMED25, is an essential subunit for jasmonate-mediated root development and OsMYC2-mediated leaf senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110853. [PMID: 33775361 DOI: 10.1016/j.plantsci.2021.110853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The Mediator multiprotein complex acts as a universal adaptor between transcription factors (TFs) and RNA polymerase II. MEDIATOR25 (MED25) has an important role in jasmonic acid (JA) signaling in Arabidopsis. However, no research has been conducted on the role of MED25 in JA signaling in rice, which is one of the most important food crops globally and is a model plant for molecular studies in other monocotyledonous species. In the present study, we isolated the loss-of function mutant of MED25, osmed25, through the map-based cloning and phenotypic complementation analysis by the introduction of OsMED25 and investigated the role of OsMED25 in JA signaling in rice. The osmed25 mutants had longer primary (seminal) roots than those of the wild-type (WT) and exhibited JA-insensitive phenotypes. S-type lateral root densities in osmed25 mutants were lower than those in the WT, whereas L-type lateral root densities in osmed25 mutants were higher than those in the WT. Furthermore, the osmed25 mutants retarded JA-regulated leaf senescence under dark-induced senescence. Mutated osmed25 protein could not interact with OsMYC2, which is a positive TF in JA signaling in rice. The expression of JA-responsive senescence-associated genes was not upregulated in response to JA in the osmed25 mutants. The results suggest that OsMED25 participates in JA-mediated root development and OsMYC2-mediated leaf senescence in rice.
Collapse
Affiliation(s)
- Go Suzuki
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Nonawin Lucob-Agustin
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Keita Kashihara
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Yumi Fujii
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Kenji Gomi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
18
|
Lee M, Dominguez-Ferreras A, Kaliyadasa E, Huang WJ, Antony E, Stevenson T, Lehmann S, Schäfer P, Knight MR, Ntoukakis V, Knight H. Mediator Subunits MED16, MED14, and MED2 Are Required for Activation of ABRE-Dependent Transcription in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:649720. [PMID: 33777083 PMCID: PMC7991908 DOI: 10.3389/fpls.2021.649720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 05/29/2023]
Abstract
The Mediator complex controls transcription of most eukaryotic genes with individual subunits required for the control of particular gene regulons in response to various perturbations. In this study, we reveal the roles of the plant Mediator subunits MED16, MED14, and MED2 in regulating transcription in response to the phytohormone abscisic acid (ABA) and we determine which cis elements are under their control. Using synthetic promoter reporters we established an effective system for testing relationships between subunits and specific cis-acting motifs in protoplasts. Our results demonstrate that MED16, MED14, and MED2 are required for the full transcriptional activation by ABA of promoters containing both the ABRE (ABA-responsive element) and DRE (drought-responsive element). Using synthetic promoter motif concatamers, we showed that ABA-responsive activation of the ABRE but not the DRE motif was dependent on these three Mediator subunits. Furthermore, the three subunits were required for the control of water loss from leaves but played no role in ABA-dependent growth inhibition, highlighting specificity in their functions. Our results identify new roles for three Mediator subunits, provide a direct demonstration of their function and highlight that our experimental approach can be utilized to identify the function of subunits of plant transcriptional regulators.
Collapse
Affiliation(s)
- Morgan Lee
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Anna Dominguez-Ferreras
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Ewon Kaliyadasa
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Wei-Jie Huang
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Edna Antony
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Tracey Stevenson
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Silke Lehmann
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
- Institute of Molecular Botany, Ulm University, Ulm, Germany
| | - Marc R. Knight
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Heather Knight
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
19
|
Ohama N, Moo TL, Chua NH. Differential requirement of MED14/17 recruitment for activation of heat inducible genes. THE NEW PHYTOLOGIST 2021; 229:3360-3376. [PMID: 33251584 DOI: 10.1111/nph.17119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 05/06/2023]
Abstract
The mechanism of heat stress response in plants has been studied, focusing on the function of transcription factors (TFs). Generally, TFs recruit coactivators, such as Mediator, are needed to assemble the transcriptional machinery. However, despite the close relationship with TFs, how coactivators are involved in transcriptional regulation under heat stress conditions is largely unclear. We found a severe thermosensitive phenotype of Arabidopsis mutants of MED14 and MED17. Transcriptomic analysis revealed that a quarter of the heat stress (HS)-inducible genes were commonly downregulated in these mutants. Furthermore, chromatin immunoprecipitation assay showed that the recruitment of Mediator by HsfA1s, the master regulators of heat stress response, is an important step for the expression of HS-inducible genes. There was a differential requirement of Mediator among genes; TF genes have a high requirement whereas heat shock proteins (HSPs) have a low requirement. Furthermore, artificial activation of HsfA1d mimicking perturbation of protein homeostasis induced HSP gene expression without MED14 recruitment but not TF gene expression. Considering the essential role of MED14 in Mediator function, other coactivators may play major roles in HSP activation depending on the cellular conditions. Our findings highlight the importance of differential recruitment of Mediator for the precise control of HS responses in plants.
Collapse
Affiliation(s)
- Naohiko Ohama
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Teck Lim Moo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| |
Collapse
|
20
|
Agrawal R, Jiří F, Thakur JK. The kinase module of the Mediator complex: an important signalling processor for the development and survival of plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:224-240. [PMID: 32945869 DOI: 10.1093/jxb/eraa439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Mediator, a multisubunit protein complex, is a signal processor that conveys regulatory information from transcription factors to RNA polymerase II and therefore plays an important role in the regulation of gene expression. This megadalton complex comprises four modules, namely, the head, middle, tail, and kinase modules. The first three modules form the core part of the complex, whereas association of the kinase module is facultative. The kinase module is able to alter the function of Mediator and has been established as a major transcriptional regulator of numerous developmental and biochemical processes. The kinase module consists of MED12, MED13, CycC, and kinase CDK8. Upon association with Mediator, the kinase module can alter its structure and function dramatically. In the past decade, research has established that the kinase module is very important for plant growth and development, and in the fight against biotic and abiotic challenges. However, there has been no comprehensive review discussing these findings in detail and depth. In this review, we survey the regulation of kinase module subunits and highlight their many functions in plants. Coordination between the subunits to process different signals for optimum plant growth and development is also discussed.
Collapse
Affiliation(s)
- Rekha Agrawal
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Fajkus Jiří
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
21
|
Zhang H, Zheng D, Yin L, Song F, Jiang M. Functional Analysis of OsMED16 and OsMED25 in Response to Biotic and Abiotic Stresses in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:652453. [PMID: 33868352 PMCID: PMC8044553 DOI: 10.3389/fpls.2021.652453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 05/19/2023]
Abstract
Mediator complex is a multiprotein complex that regulates RNA polymerase II-mediated transcription. Moreover, it functions in several signaling pathways, including those involved in response to biotic and abiotic stresses. We used virus-induced gene silencing (VIGS) to study the functions of two genes, namely OsMED16 and OsMED25 in response to biotic and abiotic stresses in rice. Both genes were differentially induced by Magnaporthe grisea (M. grisea), the causative agent of blast disease, hormone treatment, and abiotic stress. We found that both BMV: OsMED16- and BMV: OsMED25-infiltrated seedlings reduced the resistance to M. grisea by regulating the accumulation of H2O2 and expression of defense-related genes. Furthermore, BMV: OsMED16-infiltrated seedlings decreased the tolerance to cold by increasing the malondialdehyde (MDA) content and reducing the expression of cold-responsive genes.
Collapse
Affiliation(s)
- Huijuan Zhang
- College of Life Science, Taizhou University, Taizhou, China
| | - Dewei Zheng
- College of Life Science, Taizhou University, Taizhou, China
| | - Longfei Yin
- College of Life Science, Taizhou University, Taizhou, China
| | - Fengming Song
- National Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ming Jiang
- College of Life Science, Taizhou University, Taizhou, China
- *Correspondence: Ming Jiang,
| |
Collapse
|
22
|
Juvenile Leaves or Adult Leaves: Determinants for Vegetative Phase Change in Flowering Plants. Int J Mol Sci 2020; 21:ijms21249753. [PMID: 33371265 PMCID: PMC7766579 DOI: 10.3390/ijms21249753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Vegetative leaves in Arabidopsis are classified as either juvenile leaves or adult leaves based on their specific traits, such as leaf shape and the presence of abaxial trichomes. The timing of the juvenile-to-adult phase transition during vegetative development, called the vegetative phase change, is a critical decision for plants, as this transition is associated with crop yield, stress responses, and immune responses. Juvenile leaves are characterized by high levels of miR156/157, and adult leaves are characterized by high levels of miR156/157 targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. The discovery of this miR156/157-SPL module provided a critical tool for elucidating the complex regulation of the juvenile-to-adult phase transition in plants. In this review, we discuss how the traits of juvenile leaves and adult leaves are determined by the miR156/157-SPL module and how different factors, including embryonic regulators, sugar, meristem regulators, hormones, and epigenetic proteins are involved in controlling the juvenile-to-adult phase transition, focusing on recent insights into vegetative phase change. We also highlight outstanding questions in the field that need further investigation. Understanding how vegetative phase change is regulated would provide a basis for manipulating agricultural traits under various conditions.
Collapse
|
23
|
Liu Q, Bischof S, Harris CJ, Zhong Z, Zhan L, Nguyen C, Rashoff A, Barshop WD, Sun F, Feng S, Potok M, Gallego-Bartolome J, Zhai J, Wohlschlegel JA, Carey MF, Long JA, Jacobsen SE. The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis. Nat Commun 2020; 11:2798. [PMID: 32493925 PMCID: PMC7271234 DOI: 10.1038/s41467-020-16651-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Mediator 12 (MED12) and MED13 are components of the Mediator multi-protein complex, that facilitates the initial steps of gene transcription. Here, in an Arabidopsis mutant screen, we identify MED12 and MED13 as positive gene regulators, both of which contribute broadly to morc1 de-repressed gene expression. Both MED12 and MED13 are preferentially required for the expression of genes depleted in active chromatin marks, a chromatin signature shared with morc1 re-activated loci. We further discover that MED12 tends to interact with genes that are responsive to environmental stimuli, including light and radiation. We demonstrate that light-induced transient gene expression depends on MED12, and is accompanied by a concomitant increase in MED12 enrichment during induction. In contrast, the steady-state expression level of these genes show little dependence on MED12, suggesting that MED12 is primarily required to aid the expression of genes in transition from less-active to more active states. Mediator is a multiprotein complex required to activate gene transcription by RNAPII. Here, the authors report that MED12 and MED13 are conditional positive regulators that facilitate the expression of genes depleted in active chromatin marks and the induction of gene expression in response to environmental stimuli in Arabidopsis.
Collapse
Affiliation(s)
- Qikun Liu
- School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China. .,Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Sylvain Bischof
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - C Jake Harris
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,Basic Forestry and Proteomics Center, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Lingyu Zhan
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Calvin Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrew Rashoff
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Fei Sun
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Magdalena Potok
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Javier Gallego-Bartolome
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey A Long
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA. .,Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
24
|
Amalraj B, Govindaraju P, Krishna A, Lavania D, Linh NM, Ravichandran SJ, Scarpella E. GAL4
/
GFP enhancer‐trap
lines for identification and manipulation of cells and tissues in developing Arabidopsis leaves. Dev Dyn 2020; 249:1127-1146. [DOI: 10.1002/dvdy.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Brindhi Amalraj
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | | | - Anmol Krishna
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | - Dhruv Lavania
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | - Nguyen M. Linh
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | | | - Enrico Scarpella
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| |
Collapse
|
25
|
Hasan ASMM, Vander Schoor JK, Hecht V, Weller JL. The CYCLIN-DEPENDENT KINASE Module of the Mediator Complex Promotes Flowering and Reproductive Development in Pea. PLANT PHYSIOLOGY 2020; 182:1375-1386. [PMID: 31964799 PMCID: PMC7054868 DOI: 10.1104/pp.19.01173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/26/2019] [Indexed: 05/22/2023]
Abstract
Control of flowering time has been a major focus of comparative genetic analyses in plant development. This study reports on a forward genetic approach to define previously uncharacterized components of flowering control pathways in the long-day legume, pea (Pisum sativum). We isolated two complementation groups of late-flowering mutants in pea that define two uncharacterized loci, LATE BLOOMER3 (LATE3) and LATE4, and describe their diverse effects on vegetative and reproductive development. A map-based comparative approach was employed to identify the underlying genes for both loci, revealing that that LATE3 and LATE4 are orthologs of CYCLIN DEPENDENT KINASE8 (CDK8) and CYCLIN C1 (CYCC1), components of the CDK8 kinase module of the Mediator complex, which is a deeply conserved regulator of transcription in eukaryotes. We confirm the genetic and physical interaction of LATE3 and LATE4 and show that they contribute to the transcriptional regulation of key flowering genes, including the induction of the florigen gene FTa1 and repression of the floral repressor LF Our results establish the conserved importance of the CDK8 module in plants and provide evidence for the function of CYCLIN C1 orthologs in the promotion of flowering and the maintenance of normal reproductive development.
Collapse
Affiliation(s)
- A S M Mainul Hasan
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | - Valerie Hecht
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
26
|
Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods Mol Biol 2020. [PMID: 31975291 DOI: 10.1007/978-1-0716-0342-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The major tissue types and stem-cell niches of plants are established during embryogenesis, and thus knowledge of embryo development is essential for a full understanding of plant development. Studies of seed development are also important for human health, because the nutrients stored in both the embryo and endosperm of plant seeds provide an essential part of our diet. Arabidopsis and maize have evolved different types of seeds, opening a range of experimental opportunities. Development of the Arabidopsis embryo follows an almost invariant pattern, while cell division patterns of maize embryos are variable. Embryo-endosperm interactions are also different between the two species: in Arabidopsis, the endosperm is consumed during seed development, while mature maize seeds contain an enormous endosperm. Genetic screens have provided important insights into seed development in both species. In the genomic era, genetic analysis will continue to provide important tools for understanding embryo and endosperm biology in plants, because single gene functional studies can now be integrated with genome-wide information. Here, we lay out important factors to consider when designing genetic screens to identify new genes or to probe known pathways in seed development. We then highlight the technical details of two previous genetic screens that may serve as useful examples for future experiments.
Collapse
|
27
|
Wang Y, Liang H, Chen G, Liao C, Wang Y, Hu Z, Xie Q. Molecular and Phylogenetic Analyses of the Mediator Subunit Genes in Solanum lycopersicum. Front Genet 2019; 10:1222. [PMID: 31827491 PMCID: PMC6892441 DOI: 10.3389/fgene.2019.01222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022] Open
Abstract
The Mediator complex is a multi-subunit protein assembly that serves as a central scaffold to help regulate DNA-binding transcription factors (TFs) and RNA polymerase II (Pol II) activity controlled gene expression programmed in response to developmental or environmental factors. However, litter information about Mediator complex subunit (MED) genes in tomato is available, although it is an essential model plant. In this study, we retrieved 46 candidate SlMED genes from the genome of tomato, and a comprehensive analysis was conducted, including their phylogenetic relationship, chromosomal locations, gene structure, cis-regulatory elements prediction, as well as gene expression. The expression profiling of 46 SlMED genes was analyzed using publicly available RNA-seq data. Furthermore, we selected some SlMED genes to evaluate their expression patterns in various tissues and under different abiotic stress treatments by quantitative reverse transcription PCR experiments. This is the first detailed report to elucidate the molecular and phylogenetic features of the MED genes in tomato, and it provides valuable clues for further functional analysis in order to clarify the role of the SlMED genes in diverse plant growth, development and abiotic stress response.
Collapse
Affiliation(s)
- Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Honglian Liang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Yicong Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
28
|
Mao X, Weake VM, Chapple C. Mediator function in plant metabolism revealed by large-scale biology. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5995-6003. [PMID: 31504746 DOI: 10.1093/jxb/erz372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/07/2019] [Indexed: 05/16/2023]
Abstract
Mediator is a multisubunit transcriptional co-regulator that is involved in the regulation of an array of processes including plant metabolism. The pathways regulated by Mediator-dependent processes include those for the synthesis of phenylpropanoids (MED5), cellulose (MED16), lipids (MED15 and CDK8), and the regulation of iron homeostasis (MED16 and MED25). Traditional genetic and biochemical approaches laid the foundation for our understanding of Mediator function, but recent transcriptomic and metabolomic studies have provided deeper insights into how specific subunits cooperate in the regulation of plant metabolism. In this review, we highlight recent developments in the investigation of Mediator and plant metabolism, with particular emphasis on the large-scale biology studies of med mutants.
Collapse
Affiliation(s)
- Xiangying Mao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
29
|
Dwivedi N, Maji S, Waseem M, Thakur P, Kumar V, Parida SK, Thakur JK. The Mediator subunit OsMED15a is a transcriptional co-regulator of seed size/weight-modulating genes in rice. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194432. [PMID: 31525461 DOI: 10.1016/j.bbagrm.2019.194432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022]
Abstract
Although several transcription factors (TFs) that regulate seed size/weight in plants are known, the molecular landscape regulating this important trait is unclear. Here, we report that a Mediator subunit, OsMED15a, links rice grain size/weight-regulating TFs to their target genes. Expression analysis and high-resolution quantitative trait loci (QTL) mapping suggested that OsMED15a is involved in rice seed development. OsMED15a has an N-terminal, three-helical KIX domain. Two of these helices, α1 and α3, and three amino acids, 76LRC78, within OsMED15a helix α3 were important for its interaction with several proteins, including interactions with the transactivation domains of two NAC-type TFs, OsNAC024 and OsNAC025. Moreover, OsMED15a, OsNAC024, and OsNAC025 all exhibited increased expression during seed development, and we identified several grain size/weight-associated SNPs in these genes in 509 low- and high-grain-weight rice genotypes. RNAi-mediated repression of OsMED15a expression down-regulated the expression of the grain size/weight regulating genes GW2, GW5 and DR11 and reduced grain length, weight, and yield. Of note, both OsNAC024 and OsNAC025 bound to the promoters of these three genes. We conclude that the transactivation domains of OsNAC024 and OsNAC025 target the KIX domain of OsMED15a in the regulation of grain size/weight-associated genes such as GW2, GW5, and D11. We propose that the integrated molecular-genetics approach used here could help identify networks of functional alleles of other regulator and co-regulator genes and thereby inform efforts for marker-assisted introgression of useful alleles in rice crop improvement.
Collapse
Affiliation(s)
- Nidhi Dwivedi
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sourobh Maji
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohd Waseem
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pallabi Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vinay Kumar
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
30
|
Liu Z, Chen G, Gao F, Xu R, Li N, Zhang Y, Li Y. Transcriptional Repression of the APC/C Activator Genes CCS52A1/A2 by the Mediator Complex Subunit MED16 Controls Endoreduplication and Cell Growth in Arabidopsis. THE PLANT CELL 2019; 31:1899-1912. [PMID: 31175173 PMCID: PMC6713304 DOI: 10.1105/tpc.18.00811] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 05/08/2023]
Abstract
Endoreduplication, the replication of the nuclear genome in the absence of mitosis, is often associated with cell growth and differentiation in plants and animals, but the molecular mechanisms underlying endoreduplication in plants have not been fully elucidated. Here, we show that the Mediator complex subunit MED16 acts as a negative regulator of endoreduplication to influence cell growth in Arabidopsis (Arabidopsis thaliana). The med16 mutant exhibits larger and more numerous cells than the wild type, resulting in enlarged organs. The large cells in med16 are associated with high DNA ploidy levels. MED16 associates with the promoters of the Anaphase Promoting Complex/Cyclosome activators CELL CYCLE SWITCH52 A1 (CCS52A1) and CCS52A2 (encoding important factors for endoreduplication and cell growth) and represses their expression. MED16 interacts physically with the transcriptional repressor DEL1 to repress the expression of CCS52A2 Genetic analysis suggested that MED16 is partially dependent on CCS52A1/A2 to control endoreduplication and cell growth. Our results indicate that the transcriptional repression of CCS52A1/A2 by MED16 regulates endoreduplication and cell growth in Arabidopsis.
Collapse
Affiliation(s)
- Zupei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Gang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, China
| | - Fan Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yueying Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
31
|
Huang J, Sun Y, Orduna AR, Jetter R, Li X. The Mediator kinase module serves as a positive regulator of salicylic acid accumulation and systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:842-852. [PMID: 30739357 DOI: 10.1111/tpj.14278] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 05/20/2023]
Abstract
In plants, the calmodulin-binding transcription activators (CAMTAs) are required for transcriptional regulation of abiotic and biotic stress responses. Among them, CAMTA3 in Arabidopsis has been intensively studied and shown to function redundantly with CAMTA1 and CAMTA2 to negatively regulate plant immunity. The camta1/2/3 triple mutant accordingly exhibits severe dwarfism due to autoimmunity. Here, through a suppressor screen using camta1/2/3 triple mutant, we found that a mutation in Cyclin-Dependent Kinase 8 (CDK8) partially suppresses the dwarfism and constitutive resistance phenotypes of camta1/2/3. CDK8 positively regulates steady-state salicylic acid (SA) levels and systemic required resistance (SAR). The expression of SA biosynthesis genes such as ICS1 and EDS5 is down-regulated in cdk8 mutants under uninfected conditions, suggesting that CDK8 contributes to the transcriptional regulation of these SA pathway genes. Knocking out another Mediator kinase module member MED12 yielded similar defects including decreased steady-state SA level and compromised SAR, suggesting that the whole Mediator kinase module contributes to the transcriptional regulation of SA levels and SAR.
Collapse
Affiliation(s)
- Jianhua Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Alberto R Orduna
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
32
|
Pu Y, Walley JW, Shen Z, Lang MG, Briggs SP, Estelle M, Kelley DR. Quantitative Early Auxin Root Proteomics Identifies GAUT10, a Galacturonosyltransferase, as a Novel Regulator of Root Meristem Maintenance. Mol Cell Proteomics 2019; 18:1157-1170. [PMID: 30918009 PMCID: PMC6553934 DOI: 10.1074/mcp.ra119.001378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 11/25/2022] Open
Abstract
Auxin induces rapid gene expression changes throughout root development. How auxin-induced transcriptional responses relate to changes in protein abundance is not well characterized. This report identifies early auxin responsive proteins in roots at 30 min and 2 h after hormone treatment using a quantitative proteomics approach in which 3,514 proteins were reliably quantified. A comparison of the >100 differentially expressed proteins at each the time point showed limited overlap, suggesting a dynamic and transient response to exogenous auxin. Several proteins with established roles in auxin-mediated root development exhibited altered abundance, providing support for this approach. While novel targeted proteomics assays demonstrate that all six auxin receptors remain stable in response to hormone. Additionally, 15 of the top responsive proteins display root and/or auxin response phenotypes, demonstrating the validity of these differentially expressed proteins. Auxin signaling in roots dictates proteome reprogramming of proteins enriched for several gene ontology terms, including transcription, translation, protein localization, thigmatropism, and cell wall modification. In addition, we identified auxin-regulated proteins that had not previously been implicated in auxin response. For example, genetic studies of the auxin responsive protein galacturonosyltransferase 10 demonstrate that this enzyme plays a key role in root development. Altogether these data complement and extend our understanding of auxin response beyond that provided by transcriptome studies and can be used to uncover novel proteins that may mediate root developmental programs.
Collapse
Affiliation(s)
- Yunting Pu
- From the Departments of ‡Genetics, Development and Cell Biology
| | - Justin W Walley
- ¶Plant Pathology and Microbiology, Iowa State University, Ames, IA
| | - Zhouxin Shen
- §Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA
| | - Michelle G Lang
- From the Departments of ‡Genetics, Development and Cell Biology
| | - Steven P Briggs
- §Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA
| | - Mark Estelle
- §Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA
| | - Dior R Kelley
- From the Departments of ‡Genetics, Development and Cell Biology,
| |
Collapse
|
33
|
Xiong F, Ren JJ, Yu Q, Wang YY, Kong LJ, Otegui MS, Wang XL. AtBUD13 affects pre-mRNA splicing and is essential for embryo development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:714-726. [PMID: 30720904 DOI: 10.1111/tpj.14268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 05/03/2023]
Abstract
Pre-mRNA splicing is an important step for gene expression regulation. Yeast Bud13p (bud-site selection protein 13) regulates the budding pattern and pre-mRNA splicing in yeast cells; however, no Bud13p homologs have been identified in plants. Here, we isolated two mutants that carry T-DNA insertions at the At1g31870 locus and shows early embryo lethality and seed abortion. At1g31870 encodes an Arabidopsis homolog of yeast Bud13p, AtBUD13. Although AtBUD13 homologs are widely distributed in eukaryotic organisms, phylogenetic analysis revealed that their protein domain organization is more complex in multicellular species. AtBUD13 is expressed throughout plant development including embryogenesis and AtBUD13 proteins is localized in the nucleus in Arabidopsis. RNA-seq analysis revealed that AtBUD13 mutation predominantly results in the intron retention, especially for shorter introns (≤100 bases). Within this group of genes, we identified 52 genes involved in embryogenesis, out of which 22 are involved in nucleic acid metabolism. Our results demonstrate that AtBUD13 plays critical roles in early embryo development by effecting pre-mRNA splicing.
Collapse
Affiliation(s)
- Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jing-Jing Ren
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Qin Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lan-Jing Kong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Marisa S Otegui
- Departments of Botany and Genetics, University of Wisconsin-Madison, Madison, 53706, USA
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, 53706, USA
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
34
|
Raya-González J, Oropeza-Aburto A, López-Bucio JS, Guevara-García ÁA, de Veylder L, López-Bucio J, Herrera-Estrella L. MEDIATOR18 influences Arabidopsis root architecture, represses auxin signaling and is a critical factor for cell viability in root meristems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:895-909. [PMID: 30270572 DOI: 10.1111/tpj.14114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The Mediator (MED) complex plays a key role in the recruitment and assembly of the transcription machinery for the control of gene expression. Here, we report on the role of MEDIATOR18 (MED18) subunit in root development, auxin signaling and meristem cell viability in Arabidopsis thaliana seedlings. Loss-of-function mutations in MED18 reduce primary root growth, but increase lateral root formation and root hair development. This phenotype correlates with alterations in cell division and elongation likely caused by an increased auxin response and transport at the root tip, as evidenced by DR5:GFP, pPIN1::PIN1-GFP, pPIN2::PIN2-GFP and pPIN3::PIN3-GFP auxin-related gene expression. Noteworthy, med18 seedlings manifest cell death in the root meristem, which exacerbates with age and/or exposition to DNA-damaging agents, and display high expression of the cell regeneration factor ERF115. Cell death in the root tip was reduced in med18 seedlings grown in darkness, but remained when only the shoot was exposed to light, suggesting that MED18 acts to protect root meristem cells from local cell death, and/or in response to root-acting signal(s) emitted by the shoot in response to light stimuli. These data point to MED18 as an important component for auxin-regulated root development, cell death and cell regeneration in root meristems.
Collapse
Affiliation(s)
- Javier Raya-González
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, México
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Araceli Oropeza-Aburto
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, México
| | - Jesús S López-Bucio
- CONACYT, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Ángel A Guevara-García
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250, Cuernavaca, Morelos, México
| | - Lieven de Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, México
| |
Collapse
|
35
|
Transcriptome Analysis of Four Arabidopsis thaliana Mediator Tail Mutants Reveals Overlapping and Unique Functions in Gene Regulation. G3-GENES GENOMES GENETICS 2018; 8:3093-3108. [PMID: 30049745 PMCID: PMC6118316 DOI: 10.1534/g3.118.200573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Mediator complex is a central component of transcriptional regulation in Eukaryotes. The complex is structurally divided into four modules known as the head, middle, tail and kinase modules, and in Arabidopsis thaliana, comprises 28-34 subunits. Here, we explore the functions of four Arabidopsis Mediator tail subunits, MED2, MED5a/b, MED16, and MED23, by comparing the impact of mutations in each on the Arabidopsis transcriptome. We find that these subunits affect both unique and overlapping sets of genes, providing insight into the functional and structural relationships between them. The mutants primarily exhibit changes in the expression of genes related to biotic and abiotic stress. We find evidence for a tissue specific role for MED23, as well as in the production of alternative transcripts. Together, our data help disentangle the individual contributions of these MED subunits to global gene expression and suggest new avenues for future research into their functions.
Collapse
|
36
|
Tadini L, Ferrari R, Lehniger MK, Mizzotti C, Moratti F, Resentini F, Colombo M, Costa A, Masiero S, Pesaresi P. Trans-splicing of plastid rps12 transcripts, mediated by AtPPR4, is essential for embryo patterning in Arabidopsis thaliana. PLANTA 2018; 248:257-265. [PMID: 29687222 DOI: 10.1007/s00425-018-2896-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/17/2018] [Indexed: 05/21/2023]
Abstract
AtPPR4-mediated trans-splicing of plastid rps12 transcripts is essential for key embryo morphogenetic events such as development of cotyledons, determination of provascular tissue, and organization of the shoot apical meristem (SAM), but not for the formation of the protodermal layer. Members of the pentatricopeptide repeat (PPR) containing protein family have emerged as key regulators of the organelle post-transcriptional processing and to be essential for proper plant embryo development. In this study, we report the functional characterization of the AtPPR4 (At5g04810) gene encoding a plastid nucleoid PPR protein. In-situ hybridization analysis reveals the presence of AtPPR4 transcripts already at the transition stage of embryo development. As a consequence, embryos lacking the AtPPR4 protein arrest their development at the transition/early-heart stages and show defects in the determination of the provascular tissue and organization of SAM. This complex phenotype is due to the specific role of AtPPR4 in the trans-splicing of the plastid rps12 transcripts, as shown by northern and slot-blot hybridizations, and the consequent defect in 70S ribosome accumulation and plastid protein synthesis, in agreement with the role proposed for the maize orthologue, ZmPPR4.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Roberto Ferrari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Marie-Kristin Lehniger
- Molecular Genetics, Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Chiara Mizzotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Fabio Moratti
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Francesca Resentini
- Instituto de Biologıa Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - Paolo Pesaresi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli studi di Milano, Milan, Italy.
| |
Collapse
|
37
|
Abstract
Stem cell specification in multicellular organisms relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, in which the evolutionarily conserved Mediator coactivator complex plays an essential role. In Arabidopsis thaliana, SHORTROOT (SHR) and SCARECROW (SCR) orchestrate a transcriptional program that determines the fate and asymmetrical divisions of stem cells generating the root ground tissue. The mechanism by which SHR/SCR relays context-specific regulatory signals to the Pol II general transcription machinery is unknown. Here, we report the role of Mediator in controlling the spatiotemporal transcriptional output of SHR/SCR during asymmetrical division of stem cells and ground tissue patterning. The Mediator subunit MED31 interacted with SCR but not SHR. Reduction of MED31 disrupted the spatiotemporal activation of CYCLIND6;1 (CYCD6;1), leading to defective asymmetrical division of stem cells generating ground tissue. MED31 was recruited to the promoter of CYCD6;1 in an SCR-dependent manner. MED31 was involved in the formation of a dynamic MED31/SCR/SHR ternary complex through the interface protein SCR. We demonstrate that the relative protein abundance of MED31 and SHR in different cell types regulates the dynamic formation of the ternary complex, which provides a tunable switch to strictly control the spatiotemporal transcriptional output. This study provides valuable clues to understand the mechanism by which master transcriptional regulators control organ patterning.
Collapse
|
38
|
Wang Y, Hu Z, Zhang J, Yu X, Guo JE, Liang H, Liao C, Chen G. Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion. Sci Rep 2018; 8:3285. [PMID: 29459728 PMCID: PMC5818486 DOI: 10.1038/s41598-018-21679-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/05/2018] [Indexed: 01/04/2023] Open
Abstract
Mediator complex, a conserved multi-protein, is necessary for controlling RNA polymerase II (Pol II) transcription in eukaryotes. Given little is known about them in tomato, a tomato Mediator subunit 18 gene was isolated and named SlMED18. To further explore the function of SlMED18, the transgenic tomato plants targeting SlMED18 by RNAi-mediated gene silencing were generated. The SlMED18-RNAi lines exhibited multiple developmental defects, including smaller size and slower growth rate of plant and significantly smaller compound leaves. The contents of endogenous bioactive GA3 in SlMED18 silenced lines were slightly less than that in wild type. Furthermore, qRT-PCR analysis indicated that expression of gibberellins biosynthesis genes such as SlGACPS and SlGA20x2, auxin transport genes (PIN1, PIN4, LAX1 and LAX2) and several key regulators, KNOX1, KNOX2, PHAN and LANCEOLATE(LA), which involved in the leaf morphogenesis were significantly down-regulated in SlMED18-RNAi lines. These results illustrated that SlMED18 plays an essential role in regulating plant internode elongation and leaf expansion in tomato plants and it acts as a key positive regulator of gibberellins biosynthesis and signal transduction as well as auxin proper transport signalling. These findings are the basis for understanding the function of the individual Mediator subunits in tomato.
Collapse
Affiliation(s)
- Yunshu Wang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Jianling Zhang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - XiaoHui Yu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Jun-E Guo
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Honglian Liang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Changguang Liao
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
39
|
Wójcik AM, Mosiolek M, Karcz J, Nodine MD, Gaj MD. Whole Mount in situ Localization of miRNAs and mRNAs During Somatic Embryogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1277. [PMID: 30233621 PMCID: PMC6131960 DOI: 10.3389/fpls.2018.01277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/15/2018] [Indexed: 05/11/2023]
Abstract
Somatic embryogenesis (SE) results from the transition of differentiated plant somatic cells into embryogenic cells that requires the extensive reprogramming of the somatic cell transcriptome. Commonly, the SE-involved genes are identified by analyzing the heterogeneous population of explant cells and thus, it is necessary to validate the expression of the candidate genes in the cells that are competent for embryogenic transition. Here, we optimized and implemented the whole mount in situ hybridization (WISH) method (Bleckmann and Dresselhaus, 2016; Dastidar et al., 2016) in order to analyze the spatiotemporal localization of miRNAs (miR156, miR166, miR390, miR167) and mRNAs such as WOX5 and PHABULOSA-target of miR165/166 during the SE that is induced in Arabidopsis explants. This study presents a detailed step-by-step description of the WISH procedure in which DIG-labeled LNA and RNA probes were used to detect miRNAs and mRNAs, respectively. The usefulness of the WISH in the functional analysis of the SE-involved regulatory pathways is demonstrated and the advantages of this method are highlighted: (i) the ability to analyze intact non-sectioned plant tissue; (ii) the specificity of transcript detection; (iii) the detection of miRNA; and (iv) a semi-quantitative assessment of the RNA abundance.
Collapse
Affiliation(s)
- Anna M. Wójcik
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Magdalena Mosiolek
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Jagna Karcz
- Scanning Electron Microscopy Laboratory, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Michael D. Nodine
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Małgorzata D. Gaj
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
- *Correspondence: Małgorzata D. Gaj,
| |
Collapse
|
40
|
Fornero C, Suo B, Zahde M, Juveland K, Kirik V. Papillae formation on trichome cell walls requires the function of the mediator complex subunit Med25. PLANT MOLECULAR BIOLOGY 2017; 95:389-398. [PMID: 28889249 PMCID: PMC6082409 DOI: 10.1007/s11103-017-0657-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Glassy Hair 1 (GLH1) gene that promotes papillae formation on trichome cell walls was identified as a subunit of the transcriptional mediator complex MED25. The MED25 gene is shown to be expressed in trichomes. The expression of the trichome development marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) is not affected in the glh1 mutant. Presented data suggest that Arabidopsis MED25 mediator component is likely involved in the transcription of genes promoting papillae deposition in trichomes. The plant cell wall plays an important role in communication, defense, organization and support. The importance of each of these functions varies by cell type. Specialized cells, such as Arabidopsis trichomes, exhibit distinct cell wall characteristics including papillae. To better understand the molecular processes important for papillae deposition on the cell wall surface, we identified the GLASSY HAIR 1 (GLH1) gene, which is necessary for papillae formation. We found that a splice-site mutation in the component of the transcriptional mediator complex MED25 gene is responsible for the near papillae-less phenotype of the glh1 mutant. The MED25 gene is expressed in trichomes. Reporters for trichome developmental marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) were not affected in the glh1 mutant. Collectively, the presented results show that MED25 is necessary for papillae formation on the cell wall surface of leaf trichomes and suggest that the Arabidopsis MED25 mediator component is likely involved in the transcription of a subset of genes that promote papillae deposition in trichomes.
Collapse
Affiliation(s)
- Christy Fornero
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Bangxia Suo
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Mais Zahde
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Katelyn Juveland
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA.
| |
Collapse
|
41
|
Raya-González J, López-Bucio JS, Prado-Rodríguez JC, Ruiz-Herrera LF, Guevara-García ÁA, López-Bucio J. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses. PLANT MOLECULAR BIOLOGY 2017; 95:141-156. [PMID: 28780645 DOI: 10.1007/s11103-017-0647-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/27/2017] [Indexed: 05/23/2023]
Abstract
Arabidopsis med12 and med13 mutants exhibit shoot and root phenotypes related to an altered auxin homeostasis. Sucrose supplementation reactivates both cell division and elongation in primary roots as well as auxin-responsive and stem cell niche gene expression in these mutants. An analysis of primary root growth of WT, med12, aux1-7 and med12 aux1 single and double mutants in response to sucrose and/or N-1-naphthylphthalamic acid (NPA) placed MED12 upstream of auxin transport for the sugar modulation of root growth. The MEDIATOR (MED) complex plays diverse functions in plant development, hormone signaling and biotic and abiotic stress tolerance through coordination of transcription. Here, we performed genetic, developmental, molecular and pharmacological analyses to characterize the role of MED12 and MED13 on the configuration of root architecture and its relationship with auxin and sugar responses. Arabidopsis med12 and med13 single mutants exhibit shoot and root phenotypes consistent with altered auxin homeostasis including altered primary root growth, lateral root development, and root hair elongation. MED12 and MED13 were required for activation of cell division and elongation in primary roots, as well as auxin-responsive and stem cell niche gene expression. Remarkably, most of these mutant phenotypes were rescued by supplying sucrose to the growth medium. The growth response of primary roots of WT, med12, aux1-7 and med12 aux1 single and double mutants to sucrose and application of auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) revealed the correlation of med12 phenotype with the activity of the auxin intake permease and suggests that MED12 acts upstream of AUX1 in the root growth response to sugar. These data provide compelling evidence that MEDIATOR links sugar sensing to auxin transport and distribution during root morphogenesis.
Collapse
Affiliation(s)
- Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | - José Carlos Prado-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
42
|
ScMED7, a sugarcane mediator subunit gene, acts as a regulator of plant immunity and is responsive to diverse stress and hormone treatments. Mol Genet Genomics 2017; 292:1363-1375. [DOI: 10.1007/s00438-017-1352-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
|
43
|
Malik N, Agarwal P, Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit Rev Biochem Mol Biol 2017; 52:475-502. [DOI: 10.1080/10409238.2017.1325830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
44
|
Buendía-Monreal M, Gillmor CS. Convergent repression of miR156 by sugar and the CDK8 module of Arabidopsis Mediator. Dev Biol 2017; 423:19-23. [PMID: 28108181 DOI: 10.1016/j.ydbio.2017.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/19/2023]
Abstract
In Arabidopsis, leaves produced during the juvenile vegetative phase are simple, while adult leaves are morphologically complex. The juvenile to adult transition is regulated by miR156, a microRNA that promotes juvenility by impeding the function of SPL transcription factors, which specify adult leaf traits. Both leaf derived sugars, as well as the Mediator Cyclin Dependent Kinase 8 (CDK8) module genes CENTER CITY (CCT)/MED12 and GRAND CENTRAL (GCT)/MED13, act upstream of miR156 to promote the juvenile to adult transition. However, it is not known whether sugar, CCT and GCT repress miR156 independently, as part of the same pathway, or in a cooperative manner. Here we show that sugar treatment can repress MIR156 expression in the absence of CCT or GCT. Both cct and the photosynthetic mutant chlorina1 (ch1) (which decreases sugar synthesis) exhibit extended juvenile development and increased MIR156A and MIR156C expression. Compared to ch1 and cct single mutants, the ch1 cct double mutant has a stronger effect on juvenile leaf traits, higher MIR156C levels, and a dramatic increase in MIR156A. Our results show that sugar and the CDK8 module are capable of regulating MIR156 independently, but suggest they normally act together in a synergistic manner.
Collapse
Affiliation(s)
- Manuel Buendía-Monreal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, Guanajuato, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, Guanajuato, Mexico.
| |
Collapse
|
45
|
Shaikhali J, Wingsle G. Redox-regulated transcription in plants: Emerging concepts. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
Chhun T, Chong SY, Park BS, Wong ECC, Yin JL, Kim M, Chua NH. HSI2 Repressor Recruits MED13 and HDA6 to Down-Regulate Seed Maturation Gene Expression Directly During Arabidopsis Early Seedling Growth. PLANT & CELL PHYSIOLOGY 2016; 57:1689-706. [PMID: 27335347 DOI: 10.1093/pcp/pcw095] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/01/2016] [Indexed: 05/25/2023]
Abstract
Arabidopsis HSI2 (HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE 2) which carries a EAR (ERF-associated amphiphilic repression) motif acts as a repressor of seed maturation genes and lipid biosynthesis, whereas MEDIATOR (MED) is a conserved multiprotein complex linking DNA-bound transcription factors to RNA polymerase II transcription machinery. How HSI2 executes its repressive function through MED is hitherto unknown. Here, we show that HSI2 and its homolog, HSI2-lik (HSL1), are able to form homo- and heterocomplexes. Both factors bind to the TRAP240 domain of MED13, a subunit of the MED CDK8 module. Mutant alleles of the med13 mutant show elevated seed maturation gene expression and increased lipid accumulation in cotyledons; in contrast, HSI2- or MED13-overexpressing plants display the opposite phenotypes. The overexpression phenotypes of HSI2 and MED13 are abolished in med13 and hsi2 hsl1, respectively, indicating that HSI2 and MED13 together are required for these functions. The HSI2 C-terminal region interacts with HDA6, whose overexpression also reduces seed maturation gene expression and lipid accumulation. Moreover, HSI2, MED13 and HDA6 bind to the proximal promoter and 5'-coding regions of seed maturation genes. Taken together, our results suggest that HSI2 recruits MED13 and HDA6 to suppress directly a subset of seed maturation genes post-germination.
Collapse
Affiliation(s)
- Tory Chhun
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Suet Yen Chong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Eriko Chi Cheng Wong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Jun-Lin Yin
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Mijung Kim
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065-6399, USA
| |
Collapse
|
47
|
Buendía-Monreal M, Gillmor CS. Mediator: A key regulator of plant development. Dev Biol 2016; 419:7-18. [PMID: 27287881 DOI: 10.1016/j.ydbio.2016.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development.
Collapse
Affiliation(s)
- Manuel Buendía-Monreal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
48
|
Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proc Natl Acad Sci U S A 2016; 113:6562-7. [PMID: 27217573 DOI: 10.1073/pnas.1600739113] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.
Collapse
|
49
|
Malik N, Dwivedi N, Singh AK, Parida SK, Agarwal P, Thakur JK, Tyagi AK. An Integrated Genomic Strategy Delineates Candidate Mediator Genes Regulating Grain Size and Weight in Rice. Sci Rep 2016; 6:23253. [PMID: 27000976 PMCID: PMC4802383 DOI: 10.1038/srep23253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/02/2016] [Indexed: 12/31/2022] Open
Abstract
The present study deployed a Mediator (MED) genes-mediated integrated genomic strategy for understanding the complex genetic architecture of grain size/weight quantitative trait in rice. The targeted multiplex amplicon resequencing of 55 MED genes annotated from whole rice genome in 384 accessions discovered 3971 SNPs, which were structurally and functionally annotated in diverse coding and non-coding sequence-components of genes. Association analysis, using the genotyping information of 3971 SNPs in a structured population of 384 accessions (with 50–100 kb linkage disequilibrium decay), detected 10 MED gene-derived SNPs significantly associated (46% combined phenotypic variation explained) with grain length, width and weight in rice. Of these, one strong grain weight-associated non-synonymous SNP (G/A)-carrying OsMED4_2 gene was validated successfully in low- and high-grain weight parental accessions and homozygous individuals of a rice mapping population. The seed-specific expression, including differential up/down-regulation of three grain size/weight-associated MED genes (including OsMED4_2) in six low and high-grain weight rice accessions was evident. Altogether, combinatorial genomic approach involving haplotype-based association analysis delineated diverse functionally relevant natural SNP-allelic variants in 10 MED genes, including three potential novel SNP haplotypes in an OsMED4_2 gene governing grain size/weight differentiation in rice. These molecular tags have potential to accelerate genomics-assisted crop improvement in rice.
Collapse
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Dwivedi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashok K Singh
- Division of Genetics, Rice Section, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
50
|
Yang Y, Li L, Qu LJ. Plant Mediator complex and its critical functions in transcription regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:106-18. [PMID: 26172375 DOI: 10.1111/jipb.12377] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/07/2015] [Indexed: 05/08/2023]
Abstract
The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ling Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| |
Collapse
|