1
|
Karpinski BA, Pal-Ghosh S, Datta-Majumdar H, Dimri S, Datta S, Stepp MA. ROCK Inhibitor Enhances Neurite Outgrowth In Vitro and Corneal Sensory Nerve Reinnervation In Vivo. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 39436373 PMCID: PMC11500046 DOI: 10.1167/iovs.65.12.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose The intraepithelial corneal nerves are essential to corneal health. Rho kinase or ROCK inhibitors (RIs) have been reported to play a role in neuron survival after injury. Here we assess integrin and extracellular matrix expression in primary mouse neurons and determine whether treating cells with RI impacts neurite outgrowth in vitro and reinnervation after trephine and debridement injury in mice in vivo. Methods Cocultures of human corneal limbal epithelial cells and E11.5 mouse trigeminal neurons and neurons alone were grown on glass coverslips. High-resolution imaging was performed to localize integrins and laminin on neurons and to determine whether RI impacts neurite outgrowth in vitro and in vivo after both 1.5-mm trephine and 1.5-mm debridement injuries. Results Several integrin α (α3, α6, αv) chains as well as β4 integrin are expressed on neuron axons and growth cones in cocultures. RI treatment of isolated neurons, cocultures, and in conditioned media increases neurite outgrowth. In vivo, RI positively impacts sensory nerve reinnervation after trephine and debridement injury. Conclusions These studies are the first to demonstrate expression of β4 integrin on trigeminal sensory neurons and preferential adhesion of neurons to the laminin-enriched matrices found in footprints deposited by human corneal limbal epithelial cells. In addition, we also document for the first time the positive impact of RI on neurite outgrowth in vitro and reinnervation in vivo.
Collapse
Affiliation(s)
- Beverly A. Karpinski
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, United States
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, United States
| | - Himani Datta-Majumdar
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, United States
| | - Shelly Dimri
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, United States
| | - Soneha Datta
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, United States
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, United States
- Department of Ophthalmology, GW School of Medicine and Health Sciences, Washington DC, United States
| |
Collapse
|
2
|
Buzoianu-Anguiano V, Arriero-Cabañero A, Fernández-Mayoralas A, Torres-Llacsa M, Doncel-Pérez E. Axonal Growth and Fasciculation of Spinal Neurons Promoted by Aldynoglia in Alkaline Fibrin Hydrogel: Influence of Tol-51 Sulfoglycolipid. Int J Mol Sci 2024; 25:9173. [PMID: 39273121 PMCID: PMC11395328 DOI: 10.3390/ijms25179173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Traumatic spinal cord injury (tSCI) has complex pathophysiological events that begin after the initial trauma. One such event is fibroglial scar formation by fibroblasts and reactive astrocytes. A strong inhibition of axonal growth is caused by the activated astroglial cells as a component of fibroglial scarring through the production of inhibitory molecules, such as chondroitin sulfate proteoglycans or myelin-associated proteins. Here, we used neural precursor cells (aldynoglia) as promoters of axonal growth and a fibrin hydrogel gelled under alkaline conditions to support and guide neuronal cell growth, respectively. We added Tol-51 sulfoglycolipid as a synthetic inhibitor of astrocyte and microglia in order to test its effect on the axonal growth-promoting function of aldynoglia precursor cells. We obtained an increase in GFAP expression corresponding to the expected glial phenotype for aldynoglia cells cultured in alkaline fibrin. In co-cultures of dorsal root ganglia (DRG) and aldynoglia, the axonal growth promotion of DRG neurons by aldynoglia was not affected. We observed that the neural precursor cells first clustered together and then formed niches from which aldynoglia cells grew and connected to groups of adjacent cells. We conclude that the combination of alkaline fibrin with synthetic sulfoglycolipid Tol-51 increased cell adhesion, cell migration, fasciculation, and axonal growth capacity, promoted by aldynoglia cells. There was no negative effect on the behavior of aldynoglia cells after the addition of sulfoglycolipid Tol-51, suggesting that a combination of aldynoglia plus alkaline fibrin and Tol-51 compound could be useful as a therapeutic strategy for tSCI repair.
Collapse
Affiliation(s)
| | | | - Alfonso Fernández-Mayoralas
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, 28006 Madrid, Spain
| | - Mabel Torres-Llacsa
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, 45071 Toledo, Spain
| | - Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, 45071 Toledo, Spain
| |
Collapse
|
3
|
Long KLP, Muroy SE, Sorooshyari SK, Ko MJ, Jaques Y, Sudmant P, Kaufer D. Transcriptomic profiles of stress susceptibility and resilience in the amygdala and hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527777. [PMID: 36798395 PMCID: PMC9934702 DOI: 10.1101/2023.02.08.527777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
A single, severe episode of stress can bring about myriad responses amongst individuals, ranging from cognitive enhancement to debilitating and persistent anxiety; however, the biological mechanisms that contribute to resilience versus susceptibility to stress are poorly understood. The dentate gyrus (DG) of the hippocampus and the basolateral nucleus of the amygdala (BLA) are key limbic regions that are susceptible to the neural and hormonal effects of stress. Previous work has also shown that these regions contribute to individual variability in stress responses; however, the molecular mechanisms underlying the role of these regions in susceptibility and resilience are unknown. In this study, we profiled the transcriptomic signatures of the DG and BLA of rats with divergent behavioral outcomes after a single, severe stressor. We subjected rats to three hours of immobilization with exposure to fox urine and conducted a behavioral battery one week after stress to identify animals that showed persistent, high anxiety-like behavior. We then conducted bulk RNA sequencing of the DG and BLA from susceptible, resilient, and unexposed control rats. Differential gene expression analyses revealed that the molecular signatures separating each of the three groups were distinct and non-overlapping between the DG and BLA. In the amygdala, key genes associated with insulin and hormonal signaling corresponded with vulnerability. Specifically, Inhbb, Rab31 , and Ncoa3 were upregulated in the amygdala of stress-susceptible animals compared to resilient animals. In the hippocampus, increased expression of Cartpt - which encodes a key neuropeptide involved in reward, reinforcement, and stress responses - was strongly correlated with vulnerability to anxiety-like behavior. However, few other genes distinguished stress-susceptible animals from control animals, while a larger number of genes separated stress-resilient animals from control and stress-susceptible animals. Of these, Rnf112, Tbx19 , and UBALD1 distinguished resilient animals from both control and susceptible animals and were downregulated in resilience, suggesting that an active molecular response in the hippocampus facilitates protection from the long-term consequences of severe stress. These results provide novel insight into the mechanisms that bring about individual variability in the behavioral responses to stress and provide new targets for the advancement of therapies for stress-induced neuropsychiatric disorders.
Collapse
|
4
|
Ai C, Zhou Y, Pu K, Yang Y, Zhou Y. Nogo‑A/NgR signaling regulates stemness in cancer stem‑like cells derived from U87MG glioblastoma cells. Oncol Lett 2022; 24:230. [PMID: 35720478 PMCID: PMC9185138 DOI: 10.3892/ol.2022.13351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022] Open
Abstract
Neurite outgrowth inhibitor A (Nogo-A), a member of the reticulon 4 family, is an axon regeneration inhibitor that is negatively associated with the malignancy of oligodendroglial tumors. It has been suggested that the Nogo-A/Nogo Receptor (NgR) pathway plays a promoting effect in regulating cancer stem-like cells (CSCs) derived from glioblastoma, indicating that Nogo-A could exert different roles in CSCs than those in parental cancer cells. In the present study, CSCs were generated from the human Uppsala 87 malignant glioma (U87MG) cell line. These U87MG-CSCs were characterized by the upregulation of CD44 and CD133, which are two markers of stemness. The expression levels of Nogo-A and the differentiation of U87MG-CSCs were investigated. In addition, the proliferation, invasion and colony formation U87MG-CSCs were examined. Using culture in serum-containing medium, U87MG-CSCs were differentiated into neuron-like cells specifically expressing MAP2, β-III-tubulin and nestin. Nogo-A was upregulated in U87MG-CSCs compared with parental cells. Knockdown of Nogo-A and inhibition of the Nogo-A/NgR signaling pathway in U87MG-CSCs markedly decreased cell viability, cell cycle entry, invasion and tumor formation, indicating that Nogo-A could regulate U87MG-CSC function. Moreover, Nogo-A was involved in intracellular ATP synthesis and scavenging of accumulated reactive oxygen species. Nogo-A/NgR pathway exerted protective effects against hypoxia-induced non-apoptotic and apoptotic cell death. These results suggest that Nogo-A plays an important role in regulating U87MG-CSCs via the Nogo-A/NgR signaling pathway. Nogo-A may also different roles in U87MG-CSCs compared with their parental cells.
Collapse
Affiliation(s)
- Chengjin Ai
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Yu Zhou
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Kunming Pu
- Department of Ultrasound, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610072, P.R. China
| | - Yi Yang
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Yingying Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
5
|
Micó-Carnero M, Casillas-Ramírez A, Sánchez-González A, Rojano-Alfonso C, Peralta C. The Role of Neuregulin-1 in Steatotic and Non-Steatotic Liver Transplantation from Brain-Dead Donors. Biomedicines 2022; 10:978. [PMID: 35625715 PMCID: PMC9138382 DOI: 10.3390/biomedicines10050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Brain death (BD) and steatosis are key risk factors to predict adverse post-transplant outcomes. We investigated the role of Neuregulin-1 (NRG1) in rat steatotic and non-steatotic liver transplantation (LT) from brain death donors (DBD). METHODS NRG1 pathways were characterized after surgery. RESULTS NRG1 and p21-activated kinase 1 (PAK1) levels increased in steatotic and non-steatotic grafts from DBDs. The abolishment of NRG1 effects reduced PAK1. When the effect of either NRG1 nor PAK1 was inhibited, injury and regenerative failure were exacerbated. The benefits of the NRG-1-PAK1 axis in liver grafts from DBDs were associated with increased vascular endothelial growth factor-A (VEGFA) and insulin growth factor-1 (IGF1) levels, respectively. Indeed, VEGFA administration in non-steatotic livers and IGF1 treatment in steatotic grafts prevented damage and regenerative failure resulting from the inhibition of either NRG1 or PAK-1 activity in each type of liver. Exogenous NRG1 induced greater injury than BD induction. CONCLUSIONS This study indicates the benefits of endogenous NRG1 in liver grafts from DBDs and underscores the specificity of the NRG1 signaling pathway depending on the type of liver: NRG1-PAK1-VEGFA in non-steatotic livers and NRG1-PAK1-IGF1 in steatotic livers. Exogenous NRG1 is not an appropriate strategy to apply to liver grafts from DBD.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico; (A.C.-R.); (A.S.-G.)
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Alfredo Sánchez-González
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico; (A.C.-R.); (A.S.-G.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
6
|
Mrówczyńska E, Mazur AJ. Integrin-Linked Kinase (ILK) Plays an Important Role in the Laminin-Dependent Development of Dorsal Root Ganglia during Chicken Embryogenesis. Cells 2021; 10:cells10071666. [PMID: 34359835 PMCID: PMC8304069 DOI: 10.3390/cells10071666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Integrin-linked kinase (ILK) is mainly localized in focal adhesions where it interacts and modulates the downstream signaling of integrins affecting cell migration, adhesion, and survival. The interaction of dorsal root ganglia (DRG) cells, being part of the peripheral nervous system (PNS), with the extracellular matrix (ECM) via integrins is crucial for proper PNS development. A few studies have focused on ILK’s role in PNS development, but none of these have focused on chicken. Therefore, we decided to investigate ILK’s role in the development of Gallus gallus domesticus’s DRG. First, using RT-PCR, Western blotting, and in situ hybridization, we show that ILK is expressed in DRG. Next, by immunocytochemistry, we show ILK’s localization both intracellularly and on the cell membrane of DRG neurons and Schwann cell precursors (SCPs). Finally, we describe ILK’s involvement in multiple aspects of DRG development by performing functional experiments in vitro. IgG-mediated interruption of ILK’s action improved DRG neurite outgrowth, modulated their directionality, stimulated SCPs migration, and impacted growth cone morphology in the presence of laminin-1 or laminin-1 mimicking peptide IKVAV. Taken together, our results show that ILK is important for chicken PNS development, probably via its exposure to the ECM.
Collapse
Affiliation(s)
- Ewa Mrówczyńska
- Correspondence: (E.M.); (A.J.M.); Tel.: +48-71-375-7972 (E.M.); +48-71-375-6206 (A.J.M.)
| | - Antonina Joanna Mazur
- Correspondence: (E.M.); (A.J.M.); Tel.: +48-71-375-7972 (E.M.); +48-71-375-6206 (A.J.M.)
| |
Collapse
|
7
|
Jiang J, Yu Y, Zhang Z, Ji Y, Guo H, Wang X, Yu S. Effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. ACTA ACUST UNITED AC 2021; 54:e10842. [PMID: 34076142 PMCID: PMC8186374 DOI: 10.1590/1414-431x2020e10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
Regeneration of injured peripheral nerves is an extremely complex process. Nogo-A (neurite outgrowth inhibitor-A) inhibits axonal regeneration by interacting with Nogo receptor in the myelin sheath of the central nervous system (CNS). The aim of this study was to investigate the effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. Sprague-Dawley rats (n=96) were randomly divided into 4 groups: control group (control), sciatic nerve transection group (model), immediate repair group (immediate repair), and delayed repair group (delayed repair). The rats were euthanized 1 week and 6 weeks after operation. The injured end tissues of the spinal cord and sciatic nerve were obtained. The protein expressions of Nogo-A and Nogo-66 receptor (NgR) were detected by immunohistochemistry. The protein expressions of Nogo-A, NgR, and Ras homolog family member A (RhoA) were detected by western blot. At 1 week after operation, the pathological changes in the immediate repaired group were less, and the protein expressions of Nogo-A, NgR, and RhoA in the spinal cord and sciatic nerve tissues were decreased (P<0.05) compared with the model group. After 6 weeks, the pathological changes in the immediate repair group and the delayed repair group were alleviated and the protein expressions decreased (P<0.05). The situation of the immediate repair group was better than that of the delayed repair group. Our data suggest that the expression of Nogo-A and its receptor increased after sciatic nerve injury, indicating that Nogo-A and its receptor play an inhibitory role in the repair process of sciatic nerve injury in rats.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Yuanchen Yu
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Zhiwu Zhang
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Yuan Ji
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Hong Guo
- Yantai City Municipal Government Hospital, Yantai, China
| | - Xiaohua Wang
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Shengjun Yu
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| |
Collapse
|
8
|
The Implication of Reticulons (RTNs) in Neurodegenerative Diseases: From Molecular Mechanisms to Potential Diagnostic and Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22094630. [PMID: 33924890 PMCID: PMC8125174 DOI: 10.3390/ijms22094630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.
Collapse
|
9
|
Maresca A, Carelli V. Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules 2021; 11:496. [PMID: 33806088 PMCID: PMC8064499 DOI: 10.3390/biom11040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
10
|
Jia B, Huang W, Wang Y, Zhang P, Wang Z, Zheng M, Wang T. Nogo-C Inhibits Peripheral Nerve Regeneration by Regulating Schwann Cell Apoptosis and Dedifferentiation. Front Neurosci 2021; 14:616258. [PMID: 33584179 PMCID: PMC7873940 DOI: 10.3389/fnins.2020.616258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
While Nogo protein demonstrably inhibits nerve regeneration in the central nervous system (CNS), its effect on Schwann cells in peripheral nerve repair and regeneration following sciatic nerve injury remains unknown. In this research, We assessed the post-injury expression of Nogo-C in an experimental mouse model of sciatic nerve-crush injury. Nogo-C knockout (Nogo-C–/–) mouse was generated to observe the effect of Nogo-C on sciatic nerve regeneration, Schwann cell apoptosis, and myelin disintegration after nerve injury, and the effects of Nogo-C on apoptosis and dedifferentiation of Schwann cells were observed in vitro. We found that the expression of Nogo-C protein at the distal end of the injured sciatic nerve increased in wild type (WT) mice. Compared with the injured WT mice, the proportion of neuronal apoptosis was significantly diminished and the myelin clearance rate was significantly elevated in injured Nogo-C–/– mice; the number of nerve fibers regenerated and the degree of myelination were significantly elevated in Nogo-C–/– mice on Day 14 after injury. In addition, the recovery of motor function was significantly accelerated in the injured Nogo-C–/– mice. The overexpression of Nogo-C in primary Schwann cells using adenovirus-mediated gene transfer promoted Schwann cells apoptosis. Nogo-C significantly reduced the ratio of c-Jun/krox-20 expression, indicating its inhibition of Schwann cell dedifferentiation. Above all, we hold the view that the expression of Nogo-C increases following peripheral nerve injury to promote Schwann cell apoptosis and inhibit Schwann cell dedifferentiation, thereby inhibiting peripheral nerve regeneration.
Collapse
Affiliation(s)
- Bo Jia
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Wei Huang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Yu Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Peng Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Zhiwei Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
11
|
Holt E, Stanton-Turcotte D, Iulianella A. Development of the Vertebrate Trunk Sensory System: Origins, Specification, Axon Guidance, and Central Connectivity. Neuroscience 2021; 458:229-243. [PMID: 33460728 DOI: 10.1016/j.neuroscience.2020.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022]
Abstract
Crucial to an animal's movement through their environment and to the maintenance of their homeostatic physiology is the integration of sensory information. This is achieved by axons communicating from organs, muscle spindles and skin that connect to the sensory ganglia composing the peripheral nervous system (PNS), enabling organisms to collect an ever-constant flow of sensations and relay it to the spinal cord. The sensory system carries a wide spectrum of sensory modalities - from sharp pain to cool refreshing touch - traveling from the periphery to the spinal cord via the dorsal root ganglia (DRG). This review covers the origins and development of the DRG and the cells that populate it, and focuses on how sensory connectivity to the spinal cord is achieved by the diverse developmental and molecular processes that control axon guidance in the trunk sensory system. We also describe convergences and differences in sensory neuron formation among different vertebrate species to gain insight into underlying developmental mechanisms.
Collapse
Affiliation(s)
- Emily Holt
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada
| | - Danielle Stanton-Turcotte
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada.
| |
Collapse
|
12
|
Liu LR, Wang YX, He L, Xu YX, Huang JY, Peng TT, Yang XB, Pan J, Tang HM, Xu KS. Constraint-Induced Movement Therapy Promotes Neural Remodeling and Functional Reorganization by Overcoming Nogo-A/NgR/RhoA/ROCK Signals in Hemiplegic Cerebral Palsy Mice. Neurorehabil Neural Repair 2021; 35:145-157. [PMID: 33410385 DOI: 10.1177/1545968320981962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Little is known about the induction of functional and brain structural reorganization in hemiplegic cerebral palsy (HCP) by constraint-induced movement therapy (CIMT). Objective. We aimed to explore the specific molecular mechanism of functional and structural plasticity related to CIMT in HCP. Methods. The mice were divided into a control group and HCP groups with different interventions (unconstraint-induced movement therapy [UNCIMT], CIMT or siRNA-Nogo-A [SN] treatment): the HCP, HCP+UNCIMT, HCP+CIMT, HCP+SN, and HCP+SN+CIMT groups. Rotarod and front-limb suspension tests, immunohistochemistry, Golgi-Cox staining, transmission electron microscopy, and Western blot analyses were applied to measure motor function, neurons and neurofilament density, dendrites/axon areas, myelin integrity, and Nogo-A/NgR/RhoA/ROCK expression in the motor cortex. Results. The mice in the HCP+CIMT group had better motor function, greater neurons and neurofilament density, dendrites/axon areas, myelin integrity, and lower Nogo-A/NgR/RhoA/ROCK expression in the motor cortex than the HCP and HCP+UNCIMT groups (P < .05). Moreover, the expression of Nogo-A/NgR/RhoA/ROCK, the improvement of neural remodeling and motor function of mice in the HCP+SN group were similar to those in the HCP+CIMT group (P > .05). The neural remodeling and motor function of the HCP+SN+CIMT group were significantly greater than those in the HCP+SN and HCP+CIMT groups (P < .05). Motor function were positively correlated with the density of neurons (r = 0.450 and 0.309, respectively; P < .05) and neurofilament (r = 0.717 and 0.567, respectively; P < .05). Conclusions. CIMT might promote the remodeling of neurons, neurofilament, dendrites/axon areas, and myelin in the motor cortex by partially inhibiting the Nogo-A/NgR/RhoA/ROCK pathway, thereby promoting the improvement of motor function in HCP mice.
Collapse
Affiliation(s)
- Li-Ru Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu-Xin Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lu He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun-Xian Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing-Yu Huang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting-Ting Peng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xu-Bo Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Pan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong-Mei Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai-Shou Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Nagaraj V, Theis T, Johal AS, Seth A, Gore J, Arsha N, Patel M, Hao HB, Kurian N, Schachner M. Application of Antibodies to Neuronally Expressed Nogo-A Increases Neuronal Survival and Neurite Outgrowth. Int J Mol Sci 2020; 21:ijms21155417. [PMID: 32751444 PMCID: PMC7432704 DOI: 10.3390/ijms21155417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Nogo-A, a glycoprotein expressed in oligodendrocytes and central nervous system myelin, inhibits regeneration after injury. Antibodies against Nogo-A neutralize this inhibitory activity, improve locomotor recovery in spinal cord-injured adult mammals, and promote regrowth/sprouting/saving of damaged axons beyond the lesion site. Nogo-A is also expressed by neurons. Complete ablation of Nogo-A in all cell types expressing it has been found to lead to recovery in some studies but not in others. Neuronal ablation of Nogo-A reduces axonal regrowth after injury. In view of these findings, we hypothesized that, in addition to neutralizing Nogo-A in oligodendrocytes and myelin, Nogo-A antibodies may act directly on neuronal Nogo-A to trigger neurite outgrowth and neuronal survival. Here, we show that polyclonal and monoclonal antibodies against Nogo-A enhance neurite growth and survival of cultured cerebellar granule neurons and increase expression of the neurite outgrowth-promoting L1 cell adhesion molecule and polysialic acid. Application of inhibitors of signal transducing molecules, such as c-src, c-fyn, protein kinase A, and casein kinase II reduce antibody-triggered neurite outgrowth. These observations indicate that the recovery-promoting functions of antibodies against Nogo-A may not only be due to neutralizing Nogo-A in oligodendrocytes and myelin, but also to their interactions with Nogo-A on neurons.
Collapse
|
14
|
Yu C, Sun X, Li J, Chan SO, Wang L. Analysis of axon divergence at the optic chiasm in nogo-a knockout mice. Neurosci Lett 2020; 731:135109. [PMID: 32492476 DOI: 10.1016/j.neulet.2020.135109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Our earlier studies have shown that the axon growth inhibitory molecule Nogo affects axon routing at the optic chiasm likely through a differential regulation of Nogo receptor on the optic axons. Using isoform specific antibodies, we further showed that Nogo-A was predominantly expressed by retinal ganglion cells and their axons, while Nogo-B was highly localized on the radial glia at the midline of the chiasm, suggesting a role of Nogo-B in regulating turning of uncrossed axons. To further investigate the roles of Nogo-A in axon divergence, we analyzed the routing of axons in the chiasm of Nogo-A knockout mice during the growth of axons across the midline. At E13 to E16, there was no significant difference in the contralateral projection (P = 0.6943 for E13; P = 0.9867 for E14; P = 0.4121 for E15 and P = 0.3402 for E16). The results also showed the absence of Nogo-A did not cause any obvious change to the ipsilateral projection at the optic chiasm, both for the early generated uncrossed axons at E13 and E14 and the late cohorts at E15-E16, when compared with the wild-type mice (P = 0.4788 for E13; P = 0.188 for E14; P = 0.3152 for E15 and P = 0.432 for E16). These findings support that Nogo-A is not the major isoform to guide the axon divergence in the mouse optic chiasm.
Collapse
Affiliation(s)
- Chao Yu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Medical Examination Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jing Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Liqing Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
15
|
Paredes I, Himmels P, Ruiz de Almodóvar C. Neurovascular Communication during CNS Development. Dev Cell 2018; 45:10-32. [PMID: 29634931 DOI: 10.1016/j.devcel.2018.01.023] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
A precise communication between the nervous and the vascular systems is crucial for proper formation and function of the central nervous system (CNS). Interestingly, this communication does not only occur by neural cells regulating the growth and properties of the vasculature, but new studies show that blood vessels actively control different neurodevelopmental processes. Here, we review the current knowledge on how neurons in particular influence growing blood vessels during CNS development and on how vessels participate in shaping the neural compartment. We also review the identified molecular mechanisms of this bidirectional communication.
Collapse
Affiliation(s)
- Isidora Paredes
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Patricia Himmels
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Carmen Ruiz de Almodóvar
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
16
|
Iobbi C, Korte M, Zagrebelsky M. Nogo-66 Restricts Synaptic Strengthening via Lingo1 and the ROCK2-Cofilin Pathway to Control Actin Dynamics. Cereb Cortex 2018; 27:2779-2792. [PMID: 27166169 DOI: 10.1093/cercor/bhw122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nogo-A restricts long-term potentiation (LTP) at the Schaffer collateral-CA1 pathway in the adult hippocampus via 2 extracellular domains: Nogo-A-Δ20 and Nogo-66. Nogo-66 signals via Nogo Receptor 1 (NgR1) to regulate synaptic function. Whether the NgR1 coreceptors Lingo1 and p75NTR are involved in the signaling in this context is still not known. Moreover, the intracellular cascade mediating the activity of Nogo-66 in restricting LTP is unexplored. We combine electrophysiology and biochemistry in acute hippocampal slices and demonstrate that a loss of function for Lingo1 results in a significant increase in LTP levels at the Schaffer collateral-CA1 pathway, and that Lingo1 is the NgR1 coreceptor mediating the role of Nogo-66 in restricting LTP. Our data show that p75NTR is not involved in mediating the Nogo-66 effect on LTP. Moreover, loss of function for p75NTR and NgR1 equally attenuate LTD, suggesting that p75NTR might mediate the NgR1-dependent regulation of LTD, independently of Nogo-66. Finally, our results indicate that Nogo-66 signaling limits LTP via the ROCK2-Cofilin pathway to control the dynamics of the actin cytoskeleton. The present results elucidate the signaling pathway activated by Nogo-66 to control LTP and contribute to the understanding of how Nogo-A stabilizes the neural circuits to limit activity-dependent plasticity events in the mature hippocampus.
Collapse
Affiliation(s)
- Cristina Iobbi
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38106, Braunschweig, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38106, Braunschweig, Germany.,Helmholtz Centre for Infection Research, AG NIND, 38124, Braunschweig, Germany
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
17
|
Nogo-A interacts with TrkA to alter nerve growth factor signaling in Nogo-A-overexpressing PC12 cells. Cell Signal 2018; 44:20-27. [PMID: 29325876 DOI: 10.1016/j.cellsig.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/11/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
The Nogo-A protein, originally discovered as a potent myelin-associated inhibitor of neurite outgrowth, is also expressed by certain neurons, especially during development and after injury, but its role in neuronal function is not completely known. In this report, we overexpressed Nogo-A in PC12 cells to use as a model to identify potential neuronal signaling pathways affected by endogenously expressed Nogo-A. Unexpectedly, our results show that viability of Nogo-A-overexpressing cells was reduced progressively due to apoptotic cell death following NGF treatment, but only after 24 h. Inhibitors of neutral sphingomyelinase prevented this loss of viability, suggesting that NGF induced the activation of a ceramide-dependent cell death pathway. Nogo-A over-expression also changed NGF-induced phosphorylation of TrkA at tyrosines 490 and 674/675 from sustained to transient, and prevented the regulated intramembrane proteolysis of p75NTR, indicating that Nogo-A was altering the function of the two neurotrophin receptors. Co-immunoprecipitation studies revealed that there was a physical association between TrkA and Nogo-A which appeared to be dependent on interactions in the Nogo-A-specific region of the protein. Taken together, our results indicate that Nogo-A influences NGF-mediated mechanisms involving the activation of TrkA and its interaction with p75NTR.
Collapse
|
18
|
Shepherd DJ, Tsai SY, Cappucci SP, Wu JY, Farrer RG, Kartje GL. The Subventricular Zone Response to Stroke Is Not a Therapeutic Target of Anti-Nogo-A Immunotherapy. J Neuropathol Exp Neurol 2017; 76:683-696. [DOI: 10.1093/jnen/nlx050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Daniel J. Shepherd
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Shih-Yen Tsai
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Stefanie P. Cappucci
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Joanna Y. Wu
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Robert G. Farrer
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| | - Gwendolyn L. Kartje
- From the Loyola University Health Sciences Division, Maywood, Illinois (DJS, SPC, GLK); and Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, Illinois (DJS, S-YT, SPC, JYW, RGF, GLK)
| |
Collapse
|
19
|
Bodrikov V, Welte C, Wiechers M, Weschenfelder M, Kaur G, Shypitsyna A, Pinzon-Olejua A, Bastmeyer M, Stuermer CAO. Substrate properties of zebrafish Rtn4b/Nogo and axon regeneration in the zebrafish optic nerve. J Comp Neurol 2017; 525:2991-3009. [PMID: 28560734 DOI: 10.1002/cne.24253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 11/08/2022]
Abstract
This study explored why lesioned retinal ganglion cell (RGC) axons regenerate successfully in the zebrafish optic nerve despite the presence of Rtn4b, the homologue of the rat neurite growth inhibitor RTN4-A/Nogo-A. Rat Nogo-A and zebrafish Rtn4b possess characteristic motifs (M1-4) in the Nogo-A-specific region, which contains delta20, the most inhibitory region of rat Nogo-A. To determine whether zebrafish M1-4 is inhibitory as rat M1-4 and Nogo-A delta20, proteins were recombinantly expressed and used as substrates for zebrafish single cell RGCs, mouse hippocampal neurons and goldfish, zebrafish and chick retinal explants. When offered as homogenous substrates, neurites of hippocampal neurons and of zebrafish single cell RGCs were inhibited by zebrafish M1-4, rat M1-4, and Nogo-A delta20. Neurite length increased when zebrafish single cell RGCs were treated with receptor-type-specific antagonists and, respectively, with morpholinos (MO) against S1PR2 and S1PR5a-which represent candidate zebrafish Nogo-A receptors. In a stripe assay, however, where M1-4 lanes alternate with polylysine-(Plys)-only lanes, RGC axons from goldfish, zebrafish, and chick retinal explants avoided rat M1-4 but freely crossed zebrafish M1-4 lanes-suggesting that zebrafish M1-4 is growth permissive and less inhibitory than rat M1-4. Moreover, immunostainings and dot blots of optic nerve and myelin showed that expression of Rtn4b is very low in tissue and myelin at 3-5 days after lesion when axons regenerate. Thus, Rtn4b seems to represent no major obstacle for axon regeneration in vivo because it is less inhibitory for RGC axons from retina explants, and because of its low abundance.
Collapse
Affiliation(s)
| | - Cornelia Welte
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Markus Weschenfelder
- Zoological Institute, Cell and Neurobiology Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gurjot Kaur
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | |
Collapse
|
20
|
Quantitative Phosphoproteomics Reveals a Role for Collapsin Response Mediator Protein 2 in PDGF-Induced Cell Migration. Sci Rep 2017. [PMID: 28638064 PMCID: PMC5479788 DOI: 10.1038/s41598-017-04015-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Platelet Derived Growth Factor (PDGF) family of ligands have well established functions in the induction of cell proliferation and migration during development, tissue homeostasis and interactions between tumours and stroma. However, the mechanisms by which these actions are executed are incompletely understood. Here we report a differential phosphoproteomics study, using a SILAC approach, of PDGF-stimulated mouse embryonic fibroblasts (MEFs). 116 phospho-sites were identified as up-regulated and 45 down-regulated in response to PDGF stimulation. These encompass proteins involved in cell adhesion, cytoskeleton regulation and vesicle-mediated transport, significantly expanding the range of proteins implicated in PDGF signalling pathways. Included in the down-regulated class was the microtubule bundling protein Collapsin Response Mediator Protein 2 (CRMP2). In response to stimulation with PDGF, CRMP2 was dephosphorylated on Thr514, an event known to increase CRMP2 activity. This was reversed in the presence of micromolar concentrations of the protein phosphatase inhibitor okadaic acid, implicating PDGF-induced activation of protein phosphatase 1 (PP1) in CRMP2 regulation. Depletion of CRMP2 resulted in impairment of PDGF-mediated cell migration in an in vitro wound healing assay. These results show that CRMP2 is required for PDGF-directed cell migration in vitro.
Collapse
|
21
|
Majerova P, Barath P, Michalicova A, Katina S, Novak M, Kovac A. Changes of Cerebrospinal Fluid Peptides due to Tauopathy. J Alzheimers Dis 2017; 58:507-520. [DOI: 10.3233/jad-170110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- AXON Neuroscience R&D, Bratislava, Slovak Republic
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Alena Michalicova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- AXON Neuroscience R&D, Bratislava, Slovak Republic
| | - Stanislav Katina
- AXON Neuroscience R&D, Bratislava, Slovak Republic
- Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- AXON Neuroscience R&D, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- AXON Neuroscience R&D, Bratislava, Slovak Republic
- Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovak Republic
| |
Collapse
|
22
|
Pernet V. Nogo-A in the visual system development and in ocular diseases. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1300-1311. [PMID: 28408340 DOI: 10.1016/j.bbadis.2017.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 01/02/2023]
Abstract
Nogo-A is a potent myelin-associated inhibitor for neuronal growth and plasticity in the central nervous system (CNS). Its effects are mediated by the activation of specific receptors that intracellularly control cytoskeleton rearrangements, protein synthesis and gene expression. Moreover, Nogo-A has been involved in the development of the visual system and in a variety of neurodegenerative diseases and injury processes that can alter its function. For example, Nogo-A was shown to influence optic nerve myelinogenesis, the formation and maturation of retinal axon projections, and retinal angiogenesis. In adult animals, the inactivation of Nogo-A exerted remarkable effects on visual plasticity. Relieving Nogo-A-induced inhibition increased axonal sprouting after optic nerve lesion and axonal rewiring in the visual cortex of intact adult mice. This review aims at presenting our current knowledge on the role of Nogo-A in the visual system and to discuss how its therapeutic targeting may promote visual improvement in ophthalmic diseases.
Collapse
Affiliation(s)
- Vincent Pernet
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
23
|
Thompson CA, Karelis J, Middleton FA, Gentile K, Coman IL, Radoeva PD, Mehta R, Fremont WP, Antshel KM, Faraone SV, Kates WR. Associations between neurodevelopmental genes, neuroanatomy, and ultra high risk symptoms of psychosis in 22q11.2 deletion syndrome. Am J Med Genet B Neuropsychiatr Genet 2017; 174:295-314. [PMID: 28139055 DOI: 10.1002/ajmg.b.32515] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/07/2016] [Indexed: 11/06/2022]
Abstract
22q11.2 deletion syndrome is a neurogenetic disorder resulting in the deletion of over 40 genes. Up to 40% of individuals with 22q11.2DS develop schizophrenia, though little is known about the underlying mechanisms. We hypothesized that allelic variation in functional polymorphisms in seven genes unique to the deleted region would affect lobar brain volumes, which would predict risk for psychosis in youth with 22q11.2DS. Participants included 56 individuals (30 males) with 22q11.2DS. Anatomic MR images were collected and processed using Freesurfer. Participants were genotyped for 10 SNPs in the COMT, DGCR8, GNB1L, PIK4CA, PRODH, RTN4R, and ZDHHC8 genes. All subjects were assessed for ultra high risk symptoms of psychosis. Allelic variation of the rs701428 SNP of RTN4R was significantly associated with volumetric differences in gray matter of the lingual gyrus and cuneus of the occipital lobe. Moreover, occipital gray matter volumes were robustly associated with ultra high risk symptoms of psychosis in the presence of the G allele of rs701428. Our results suggest that RTN4R, a relatively under-studied gene at the 22q11 locus, constitutes a susceptibility gene for psychosis in individuals with this syndrome through its alteration of the architecture of the brain. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carlie A Thompson
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Jason Karelis
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Frank A Middleton
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,Department of Neuroscience, SUNY Upstate Medical University, Syracuse, New York
| | - Karen Gentile
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, New York
| | - Ioana L Coman
- Department of Computer Science, SUNY Oswego, Oswego, New York
| | - Petya D Radoeva
- Department of Psychiatry, University of Washington, Seattle, Washington
| | - Rashi Mehta
- Department of Radiology, SUNY Upstate Medical University, Syracuse, New York
| | - Wanda P Fremont
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Kevin M Antshel
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,Department of Psychology, Syracuse University, Syracuse, New York
| | - Stephen V Faraone
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
24
|
Boghdadi AG, Teo L, Bourne JA. The Involvement of the Myelin-Associated Inhibitors and Their Receptors in CNS Plasticity and Injury. Mol Neurobiol 2017; 55:1831-1846. [PMID: 28229330 DOI: 10.1007/s12035-017-0433-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022]
Abstract
The limited capacity for the central nervous system (CNS) to repair itself was first described over 100 years ago by Spanish neuroscientist Ramon Y. Cajal. However, the exact mechanisms underlying this failure in neuronal regeneration remain unclear and, as such, no effective therapeutics yet exist. Numerous studies have attempted to elucidate the biochemical and molecular mechanisms that inhibit neuronal repair with increasing evidence suggesting that several inhibitory factors and repulsive guidance cues active during development actually persist into adulthood and may be contributing to the inhibition of repair. For example, in the injured adult CNS, there are various inhibitory factors that impede the outgrowth of neurites from damaged neurons. One of the most potent of these neurite outgrowth inhibitors is the group of proteins known as the myelin-associated inhibitors (MAIs), present mainly on the membranes of oligodendroglia. Several studies have shown that interfering with these proteins can have positive outcomes in CNS injury models by promoting neurite outgrowth and improving functional recovery. As such, the MAIs, their receptors, and downstream effectors are valid drug targets for the treatment of CNS injury. This review will discuss the current literature on MAIs in the context of CNS development, plasticity, and injury. Molecules that interfere with the MAIs and their receptors as potential candidates for the treatment of CNS injury will additionally be introduced in the context of preclinical and clinical trials.
Collapse
Affiliation(s)
- Anthony G Boghdadi
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia
| | - Leon Teo
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia.
| |
Collapse
|
25
|
Divergent Hox Coding and Evasion of Retinoid Signaling Specifies Motor Neurons Innervating Digit Muscles. Neuron 2017; 93:792-805.e4. [PMID: 28190640 DOI: 10.1016/j.neuron.2017.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 01/20/2017] [Indexed: 11/21/2022]
Abstract
The establishment of spinal motor neuron subclass diversity is achieved through developmental programs that are aligned with the organization of muscle targets in the limb. The evolutionary emergence of digits represents a specialized adaptation of limb morphology, yet it remains unclear how the specification of digit-innervating motor neuron subtypes parallels the elaboration of digits. We show that digit-innervating motor neurons can be defined by selective gene markers and distinguished from other LMC neurons by the expression of a variant Hox gene repertoire and by the failure to express a key enzyme involved in retinoic acid synthesis. This divergent developmental program is sufficient to induce the specification of digit-innervating motor neurons, emphasizing the specialized status of digit control in the evolution of skilled motor behaviors. Our findings suggest that the emergence of digits in the limb is matched by distinct mechanisms for specifying motor neurons that innervate digit muscles.
Collapse
|
26
|
Axonal branching in lateral olfactory tract is promoted by Nogo signaling. Sci Rep 2016; 6:39586. [PMID: 28000762 PMCID: PMC5175167 DOI: 10.1038/srep39586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 11/24/2016] [Indexed: 11/22/2022] Open
Abstract
Mitral cells are major projection neurons of the olfactory bulb (OB) that form an axonal bundle known as the lateral olfactory tract (LOT). After axonal bundle formation, collateral branches sprout from primary axons of the LOT. Recently, we identified LOT usher substance (LOTUS) as an endogenous Nogo receptor-1 (NgR1) antagonist and demonstrated that LOTUS contributes to the formation of the LOT axonal bundle. Immunoblots revealed that the expression level of Nogo-A in the OB developmentally increased during axonal collateral formation. Next, we found that the axonal collateral branches were increased in cultured OB neurons from LOTUS-knockout (KO) mice, whereas they were decreased in cultured OB neurons from NgR1-KO mice. Knockdown of Nogo-A in cultured OB neurons reduced the number of axonal collateral branches, suggesting that endogenous Nogo-A induces axonal branching. Finally, the collateral branches of the LOT were increased in LOTUS-KO mice, whereas those in NgR1-KO mice were decreased. Moreover, the abnormal increase of axonal branching observed in LOTUS-KO mice was rescued in the double mutant of LOTUS- and NgR1-KO mice. These findings suggest that Nogo-A and NgR1 interactions may contribute to axonal branching in LOT development.
Collapse
|
27
|
Jia S, Qiao X, Ye J, Fang X, Xu C, Cao Y, Zheng M. Nogo-C regulates cardiomyocyte apoptosis during mouse myocardial infarction. Cell Death Dis 2016; 7:e2432. [PMID: 27763637 PMCID: PMC5133994 DOI: 10.1038/cddis.2016.331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023]
Abstract
Myocardial infarction is caused by insufficient coronary blood supply, which leads to myocardial damage and eventually the heart failure. Molecular mechanisms associated with the loss of cardiomyocytes during myocardial infarction (MI) and ischemia-related cardiac diseases are not yet fully understood. Nogo-C is an endoplasmic reticulum protein ubiquitously expressed in tissues including in the heart, however, the cardiac function of Nogo-C is still unknown. In the present study, we found that Nogo-C was upregulated in mouse hearts after MI, and hypoxic treatments also increased Nogo-C protein level in cardiomyocytes. Adenovirus mediated overexpression of Nogo-C led to cardiomyocyte apoptosis, whereas knockdown of Nogo-c by shRNA protected cardiomyocytes from hypoxia-induced cell apoptosis. Importantly, Nogo-C knockout mice displayed improved cardiac function, smaller infarct area, and less apoptotic cells after MI. Moreover, we found that miR-182 negatively regulated Nogo-C expression and was downregulated during MI, expressing miR-182 in cardiomyocytes protected hypoxia- and Nogo-C-mediated cell apoptosis. Our results indicate that increased cardiac Nogo-C expression is both sufficient and necessary for ischemia-induced cardiomyocyte apoptosis and cardiac dysfunction, suggesting that deregulation of Nogo-C by miRNA may be a potential therapeutic target for ischemia-related heart diseases.
Collapse
Affiliation(s)
- Shi Jia
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100191, China
| | - Xue Qiao
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100191, China
| | - Jingjing Ye
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100191, China
| | - Xuan Fang
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100191, China
| | - Chunling Xu
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100191, China
| | - Yangpo Cao
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100191, China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100191, China
| |
Collapse
|
28
|
Lang DM, Romero-Alemán MDM, Dobson B, Santos E, Monzón-Mayor M. Nogo-A does not inhibit retinal axon regeneration in the lizardGallotia galloti. J Comp Neurol 2016; 525:936-954. [DOI: 10.1002/cne.24112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 06/19/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Dirk M. Lang
- Division of Physiological Sciences, Department of Human Biology; University of Cape Town; Observatory 7925 South Africa
| | - Maria del Mar Romero-Alemán
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| | - Bryony Dobson
- Division of Physiological Sciences, Department of Human Biology; University of Cape Town; Observatory 7925 South Africa
| | - Elena Santos
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| | - Maximina Monzón-Mayor
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| |
Collapse
|
29
|
Zhang SF, Zhou Y, Zhang KJ, Luan JJ, Qi SM. [Neuroprotective effect of Nogo-66 receptor silencing in preterm rats with brain injury caused by intrauterine infection]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1035-1043. [PMID: 27751227 PMCID: PMC7389554 DOI: 10.7499/j.issn.1008-8830.2016.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To investigate the effect of Nogo-66 receptor (NgR) silencing with specific small interfering RNA (siRNA) on brain injury repair in preterm rats with brain injury caused by intrauterine infection and related mechanism of action. METHODS The pregnant Sprague-Dawley rats (with a gestational age of 15 days) were selected, and premature delivery was induced by RU486 or lipopolysaccharide (LPS). The preterm rats delivered by those treated with RU486 were selected as the control group. The preterm rats with brain injury caused by intrauterine infection induced by LPS were divided into model, empty vector, and NgR-siRNA groups, with 36 rats in each group. The rats in the control and model groups were given routine feeding only, and those in the empty vector and NgR-siRNA groups were given an injection of lentiviral empty vector or NgR-siRNA lentivirus via the lateral ventricle on postnatal day 1 (P1) and then fed routinely. On P3, P7, and P14, 8 rats in each group were randomly selected and sacrificed to harvest the brain tissue. RT-PCR was used to measure the mRNA expression of NgR. Western blot was used to to measure the protein expression of active RhoA. The immunofluorescence histochemistry was used to determine the degree of activation of microglial cells and the morphology of oligodendrocyte precursor cells (OPCs). Hematoxylin and eosin staining was used to observe the pathological changes in brain tissue. The behavioral score was evaluated on P30. RESULTS On P3, the NgR-siRNA group had significantly lower mRNA expression of NgR and protein expression of active RhoA in brain tissue than the model and empty vector groups (P<0.05). In each group, the mRNA expression of NgR was positively correlated with the protein expression of active RhoA (P<0.05). The results of immunofluorescence histochemistry showed that on P3, the NgR-siRNA group had a significantly reduced fluorescence intensity of the microglial cells labeled with CD11b compared with the model and empty vector groups (P<0.05). The OPCs labeled with O4 antibody in the four groups were mainly presented with tripolar cell morphology. The results of pathological examination showed a normal structure of white matter with clear staining in the periventriclar area in the control group, a loose structure of white matter with disorganized fibers and softening lesions in the model and empty vector groups, and a loose structure of white matter with slightly disorganized fibers, slight gliocyte proliferation, and no significant necrotic lesions in the NgR-siRNA group. As for the behavioral score, compared with the model and empty vector groups, the NgR-siRNA group had a higher score in the suspension test, a longer total activity distance, and greater mean velocity and number of squares crossed, as well as a shorter time of slope test and a shorter time and distance of activity in the central area (P<0.05), while there were no significant differences in these parameters between the NgR-siRNA and control groups (P>0.05). CONCLUSIONS NgR silencing with specific siRNA can effectively silence the expression of NgR in pertem rats with brain injury caused by interauterine infection and has a significant neuroprotective effect in brain injury repair.
Collapse
Affiliation(s)
- Shi-Fa Zhang
- Department of Pediatrics, First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| | | | | | | | | |
Collapse
|
30
|
Su D, Liu H, Chan SO, Wang J. Neuronal Nogo-A in New-born Retinal Ganglion Cells: Implication for the Formation of the Age-related Fiber Order in the Optic Tract. Anat Rec (Hoboken) 2016; 299:1027-36. [DOI: 10.1002/ar.23379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Dongqiang Su
- Department of Anatomy and Embryology, School of Basic Medical Sciences; Peking University Health Science Center; Beijing 100191 People's Republic of China
| | - Huaicun Liu
- Department of Anatomy and Embryology, School of Basic Medical Sciences; Peking University Health Science Center; Beijing 100191 People's Republic of China
| | - Sun-on Chan
- School of Biomedical Sciences, Faculty of Medicine; the Chinese University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Jun Wang
- Department of Anatomy and Embryology, School of Basic Medical Sciences; Peking University Health Science Center; Beijing 100191 People's Republic of China
| |
Collapse
|
31
|
Lee JY, Biemond M, Petratos S. Axonal degeneration in multiple sclerosis: defining therapeutic targets by identifying the causes of pathology. Neurodegener Dis Manag 2015; 5:527-48. [DOI: 10.2217/nmt.15.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current therapeutics in multiple sclerosis (MS) target the putative inflammation and immune attack on CNS myelin. Despite their effectiveness in blunting the relapse rate in MS patients, such therapeutics do not prevent MS disease progression. Importantly, specific clinical dilemma arises through inability to predict MS progression and thereby therapeutically target axonal injury during MS, limiting permanent disability. The current review identifies immune and neurobiological principles that govern the sequelae of axonal degeneration during MS disease progression. Defining the specific disease arbiters, inflammatory and autoimmune, oligodendrocyte dystrophy and degenerative myelin, we discuss a basis for a molecular mechanism in axons that may be targeted therapeutically, in spatial and temporal manner to limit axonal degeneration and thereby halt progression of MS.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Melissa Biemond
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| |
Collapse
|
32
|
Angebault C, Guichet PO, Talmat-Amar Y, Charif M, Gerber S, Fares-Taie L, Gueguen N, Halloy F, Moore D, Amati-Bonneau P, Manes G, Hebrard M, Bocquet B, Quiles M, Piro-Mégy C, Teigell M, Delettre C, Rossel M, Meunier I, Preising M, Lorenz B, Carelli V, Chinnery PF, Yu-Wai-Man P, Kaplan J, Roubertie A, Barakat A, Bonneau D, Reynier P, Rozet JM, Bomont P, Hamel CP, Lenaers G. Recessive Mutations in RTN4IP1 Cause Isolated and Syndromic Optic Neuropathies. Am J Hum Genet 2015; 97:754-60. [PMID: 26593267 DOI: 10.1016/j.ajhg.2015.09.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/25/2015] [Indexed: 12/28/2022] Open
Abstract
Autosomal-recessive optic neuropathies are rare blinding conditions related to retinal ganglion cell (RGC) and optic-nerve degeneration, for which only mutations in TMEM126A and ACO2 are known. In four families with early-onset recessive optic neuropathy, we identified mutations in RTN4IP1, which encodes a mitochondrial ubiquinol oxydo-reductase. RTN4IP1 is a partner of RTN4 (also known as NOGO), and its ortholog Rad8 in C. elegans is involved in UV light response. Analysis of fibroblasts from affected individuals with a RTN4IP1 mutation showed loss of the altered protein, a deficit of mitochondrial respiratory complex I and IV activities, and increased susceptibility to UV light. Silencing of RTN4IP1 altered the number and morphogenesis of mouse RGC dendrites in vitro and the eye size, neuro-retinal development, and swimming behavior in zebrafish in vivo. Altogether, these data point to a pathophysiological mechanism responsible for RGC early degeneration and optic neuropathy and linking RTN4IP1 functions to mitochondrial physiology, response to UV light, and dendrite growth during eye maturation.
Collapse
Affiliation(s)
- Claire Angebault
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Pierre-Olivier Guichet
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Yasmina Talmat-Amar
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Majida Charif
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France; INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France
| | - Sylvie Gerber
- INSERM U1163, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Lucas Fares-Taie
- INSERM U1163, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Naig Gueguen
- INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France
| | - François Halloy
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - David Moore
- Institute of Genetic Medicine, Centre for Life, Newcastle University and Wellcome Trust Centre for Mitochondrial Research, NE1 3BZ Newcastle upon Tyne, UK
| | - Patrizia Amati-Bonneau
- INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France
| | - Gael Manes
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Maxime Hebrard
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Béatrice Bocquet
- Centre de Référence pour les Maladies Sensorielles Génétiques, Hôpital Gui de Chauliac, CHRU Montpellier, 34090 Montpellier, France
| | - Mélanie Quiles
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Camille Piro-Mégy
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Marisa Teigell
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Cécile Delettre
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Mireille Rossel
- INSERM U710, Laboratoire MMDN EPHE, 34090 Montpellier, France
| | - Isabelle Meunier
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France; Centre de Référence pour les Maladies Sensorielles Génétiques, Hôpital Gui de Chauliac, CHRU Montpellier, 34090 Montpellier, France
| | - Markus Preising
- Department of Ophthalmology, Justus-Liebig University, 35392 Giessen, Germany
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig University, 35392 Giessen, Germany
| | - Valerio Carelli
- IRCCS, Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139 Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Centre for Life, Newcastle University and Wellcome Trust Centre for Mitochondrial Research, NE1 3BZ Newcastle upon Tyne, UK
| | - Patrick Yu-Wai-Man
- Institute of Genetic Medicine, Centre for Life, Newcastle University and Wellcome Trust Centre for Mitochondrial Research, NE1 3BZ Newcastle upon Tyne, UK; Newcastle Eye Centre, Royal Victoria Infirmary, NE1 4LP Newcastle upon Tyne, UK
| | - Josseline Kaplan
- INSERM U1163, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Agathe Roubertie
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France; Centre de Référence pour les Maladies Sensorielles Génétiques, Hôpital Gui de Chauliac, CHRU Montpellier, 34090 Montpellier, France
| | - Abdelhamid Barakat
- Laboratoire de Génétique Moléculaire Humaine, Département de Recherche Scientifique, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| | - Dominique Bonneau
- INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France
| | - Pascal Reynier
- INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France
| | | | - Pascale Bomont
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Christian P Hamel
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France; Centre de Référence pour les Maladies Sensorielles Génétiques, Hôpital Gui de Chauliac, CHRU Montpellier, 34090 Montpellier, France
| | - Guy Lenaers
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, 34090 Montpellier, France; INSERM U1083, CNRS 6214, Département de Biochimie et Génétique, Université LUNAM and Centre Hospitalier Universitaire, 49933 Angers, France.
| |
Collapse
|
33
|
Pagella P, Miran S, Mitsiadis T. Analysis of Developing Tooth Germ Innervation Using Microfluidic Co-culture Devices. J Vis Exp 2015:e53114. [PMID: 26327218 DOI: 10.3791/53114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Innervation plays a key role in the development, homeostasis and regeneration of organs and tissues. However, the mechanisms underlying these phenomena are not well understood yet. In particular, the role of innervation in tooth development and regeneration is neglected. Several in vivo studies have provided important information about the patterns of innervation of dental tissues during development and repair processes of various animal models. However, most of these approaches are not optimal to highlight the molecular basis of the interactions between nerve fibres and target organs and tissues. Co-cultures constitute a valuable method to investigate and manipulate the interactions between nerve fibres and teeth in a controlled and isolated environment. In the last decades, conventional co-cultures using the same culture medium have been performed for very short periods (e.g., two days) to investigate the attractive or repulsive effects of developing oral and dental tissues on sensory nerve fibres. However, extension of the culture period is required to investigate the effects of innervation on tooth morphogenesis and cytodifferentiation. Microfluidics systems allow co-cultures of neurons and different cell types in their appropriate culture media. We have recently demonstrated that trigeminal ganglia (TG) and teeth are able to survive for a long period of time when co-cultured in microfluidic devices, and that they maintain in these conditions the same innervation pattern that they show in vivo. On this basis, we describe how to isolate and co-culture developing trigeminal ganglia and tooth germs in a microfluidic co-culture system.This protocol describes a simple and flexible way to co-culture ganglia/nerves and target tissues and to study the roles of specific molecules on such interactions in a controlled and isolated environment.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich
| | - Shayee Miran
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich
| | - Tim Mitsiadis
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich;
| |
Collapse
|
34
|
Sui YP, Zhang XX, Lu JL, Sui F. New Insights into the Roles of Nogo-A in CNS Biology and Diseases. Neurochem Res 2015; 40:1767-85. [PMID: 26266872 DOI: 10.1007/s11064-015-1671-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022]
Abstract
Nogos have become a hot topic for its well-known number Nogo-A's big role in clinical matters. It has been recognized that the expression of Nogo-A and the receptor NgR1 inhibit the neuron's growth after CNS injuries or the onset of the MS. The piling evidence supports the notion that the Nogo-A is also involved in the synaptic plasticity, which was shown to negatively regulate the strength of synaptic transmission. The occurrence of significant schizophrenia-like behavioral phenotypes in Nogo-A KO rats also added strong proof to this conclusion. This review mainly focuses on the structure of Nogo-A and its corresponding receptor-NgR1, its intra- and extra-cellular signaling, together with its major physiological functions such as regulation of migration and distribution and its related diseases like stroke, AD, ALS and so on.
Collapse
Affiliation(s)
- Yun-Peng Sui
- Institute of Chinese Material Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | | | | | | |
Collapse
|
35
|
Kim H, W Caspar T, Shah SB, Hsieh AH. Effects of proinflammatory cytokines on axonal outgrowth from adult rat lumbar dorsal root ganglia using a novel three-dimensional culture system. Spine J 2015; 15:1823-31. [PMID: 25797812 DOI: 10.1016/j.spinee.2015.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/11/2015] [Accepted: 03/16/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Degeneration of the intervertebral disc is often associated with low back pain and increased infiltration of nerve fibers originating from dorsal root ganglia (DRG). The degenerated disc is also characterized by the presence of proinflammatory cytokines, which may influence axonal outgrowth. Toward an improved understanding of the growth of DRG neurons into compliant extracellular matrices, we developed a novel experimental system to measure axonal outgrowth of adult rat lumbar DRG neurons within three-dimensional (3D) collagen hydrogels and used this system to examine the effects of interleukin 1β (IL-1β) and tumor necrosis factor (TNF)-α treatment. PURPOSE The aim was to investigate the effects of proinflammatory cytokines on 3D neuronal growth into collagen matrices. STUDY DESIGN This was an in vitro study of neurite outgrowth from adult rat lumbar DRG into collagen gels in response to IL-1β and TNF-α. METHODS Lumbar DRG were obtained from adult Sprague Dawley rats, bisected to expose cell bodies and placed onto collagen gel constructs prepared in 24-well Transwell inserts. Dorsal root ganglia were then treated with nerve growth factor (NGF)-free Neurobasal media (negative control) or NGF-supplemented media containing 0, 1, and 10 ng/mL of IL-1β and TNF-α. After 7 days, collagen gel-DRG constructs were immunostained for phosphorylated neurofilament, an axonal marker. Simple Neurite Tracer (Fiji/ImageJ) was used to quantify 3D axonal outgrowth from confocal image stacks. Data were analyzed using one-way analysis of variance, with Tukey HSD post hoc correction at a level of p<.05. RESULTS Immunostaining showed robust axonal outgrowth into collagen gels from all NGF-treated DRG. The negative control demonstrated very few and short neurites. Tumor necrosis factor-α (1 and 10 ng/mL) significantly inhibited axonal outgrowth compared with NGF-only media (p<.026 and p<.02, respectively). After IL-1β treatment, average axon length was 10% lower at 1 ng/mL and 7.5% higher at 10 ng/mL, but these differences were not statistically significant. Among cytokine treatments, however, average axon length in the IL-1β (10 ng/mL) group was significantly higher than that in the other groups (p<.05). CONCLUSIONS A novel 3D collagen gel culture system was used to investigate factors modulating neuronal ingrowth. Our results showed that NGF was necessary to promote neurite growth into collagen gels. In the presence of proinflammatory cytokines, high concentrations of IL-1β induced significantly higher axonal outgrowth than TNF-α and low levels of IL-1β.
Collapse
Affiliation(s)
- Hyunchul Kim
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | - Tyler W Caspar
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Adam H Hsieh
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA; Department of Orthopaedics, University of Maryland, Baltimore, 22 S. Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
36
|
Scapin G, Salice P, Tescari S, Menna E, De Filippis V, Filippini F. Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:621-32. [DOI: 10.1016/j.nano.2014.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/10/2014] [Accepted: 11/07/2014] [Indexed: 12/28/2022]
|
37
|
Davis RVN, Lamont SJ, Rothschild MF, Persia ME, Ashwell CM, Schmidt CJ. Transcriptome analysis of post-hatch breast muscle in legacy and modern broiler chickens reveals enrichment of several regulators of myogenic growth. PLoS One 2015; 10:e0122525. [PMID: 25821972 PMCID: PMC4379050 DOI: 10.1371/journal.pone.0122525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 02/21/2015] [Indexed: 11/19/2022] Open
Abstract
Agriculture provides excellent model systems for understanding how selective pressure, as applied by humans, can affect the genomes of plants and animals. One such system is modern poultry breeding in which intensive genetic selection has been applied for meat production in the domesticated chicken. As a result, modern meat-type chickens (broilers) exhibit enhanced growth, especially of the skeletal muscle, relative to their legacy counterparts. Comparative studies of modern and legacy broiler chickens provide an opportunity to identify genes and pathways affected by this human-directed evolution. This study used RNA-seq to compare the transcriptomes of a modern and a legacy broiler line to identify differentially enriched genes in the breast muscle at days 6 and 21 post-hatch. Among the 15,945 genes analyzed, 10,841 were expressed at greater than 0.1 RPKM. At day 6 post-hatch 189 genes, including several regulators of myogenic growth and development, were differentially enriched between the two lines. The transcriptional profiles between lines at day 21 post-hatch identify 193 genes differentially enriched and still include genes associated with myogenic growth. This study identified differentially enriched genes that regulate myogenic growth and differentiation between the modern and legacy broiler lines. Specifically, differences in the ratios of several positive (IGF1, IGF1R, WFIKKN2) and negative (MSTN, ACE) myogenic growth regulators may help explain the differences underlying the enhanced growth characteristics of the modern broilers.
Collapse
Affiliation(s)
- Richard V. N. Davis
- Dept. Biological Sciences, University of Delaware, Newark, Delaware, 19716, United States of America
| | - Susan J. Lamont
- Dept. of Animal Science, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Max F. Rothschild
- Dept. of Animal Science, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Michael E. Persia
- Dept. of Animal Science, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Chris M. Ashwell
- Dept. of Poultry Science, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Carl J. Schmidt
- Dept. of Animal and Food Sciences, University of Delaware, Newark, Delaware, 19716, United States of America
- * E-mail:
| |
Collapse
|
38
|
Ramasamy S, Yu F, Hong Yu Y, Srivats H, Dawe GS, Ahmed S. NogoR1 and PirB signaling stimulates neural stem cell survival and proliferation. Stem Cells 2015; 32:1636-48. [PMID: 24449409 DOI: 10.1002/stem.1645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/11/2013] [Indexed: 11/07/2022]
Abstract
Neural stem cells (NSCs) and neural progenitors (NPs) in the mammalian neocortex give rise to the main cell types of the nervous system. The biological behavior of these NSCs and NPs is regulated by extracellular niche derived autocrine-paracrine signaling factors on a developmental timeline. Our previous reports [Plos One 2010;5:e15341; J Neurochem 2011;117:565-578] have shown that chondroitin sulfate proteoglycan and ApolipoproteinE are autocrine-paracrine survival factors for NSCs. NogoA, a myelin related protein, is expressed in the cortical ventricular zones where NSCs reside. However, the functional role of Nogo signaling proteins in NSC behavior is not completely understood. In this study, we show that NogoA receptors, NogoR1 and PirB, are expressed in the ventricular zone where NSCs reside between E10.5 and 14.5 but not at E15.5. Nogo ligands stimulate NSC survival and proliferation in a dosage-dependent manner in vitro. NogoR1 and PirB are low and high affinity Nogo receptors, respectively and are responsible for the effects of Nogo ligands on NSC behavior. Inhibition of autocrine-paracrine Nogo signaling blocks NSC survival and proliferation. In NSCs, NogoR1 functions through Rho whereas PirB uses Shp1/2 signaling pathways to control NSC behavior. Taken together, this work suggests that Nogo signaling is an important pathway for survival of NSCs.
Collapse
Affiliation(s)
- Srinivas Ramasamy
- Institute of Medical Biology, 8A Biomedical Grove, #05-37 Immunos, Singapore
| | | | | | | | | | | |
Collapse
|
39
|
Lynch AM, Cleveland M, Prinjha R, Kumar U, Stubbs R, Wuerthner J. Non-clinical development of ozanezumab: a humanised antibody targeting the amino terminus of neurite outgrowth inhibitor A (Nogo-A). Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00179j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ozanezumab (GSK1223249) is a humanised, Fc-disabled, monoclonal antibody (mAb) which targets the amino terminus of Neurite Outgrowth Inhibitor A (Nogo-A) which is currently being developed for the treatment of amyotrophic lateral sclerosis (ALS).
Collapse
|
40
|
A novel centrosome and microtubules associated subcellular localization of Nogo-A: implications for neuronal development. Int J Biochem Cell Biol 2014; 57:1-6. [PMID: 25286302 DOI: 10.1016/j.biocel.2014.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/07/2014] [Accepted: 09/25/2014] [Indexed: 11/21/2022]
Abstract
Oligodendrocyte-derived neurite-outgrowth inhibitor Nogo-A and its restriction mechanism are well-known. Recently, Nogo-A is reported to be abundantly expressed in neurons, however, the concrete link between neuronal Nogo-A and neuronal development is poorly understood. In the present study, we used Neuro2A and COS7 cell lines to clarify that Nogo-A largely distributed in the centrosome and microtubules-rich regions. When endogenous Nogo-A was down-regulated with RNA interference, the percentage of cell differentiation and the total neurite length of Neuro2A exposed to valproic acid (VPA) decreased sharply. Furthermore, in primary neurons, acetylated α-tubulin decreased at the tips of neurites where endogenous Nogo-A was still highly expressed. In HEK293FT cell lines, Nogo-A overexpression could redistribute acetylated α-tubulin but not change the level of α-tubulin. Together, our data discovered that centrosome- and microtubules-localized Nogo-A positively regulates neuronal differentiation and neurite outgrowth of Neuro2A cell lines, implicating the essential roles of subcellular Nogo-A in neuronal development.
Collapse
|
41
|
Cell type-specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve. Cell Death Differ 2014; 22:323-35. [PMID: 25257170 DOI: 10.1038/cdd.2014.147] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 01/23/2023] Open
Abstract
Nogo-A is a well-known myelin-enriched inhibitory protein for axonal growth and regeneration in the central nervous system (CNS). Besides oligodendrocytes, our previous data revealed that Nogo-A is also expressed in subpopulations of neurons including retinal ganglion cells, in which it can have a positive role in the neuronal growth response after injury, through an unclear mechanism. In the present study, we analyzed the opposite roles of glial versus neuronal Nogo-A in the injured visual system. To this aim, we created oligodendrocyte (Cnp-Cre(+/-)xRtn4/Nogo-A(flox/flox)) and neuron-specific (Thy1-Cre(tg+)xRtn4(flox/flox)) conditional Nogo-A knock-out (KO) mouse lines. Following complete intraorbital optic nerve crush, both spontaneous and inflammation-mediated axonal outgrowth was increased in the optic nerves of the glia-specific Nogo-A KO mice. In contrast, neuron-specific deletion of Nogo-A in a KO mouse line or after acute gene recombination in retinal ganglion cells mediated by adeno-associated virus serotype 2.Cre virus injection in Rtn4(flox/flox) animals decreased axon sprouting in the injured optic nerve. These results therefore show that selective ablation of Nogo-A in oligodendrocytes and myelin in the optic nerve is more effective at enhancing regrowth of injured axons than what has previously been observed in conventional, complete Nogo-A KO mice. Our data also suggest that neuronal Nogo-A in retinal ganglion cells could participate in enhancing axonal sprouting, possibly by cis-interaction with Nogo receptors at the cell membrane that may counteract trans-Nogo-A signaling. We propose that inactivating Nogo-A in glia while preserving neuronal Nogo-A expression may be a successful strategy to promote axonal regeneration in the CNS.
Collapse
|
42
|
Pagella P, Neto E, Jiménez-Rojo L, Lamghari M, Mitsiadis TA. Microfluidics co-culture systems for studying tooth innervation. Front Physiol 2014; 5:326. [PMID: 25202282 PMCID: PMC4142415 DOI: 10.3389/fphys.2014.00326] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 01/01/2023] Open
Abstract
Innervation plays a key role in the development and homeostasis of organs and tissues of the orofacial complex. Among these structures, teeth are peculiar organs as they are not innervated until later stages of development. Furthermore, the implication of neurons in tooth initiation, morphogenesis and differentiation is still controversial. Co-cultures constitute a valuable method to investigate and manipulate the interactions of nerve fibers with their target organs in a controlled and isolated environment. Conventional co-cultures between neurons and their target tissues have already been performed, but these cultures do not offer optimal conditions that are closely mimicking the in vivo situation. Indeed, specific cell populations require different culture media in order to preserve their physiological properties. In this study we evaluate the usefulness of a microfluidics system for co-culturing mouse trigeminal ganglia and developing teeth. This device allows the application of specific media for the appropriate development of both neuronal and dental tissues. The results show that mouse trigeminal ganglia and teeth survive for long culture periods in this microfluidics system, and that teeth maintain the attractive or repulsive effect on trigeminal neurites that has been observed in vivo. Neurites are repealed when co-cultured with embryonic tooth germs, while postnatal teeth exert an attractive effect to trigeminal ganglia-derived neurons. In conclusion, microfluidics system devices provide a valuable tool for studying the behavior of neurons during the development of orofacial tissues and organs, faithfully imitating the in vivo situation.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Estrela Neto
- NEW Therapies Group, INEB - Instituto de Engenharia Biomédica, Universidade do Porto Porto, Portugal ; Faculdade de Medicina da Universidade do Porto Porto, Portugal
| | - Lucia Jiménez-Rojo
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Meriem Lamghari
- NEW Therapies Group, INEB - Instituto de Engenharia Biomédica, Universidade do Porto Porto, Portugal ; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| | - Thimios A Mitsiadis
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| |
Collapse
|
43
|
Petrasek T, Prokopova I, Bahnik S, Schonig K, Berger S, Vales K, Tews B, Schwab ME, Bartsch D, Stuchlik A. Nogo-A downregulation impairs place avoidance in the Carousel maze but not spatial memory in the Morris water maze. Neurobiol Learn Mem 2014; 107:42-9. [DOI: 10.1016/j.nlm.2013.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022]
|
44
|
Craveiro LM, Weinmann O, Roschitzki B, Gonzenbach RR, Zörner B, Montani L, Yee BK, Feldon J, Willi R, Schwab ME. Infusion of anti-Nogo-A antibodies in adult rats increases growth and synapse related proteins in the absence of behavioral alterations. Exp Neurol 2013; 250:52-68. [DOI: 10.1016/j.expneurol.2013.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
|
45
|
Schmandke A, Mosberger AC, Schmandke A, Celen Z, Schwab ME. The neurite growth inhibitory protein Nogo-A has diverse roles in adhesion and migration. Cell Adh Migr 2013; 7:451-4. [PMID: 24401759 DOI: 10.4161/cam.27164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Andre Schmandke
- Brain Research Institute; University of Zurich and Department of Health Sciences and Technology; ETH Zurich, Winterthurerstrasse 190; Zurich, Switzerland
| | - Alice C Mosberger
- Brain Research Institute; University of Zurich and Department of Health Sciences and Technology; ETH Zurich, Winterthurerstrasse 190; Zurich, Switzerland
| | - Antonio Schmandke
- Brain Research Institute; University of Zurich and Department of Health Sciences and Technology; ETH Zurich, Winterthurerstrasse 190; Zurich, Switzerland
| | - Zeliha Celen
- Brain Research Institute; University of Zurich and Department of Health Sciences and Technology; ETH Zurich, Winterthurerstrasse 190; Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute; University of Zurich and Department of Health Sciences and Technology; ETH Zurich, Winterthurerstrasse 190; Zurich, Switzerland
| |
Collapse
|
46
|
Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro. Neuroscience 2013; 256:456-66. [PMID: 24157929 DOI: 10.1016/j.neuroscience.2013.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/23/2013] [Accepted: 10/13/2013] [Indexed: 01/10/2023]
Abstract
Nogo-A is a transmembrane protein originally discovered in myelin, produced by postnatal CNS oligodendrocytes. Nogo-A induces growth cone collapse and inhibition of axonal growth in the injured adult CNS. In the intact CNS, Nogo-A functions as a negative regulator of growth and plasticity. Nogo-A is also expressed by certain neurons. Neuronal Nogo-A depresses long-term potentiation in the hippocampus and modulates neurite adhesion and fasciculation during development in mice. Here we show that Nogo-A is present in neurons derived from human midbrain (Lund human mesencephalic (LUHMES) cell line), as well as in embryonic and postnatal mouse midbrain (dopaminergic) neurons. In LUHMES cells, Nogo-A was upregulated threefold upon differentiation and neurite extension. Nogo-A was localized intracellularly in differentiated LUHMES cells. Cultured midbrain (dopaminergic) neurons from Nogo-A knock-out mice exhibited decreased numbers of neurites and branches when compared with neurons from wild-type (WT) mice. However, this phenotype was not observed when the cultures from WT mice were treated with an antibody neutralizing plasma membrane Nogo-A. In vivo, neither the regeneration of nigrostriatal tyrosine hydroxylase fibers, nor the survival of nigral dopaminergic neurons after partial 6-hydroxydopamine lesions was affected by Nogo-A deletion. These results indicate that during maturation of cultured midbrain (dopaminergic) neurons, intracellular Nogo-A supports neurite growth initiation and branch formation.
Collapse
|
47
|
Zhu G, Sun L, Keithley RB, Dovichi NJ. Capillary isoelectric focusing-tandem mass spectrometry and reversed-phase liquid chromatography-tandem mass spectrometry for quantitative proteomic analysis of differentiating PC12 cells by eight-plex isobaric tags for relative and absolute quantification. Anal Chem 2013; 85:7221-9. [PMID: 23822771 DOI: 10.1021/ac4009868] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the application of capillary isoelectric focusing for quantitative analysis of a complex proteome. Biological duplicates were generated from PC12 cells at days 0, 3, 7, and 12 following treatment with nerve growth factor. These biological duplicates were digested with trypsin, labeled using eight-plex isobaric tags for relative and absolute quantification (iTRAQ) chemistry, and pooled. The pooled peptides were separated into 25 fractions using reversed-phase liquid chromatography (RPLC). Technical duplicates of each fraction were separated by capillary isoelectric focusing (cIEF) using a set of amino acids as ampholytes. The cIEF column was interfaced to an Orbitrap Velos mass spectrometer with an electrokinetically pumped sheath-flow nanospray interface. This HPLC-cIEF-electrospray-tandem mass spectrometry (ESI-MS/MS) approach identified 835 protein groups and produced 2,329 unique peptides IDs. The biological duplicates were analyzed in parallel using conventional strong-cation exchange (SCX)-RPLC-ESI-MS/MS. The iTRAQ peptides were first separated into eight fractions using SCX. Each fraction was then analyzed by RPLC-ESI-MS/MS. The SCX-RPLC approach generated 1,369 protein groups and 3,494 unique peptide IDs. For protein quantitation, 96 and 198 differentially expressed proteins were obtained with RPLC-cIEF and SCX-RPLC, respectively. The combined set identified 231 proteins. Protein expression changes measured by RPLC-cEIF and SCX-RPLC were highly correlated.
Collapse
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | | | | |
Collapse
|
48
|
Kempf A, Schwab ME. Nogo-A Represses Anatomical and Synaptic Plasticity in the Central Nervous System. Physiology (Bethesda) 2013; 28:151-63. [DOI: 10.1152/physiol.00052.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nogo-A was initially discovered as a myelin-associated growth inhibitory protein limiting axonal regeneration after central nervous system (CNS) injury. This review summarizes current knowledge on how myelin and neuronal Nogo-A and its receptors exert physiological functions ranging from the regulation of growth suppression to synaptic plasticity in the developing and adult intact CNS.
Collapse
Affiliation(s)
- Anissa Kempf
- Brain Research Institute, University of Zurich, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Abstract
Nogo-A is an important axonal growth inhibitor in the adult and developing CNS. In vitro, Nogo-A has been shown to inhibit migration and cell spreading of neuronal and nonneuronal cell types. Here, we studied in vivo and in vitro effects of Nogo-A on vascular endothelial cells during angiogenesis of the early postnatal brain and retina in which Nogo-A is expressed by many types of neurons. Genetic ablation or virus-mediated knock down of Nogo-A or neutralization of Nogo-A with an antibody caused a marked increase in the blood vessel density in vivo. In culture, Nogo-A inhibited spreading, migration, and sprouting of primary brain microvascular endothelial cells (MVECs) in a dose-dependent manner and induced the retraction of MVEC lamellipodia and filopodia. Mechanistically, we show that only the Nogo-A-specific Delta 20 domain exerts inhibitory effects on MVECs, but the Nogo-66 fragment, an inhibitory domain common to Nogo-A, -B, and -C, does not. Furthermore, the action of Nogo-A Delta 20 on MVECs required the intracellular activation of the Ras homolog gene family, member A (Rho-A)-associated, coiled-coil containing protein kinase (ROCK)-Myosin II pathway. The inhibitory effects of early postnatal brain membranes or cultured neurons on MVECs were relieved significantly by anti-Nogo-A antibodies. These findings identify Nogo-A as an important negative regulator of developmental angiogenesis in the CNS. They may have important implications in CNS pathologies involving angiogenesis such as stroke, brain tumors, and retinopathies.
Collapse
|
50
|
Inhibition of retinal ganglion cell axonal outgrowth through the Amino-Nogo-A signaling pathway. Neurochem Res 2013; 38:1365-74. [PMID: 23579387 DOI: 10.1007/s11064-013-1032-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/03/2013] [Accepted: 03/26/2013] [Indexed: 01/10/2023]
Abstract
Nogo-A is a myelin-derived inhibitor playing a pivotal role in the prevention of axonal regeneration. A functional domain of Nogo-A, Amino-Nogo, exerts an inhibitory effect on axonal regeneration, although the mechanism is unclear. The present study investigated the role of the Amino-Nogo-integrin signaling pathway in primary retinal ganglion cells (RGCs) with respect to axonal outgrowth, which is required for axonal regeneration. Immunohistochemistry showed that integrin αv, integrin α5 and FAK were widely expressed in the visual system. Thy-1 and GAP-43 immunofluorescence showed that axonal outgrowth of RGCs was promoted by Nogo-A siRNA and a peptide antagonist of the Nogo-66 functional domain of Nogo-A (Nep1-40), and inhibited by a recombinant rat Nogo-A-Fc chimeric protein (Δ20). Western blotting revealed increased integrin αv and p-FAK expression in Nogo-A siRNA group, decreased integrin αv expression in Δ20 group and decreased p-FAK expression in Nep1-40 group. Integrin α5 expression was not changed in any group. RhoA G-LISA showed that RhoA activation was inhibited by Nogo-A siRNA and Δ20, but increased by Nep1-40 treatment. These results suggest that Amino-Nogo inhibits RGC axonal outgrowth primarily through the integrin αv signaling pathway.
Collapse
|