1
|
Andrieu C, Danesin C, Montigny A, Rey M, Baqué K, Bibonne A, Alfandari D, Theveneau E. Delamination of chick cephalic neural crest cells requires an MMP14-dependent downregulation of Cadherin-6B. Differentiation 2025; 142:100836. [PMID: 39828493 DOI: 10.1016/j.diff.2025.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Matrix Metalloproteinases (MMPs) are known for their role in matrix remodeling via their catalytic activities in the extracellular space. Interestingly, these enzymes can also play less expected roles in cell survival, polarity and motility via other substrates (e.g. receptors, chemokines), through an intracellular localization (e.g. the nucleus) or via non-catalytic functions. Most of these unconventional functions are yet to be functionally validated in a physiological context. Here, we used the delamination of the cephalic Neural Crest (NC) cells of the chicken embryo, a well described experimental model of epithelial-mesenchymal transition (EMT), to study the in vivo function of MMP14 (a.k.a MT1-MMP). MMP14 is a transmembrane MMP known for its importance in cell invasion and often associated with poor prognosis in cancer. We found that MMP14 is expressed and required for cephalic NC delamination. More specifically, MMP14 is necessary for the downregulation of Cadherin-6B and a co-inhibition of Cadherin-6B and MMP14 expressions is sufficient to restore NC delamination. Cadherin-6B is normally repressed by Snail2. Surprisingly, in MMP14 knockdown this lack of Cadherin-6B repression occurs in the context of a normal expression and nuclear import of Snail2. We further show that MMP14 is not detected in the nucleus and that Snail2 and MMP14 do not physically interact. These data reveals that a yet to be identified MMP14-dependent signaling event is required for the Snail2-dependent repression of Cadherin-6B. In conclusion, this work provides an in vivo example of atypical regulation of Cadherins by an MMP which emphasizes the importance and diversity of non-canonical functions of MMPs.
Collapse
Affiliation(s)
- Cyril Andrieu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Cathy Danesin
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Audrey Montigny
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Marie Rey
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Klara Baqué
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Anne Bibonne
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Dominique Alfandari
- University of Massachusetts Amherst, Dept. of Veterinary and Animal Sciences, Amherst, MA, 01003, USA
| | - Eric Theveneau
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
2
|
Guo D, Yao B, Shao W, Zuo J, Chang Z, Shi J, Hu N, Bao S, Chen M, Fan X, Li X. The Critical Role of YAP/BMP/ID1 Axis on Simulated Microgravity-Induced Neural Tube Defects in Human Brain Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410188. [PMID: 39656892 PMCID: PMC11792043 DOI: 10.1002/advs.202410188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Integrated biochemical and biophysical signals regulate embryonic development. Correct neural tube formation is critical for the development of central nervous system. However, the role of microgravity in neurodevelopment and its underlying molecular mechanisms remain unclear. In this study, the effects of stimulated microgravity (SMG) on the development of human brain organoids are investigated. SMG impairs N-cadherin-based adherens junction formation, leading to neural tube defects associated with dysregulated self-renewal capacity and neuroepithelial disorganization in human brain organoids. Bulk gene expression analyses reveal that SMG alters Hippo and BMP signaling in brain organoids. The neuropathological deficits in SMG-treated organoids can be rescued by regulating YAP/BMP/ID1 axis. Furthermore, sing-cell RNA sequencing data show that SMG results in perturbations in the number and function of neural stem and progenitor cell subpopulations. One of these subpopulations senses SMG cues and transmits BMP signals to the subpopulation responsible for tube morphogenesis, ultimately affecting the proliferating cell population. Finally, SMG intervention leads to persistent neurologic damage even after returning to normal gravity conditions. Collectively, this study reveals molecular and cellular abnormalities associated with SMG during human brain development, providing opportunities for countermeasures to maintain normal neurodevelopment in space.
Collapse
Affiliation(s)
- Di Guo
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Wen‐Wei Shao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Jia‐Chen Zuo
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Zhe‐Han Chang
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Jian‐Xin Shi
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Nan Hu
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Shuang‐Qing Bao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Meng‐Meng Chen
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Xiu Fan
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Xiao‐Hong Li
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| |
Collapse
|
3
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Abstract
Neural crest cells (NCCs) are a dynamic, multipotent, vertebrate-specific population of embryonic stem cells. These ectodermally-derived cells contribute to diverse tissue types in developing embryos including craniofacial bone and cartilage, the peripheral and enteric nervous systems and pigment cells, among a host of other cell types. Due to their contribution to a significant number of adult tissue types, the mechanisms that drive their formation, migration and differentiation are highly studied. NCCs have a unique ability to transition from tightly adherent epithelial cells to mesenchymal and migratory cells by altering their polarity, expression of cell-cell adhesion molecules and gaining invasive abilities. In this Review, we discuss classical and emerging factors driving NCC epithelial-to-mesenchymal transition and migration, highlighting the role of signaling and transcription factors, as well as novel modifying factors including chromatin remodelers, small RNAs and post-translational regulators, which control the availability and longevity of major NCC players.
Collapse
Affiliation(s)
| | - Crystal D. Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| |
Collapse
|
5
|
Zhou W, Yun Z, Wang T, Li C, Zhang J. BTF3-mediated regulation of BMI1 promotes colorectal cancer through influencing epithelial-mesenchymal transition and stem cell-like traits. Int J Biol Macromol 2021; 187:800-810. [PMID: 34293363 DOI: 10.1016/j.ijbiomac.2021.07.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 07/15/2021] [Indexed: 01/05/2023]
Abstract
The critical roles of transcription factors in cell differentiation and the delineation of cell phenotypes have been reported. The current study aimed to characterize the functions of the basic transcription factor 3 (BTF3) gene and its regulation of the intestinal stem cell marker B cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) gene in colorectal cancer (CRC). Stem cell-like traits and epithelial-mesenchymal transition (EMT) of cultured human CRC cell line HCT116 were evaluated by CD133+ subpopulation counting, colony formation, tumorosphere generation, and expression of EMT-specific markers and stem cell markers. The interaction of BTF3 with BMI1 was analyzed. BTF3 was overexpressed in CRC tissues, which was associated with poor patient survival. BTF3 knockdown impaired the retention of stem cell-like traits of HCT116 and inhibited the EMT of HCT116 cells. BMI1 expression changed in a BTF3-dependent manner, and its overexpression could partially restore stem cell-like traits and EMT of cultured HCT116 cells after BTF3 knockdown. In parallel, treatment with the BMI1 inhibitor PTC-209 mimicked the effects of BTF3 knockdown on stem cell-like traits and EMT of cultured HCT116 cells. Together, these results support the notion that BTF3 and BMI1 are potential therapeutic targets to limit CRC metastasis.
Collapse
Affiliation(s)
- Wenli Zhou
- Department of Neonatology, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Zhennan Yun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Ting Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Chao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China.
| |
Collapse
|
6
|
Piacentino ML, Hutchins EJ, Bronner ME. Essential function and targets of BMP signaling during midbrain neural crest delamination. Dev Biol 2021; 477:251-261. [PMID: 34102166 PMCID: PMC8277753 DOI: 10.1016/j.ydbio.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
BMP signaling plays iterative roles during vertebrate neural crest development from induction through craniofacial morphogenesis. However, far less is known about the role of BMP activity in cranial neural crest epithelial-to-mesenchymal transition and delamination. By measuring canonical BMP signaling activity as a function of time from specification through early migration of avian midbrain neural crest cells, we found elevated BMP signaling during delamination stages. Moreover, inhibition of canonical BMP activity via a dominant negative mutant Type I BMP receptor showed that BMP signaling is required for neural crest migration from the midbrain, independent from an effect on EMT and delamination. Transcriptome profiling on control compared to BMP-inhibited cranial neural crest cells identified novel BMP targets during neural crest delamination and early migration including targets of the Notch pathway that are upregulated following BMP inhibition. These results suggest potential crosstalk between the BMP and Notch pathways in early migrating cranial neural crest and provide novel insight into mechanisms regulated by BMP signaling during early craniofacial development.
Collapse
Affiliation(s)
- Michael L Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Erica J Hutchins
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Amack JD. Cellular dynamics of EMT: lessons from live in vivo imaging of embryonic development. Cell Commun Signal 2021; 19:79. [PMID: 34294089 PMCID: PMC8296657 DOI: 10.1186/s12964-021-00761-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) refers to a process in which epithelial cells lose apical-basal polarity and loosen cell-cell junctions to take on mesenchymal cell morphologies and invasive properties that facilitate migration through extracellular matrix. EMT-and the reverse mesenchymal-epithelial transition (MET)-are evolutionarily conserved processes that are used throughout embryonic development to drive tissue morphogenesis. During adult life, EMT is activated to close wounds after injury, but also can be used by cancers to promote metastasis. EMT is controlled by several mechanisms that depend on context. In response to cell-cell signaling and/or interactions with the local environment, cells undergoing EMT make rapid changes in kinase and adaptor proteins, adhesion and extracellular matrix molecules, and gene expression. Many of these changes modulate localization, activity, or expression of cytoskeletal proteins that mediate cell shape changes and cell motility. Since cellular changes during EMT are highly dynamic and context-dependent, it is ideal to analyze this process in situ in living organisms. Embryonic development of model organisms is amenable to live time-lapse microscopy, which provides an opportunity to watch EMT as it happens. Here, with a focus on functions of the actin cytoskeleton, I review recent examples of how live in vivo imaging of embryonic development has led to new insights into mechanisms of EMT. At the same time, I highlight specific developmental processes in model embryos-gastrulation in fly and mouse embryos, and neural crest cell development in zebrafish and frog embryos-that provide in vivo platforms for visualizing cellular dynamics during EMT. In addition, I introduce Kupffer's vesicle in the zebrafish embryo as a new model system to investigate EMT and MET. I discuss how these systems have provided insights into the dynamics of adherens junction remodeling, planar cell polarity signaling, cadherin functions, and cytoskeletal organization during EMT, which are not only important for understanding development, but also cancer progression. These findings shed light on mechanisms of actin cytoskeletal dynamics during EMT, and feature live in vivo imaging strategies that can be exploited in future work to identify new mechanisms of EMT and MET. Video Abstract.
Collapse
Affiliation(s)
- Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA. .,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, USA.
| |
Collapse
|
8
|
Font-Noguera M, Montemurro M, Benassayag C, Monier B, Suzanne M. Getting started for migration: A focus on EMT cellular dynamics and mechanics in developmental models. Cells Dev 2021; 168:203717. [PMID: 34245942 DOI: 10.1016/j.cdev.2021.203717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022]
Abstract
The conversion of epithelial cells into mesenchymal ones, through a process known as epithelial-mesenchymal transition (or EMT) is a reversible process involved in critical steps of animal development as early as gastrulation and throughout organogenesis. In pathological conditions such as aggressive cancers, EMT is often associated with increased drug resistance, motility and invasiveness. The characterisation of the upstream signals and main decision takers, such as the EMT-transcription factors, has led to the identification of a core molecular machinery controlling the specification towards EMT. However, the cellular execution steps of this fundamental shift are poorly described, especially in cancerous cells. Here we review our current knowledge regarding the stepwise nature of EMT in model organisms as diverse as sea urchin, Drosophila, zebrafish, mouse or chicken. We focus on the cellular dynamics and mechanics of the transitional stages by which epithelial cells progressively become mesenchymal and leave the epithelium. We gather the currently available pieces of the puzzle, including the overlooked property of EMT cells to produce mechanical forces along their apico-basal axis before detaching from their neighbours. We discuss the interplay between EMT and the surrounding tissue. Finally, we propose a conceptual framework of EMT cell dynamics from the very first hint of epithelial cell reorganisation to the successful exit from the epithelial sheet.
Collapse
Affiliation(s)
- Meritxell Font-Noguera
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marianne Montemurro
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Corinne Benassayag
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Bruno Monier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|
9
|
Zhang A, Aslam H, Sharma N, Warmflash A, Fakhouri WD. Conservation of Epithelial-to-Mesenchymal Transition Process in Neural Crest Cells and Metastatic Cancer. Cells Tissues Organs 2021; 210:151-172. [PMID: 34218225 DOI: 10.1159/000516466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a highly conserved cellular process in several species, from worms to humans. EMT plays a fundamental role in early embryogenesis, wound healing, and cancer metastasis. For neural crest cell (NCC) development, EMT typically results in forming a migratory and potent cell population that generates a wide variety of cell and tissue, including cartilage, bone, connective tissue, endocrine cells, neurons, and glia amongst many others. The degree of conservation between the signaling pathways that regulate EMT during development and metastatic cancer (MC) has not been fully established, despite ample studies. This systematic review and meta-analysis dissects the major signaling pathways involved in EMT of NCC development and MC to unravel the similarities and differences. While the FGF, TGFβ/BMP, SHH, and NOTCH pathways have been rigorously investigated in both systems, the EGF, IGF, HIPPO, Factor Receptor Superfamily, and their intracellular signaling cascades need to be the focus of future NCC studies. In general, meta-analyses of the associated signaling pathways show a significant number of overlapping genes (particularly ligands, transcription regulators, and targeted cadherins) involved in each signaling pathway of both systems without stratification by body segments and cancer type. Lack of stratification makes it difficult to meaningfully evaluate the intracellular downstream effectors of each signaling pathway. Finally, pediatric neuroblastoma and melanoma are NCC-derived malignancies, which emphasize the importance of uncovering the EMT events that convert NCC into treatment-resistant malignant cells.
Collapse
Affiliation(s)
- April Zhang
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hira Aslam
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Neha Sharma
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
10
|
Jia M, Wang Y, Guo Y, Yu P, Sun Y, Song Y, Zhao L. Nitidine chloride suppresses epithelial-mesenchymal transition and stem cell-like properties in glioblastoma by regulating JAK2/STAT3 signaling. Cancer Med 2021; 10:3113-3128. [PMID: 33788424 PMCID: PMC8085923 DOI: 10.1002/cam4.3869] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/28/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is the most aggressive and common intracranial malignant tumor, and the prognosis is still poor after various treatments. Based on the poor prognosis of glioma, new drugs that suppress the rapid progression and aggressive growth of glioma are urgently needed. It has been reported that nitidine chloride (NC) can inhibit tumor growth and epithelial‐mesenchymal transition (EMT), and EMT is associated with cancer stem cell properties. The present study aimed to investigate the inhibitory effect of NC on the EMT process and stem cell‐like properties in glioma cells. The results showed that the migration and invasion abilities in U87 and LN18 glioma cells were significantly increased after the induction of EMT and these effects were inhibited by NC in a concentration‐dependent manner. NC treatment decreased the expression of EMT markers in glioma cells and self‐renewal capacity of glioma stem‐like cells. We demonstrated that these effects of NC were achieved via JAK2/STAT3 signaling. Taken together, these results indicate that NC inhibits the EMT process and glioma stem‐like properties via JAK2/STAT3 signaling pathway, suggesting that NC may be a potential anti‐glioma drug.
Collapse
Affiliation(s)
- Mingbo Jia
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yingxue Guo
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Pengyue Yu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yanke Song
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Liyan Zhao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Jiao YH, Liu M, Wang G, Li HY, Liu JS, Yang X, Yang WD. EMT is the major target for okadaic acid-suppressed the development of neural crest cells in chick embryo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:192-201. [PMID: 31085430 DOI: 10.1016/j.ecoenv.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
As a main marine phycotoxin, okadaic acid (OA) is mainly responsible for diarrheic shellfish poisoning (DSP), through specifically inhibiting phosphatase (PP1 and PP2A). It has been shown that isotope labelled-OA could cross the placental barrier in mice. However, it remains obscure how OA exposure could affect the formation of neural crest cells (NCCs), especially cranial NCCs in early embryo development. Here, we explored the effects of OA exposure on the generation of neural crest cells during embryonic development using the classic chick embryo model. We found that OA exposure at 100 nM (80.5 μg/L) could cause craniofacial bone defects in the developing chick embryo and delay the development of early chick embryos. Immunofluorescent staining of HNK-1, Pax7, and Ap-2α demonstrated that cranial NCC generation was inhibited by OA exposure. Double immunofluorescent staining with Ap-2α/PHIS3 or Pax7/c-Caspase3 manifested that both NCC proliferation and apoptosis were restrained by OA exposure. Furthermore, the expression of Msx1 and BMP4 were down-regulated in the developing chick embryonic neural tubes, which could contribute the inhibitive production of NCCs. We also discovered that expression of EMT-related adhesion molecules, such as Cadherin 6B (Cad6B) and E-cadherin, was altered following OA exposure. In sum, OA exposure negatively affected the development of embryonic neural crest cells, which in turn might result in cranial bone malformation.
Collapse
Affiliation(s)
- Yu-Hu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Meng Liu
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019; 8:E1118. [PMID: 31547193 PMCID: PMC6830116 DOI: 10.3390/cells8101118] [Citation(s) in RCA: 823] [Impact Index Per Article: 137.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
13
|
Mukhopadhyay P, Seelan RS, Greene RM, Pisano MM. Impact of prenatal arsenate exposure on gene expression in a pure population of migratory cranial neural crest cells. Reprod Toxicol 2019; 86:76-85. [PMID: 30953684 DOI: 10.1016/j.reprotox.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/27/2022]
Abstract
Prenatal exposure to arsenic, a naturally occurring toxic element, causes neural tube defects (NTDs) and, in animal models, orofacial anomalies. Since aberrant development or migration of cranial neural crest cells (CNCCs) can also cause similar anomalies within developing embryos, we examined the effects of in utero exposure to sodium arsenate on gene expression patterns in pure populations of CNCCs, isolated by fluorescence activated cell sorting (FACS), from Cre/LoxP reporter mice. Changes in gene expression were analyzed using Affymetrix GeneChip® microarrays and expression of selected genes was verified by TaqMan quantitative real-time PCR. We report, for the first time, arsenate-induced alterations in the expression of a number of novel candidate genes and canonical cascades that may contribute to the pathogenesis of orofacial defects. Ingenuity Pathway and NIH-DAVID analyses revealed cellular response pathways, biological themes, and potential upstream regulators, that may underlie altered fetal programming of arsenate exposed CNCCs.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| | - Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States.
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
14
|
Schiffmacher AT, Adomako-Ankomah A, Xie V, Taneyhill LA. Cadherin-6B proteolytic N-terminal fragments promote chick cranial neural crest cell delamination by regulating extracellular matrix degradation. Dev Biol 2018; 444 Suppl 1:S237-S251. [PMID: 29958899 DOI: 10.1016/j.ydbio.2018.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
During epithelial-to-mesenchymal transitions (EMTs), chick cranial neural crest cells simultaneously delaminate from the basement membrane and segregate from the epithelia, in part, via multiple protease-mediated mechanisms. Proteolytic processing of Cadherin-6B (Cad6B) in premigratory cranial neural crest cells by metalloproteinases not only disassembles cadherin-based junctions but also generates shed Cad6B ectodomains or N-terminal fragments (NTFs) that may possess additional roles. Here we report that Cad6B NTFs promote delamination by enhancing local extracellular proteolytic activity around neural crest cells undergoing EMT en masse. During EMT, Cad6B NTFs of varying molecular weights are observed, indicating that Cad6B may be cleaved at different sites by A Disintegrin and Metalloproteinases (ADAMs) 10 and 19 as well as by other matrix metalloproteinases (MMPs). To investigate Cad6B NTF function, we first generated NTF constructs that express recombinant NTFs with similar relative mobilities to those NTFs shed in vivo. Overexpression of either long or short Cad6B NTFs in premigratory neural crest cells reduces laminin and fibronectin levels within the basement membrane, which then facilitates precocious neural crest cell delamination. Zymography assays performed with supernatants of neural crest cell explants overexpressing Cad6B long NTFs demonstrate increased MMP2 activity versus controls, suggesting that Cad6B NTFs promote delamination through a mechanism involving MMP2. Interestingly, this increase in MMP2 does not involve up-regulation of MMP2 or its regulators at the transcriptional level but instead may be attributed to a physical interaction between shed Cad6B NTFs and MMP2. Taken together, these results highlight a new function for Cad6B NTFs and provide insight into how cadherins regulate cellular delamination during normal developmental EMTs as well as aberrant EMTs that underlie human disease.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | - Vivien Xie
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
15
|
Frismantiene A, Philippova M, Erne P, Resink TJ. Cadherins in vascular smooth muscle cell (patho)biology: Quid nos scimus? Cell Signal 2018; 45:23-42. [DOI: 10.1016/j.cellsig.2018.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/16/2022]
|
16
|
Gouignard N, Andrieu C, Theveneau E. Neural crest delamination and migration: Looking forward to the next 150 years. Genesis 2018; 56:e23107. [PMID: 29675839 DOI: 10.1002/dvg.23107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022]
Abstract
Neural crest (NC) cells were described for the first time in 1868 by Wilhelm His. Since then, this amazing population of migratory stem cells has been intensively studied. It took a century to fully unravel their incredible abilities to contribute to nearly every organ of the body. Yet, our understanding of the cell and molecular mechanisms controlling their migration is far from complete. In this review, we summarize the current knowledge on epithelial-mesenchymal transition and collective behavior of NC cells and propose further stops at which the NC train might be calling in the near future.
Collapse
Affiliation(s)
- Nadège Gouignard
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Cyril Andrieu
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Eric Theveneau
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
17
|
Kahata K, Dadras MS, Moustakas A. TGF-β Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022194. [PMID: 28246184 DOI: 10.1101/cshperspect.a022194] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelia exist in the animal body since the onset of embryonic development; they generate tissue barriers and specify organs and glands. Through epithelial-mesenchymal transitions (EMTs), epithelia generate mesenchymal cells that form new tissues and promote healing or disease manifestation when epithelial homeostasis is challenged physiologically or pathologically. Transforming growth factor-βs (TGF-βs), activins, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs) have been implicated in the regulation of epithelial differentiation. These TGF-β family ligands are expressed and secreted at sites where the epithelium interacts with the mesenchyme and provide paracrine queues from the mesenchyme to the neighboring epithelium, helping the specification of differentiated epithelial cell types within an organ. TGF-β ligands signal via Smads and cooperating kinase pathways and control the expression or activities of key transcription factors that promote either epithelial differentiation or mesenchymal transitions. In this review, we discuss evidence that illustrates how TGF-β family ligands contribute to epithelial differentiation and induce mesenchymal transitions, by focusing on the embryonic ectoderm and tissues that form the external mammalian body lining.
Collapse
Affiliation(s)
- Kaoru Kahata
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Mahsa Shahidi Dadras
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
18
|
Cousin H. Cadherins function during the collective cell migration of Xenopus Cranial Neural Crest cells: revisiting the role of E-cadherin. Mech Dev 2017; 148:79-88. [PMID: 28467887 PMCID: PMC5662486 DOI: 10.1016/j.mod.2017.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Abstract
Collective cell migration is a process whereby cells move while keeping contact with other cells. The Xenopus Cranial Neural Crest (CNC) is a population of cells that emerge during early embryogenesis and undergo extensive migration from the dorsal to ventral part of the embryo's head. These cells migrate collectively and require cadherin mediated cell-cell contact. In this review, we will describe the key features of Xenopus CNC migration including the key molecules driving their migration. We will also review the role of the various cadherins during Xenopus CNC emergence and migration. Lastly, we will discuss the recent and seemingly controversial findings showing that E-cadherin presence is essential for CNC migration.
Collapse
Affiliation(s)
- Hélène Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
19
|
York JR, Yuan T, Zehnder K, McCauley DW. Lamprey neural crest migration is Snail-dependent and occurs without a differential shift in cadherin expression. Dev Biol 2017. [PMID: 28624345 DOI: 10.1016/j.ydbio.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The acquisition of neural crest cells was a key step in the origin of the vertebrate body plan. An outstanding question is how neural crest cells acquired their ability to undergo an epithelial-mesenchymal transition (EMT) and migrate extensively throughout the vertebrate embryo. We tested if differential regulation of classical cadherins-a highly conserved feature of neural crest EMT and migration in jawed vertebrates-mediates these cellular behaviors in lamprey, a basal jawless vertebrate. Lamprey has single copies of the type I and type II classical cadherins (CadIA and CadIIA). CadIIA is expressed in premigratory neural crest, and requires the transcription factor Snail for proper expression, yet CadIA is never expressed in the neural tube during neural crest development, suggesting that differential regulation of classical cadherin expression is not required to initiate neural crest migration in basal vertebrates. We hypothesize that neural crest cells evolved by retention of regulatory programs linking distinct mesenchymal and multipotency properties, and emigrated from the neural tube without differentially regulating type I/type II cadherins. Our results point to the coupling of mesenchymal state and multipotency as a key event facilitating the origin of migratory neural crest cells.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Tian Yuan
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Kevin Zehnder
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - David W McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
20
|
Dady A, Duband JL. Cadherin interplay during neural crest segregation from the non-neural ectoderm and neural tube in the early chick embryo. Dev Dyn 2017; 246:550-565. [PMID: 28474787 DOI: 10.1002/dvdy.24517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In the avian embryo, neural crest (NC) progenitors arise in the neuroectoderm during gastrulation, long before their dissemination. Although the gene regulatory network involved in NC specification has been deciphered, the mechanisms involved in their segregation from the other neuroectoderm-derived progenitors, notably the epidermis and neural tube, are unknown. Because cadherins mediate cell recognition and sorting, we scrutinized their expression profiles during NC specification and delamination. RESULTS We found that the NC territory is defined precociously by the robust expression of Cadherin-6B in cells initially scattered among other cells uniformly expressing E-cadherin, and that NC progenitors are progressively sorted and regrouped into a discrete domain between the prospective epidermis and neural tube. At completion of NC specification, the epidermis, NC, and neural tube are fully segregated in contiguous compartments characterized by distinct cadherin repertoires. We also found that Cadherin-6B down-regulation constitutes a major event during NC delamination and that, with the exception of the caudal part of the embryo, N-cadherin is unlikely to control NC emigration. CONCLUSIONS Our results indicate that partition of the neuroectoderm is mediated by cadherin interplays and ascribes a key role to Cadherin-6B in the specification and delamination of the NC population. Developmental Dynamics 246:550-565, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alwyn Dady
- Laboratoire de Biologie du Développement, Centre National de la Recherche Scientifique, Paris, France.,Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Paris, France
| | - Jean-Loup Duband
- Laboratoire de Biologie du Développement, Centre National de la Recherche Scientifique, Paris, France.,Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Paris, France.,Institut Mondor de Recherches Biomédicales, Institut National de la Santé et de la Recherche Médicale, Créteil, France.,Institut Mondor de Recherches Biomédicales, Université Paris-Est Créteil, Créteil, France
| |
Collapse
|
21
|
Dubon MJ, Yu J, Choi S, Park KS. Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin. J Cell Physiol 2017; 233:201-213. [PMID: 28213973 DOI: 10.1002/jcp.25863] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration, and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals.
Collapse
Affiliation(s)
- Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Ki-Sook Park
- East-West Medical Research Institute, Kyung Hee University, Seoul, Korea
- College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
22
|
Taneyhill LA, Schiffmacher AT. Should I stay or should I go? Cadherin function and regulation in the neural crest. Genesis 2017; 55. [PMID: 28253541 DOI: 10.1002/dvg.23028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial-to-mesenchymal transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest.
Collapse
Affiliation(s)
- Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742
| | - Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
23
|
Abstract
The significant parallels between cell plasticity during embryonic development and carcinoma progression have helped us understand the importance of the epithelial-mesenchymal transition (EMT) in human disease. Our expanding knowledge of EMT has led to a clarification of the EMT program as a set of multiple and dynamic transitional states between the epithelial and mesenchymal phenotypes, as opposed to a process involving a single binary decision. EMT and its intermediate states have recently been identified as crucial drivers of organ fibrosis and tumor progression, although there is some need for caution when interpreting its contribution to metastatic colonization. Here, we discuss the current state-of-the-art and latest findings regarding the concept of cellular plasticity and heterogeneity in EMT. We raise some of the questions pending and identify the challenges faced in this fast-moving field.
Collapse
|
24
|
Basilicata MF, Frank M, Solter D, Brabletz T, Stemmler MP. Inappropriate cadherin switching in the mouse epiblast compromises proper signaling between the epiblast and the extraembryonic ectoderm during gastrulation. Sci Rep 2016; 6:26562. [PMID: 27217206 PMCID: PMC4877576 DOI: 10.1038/srep26562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/05/2016] [Indexed: 11/09/2022] Open
Abstract
Cadherin switching from E-cadherin (E-cad) to N-cadherin (N-cad) is a key step of the epithelial-mesenchymal transition (EMT) processes that occurs during gastrulation and cancer progression. We investigate whether cadherins actively participate in progression of EMT by crosstalk to signaling pathways. We apply ectopic cadherin switching before the onset of mouse gastrulation. Mutants with an induced E-cad to N-cad switch (Ncadki) die around E8.5. Severe morphological changes including a small epiblast, a rounded shape, an enlarged extra-embryonic compartment and lack of the amnion, combined with a massive cell detachment from the ectodermal layer are detected. In contrast to epiblast-specific E-cad depletion, gastrulation is initiated in Ncadki embryos, but patterning of the germ-layers is abnormal. An overall reduction in BMP signaling, expansion of Nodal and Eomes domains, combined with reduced Wnt3a expression at the primitive streak is observed. Our results show that in addition to cadherin-dependent adhesion, proper embryonic development requires E-cad mediated signaling function to facilitate a feedback loop that stabilizes Bmp4 and Bmp2 expression in the extraembryonic ectoderm and sustained downstream activity in the epiblast. Moreover, for proper morphogenesis a fine-tuned spatio-temporal control of cadherin switching is required during EMT at gastrulation to avoid premature cell detachment and migration.
Collapse
Affiliation(s)
- M Felicia Basilicata
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Marcus Frank
- Electron Microscopy Center, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Davor Solter
- Epithelial Epigenetics and Development Lab, Institute of Medical Biology, A*STAR, Singapore
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Marc P Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.,Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| |
Collapse
|
25
|
Suliman S, Mustafa K, Krueger A, Steinmüller-Nethl D, Finne-Wistrand A, Osdal T, Hamza AO, Sun Y, Parajuli H, Waag T, Nickel J, Johannessen AC, McCormack E, Costea DE. Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes. Biomaterials 2016; 95:11-21. [PMID: 27108402 DOI: 10.1016/j.biomaterials.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOK(Luc)) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOK(Luc) previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOK(Luc) + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOK(Luc) both in vitro in 3D-OT and in vivo in xenografts formed by DOK(Luc) alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOK(Luc) + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOK(Luc), while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities.
Collapse
Affiliation(s)
- Salwa Suliman
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Kamal Mustafa
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway
| | - Anke Krueger
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | | | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Tereza Osdal
- Department of Clinical Science, Hematology Section, University of Bergen, Bergen, Norway
| | - Amani O Hamza
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Yang Sun
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway; Department of Fibre and Polymer Technology, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Himalaya Parajuli
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Thilo Waag
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Joachim Nickel
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Translational Center 'Regenerative Therapies for Oncology and Musculoskeletal Diseases'- Würzburg Branch, Germany
| | - Anne Christine Johannessen
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, Hematology Section, University of Bergen, Bergen, Norway; Department of Medicine, Haematology Section, Haukeland University Hospital, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
26
|
Motohashi T, Watanabe N, Nishioka M, Nakatake Y, Yulan P, Mochizuki H, Kawamura Y, Ko MSH, Goshima N, Kunisada T. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells. Biol Open 2016; 5:311-22. [PMID: 26873953 PMCID: PMC4810742 DOI: 10.1242/bio.015735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neural crest cells (NC cells) are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs) into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+) cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells. Summary: In this study, we identified the transcription factors specifically expressed in developing neural crest cells, and showed that SOX10 and SOX9 directly converted fibroblasts into neural crest cells.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0076, Japan
| | - Natsuki Watanabe
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Masahiro Nishioka
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuhki Nakatake
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA Department of Systems Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Piao Yulan
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Hiromi Mochizuki
- Japan Biological Informatics Consortium (JBiC), Tokyo 135-8073, Japan
| | | | - Minoru S H Ko
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA Department of Systems Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0076, Japan
| |
Collapse
|
27
|
Kalcheim C. Epithelial-Mesenchymal Transitions during Neural Crest and Somite Development. J Clin Med 2015; 5:jcm5010001. [PMID: 26712793 PMCID: PMC4730126 DOI: 10.3390/jcm5010001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a central process during embryonic development that affects selected progenitor cells of all three germ layers. In addition to driving the onset of cellular migrations and subsequent tissue morphogenesis, the dynamic conversions of epithelium into mesenchyme and vice-versa are intimately associated with the segregation of homogeneous precursors into distinct fates. The neural crest and somites, progenitors of the peripheral nervous system and of skeletal tissues, respectively, beautifully illustrate the significance of EMT to the above processes. Ongoing studies progressively elucidate the gene networks underlying EMT in each system, highlighting the similarities and differences between them. Knowledge of the mechanistic logic of this normal ontogenetic process should provide important insights to the understanding of pathological conditions such as cancer metastasis, which shares some common molecular themes.
Collapse
Affiliation(s)
- Chaya Kalcheim
- Edmond and Lili Safra Center for Brain Sciences (ELSC), Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 9112102, Israel.
| |
Collapse
|
28
|
Park KS, Gumbiner BM. Cadherin-6B is required for the generation of Islet-1-expressing dorsal interneurons. Biochem Biophys Res Commun 2015; 459:504-8. [PMID: 25747715 DOI: 10.1016/j.bbrc.2015.02.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Cadherin-6B induces bone morphogenetic protein (BMP) signaling to promote the epithelial mesenchymal transition (EMT) in the neural crest. We have previously found that knockdown of Cadherin-6B inhibits both BMP signaling and the emigration of the early pre-migratory neural crest cells from the dorsal neural tube. In this study, we found that inhibition of BMP signaling in the neural tube, mediated by the ectopic expression of Smad-6 or Noggin, decreased the size of the Islet-1-positive dorsal cell population. Knockdown or loss of function of Cadherin-6B suppressed the generation of Islet-1-expressing cells in the dorsal neural tube, but not the Lim-1/2 positive dorsal cell population. Our results thus indicate that Cadherin-6B is necessary for the generation of Islet-1-positive dorsal interneurons, as well as the initiation of pre-migratory neural crest cell emigration.
Collapse
Affiliation(s)
- Ki-Sook Park
- East-West Medical Research Institute, Kyung Hee University, Seoul 130-701, Republic of Korea; College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea.
| | - Barry M Gumbiner
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
29
|
Duband JL, Dady A, Fleury V. Resolving time and space constraints during neural crest formation and delamination. Curr Top Dev Biol 2015; 111:27-67. [PMID: 25662257 DOI: 10.1016/bs.ctdb.2014.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A striking feature of neural crest development in vertebrates is that all the specification, delamination, migration, and differentiation steps occur consecutively in distinct areas of the embryo and at different timings of development. The significance and consequences of this partition into clearly separated events are not fully understood yet, but it ought to be related to the necessity of controlling precisely and independently each step, given the wide array of cell types and tissues derived from the neural crest and the long duration of their development spanning almost the entire embryonic life. In this chapter, using the examples of early neural crest induction and delamination, we discuss how time and space constraints influence their development and describe the molecular and cellular responses that are employed by cells to adapt. In the first example, we analyze how cell sorting and cell movements cooperate to allow nascent neural crest cells, which are initially mingled with other neurectodermal progenitors after induction, to segregate from the neural tube and ectoderm populations and settle at the apex of the neural tube prior to migration. In the second example, we examine how cadherins drive the entire process of neural crest segregation from the rest of the neurectoderm by their dual role in mediating first cell sorting and cohesion during specification and later in promoting their delamination. In the third example, we describe how the expression and activity of the transcription factors known to drive epithelium-to-mesenchyme transition (EMT) are regulated timely and spatially by the cellular machinery so that they can alternatively and successively regulate neural crest specification and delamination. In the last example, we briefly tackle the problem of how factors triggering EMT may elicit different cell responses in neural tube and neural crest progenitors.
Collapse
Affiliation(s)
- Jean-Loup Duband
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie-Paris 6, Paris, France; CNRS, Laboratoire de Biologie du Développement, Paris, France.
| | - Alwyn Dady
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie-Paris 6, Paris, France; CNRS, Laboratoire de Biologie du Développement, Paris, France
| | - Vincent Fleury
- Laboratoire Matière et Systèmes Complexes, CNRS et Université Denis-Diderot-Paris 7, Paris, France
| |
Collapse
|
30
|
Park KS, Dubon MJ, Gumbiner BM. N-cadherin mediates the migration of MCF-10A cells undergoing bone morphogenetic protein 4-mediated epithelial mesenchymal transition. Tumour Biol 2014; 36:3549-56. [PMID: 25542234 DOI: 10.1007/s13277-014-2991-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/17/2014] [Indexed: 01/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) of mammary epithelial cells is important in both normal morphogenesis of mammary glands and metastasis of breast cancer. Cadherin switching from E-cadherin to N-cadherin plays important roles in EMT. We found that cadherin switching is important in bone morphogenetic protein 4 (BMP4)-induced EMT in MCF-10A cells. BMP4 increased the phosphorylation of SMAD proteins in MCF-10A cells. Canonical BMP4 signaling decreased the expression of E-cadherin and disrupted the polarity of the tight junction protein ZO-1 in MCF-10A cells. However, the expression of N-cadherin and SNAI2 was up-regulated in BMP4-treated MCF-10A cells. MCF-10A cells that expressed N-cadherin migrated into type I collagen gels in response to BMP4 when evaluated using three-dimensional culture assays. Thus, active canonical BMP4 signaling is important for the migration and EMT of mammary epithelial cells. Moreover, the decrease in E-cadherin and/or increase in N-cadherin may be required for BMP4-induced migration and EMT.
Collapse
Affiliation(s)
- Ki-Sook Park
- East-West Medical Research Institute/College of Medicine, Kyung Hee University, Seoul, 130-701, Korea,
| | | | | |
Collapse
|
31
|
Clay MR, Halloran MC. Cadherin 6 promotes neural crest cell detachment via F-actin regulation and influences active Rho distribution during epithelial-to-mesenchymal transition. Development 2014; 141:2506-15. [PMID: 24917505 DOI: 10.1242/dev.105551] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a complex change in cell phenotype that is important for cell migration, morphogenesis and carcinoma metastasis. Loss of epithelial cell adhesion and tight regulation of cadherin adhesion proteins are crucial for EMT. Cells undergoing EMT often display cadherin switching, where they downregulate one cadherin and induce expression of another. However, the functions of the upregulated cadherins and their effects on cell motility are poorly understood. Neural crest cells (NCCs), which undergo EMT during development, lose N-cadherin and upregulate Cadherin 6 (Cdh6) prior to EMT. Cdh6 has been suggested to suppress EMT via cell adhesion, but also to promote EMT by mediating pro-EMT signals. Here, we determine novel roles for Cdh6 in generating cell motility during EMT. We use live imaging of NCC behavior in vivo to show that Cdh6 promotes detachment of apical NCC tails, an important early step of EMT. Furthermore, we show that Cdh6 affects spatiotemporal dynamics of F-actin and active Rho GTPase, and that Cdh6 is required for accumulation of F-actin in apical NCC tails during detachment. Moreover, Cdh6 knockdown alters the subcellular distribution of active Rho, which is known to promote localized actomyosin contraction that is crucial for apical NCC detachment. Together, these data suggest that Cdh6 is an important determinant of where subcellular actomyosin forces are generated during EMT. Our results also identify mechanisms by which an upregulated cadherin can generate cell motility during EMT.
Collapse
Affiliation(s)
- Matthew R Clay
- Cell and Molecular Biology Program, University of Wisconsin, Madison, WI 53706, USA Department of Zoology, University of Wisconsin, Madison, WI 53706, USA Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Mary C Halloran
- Cell and Molecular Biology Program, University of Wisconsin, Madison, WI 53706, USA Department of Zoology, University of Wisconsin, Madison, WI 53706, USA Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
32
|
Kerosuo L, Bronner ME. Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube. Mol Biol Cell 2013; 25:347-55. [PMID: 24307680 PMCID: PMC3907275 DOI: 10.1091/mbc.e13-06-0327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle- and cell adhesion-related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest-selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein.
Collapse
Affiliation(s)
- Laura Kerosuo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | |
Collapse
|
33
|
Taneyhill LA, Schiffmacher AT. Cadherin dynamics during neural crest cell ontogeny. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:291-315. [PMID: 23481200 DOI: 10.1016/b978-0-12-394311-8.00013-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cell membrane-associated junctional complexes mediate cell-cell adhesion, intercellular interactions, and other fundamental processes required for proper embryo morphogenesis. Cadherins are calcium-dependent transmembrane proteins at the core of adherens junctions and are expressed in distinct spatiotemporal patterns throughout the development of an important vertebrate cell type, the neural crest. Multipotent neural crest cells arise from the ectoderm as epithelial cells under the influence of inductive cues, undergo an epithelial-to-mesenchymal transition, migrate throughout the embryonic body, and then differentiate into multiple derivatives at predetermined destinations. Neural crest cells change their expressed cadherin repertoires as they undergo each new morphogenetic transition, providing insight into distinct functions of expressed cadherins that are essential for proper completion of each specific stage. Cadherins modulate neural crest cell morphology, segregation, migration, and tissue formation. This chapter reviews the knowledge base of cadherin regulation, expression, and function during the ontogeny of the neural crest.
Collapse
Affiliation(s)
- Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, 1405 Animal Sciences Center, College Park, Maryland, USA
| | | |
Collapse
|
34
|
Schiffmacher AT, Padmanabhan R, Jhingory S, Taneyhill LA. Cadherin-6B is proteolytically processed during epithelial-to-mesenchymal transitions of the cranial neural crest. Mol Biol Cell 2013; 25:41-54. [PMID: 24196837 PMCID: PMC3873892 DOI: 10.1091/mbc.e13-08-0459] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural crest cells, involves cadherin-6B (Cad6B) down-regulation. Whereas Cad6B transcription is repressed by Snail2, the rapid loss of Cad6B protein during EMT is suggestive of posttranslational mechanisms that promote Cad6B turnover. For the first time in vivo, we demonstrate Cad6B proteolysis during neural crest cell EMT, which generates a Cad6B N-terminal fragment (NTF) and two C-terminal fragments (CTF1/2). Coexpression of relevant proteases with Cad6B in vitro shows that a disintegrin and metalloproteinases (ADAMs) ADAM10 and ADAM19, together with γ-secretase, cleave Cad6B to produce the NTF and CTFs previously observed in vivo. Of importance, both ADAMs and γ-secretase are expressed in the appropriate spatiotemporal pattern in vivo to proteolytically process Cad6B. Overexpression or depletion of either ADAM within premigratory neural crest cells prematurely reduces or maintains Cad6B, respectively. Collectively these results suggest a dual mechanism for Cad6B proteolysis involving two ADAMs, along with γ-secretase, during cranial neural crest cell EMT.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | | | | | | |
Collapse
|
35
|
Clay MR, Halloran MC. Rho activation is apically restricted by Arhgap1 in neural crest cells and drives epithelial-to-mesenchymal transition. Development 2013; 140:3198-209. [PMID: 23804498 DOI: 10.1242/dev.095448] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Epithelial-to-mesenchymal transitions (EMTs) are crucial for morphogenesis and carcinoma metastasis, yet mechanisms controlling the underlying cell behaviors are poorly understood. RhoGTPase signaling has been implicated in EMT; however, previous studies have yielded conflicting results regarding Rho function, and its role in EMT remains poorly understood. Elucidation of precise Rho functions has been challenging because Rho signaling is highly context dependent and its activity is tightly regulated spatiotemporally within the cell. To date, few studies have examined how Rho affects cell motility in intact organisms, and the pattern of Rho activity during motile cell behaviors of EMT has not been determined in any system. Here, we image endogenous active Rho during EMT in vivo, and analyze effects of Rho and Rho-kinase (ROCK) manipulation on cell motility in vivo. We show that Rho is activated in a discrete apical region of premigratory neural crest cells during EMT, and Rho-ROCK signaling is essential for apical detachment and generation of motility within the neuroepithelium, a process that has been poorly understood. Furthermore, we find that Arhgap1 restricts Rho activation to apical areas, and this restriction is necessary for detachment. Our results provide new insight into mechanisms controlling local Rho activation and how it affects dynamic cell behaviors and actomyosin contraction during key steps of EMT in an intact living organism.
Collapse
Affiliation(s)
- Matthew R Clay
- Cell and Molecular Biology Program, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
36
|
LMO4 is an essential cofactor in the Snail2-mediated epithelial-to-mesenchymal transition of neuroblastoma and neural crest cells. J Neurosci 2013; 33:2773-83. [PMID: 23407937 DOI: 10.1523/jneurosci.4511-12.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neuroblastoma is an embryonic tumor derived from cells of the neural crest. Taking advantage of a newly developed neural crest lineage tracer and based on the hypothesis that the molecular mechanisms that mediate neural crest delamination are also likely to be involved in the spread of neuroblastoma, we were able to identify genes that are active both in neural crest development and neuroblastoma tumor formation. A subsequent search of the neuroblastoma gene server for human orthologues of genes differentially expressed in the chick embryo neural crest screen retrieved the LIM domain only protein 4 (LMO4), which was expressed in both cell types analyzed. Functional experiments in these two model systems revealed that LMO4 activity is required for neuroblastoma cell invasion and neural crest delamination. Moreover, we identified LMO4 as an essential cofactor in Snail2-mediated cadherin repression and in the epithelial-to-mesenchymal transition of both neural crest and neuroblastoma cells. Together, our results suggest that the association of high levels of LMO4 with aggressive neuroblastomas is dependent on LMO4 regulation of cadherin expression and hence, tumor invasiveness.
Collapse
|
37
|
Fairchild CL, Gammill LS. Tetraspanin18 is a FoxD3-responsive antagonist of cranial neural crest epithelial-to-mesenchymal transition that maintains cadherin-6B protein. J Cell Sci 2013; 126:1464-76. [PMID: 23418345 PMCID: PMC3644144 DOI: 10.1242/jcs.120915] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 01/06/2023] Open
Abstract
During epithelial-to-mesenchymal transition (EMT), tightly associated, polarized epithelial cells become individual mesenchymal cells capable of migrating. Here, we investigate the role of the transmembrane protein tetraspanin18 (Tspan18) in chick cranial neural crest EMT. Tspan18 mRNA is expressed in premigratory cranial neural crest cells, but is absent from actively migrating neural crest cells. Tspan18 knockdown leads to a concomitant loss of cadherin-6B (Cad6B) protein, whereas Cad6B protein persists when Tspan18 expression is extended. The temporal profile of Cad6B mRNA downregulation is unaffected in these embryos, which indicates that Tspan18 maintains Cad6B protein levels and reveals that Cad6B is regulated by post-translational mechanisms. Although downregulation of Tspan18 is necessary, it is not sufficient for neural crest migration: the timing of neural crest emigration, basal lamina breakdown and Cad7 upregulation proceed normally in Tspan18-deficient cells. This emphasizes the need for coordinated transcriptional and post-translational regulation of Cad6B during EMT and illustrates that Tspan18-antagonized remodeling of cell-cell adhesions is only one step in preparation for cranial neural crest migration. Unlike Cad6B, which is transcriptionally repressed by Snail2, Tspan18 expression is downstream of the winged-helix transcription factor FoxD3, providing a new transcriptional input into cranial neural crest EMT. Together, our data reveal post-translational regulation of Cad6B protein levels by Tspan18 that must be relieved by a FoxD3-dependent mechanism in order for cranial neural crest cells to migrate. These results offer new insight into the molecular mechanisms of cranial neural crest EMT and expand our understanding of tetraspanin function relevant to metastasis.
Collapse
Affiliation(s)
| | - Laura S. Gammill
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
38
|
Murko C, Lagger S, Steiner M, Seiser C, Schoefer C, Pusch O. Histone deacetylase inhibitor Trichostatin A induces neural tube defects and promotes neural crest specification in the chicken neural tube. Differentiation 2013; 85:55-66. [PMID: 23328540 DOI: 10.1016/j.diff.2012.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 11/07/2012] [Accepted: 12/09/2012] [Indexed: 01/16/2023]
Abstract
Epigenetic mechanisms serve as key regulatory elements during vertebrate embryogenesis. Histone acetylation levels, controlled by the opposing action of histone acetyl transferases (HATs) and histone deacetylases (HDACs), influence the accessibility of DNA to transcription factors and thereby dynamically regulate transcriptional programs. HDACs execute important functions in the control of proliferation, differentiation, and the establishment of cell identities during embryonic development. To investigate the global role of the HDAC family during neural tube development, we employed Trichostatin A (TSA) to locally block enzymatic HDAC activity in chick embryos in ovo. We found that TSA treatment induces neural tube defects at the level of the posterior neuropore, ranging from slight undulations to a complete failure of neural tube closure. This phenotype is accompanied by morphological changes in neuroepithelial cells and induction of apoptosis. As a molecular consequence of HDAC inhibition, we observed a timely deregulated cadherin switching in the dorsal neural tube, illustrated by induction of Cadherin 6B as well as reciprocal downregulation of N-Cadherin expression. Concomitantly, several neural crest specific markers, including Bmp4, Pax3, Sox9 and Sox10 are induced, causing a premature loss of epithelial characteristics. Our findings provide evidence that HDAC function is crucial to control the regulatory circuits operating during trunk neural crest development and neural tube closure.
Collapse
Affiliation(s)
- Christina Murko
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
39
|
Paulson AF, Prasad MS, Thuringer AH, Manzerra P. Regulation of cadherin expression in nervous system development. Cell Adh Migr 2013; 8:19-28. [PMID: 24526207 DOI: 10.4161/cam.27839] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review addresses our current understanding of the regulatory mechanisms for classical cadherin expression during development of the vertebrate nervous system. The complexity of the spatial and temporal expression patterns is linked to morphogenic and functional roles in the developing nervous system. While the regulatory networks controlling cadherin expression are not well understood, it is likely that the multiple signaling pathways active in the development of particular domains also regulate the specific cadherins expressed at that time and location. With the growing understanding of the broader roles of cadherins in cell-cell adhesion and non-adhesion processes, it is important to understand both the upstream regulation of cadherin expression and the downstream effects of specific cadherins within their cellular context.
Collapse
Affiliation(s)
- Alicia F Paulson
- Division of Basic Biomedical Sciences; Sanford School of Medicine of The University of South Dakota; Vermillion, SD USA
| | - Maneeshi S Prasad
- Department of Molecular Biosciences; Northwestern University; Evanston, IL USA
| | | | - Pasquale Manzerra
- Division of Basic Biomedical Sciences; Sanford School of Medicine of The University of South Dakota; Vermillion, SD USA
| |
Collapse
|
40
|
McKeown SJ, Wallace AS, Anderson RB. Expression and function of cell adhesion molecules during neural crest migration. Dev Biol 2012; 373:244-57. [PMID: 23123967 DOI: 10.1016/j.ydbio.2012.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/18/2012] [Accepted: 10/25/2012] [Indexed: 01/13/2023]
Abstract
Neural crest cells are highly migratory cells that give rise to many derivatives including peripheral ganglia, craniofacial structures and melanocytes. Neural crest cells migrate along defined pathways to their target sites, interacting with each other and their environment as they migrate. Cell adhesion molecules are critical during this process. In this review we discuss the expression and function of cell adhesion molecules during the process of neural crest migration, in particular cadherins, integrins, members of the immunoglobulin superfamily of cell adhesion molecules, and the proteolytic enzymes that cleave these cell adhesion molecules. The expression and function of these cell adhesion molecules and proteases are compared across neural crest emigrating from different axial levels, and across different species of vertebrates.
Collapse
Affiliation(s)
- Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, 3010 VIC, Australia.
| | | | | |
Collapse
|
41
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
42
|
Kerosuo L, Bronner-Fraser M. What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin Cell Dev Biol 2012; 23:320-32. [PMID: 22430756 PMCID: PMC3345076 DOI: 10.1016/j.semcdb.2012.03.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 02/14/2012] [Accepted: 03/01/2012] [Indexed: 11/18/2022]
Abstract
Although the epithelial to mesenchymal transition (EMT) is famous for its role in cancer metastasis, it also is a normal developmental event in which epithelial cells are converted into migratory mesenchymal cells. A prime example of EMT during development occurs when neural crest (NC) cells emigrate from the neural tube thus providing an excellent model to study the principles of EMT in a nonmalignant environment. NC cells start life as neuroepithelial cells intermixed with precursors of the central nervous system. After EMT, they delaminate and begin migrating, often to distant sites in the embryo. While proliferating and maintaining multipotency and cell survival the transitioning neural crest cells lose apicobasal polarity and the basement membrane is broken down. This review discusses how these events are coordinated and regulated, by series of events involving signaling factors, gene regulatory interactions, as well as epigenetic and post-transcriptional modifications. Even though the series of events involved in NC EMT are well known, the sequence in which these steps take place remains a subject of debate, raising the intriguing possibility that, rather than being a single event, neural crest EMT may involve multiple parallel mechanisms.
Collapse
Affiliation(s)
- Laura Kerosuo
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States
| | | |
Collapse
|
43
|
Strobl-Mazzulla PH, Bronner ME. Epithelial to mesenchymal transition: new and old insights from the classical neural crest model. Semin Cancer Biol 2012; 22:411-6. [PMID: 22575214 DOI: 10.1016/j.semcancer.2012.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/17/2012] [Indexed: 01/11/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is an important event converting compact and ordered epithelial cells into migratory mesenchymal cells. Given the molecular and cellular similarities between pathological and developmental EMTs, studying this event during neural crest development offers and excellent in vivo model for understanding the mechanisms underlying this process. Here, we review new and old insight into neural crest EMT in search of commonalities with cancer progression that might aid in the design of specific therapeutic prevention.
Collapse
Affiliation(s)
- Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina.
| | | |
Collapse
|
44
|
Cadherin-6B stimulates an epithelial mesenchymal transition and the delamination of cells from the neural ectoderm via LIMK/cofilin mediated non-canonical BMP receptor signaling. Dev Biol 2012; 366:232-43. [PMID: 22537493 DOI: 10.1016/j.ydbio.2012.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 04/07/2012] [Accepted: 04/09/2012] [Indexed: 01/17/2023]
Abstract
We previously provided evidence that cadherin-6B induces de-epithelialization of the neural crest prior to delamination and is required for the overall epithelial mesenchymal transition (EMT). Furthermore, de-epithelialization induced by cadherin-6B was found to be mediated by BMP receptor signaling independent of BMP. We now find that de-epithelialization is mediated by non-canonical BMP signaling through the BMP type II receptor (BMPRII) and not by canonical Smad dependent signaling through BMP Type I receptor. The LIM kinase/cofilin pathway mediates non-canonical BMPRII induced de-epithelialization, in response to either cadherin-6B or BMP. LIMK1 induces de-epithelialization in the neural tube and dominant negative LIMK1 decreases de-epithelialization induced by either cadherin-6B or BMP. Cofilin is the major known LIMK1 target and a S3A phosphorylation deficient mutated cofilin inhibits de-epithelialization induced by cadherin-6B as well as LIMK1. Importantly, LIMK1 as well as cadherin-6B can trigger ectopic delamination when co-expressed with the competence factor SOX9, showing that this cadherin-6B stimulated signaling pathway can mediate the full EMT in the appropriate context. These findings suggest that the de-epithelialization step of the neural crest EMT by cadherin-6B/BMPRII involves regulation of actin dynamics via LIMK/cofilin.
Collapse
|
45
|
Hunnicutt BJ, Chaverra M, George L, Lefcort F. IKAP/Elp1 is required in vivo for neurogenesis and neuronal survival, but not for neural crest migration. PLoS One 2012; 7:e32050. [PMID: 22384137 PMCID: PMC3285659 DOI: 10.1371/journal.pone.0032050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/20/2012] [Indexed: 12/18/2022] Open
Abstract
Familial Dysautonomia (FD; Hereditary Sensory Autonomic Neuropathy; HSAN III) manifests from a failure in development of the peripheral sensory and autonomic nervous systems. The disease results from a point mutation in the IKBKAP gene, which encodes the IKAP protein, whose function is still unresolved in the developing nervous system. Since the neurons most severely depleted in the disease derive from the neural crest, and in light of data identifying a role for IKAP in cell motility and migration, it has been suggested that FD results from a disruption in neural crest migration. To determine the function of IKAP during development of the nervous system, we (1) first determined the spatial-temporal pattern of IKAP expression in the developing peripheral nervous system, from the onset of neural crest migration through the period of programmed cell death in the dorsal root ganglia, and (2) using RNAi, reduced expression of IKBKAP mRNA in the neural crest lineage throughout the process of dorsal root ganglia (DRG) development in chick embryos in ovo. Here we demonstrate that IKAP is not expressed by neural crest cells and instead is expressed as neurons differentiate both in the CNS and PNS, thus the devastation of the PNS in FD could not be due to disruptions in neural crest motility or migration. In addition, we show that alterations in the levels of IKAP, through both gain and loss of function studies, perturbs neuronal polarity, neuronal differentiation and survival. Thus IKAP plays pleiotropic roles in both the peripheral and central nervous systems.
Collapse
Affiliation(s)
| | | | | | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| |
Collapse
|
46
|
Ossipova O, Sokol SY. Neural crest specification by noncanonical Wnt signaling and PAR-1. Development 2012; 138:5441-50. [PMID: 22110058 DOI: 10.1242/dev.067280] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neural crest (NC) cells are multipotent progenitors that form at the neural plate border, undergo epithelial-mesenchymal transition and migrate to diverse locations in vertebrate embryos to give rise to many cell types. Multiple signaling factors, including Wnt proteins, operate during early embryonic development to induce the NC cell fate. Whereas the requirement for the Wnt/β-catenin pathway in NC specification has been well established, a similar role for Wnt proteins that do not stabilize β-catenin has remained unclear. Our gain- and loss-of-function experiments implicate Wnt11-like proteins in NC specification in Xenopus embryos. In support of this conclusion, modulation of β-catenin-independent signaling through Dishevelled and Ror2 causes predictable changes in premigratory NC. Morpholino-mediated depletion experiments suggest that Wnt11R, a Wnt protein that is expressed in neuroectoderm adjacent to the NC territory, is required for NC formation. Wnt11-like signals might specify NC by altering the localization and activity of the serine/threonine polarity kinase PAR-1 (also known as microtubule-associated regulatory kinase or MARK), which itself plays an essential role in NC formation. Consistent with this model, PAR-1 RNA rescues NC markers in embryos in which noncanonical Wnt signaling has been blocked. These experiments identify novel roles for Wnt11R and PAR-1 in NC specification and reveal an unexpected connection between morphogenesis and cell fate.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
47
|
Ber S, Lee C, Voiculescu O, Surani MA. Dedifferentiation of foetal CNS stem cells to mesendoderm-like cells through an EMT process. PLoS One 2012; 7:e30759. [PMID: 22276221 PMCID: PMC3262838 DOI: 10.1371/journal.pone.0030759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 12/28/2011] [Indexed: 01/03/2023] Open
Abstract
Tissue-specific stem cells are considered to have a limited differentiation potential. Recently, this notion was challenged by reports that showed a broader differentiation potential of neural stem cells, in vitro and in vivo, although the molecular mechanisms that regulate plasticity of neural stem cells are unknown. Here, we report that neural stem cells derived from mouse embryonic cortex respond to Lif and serum in vitro and undergo epithelial to mesenchymal transition (EMT)-mediated dedifferentiation process within 48 h, together with transient upregulation of pluripotency markers and, more notably, upregulation of mesendoderm genes, Brachyury (T) and Sox17. These induced putative mesendoderm cells were injected into early gastrulating chick embryos, which revealed that they integrated more efficiently into mesoderm and endoderm lineages compared to non-induced cells. We also found that TGFβ and Jak/Stat pathways are necessary but not sufficient for the induction of mesendodermal phenotype in neural stem cells. These results provide insights into the regulation of plasticity of neural stem cells through EMT. Dissecting the regulatory pathways involved in these processes may help to gain control over cell fate decisions.
Collapse
Affiliation(s)
- Suzan Ber
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SB); (MAS)
| | - Caroline Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | - Octavian Voiculescu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SB); (MAS)
| |
Collapse
|
48
|
Batlle E, Wilkinson DG. Molecular mechanisms of cell segregation and boundary formation in development and tumorigenesis. Cold Spring Harb Perspect Biol 2012; 4:a008227. [PMID: 22214769 PMCID: PMC3249626 DOI: 10.1101/cshperspect.a008227] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The establishment and maintenance of precisely organized tissues requires the formation of sharp borders between distinct cell populations. The maintenance of segregated cell populations is also required for tissue homeostasis in the adult, and deficiencies in segregation underlie the metastatic spreading of tumor cells. Three classes of mechanisms that underlie cell segregation and border formation have been uncovered. The first involves differences in cadherin-mediated cell-cell adhesion that establishes interfacial tension at the border between distinct cell populations. A second mechanism involves the induction of actomyosin-mediated contraction by intercellular signaling, such that cortical tension is generated at the border. Third, activation of Eph receptors and ephrins can lead to both decreased adhesion by triggering cleavage of E-cadherin, and to repulsion of cells by regulation of the actin cytoskeleton, thus preventing intermingling between cell populations. These mechanisms play crucial roles at distinct boundaries during development, and alterations in cadherin or Eph/ephrin expression have been implicated in tumor metastasis.
Collapse
Affiliation(s)
- Eduard Batlle
- Oncology Program and ICREA, Institute for Research in Biomedicine, Josep Samitier 1-5, 08028 Barcelona, Spain
| | | |
Collapse
|
49
|
Kokorina NA, Lewis JS, Zakharkin SO, Krebsbach PH, Nussenbaum B. rhBMP-2 has adverse effects on human oral carcinoma cell lines in vivo. Laryngoscope 2011; 122:95-102. [PMID: 21997819 DOI: 10.1002/lary.22345] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/09/2011] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS To establish the relevance of the bone morphogenetic protein (BMP) signaling pathway in human oral squamous cell carcinoma (OSCCA) cell lines and determine if there is a biologic impact of stimulating this pathway with recombinant human (rh) BMP-2. STUDY DESIGN In vitro laboratory investigations and in vivo analysis using an orthotopic animal model for oral cancer. METHODS Gene expression profiles for BMP-2 and components of the BMP-signaling pathway were determined using reverse transcriptase-polymerase chain reaction. In vivo effects were evaluated using Kaplan-Meier survival analysis and studying histopathologic changes in established tumor xenografts with or without rhBMP-2 pretreatment. A phosphokinase array was used to detect levels of activation in signaling kinases. RESULTS The BMP-2 gene was expressed in 90% of the 30 OSCCA cell lines tested. Gene expression of all components of the BMP-signaling pathway was highly conserved. Tumor xenografts established with rhBMP-2-treated cells showed more rapid local growth that resulted in worse animal survival as compared to the control group. These tumors had a more poorly differentiated morphology. Changes in protein kinases suggested interactions of BMP-2 signaling with the Wnt-β-catenin, and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways. CONCLUSIONS Human OSCCA cell lines frequently express BMP-2 and all necessary components of the BMP-signaling pathway. Exogenous treatment of human OSCCA cell lines with rhBMP-2 prior to engraftment in an orthotopic animal model caused the subsequent tumors to be more locally aggressive with worse survival. Continued caution should be used for considering rhBMP-2 for reconstruction of bone defects in oral cancer patients.
Collapse
Affiliation(s)
- Natalia A Kokorina
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
50
|
Martínez-Morales PL, Diez del Corral R, Olivera-Martínez I, Quiroga AC, Das RM, Barbas JA, Storey KG, Morales AV. FGF and retinoic acid activity gradients control the timing of neural crest cell emigration in the trunk. ACTA ACUST UNITED AC 2011; 194:489-503. [PMID: 21807879 PMCID: PMC3153641 DOI: 10.1083/jcb.201011077] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coordination between functionally related adjacent tissues is essential during development. For example, formation of trunk neural crest cells (NCCs) is highly influenced by the adjacent mesoderm, but the molecular mechanism involved is not well understood. As part of this mechanism, fibroblast growth factor (FGF) and retinoic acid (RA) mesodermal gradients control the onset of neurogenesis in the extending neural tube. In this paper, using gain- and loss-of-function experiments, we show that caudal FGF signaling prevents premature specification of NCCs and, consequently, premature epithelial-mesenchymal transition (EMT) to allow cell emigration. In contrast, rostrally generated RA promotes EMT of NCCs at somitic levels. Furthermore, we show that FGF and RA signaling control EMT in part through the modulation of elements of the bone morphogenetic protein and Wnt signaling pathways. These data establish a clear role for opposition of FGF and RA signaling in control of the timing of NCC EMT and emigration and, consequently, coordination of the development of the central and peripheral nervous system during vertebrate trunk elongation.
Collapse
|