1
|
Francis T, Soendenbroe C, Lazarus NR, Mackey AL, Harridge SDR. Insights into human muscle biology from human primary skeletal muscle cell culture. J Muscle Res Cell Motil 2025:10.1007/s10974-025-09696-w. [PMID: 40346328 DOI: 10.1007/s10974-025-09696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
This review arises from the symposium held in honour of Prof Jenny Morgan at UCL in 2024 and the authors would like to acknowledge the outstanding contribution that Prof Morgan has made to the field of translational muscle cell biology. Prof Morgan published a review article in 2010 entitled: Are human and mice satellite cells really the same? In which the authors highlighted differences between species which are still pertinent to skeletal muscle cell culture studies today. To our knowledge there are no comprehensive reviews which outline the considerable work that has been undertaken using human primary skeletal muscle origin cells as the main model system. This review highlights the multitude of muscle biology that has been investigated using human primary cells, as well as discussing the advantages and disadvantages over other cell models. We also discuss future directions for primary cell culture models utilising the latest technologies in cell type specificity and culture systems.
Collapse
Affiliation(s)
- Thomas Francis
- Centre for Human & Applied Physiological Sciences, Basic & Medical Biosciences, Faculty of Life Science & Medicine, King's College London, London, UK.
| | - Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Norman R Lazarus
- Centre for Human & Applied Physiological Sciences, Basic & Medical Biosciences, Faculty of Life Science & Medicine, King's College London, London, UK
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen D R Harridge
- Centre for Human & Applied Physiological Sciences, Basic & Medical Biosciences, Faculty of Life Science & Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Heisser RH, Bawa M, Shah J, Bu A, Raman R. Soft Biological Actuators for Meter-Scale Homeostatic Biohybrid Robots. Chem Rev 2025; 125:3976-4007. [PMID: 40138615 DOI: 10.1021/acs.chemrev.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Skeletal muscle's elegant protein-based architecture powers motion throughout the animal kingdom, with its constituent actomyosin complexes driving intra- and extra-cellular motion. Classical motors and recently developed soft actuators cannot match the packing density and contractility of individual muscle fibers that scale to power the motion of ants and elephants alike. Accordingly, the interdisciplinary fields of robotics and tissue engineering have combined efforts to build living muscle actuators that can power a new class of robots to be more energy-efficient, dexterous, and safe than existing motor-powered and hydraulic paradigms. Doing so ethically and at scale─creating meter-scale tissue constructs from sustainable muscle progenitor cell lines─has inspired innovations in biomaterials and tissue culture methodology. We weave discussions of muscle cell biology, materials chemistry, tissue engineering, and biohybrid design to review the state of the art in soft actuator biofabrication. Looking forward, we outline a vision for meter-scale biohybrid robotic systems and tie discussions of recent progress to long-term research goals.
Collapse
Affiliation(s)
- Ronald H Heisser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Jessica Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, Massachusetts 02142, United States of America
| | - Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
3
|
Gallardo FS, Cruz-Soca M, Bock-Pereda A, Faundez-Contreras J, Gutiérrez-Rojas C, Gandin A, Torresan V, Casar JC, Ravasio A, Brandan E. Role of TGF-β/SMAD/YAP/TAZ signaling in skeletal muscle fibrosis. Am J Physiol Cell Physiol 2025; 328:C1015-C1028. [PMID: 39925133 DOI: 10.1152/ajpcell.00541.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Skeletal muscle fibrosis is strongly associated with the differentiation of its resident multipotent fibro/adipogenic progenitors (FAPs) toward the myofibroblast phenotype. Although transforming growth factor type β (TGF-β) signaling is well-known for driving FAPs differentiation and fibrosis, due to its pleiotropic functions its complete inhibition is not suitable for treating fibrotic disorders such as muscular dystrophies. Here, we describe that TGF-β operates through the mechanosensitive transcriptional regulators Yes-associated protein (YAP)/ transcriptional coactivator with PDZ-binding motif (TAZ) to determine the myofibroblast fate of FAPs and skeletal muscle fibrosis. Spatial transcriptomics analyses of dystrophic and acute injured muscles showed that areas with active fibrosis and TGF-β signaling displayed high YAP/TAZ activity. Using a TGF-β-driven fibrotic mouse model, we found that activation of YAP/TAZ in activated FAPs is associated with the fibrotic process. Mechanistically, primary culture of FAPs reveals the remarkable ability of TGF-β1 to activate YAP/TAZ through its canonical SMAD3 pathway. Moreover, inhibition of YAP/TAZ, either by disrupting its activity (with Verteporfin) or cellular mechanotransduction (with the Rho inhibitor C3 or soft matrices), decreased TGF-β1-dependent FAPs differentiation into myofibroblasts. In vivo, administration of Verteporfin in mice limits the deposition of collagen and fibronectin, and the activation of FAPs during the development of fibrosis. Overall, our work provides robust evidence for considering YAP/TAZ as a potential target in muscular fibroproliferative disorders.NEW & NOTEWORTHY The understanding of the nuclear factors governing the differentiation of muscular fibro/adipogenic progenitors (FAPs) into myofibroblasts is in its infancy. Here, we comprehensively elucidate the status, regulation, and role of the mechanotransducers Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) in the muscular fibrotic process. Our findings reveal that inhibiting cellular mechanotransduction limits FAP differentiation and the extent of muscular fibrosis exerted by transforming growth factor type β (TGF-β). This research shed new lights on the molecular mechanisms dictating the cell fate of FAPs and the muscular fibrosis.
Collapse
Affiliation(s)
- Felipe S Gallardo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Meilyn Cruz-Soca
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Alexia Bock-Pereda
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jennifer Faundez-Contreras
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Cristian Gutiérrez-Rojas
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alessandro Gandin
- Department of Industrial Engineering, University of Padova and INSTM, Padova, Italy
| | - Veronica Torresan
- Department of Industrial Engineering, University of Padova and INSTM, Padova, Italy
| | - Juan Carlos Casar
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, School of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
4
|
Li J, Yang D, Chen C, Wang J, Wang Z, Yang C, Yu C, Li Z. Single-cell RNA transcriptome uncovers distinct developmental trajectories in the embryonic skeletal muscle of Daheng broiler and Tibetan chicken. BMC Genomics 2025; 26:187. [PMID: 39994525 PMCID: PMC11854108 DOI: 10.1186/s12864-025-11363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Different chicken breeds exhibit distinct muscle phenotypes resulting from selective breeding, but little is known about the molecular mechanisms responsible for this phenotypic difference. Skeletal muscle is composed of a large number of heterogeneous cell populations. Differences in differentiation and interaction of cell populations play a key role in the difference of skeletal muscle phenotype. In the current study, we performed a single-cell RNA sequencing (scRNA-seq) on the leg muscle of Daheng broiler (DH, cultivated breed) and Tibetan chicken (TC, native breed) at embryonic (E) 10, E14 and E18. A comprehensive cell atlas of embryonic chicken skeletal muscle, consisting of 29,579 high-quality cells representing 6 distinct cell types was built. The differentiation trajectory of Myoblasts and fibro-adipogenic progenitors (FAPs) was constructed through pseudotemporal trajectory analysis. Our results revealed the different developmental trajectories and dynamic gene expression profiles in 3 subtypes of myoblasts and 5 FAPs subtypes of the two chicken breeds. Tibetan chicken showed earlier embryonic myogenesis and less myoblasts compared with Daheng broiler. By comparing the switch status and switch time of genes in the two breeds, SNRPG,SNRPE,EIF4EBP1 and HSP90AB1 were considered as potentially critical genes for embryonic myogenesis, and the genes MYOG,MYBPH,APOA1, and MGP played dominant roles in the embryonic adipogenesis. Intercellular interaction networks showed that strong and complex intercellular communication was contained during embryonic skeletal muscle growth and development. These findings revealed the differences of molecular mechanisms in the skeletal muscle development between TC and DH chickens. Our data provide a better understanding of skeletal muscle developmental differences between cultivated and native breeds and valuable information for genetic breeding of chicken.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
| | - Dongmei Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Chuwen Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
| | - Jiayan Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Zi Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Chunlin Yu
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Zhixiong Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Britton JC, Somogyi-Leatigaga A, Watson BA, Haro E, Mulder CG, Kennedy KD, Cooper AM, Whitley KL, Yeboah RL, Kim J, Yu MC, Campos JD, Amoah J, Kawauchi S, Kim E, Pira CU, Oberg KC. Evidence for Fgf and Wnt regulation of Lhx2 during limb development via two limb-specific Lhx2-associated cis-regulatory modules. Front Cell Dev Biol 2025; 13:1552716. [PMID: 40052149 PMCID: PMC11882541 DOI: 10.3389/fcell.2025.1552716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction In vertebrate limb morphogenesis, wingless-related integration site (Wnt) proteins and fibroblast growth factors (Fgfs) secreted from the apical ectodermal ridge (AER) coordinate proximodistal outgrowth. Fgfs also sustain sonic hedgehog (Shh) in the zone of polarizing activity (ZPA). Shh directs anteroposterior patterning and expansion and regulates AER-Fgfs, establishing a positive regulatory feedback loop that is vital in sustaining limb outgrowth. The transcription factor LIM homeodomain 2 (Lhx2) is expressed in the distal mesoderm and coordinates AER and ZPA signals that control cellular proliferation, differentiation, and shaping of the developing limb. Yet how Lhx2 is transcriptionally regulated to support such functions has only been partially characterized. Methods/Results We have identified two limb-specific cis-regulatory modules (CRMs) active within the Lhx2 expression domain in the limb. Chromatin conformation analysis of the Lhx2 locus in mouse embryonic limb bud cells predicted CRMs-Lhx2 promoter interactions. Single-cell RNA-sequencing analysis of limb bud cells revealed co-expression of several Fgf-related Ets and Wnt-related Tcf/Lef transcripts in Lhx2-expressing cells. Additionally, disruption of Ets and Tcf/Lef binding sites resulted in loss of reporter-driven CRM activity. Finally, binding of β-catenin to both Lhx2-associated CRMs supports the associated binding of Tcf/Lef transcription factors. Discussion These results suggest a role for Ets and Tcf/Lef transcription factors in the regulation of Lhx2 expression through these limb-specific Lhx2-associated CRMs. Moreover, these CRMs provide a mechanism for Fgf and Wnt signaling to localize and maintain distal Lhx2 expression during vertebrate limb development.
Collapse
Affiliation(s)
- Jessica C. Britton
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Anett Somogyi-Leatigaga
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Billy A. Watson
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Endika Haro
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Cassidy G. Mulder
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Kari D. Kennedy
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Allen M. Cooper
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Kristen L. Whitley
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Ruth-Love Yeboah
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Jeanyoung Kim
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Micah C. Yu
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
- School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jairo D. Campos
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
- School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Japhet Amoah
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
- School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Shimako Kawauchi
- UC Irvine Transgenic Mouse Facility, University of Irvine, Irvine, CA, United States
| | - Eunyoung Kim
- UC Irvine Transgenic Mouse Facility, University of Irvine, Irvine, CA, United States
| | - Charmaine U. Pira
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Kerby C. Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
6
|
Hudacova E, Abaffy P, Kaplan MM, Krausova M, Kubista M, Machon O. Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis. Bone 2025; 190:117297. [PMID: 39461490 DOI: 10.1016/j.bone.2024.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of Meis2-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.
Collapse
Affiliation(s)
- Erika Hudacova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12000 Prague, Czech Republic.
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Mehmet Mahsum Kaplan
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Michaela Krausova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| |
Collapse
|
7
|
Coren L, Zaffryar-Eilot S, Odeh A, Kaganovsky A, Hasson P. Fibroblast diversification is an embryonic process dependent on muscle contraction. Cell Rep 2024; 43:115034. [PMID: 39636726 DOI: 10.1016/j.celrep.2024.115034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Fibroblasts, the most common cell type found in connective tissues, play major roles in development, homeostasis, regeneration, and disease. Although specific fibroblast subpopulations have been associated with different biological processes, the mechanisms and unique activities underlying their diversity have not been thoroughly examined. Here, we set out to dissect the variation in skeletal-muscle-resident fibroblasts (mrFibroblasts) during development. Our results demonstrate that mrFibroblasts diversify following the transition from embryonic to fetal myogenesis prior to birth. We find that mrFibroblasts segregate into two major subpopulations occupying distinct niches, with interstitial fibroblasts residing between the muscle fibers and delineating fibroblasts sheathing the muscle. We further show that these subpopulations entail distinct cellular dynamics and transcriptomes. Notably, we find that mrFibroblast subpopulations exert distinct regulatory roles on myoblast proliferation and differentiation. Finally, we demonstrate that this diversification depends on muscle contraction. Altogether, these findings establish that mrFibroblasts diversify in a spatiotemporal embryonic process into distinct cell types, entailing different characteristics and roles.
Collapse
Affiliation(s)
- Lavi Coren
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anas Odeh
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anna Kaganovsky
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
8
|
Taye N, Rodriguez L, Iatridis JC, Han WM, Hubmacher D. Myoblast-derived ADAMTS-like 2 promotes skeletal muscle regeneration after injury. NPJ Regen Med 2024; 9:39. [PMID: 39702607 DOI: 10.1038/s41536-024-00383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Skeletal muscle regeneration and functional recovery after minor injuries requires the activation of muscle-resident myogenic muscle stem cells (i.e. satellite cells) and their subsequent differentiation into myoblasts, myocytes, and ultimately myofibers. We recently identified secreted ADAMTS-like 2 (ADAMTSL2) as a pro-myogenic regulator of muscle development, where it promoted myoblast differentiation. Since myoblast differentiation is a key process in skeletal muscle regeneration, we here examined the role of ADAMTSL2 during muscle regeneration after BaCl2 injury. Specifically, we found that muscle regeneration was delayed after ablation of ADAMTSL2 in myogenic precursor cells and accelerated following injection of pro-myogenic ADAMTSL2 protein domains. Mechanistically, ADAMTSL2 regulated the number of committed myoblasts, which are the precursors for myocytes and regenerating myofibers. Collectively, our data support a role for myoblast-derived ADAMTSL2 as a positive regulator of muscle regeneration and provide a proof-of-concept for potential therapeutic applications.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Levon Rodriguez
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James C Iatridis
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Woojin M Han
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Zhao C, Ikeya M. Novel insights from human induced pluripotent stem cells on origins and roles of fibro/adipogenic progenitors as heterotopic ossification precursors. Front Cell Dev Biol 2024; 12:1457344. [PMID: 39286484 PMCID: PMC11402712 DOI: 10.3389/fcell.2024.1457344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Fibro/adipogenic progenitors (FAPs) that reside in muscle tissue are crucial for muscular homeostasis and regeneration as they secrete signaling molecules and components of the extracellular matrix. During injury or disease, FAPs differentiate into different cell types and significantly modulate muscular function. Recent advances in lineage tracing and single-cell transcriptomics have proven that FAPs are heterogeneous both in resting and post-injury or disease states. Their heterogeneity may be owing to the varied tissue microenvironments and their diverse developmental origins. Therefore, understanding FAPs' developmental origins can help predict their characteristics and behaviors under different conditions. FAPs are thought to be the major cell populations in the muscle connective tissue (MCT). During embryogenesis, the MCT directs muscular development throughout the body and serves as a prepattern for muscular morphogenesis. The developmental origins of FAPs as stromal cells in the MCT were studied previously. In adult tissues, FAPs are important precursors for heterotopic ossification, especially in the context of the rare genetic disorder fibrodysplasia ossificans progressiva. A new developmental origin for FAPs have been suggested that differs from conventional developmental perspectives. In this review, we summarize the developmental origins and functions of FAPs as stromal cells of the MCT and present novel insights obtained by using patient-derived induced pluripotent stem cells and mouse models of heterotopic ossification. This review broadens the current understanding of FAPs and suggests potential avenues for further investigation.
Collapse
Affiliation(s)
- Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Nguyen ML, Demri N, Lapin B, Di Federico F, Gropplero G, Cayrac F, Hennig K, Gomes ER, Wilhelm C, Roman W, Descroix S. Studying the impact of geometrical and cellular cues on myogenesis with a skeletal muscle-on-chip. LAB ON A CHIP 2024; 24:4147-4160. [PMID: 39072529 DOI: 10.1039/d4lc00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In the skeletal muscle tissue, cells are organized following an anisotropic architecture, which is both required during myogenesis when muscle precursor cells fuse to generate myotubes and for its contractile function. To build an in vitro skeletal muscle tissue, it is therefore essential to develop methods to organize cells in an anisotropic fashion, which can be particularly challenging, especially in 3D. In this study, we present a versatile muscle-on-chip system with adjustable collagen hollow tubes that can be seeded with muscle precursor cells. The collagen acts both as a tube-shaped hollow mold and as an extracellular matrix scaffold that can house other cell types for co-culture. We found that the diameter of the channel affects the organization of the muscle cells and that proper myogenesis was obtained at a diameter of 75 μm. In these conditions, muscle precursor cells fused into long myotubes aligned along these collagen channels, resulting in a fascicle-like structure. These myotubes exhibited actin striations and upregulation of multiple myogenic genes, reflecting their maturation. Moreover, we showed that our chip allowed muscle tissue culture and maturation over a month, with the possibility of fibroblast co-culture embedding in the collagen matrix.
Collapse
Affiliation(s)
- M-L Nguyen
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - N Demri
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - B Lapin
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - F Di Federico
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - G Gropplero
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - F Cayrac
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - K Hennig
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - C Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - W Roman
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - S Descroix
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| |
Collapse
|
12
|
Murphy GRF, Feneck E, Paget J, Sivakumar B, Smith G, Logan MPO. Investigating the role connective tissue fibroblasts play in the altered muscle anatomy associated with the limb abnormality, Radial Dysplasia. J Anat 2024; 245:217-230. [PMID: 38624036 PMCID: PMC11259744 DOI: 10.1111/joa.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024] Open
Abstract
Radial dysplasia (RD) is a congenital upper limb birth defect that presents with changes to the upper limb anatomy, including a shortened or absent radius, bowed ulna, thumb malformations, a radially deviated hand and a range of muscle and tendon malformations, including absent or abnormally shaped muscle bundles. Current treatments to address wrist instability caused by a shortened or absent radius frequently require an initial soft tissue distraction intervention followed by a wrist stabilisation procedure. Following these surgical interventions, however, recurrence of the wrist deviation remains a common, long-term problem following treatment. The impact of the abnormal soft connective tissue (muscle and tendon) anatomy on the clinical presentation of RD and the complications following surgery are not understood. To address this, we have examined the muscle, fascia and the fascial irregular connective tissue (ICT) fibroblasts found within soft connective tissues, from RD patients. We show that ICT fibroblasts isolated from RD patients are functionally abnormal when compared to the same cells isolated from control patients and secrete a relatively disordered extracellular matrix (ECM). Furthermore, we show that ICT fibroblast dysfunction is a unifying feature found in RD patients, even when the RD clinical presentation is caused by distinct genetic syndromes.
Collapse
Affiliation(s)
- George R. F. Murphy
- Randall Centre of Cell and Molecular BiophysicsKing's College LondonLondonUK
- Plastic and Reconstructive Surgery DepartmentGreat Ormond Street Hospital for ChildrenLondonUK
| | - Eleanor Feneck
- Randall Centre of Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - James Paget
- Targeted Therapy Team, Chester Beatty LaboratoriesInstitute of Cancer ResearchLondonUK
| | - Branavan Sivakumar
- Plastic and Reconstructive Surgery DepartmentGreat Ormond Street Hospital for ChildrenLondonUK
| | - Gill Smith
- Plastic and Reconstructive Surgery DepartmentGreat Ormond Street Hospital for ChildrenLondonUK
| | - Malcolm P. O. Logan
- Randall Centre of Cell and Molecular BiophysicsKing's College LondonLondonUK
| |
Collapse
|
13
|
Sharma A, Zehra A, Mathew SJ. Myosin heavy chain-perinatal regulates skeletal muscle differentiation, oxidative phenotype and regeneration. FEBS J 2024; 291:2836-2848. [PMID: 38358038 DOI: 10.1111/febs.17085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/28/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Myosin heavy chain-perinatal (MyHC-perinatal) is one of two development-specific myosin heavy chains expressed exclusively during skeletal muscle development and regeneration. The specific functions of MyHC-perinatal are unclear, although mutations are known to lead to contracture syndromes such as Trismus-pseudocamptodactyly syndrome. Here, we characterize the functions of MyHC-perinatal during skeletal muscle differentiation and regeneration. Loss of MyHC-perinatal function leads to enhanced differentiation characterized by increased expression of myogenic regulatory factors and differentiation index as well as reduced reserve cell numbers in vitro. Proteomic analysis revealed that loss of MyHC-perinatal function results in a switch from oxidative to glycolytic metabolism in myofibers, suggesting a shift from slow type I to fast type IIb fiber type, also supported by reduced mitochondrial numbers. Paracrine signals mediate the effect of loss of MyHC-perinatal function on myogenic differentiation, possibly mediated by non-apoptotic caspase-3 signaling along with enhanced levels of the pro-survival apoptosis regulator Bcl2 and nuclear factor kappa-B (NF-κB). Knockdown of MyHC-perinatal during muscle regeneration in vivo results in increased expression of the differentiation marker myogenin (MyoG) and impaired differentiation, evidenced by smaller myofibers, elevated fibrosis and reduction in the number of satellite cells. Thus, we find that MyHC-perinatal is a crucial regulator of myogenic differentiation, myofiber oxidative phenotype and regeneration.
Collapse
Affiliation(s)
- Akashi Sharma
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
- Affiliated to KIIT University, Bhubaneswar, India
| | - Aatifa Zehra
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
| | - Sam J Mathew
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
- Affiliated to KIIT University, Bhubaneswar, India
| |
Collapse
|
14
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
15
|
Sabetkish S, Currie P, Meagher L. Recent trends in 3D bioprinting technology for skeletal muscle regeneration. Acta Biomater 2024; 181:46-66. [PMID: 38697381 DOI: 10.1016/j.actbio.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Skeletal muscle is a pro-regenerative tissue, that utilizes a tissue-resident stem cell system to effect repair upon injury. Despite the demonstrated efficiency of this system in restoring muscle mass after many acute injuries, in conditions of severe trauma such as those evident in volumetric muscle loss (VML) (>20 % by mass), this self-repair capability is unable to restore tissue architecture, requiring interventions which currently are largely surgical. As a possible alternative, the generation of artificial muscle using tissue engineering approaches may also be of importance in the treatment of VML and muscle diseases such as dystrophies. Three-dimensional (3D) bioprinting has been identified as a promising technique for regeneration of the complex architecture of skeletal muscle. This review discusses existing treatment strategies following muscle damage, recent progress in bioprinting techniques, the bioinks used for muscle regeneration, the immunogenicity of scaffold materials, and in vitro and in vivo maturation techniques for 3D bio-printed muscle constructs. The pros and cons of these bioink formulations are also highlighted. Finally, we present the current limitations and challenges in the field and critical factors to consider for bioprinting approaches to become more translationa and to produce clinically relevant engineered muscle. STATEMENT OF SIGNIFICANCE: This review discusses the physiopathology of muscle injuries and existing clinical treatment strategies for muscle damage, the types of bioprinting techniques that have been applied to bioprinting of muscle, and the bioinks commonly used for muscle regeneration. The pros and cons of these bioinks are highlighted. We present a discussion of existing gaps in the literature and critical factors to consider for the translation of bioprinting approaches and to produce clinically relevant engineered muscle. Finally, we provide insights into what we believe will be the next steps required before the realization of the application of tissue-engineered muscle in humans. We believe this manuscript is an insightful, timely, and instructive review that will guide future muscle bioprinting research from a fundamental construct creation approach, down a translational pathway to achieve the desired impact in the clinic.
Collapse
Affiliation(s)
- Shabnam Sabetkish
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Peter Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
16
|
Cavagnero KJ, Li F, Dokoshi T, Nakatsuji T, O’Neill AM, Aguilera C, Liu E, Shia M, Osuoji O, Hata T, Gallo RL. CXCL12+ dermal fibroblasts promote neutrophil recruitment and host defense by recognition of IL-17. J Exp Med 2024; 221:e20231425. [PMID: 38393304 PMCID: PMC10890925 DOI: 10.1084/jem.20231425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The skin provides an essential barrier for host defense through rapid action of multiple resident and recruited cell types, but the complex communication network governing these processes is incompletely understood. To define these cell-cell interactions more clearly, we performed an unbiased network analysis of mouse skin during invasive S. aureus infection and revealed a dominant role for CXCL12+ fibroblast subsets in neutrophil communication. These subsets predominantly reside in the reticular dermis, express adipocyte lineage markers, detect IL-17 and TNFα, and promote robust neutrophil recruitment through NFKBIZ-dependent release of CXCR2 ligands and CXCL12. Targeted deletion of Il17ra in mouse fibroblasts resulted in greatly reduced neutrophil recruitment and increased infection by S. aureus. Analogous human CXCL12+ fibroblast subsets abundantly express neutrophil chemotactic factors in psoriatic skin that are subsequently decreased upon therapeutic targeting of IL-17. These findings show that CXCL12+ dermal immune acting fibroblast subsets play a critical role in cutaneous neutrophil recruitment and host defense.
Collapse
Affiliation(s)
- Kellen J. Cavagnero
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Alan M. O’Neill
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Carlos Aguilera
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Edward Liu
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Michael Shia
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Olive Osuoji
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| |
Collapse
|
17
|
Girolamo DD, Benavente-Diaz M, Murolo M, Grimaldi A, Lopes PT, Evano B, Kuriki M, Gioftsidi S, Laville V, Tinevez JY, Letort G, Mella S, Tajbakhsh S, Comai G. Extraocular muscle stem cells exhibit distinct cellular properties associated with non-muscle molecular signatures. Development 2024; 151:dev202144. [PMID: 38240380 DOI: 10.1242/dev.202144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Maria Benavente-Diaz
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Melania Murolo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Alexandre Grimaldi
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Priscilla Thomas Lopes
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Brendan Evano
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Mao Kuriki
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Stamatia Gioftsidi
- Université Paris-Est, 77420 Champs-sur- Marne, France
- Freie Universität Berlin, 14195 Berlin, Germany
- Inserm, IMRB U955-E10, 94000 Créteil, France
| | - Vincent Laville
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sebastian Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Glenda Comai
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| |
Collapse
|
18
|
Han S, Lee MC, Rodríguez-delaRosa A, Kim J, Barroso-Zuppa M, Pineda-Rosales M, Kim SS, Hatanaka T, Yazdi IK, Bassous N, Sinha I, Pourquié O, Park S, Shin SR. Engineering Stem Cell Fate Controlling Biomaterials to Develop Muscle Connective Tissue Layered Myofibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2304153. [PMID: 38707790 PMCID: PMC11068219 DOI: 10.1002/adfm.202304153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 05/07/2024]
Abstract
Skeletal muscle connective tissue (MCT) surrounds myofiber bundles to provide structural support, produce force transduction from tendons, and regulate satellite cell differentiation during muscle regeneration. Engineered muscle tissue composed of myofibers layered within MCT has not yet been developed. Herein, a bioengineering strategy to create MCT-layered myofibers through the development of stem cell fate-controlling biomaterials that achieve both myogenesis and fibroblast differentiation in a locally controlled manner at the single construct is introduced. The reciprocal role of transforming growth factor-beta 1 (TGF-β1) and its inhibitor as well as 3D matrix stiffness to achieve co-differentiation of MCT fibroblasts and myofibers from a human-induced pluripotent stem cell (hiPSC)-derived paraxial mesoderm is studied. To avoid myogenic inhibition, TGF-β1 is conjugated on the gelatin-based hydrogel to control the fibroblasts' populations locally; the TGF-β1 degrades after 2 weeks, resulting in increased MCT-specific extracellular matrix (ECM) production. The locations of myofibers and fibroblasts are precisely controlled by using photolithography and co-axial wet spinning techniques, which results in the formation of MCT-layered functional myofibers in 3D constructs. This advanced engineering strategy is envisioned as a possible method for obtaining biomimetic human muscle grafts for various biomedical applications.
Collapse
Affiliation(s)
- Seokgyu Han
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Alejandra Rodríguez-delaRosa
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138, USA
| | - Jiseong Kim
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Goyang 10326, Republic of Korea
| | - Margot Barroso-Zuppa
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Mexico City 14380, Mexico
- School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA
| | - Montserrat Pineda-Rosales
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- School of Engineering and Science, Tecnologico de Monterrey, Santiago de Querétaro, Querétaro 76130, Mexico
| | - Seong Soo Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Takaaki Hatanaka
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Future Mobility Research Department, Toyota Research Institute North America, Toyota Motor North America Inc., Ann Arbor, MI 48105, USA
| | - Iman K Yazdi
- School of Arts and Sciences, Regis College, Weston, MA 02493, USA
- LiquiGlide Inc., Cambridge, MA 02139, USA
| | - Nicole Bassous
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138, USA
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Edouard P, Reurink G, Mackey AL, Lieber RL, Pizzari T, Järvinen TAH, Gronwald T, Hollander K. Traumatic muscle injury. Nat Rev Dis Primers 2023; 9:56. [PMID: 37857686 DOI: 10.1038/s41572-023-00469-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Traumatic muscle injury represents a collection of skeletal muscle pathologies caused by trauma to the muscle tissue and is defined as damage to the muscle tissue that can result in a functional deficit. Traumatic muscle injury can affect people across the lifespan and can result from high stresses and strains to skeletal muscle tissue, often due to muscle activation while the muscle is lengthening, resulting in indirect and non-contact muscle injuries (strains or ruptures), or from external impact, resulting in direct muscle injuries (contusion or laceration). At a microscopic level, muscle fibres can repair focal damage but must be completely regenerated after full myofibre necrosis. The diagnosis of muscle injury is based on patient history and physical examination. Imaging may be indicated to eliminate differential diagnoses. The management of muscle injury has changed within the past 5 years from initial rest, immobilization and (over)protection to early activation and progressive loading using an active approach. One challenge of muscle injury management is that numerous medical treatment options, such as medications and injections, are often used or proposed to try to accelerate muscle recovery despite very limited efficacy evidence. Another challenge is the prevention of muscle injury owing to the multifactorial and complex nature of this injury.
Collapse
Affiliation(s)
- Pascal Edouard
- Université Jean Monnet, Lyon 1, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France.
- Department of Clinical and Exercise Physiology, Sports Medicine Unit, University Hospital of Saint-Etienne, Faculty of Medicine, Saint-Etienne, France.
| | - Gustaaf Reurink
- Department of Orthopedic Surgery and Sports Medicine, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Academic Medical Center, Amsterdam, Netherlands
- The Sports Physicians Group, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University, Chicago, IL, USA
- Hines VA Medical Center, Maywood, IL, USA
| | - Tania Pizzari
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Tero A H Järvinen
- Tampere University and Tampere University Hospital, Tampere, Finland
| | - Thomas Gronwald
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Srikuea R, Hirunsai M. TGF-β1 stimulation and VDR-dependent activation modulate calcitriol action on skeletal muscle fibroblasts and Smad signalling-associated fibrogenesis. Sci Rep 2023; 13:13811. [PMID: 37612333 PMCID: PMC10447566 DOI: 10.1038/s41598-023-40978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Fibroblasts play a pivotal role in fibrogenesis after skeletal muscle injury. Excess fibrous formation can disrupt contractile functions and delay functional recovery. Although vitamin D receptor (VDR) is expressed explicitly in regenerating muscle compared with uninjured muscle, how calcitriol [1α,25(OH)2D3] directly regulates skeletal muscle primary fibroblast proliferation, the transition to myofibroblasts, and Smad signalling-associated fibrogenesis is currently unknown. Herein, the effects of calcitriol on cultured skeletal muscle primary fibroblasts of male C57BL/6 mice (aged 1 month old) were investigated. The percentage of BrdU+ nuclei in primary fibroblasts was significantly decreased after calcitriol treatment; however, the antiproliferative effect of calcitriol was diminished after TGF-β1 stimulation to induce fibroblast to myofibroblast transition. This suppressive effect was associated with significantly decreased VDR expression in TGF-β1-treated cells. In addition, Vdr siRNA transfection abolished the effects of calcitriol on the suppression of α-SMA expression and Smad2/3 signalling in myofibroblasts, supporting that its antifibrogenic effect requires VDR activation. Compared with calcitriol, the antifibrotic agent suramin could inhibit fibroblast/myofibroblast proliferation and suppress the expression of TCF-4, which regulates fibrogenic determination. Collectively, these findings suggest that profibrotic stimulation and VDR-dependent activation could modulate the effects of calcitriol on skeletal muscle fibroblast proliferation and fibrogenesis processes. Therefore, TGF-β1 and VDR expression levels are crucial determinants for the antifibrogenic effect of calcitriol on skeletal muscle after injury.
Collapse
Affiliation(s)
- Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok, 26120, Thailand
| |
Collapse
|
21
|
Lazure F, Blackburn DM, Soleimani VD. Transcriptional Profiling of Skeletal Muscle Stem Cells After In Vivo Engraftment into a Heterologous Niche Environment. Curr Protoc 2023; 3:e877. [PMID: 37638781 DOI: 10.1002/cpz1.877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Adult stem cells play a critical role in the maintenance and repair of the organs in which they reside. However, their function is highly dependent on the crosstalk with their niche environment that changes during development and in disease states. The niche provides signals to stem cells to activate, proliferate, self-renew, or remain in quiescence. In skeletal muscle, the niche is perturbed in disease contexts such as aging, muscular dystrophies, and cachexia. Therefore, it is important to develop methods that permit the decoupling of niche-mediated from cell-intrinsic changes that occur in muscle stem cells (MuSCs) in development and disease contexts. With the purpose of determining the effect of the niche environment on the MuSC transcriptome, function, or health, we have coupled an allogeneic stem cell transplantation system, meaning the transplantation of MuSCs from a donor mouse into a recipient host mouse, with Switching Mechanism at 5' End of RNA Template (SMART-Seq) to quantify the effects of the niche on the MuSC transcriptome in vivo. Briefly, MuSCs are isolated from a GFP reporter donor mouse (Pax7-nGFP) and transplanted into the irradiated muscles of immunocompromised allogeneic hosts. The MuSCs are re-isolated by fluorescence-activated cell sorting (FACS) after three weeks of inhabiting the heterologous niche, defined as a niche that is different from their originating niche, and sequencing-ready libraries are created. This method allows for the direct comparison of the transcriptome of stem cells before and after transplantation into a host of a different age, disease status, or genetic background. This method can be used to accurately quantify the direct effect of the niche environment on the stem cell gene expression profile and to decouple cell-intrinsic versus niche-mediated alterations in the stem cell transcriptome. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Allogeneic muscle stem cell transplantation.
Collapse
Affiliation(s)
- Felicia Lazure
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Quebec, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Quebec, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Quebec, Canada
- Present address: Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| |
Collapse
|
22
|
Johnson AL, Kamal M, Parise G. The Role of Supporting Cell Populations in Satellite Cell Mediated Muscle Repair. Cells 2023; 12:1968. [PMID: 37566047 PMCID: PMC10417507 DOI: 10.3390/cells12151968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Skeletal muscle has a high capacity to repair and remodel in response to damage, largely through the action of resident muscle stem cells, termed satellite cells. Satellite cells are required for the proper repair of skeletal muscle through a process known as myogenesis. Recent investigations have observed relationships between satellite cells and other cell types and structures within the muscle microenvironment. These findings suggest that the crosstalk between inflammatory cells, fibrogenic cells, bone-marrow-derived cells, satellite cells, and the vasculature is essential for the restoration of muscle homeostasis. This review will discuss the influence of the cells and structures within the muscle microenvironment on satellite cell function and muscle repair.
Collapse
Affiliation(s)
| | | | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
23
|
Tsutsumi R, Eiraku M. How might we build limbs in vitro informed by the modular aspects and tissue-dependency in limb development? Front Cell Dev Biol 2023; 11:1135784. [PMID: 37283945 PMCID: PMC10241304 DOI: 10.3389/fcell.2023.1135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Building limb morphogenesis in vitro would substantially open up avenues for research and applications of appendage development. Recently, advances in stem cell engineering to differentiate desired cell types and produce multicellular structures in vitro have enabled the derivation of limb-like tissues from pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis is yet to be achieved. To formulate a method of building limbs in vitro, it is critically important to understand developmental mechanisms, especially the modularity and the dependency of limb development on the external tissues, as those would help us to postulate what can be self-organized and what needs to be externally manipulated when reconstructing limb development in vitro. Although limbs are formed on the designated limb field on the flank of embryo in the normal developmental context, limbs can also be regenerated on the amputated stump in some animals and experimentally induced at ectopic locations, which highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are initially instructed by the body axis of the embryo, and maintained in the limb domain once established. In contrast, the aspects of dependency on the external tissues are especially underscored by the contribution of incoming tissues, such as muscles, blood vessels, and peripheral nerves, to developing limbs. Together, those developmental mechanisms explain how limb-like tissues could be derived from pluripotent stem cells. Prospectively, the higher complexity of limb morphologies is expected to be recapitulated by introducing the morphogen gradient and the incoming tissues in the culture environment. Those technological developments would dramatically enhance experimental accessibility and manipulability for elucidating the mechanisms of limb morphogenesis and interspecies differences. Furthermore, if human limb development can be modeled, drug development would be benefited by in vitro assessment of prenatal toxicity on congenital limb deficiencies. Ultimately, we might even create a future in which the lost appendage would be recovered by transplanting artificially grown human limbs.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Cabezas F, Cabello-Verrugio C, González N, Salas J, Ramírez MJ, de la Vega E, Olguín HC. NEDD4-1 deficiency impairs satellite cell function during skeletal muscle regeneration. Biol Res 2023; 56:21. [PMID: 37147738 PMCID: PMC10161651 DOI: 10.1186/s40659-023-00432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Satellite cells are tissue-specific stem cells primarily responsible for the regenerative capacity of skeletal muscle. Satellite cell function and maintenance are regulated by extrinsic and intrinsic mechanisms, including the ubiquitin-proteasome system, which is key for maintaining protein homeostasis. In this context, it has been shown that ubiquitin-ligase NEDD4-1 targets the transcription factor PAX7 for proteasome-dependent degradation, promoting muscle differentiation in vitro. Nonetheless, whether NEDD4-1 is required for satellite cell function in regenerating muscle remains to be determined. RESULTS Using conditional gene ablation, we show that NEDD4-1 loss, specifically in the satellite cell population, impairs muscle regeneration resulting in a significant reduction of whole-muscle size. At the cellular level, NEDD4-1-null muscle progenitors exhibit a significant decrease in the ability to proliferate and differentiate, contributing to the formation of myofibers with reduced diameter. CONCLUSIONS These results indicate that NEDD4-1 expression is critical for proper muscle regeneration in vivo and suggest that it may control satellite cell function at multiple levels.
Collapse
Affiliation(s)
- Felipe Cabezas
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, 7510157, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Natalia González
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jeremy Salas
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel J Ramírez
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo de la Vega
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo C Olguín
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
25
|
Gallardo FS, Córdova-Casanova A, Bock-Pereda A, Rebolledo DL, Ravasio A, Casar JC, Brandan E. Denervation Drives YAP/TAZ Activation in Muscular Fibro/Adipogenic Progenitors. Int J Mol Sci 2023; 24:ijms24065585. [PMID: 36982659 PMCID: PMC10059792 DOI: 10.3390/ijms24065585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Loss of motoneuron innervation (denervation) is a hallmark of neurodegeneration and aging of the skeletal muscle. Denervation induces fibrosis, a response attributed to the activation and expansion of resident fibro/adipogenic progenitors (FAPs), i.e., multipotent stromal cells with myofibroblast potential. Using in vivo and in silico approaches, we revealed FAPs as a novel cell population that activates the transcriptional coregulators YAP/TAZ in response to skeletal muscle denervation. Here, we found that denervation induces the expression and transcriptional activity of YAP/TAZ in whole muscle lysates. Using the PdgfraH2B:EGFP/+ transgenic reporter mice to trace FAPs, we demonstrated that denervation leads to increased YAP expression that accumulates within FAPs nuclei. Consistently, re-analysis of published single-nucleus RNA sequencing (snRNA-seq) data indicates that FAPs from denervated muscles have a higher YAP/TAZ signature level than control FAPs. Thus, our work provides the foundations to address the functional role of YAP/TAZ in FAPs in a neurogenic pathological context, which could be applied to develop novel therapeutic approaches for the treatment of muscle disorders triggered by motoneuron degeneration.
Collapse
Affiliation(s)
- Felipe S. Gallardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Adriana Córdova-Casanova
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Alexia Bock-Pereda
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Daniela L. Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, School of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
- Correspondence:
| |
Collapse
|
26
|
Cao G, Zhang S, Wang Y, Quan S, Yue C, Yao J, Alexander PG, Tan H. Pathogenesis of acquired heterotopic ossification: Risk factors, cellular mechanisms, and therapeutic implications. Bone 2023; 168:116655. [PMID: 36581258 DOI: 10.1016/j.bone.2022.116655] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Heterotopic ossification (HO), including hereditary and acquired HO, is the formation of extraskeletal bone in skeletal muscle and surrounding soft tissues. Acquired HO is often caused by range of motion, explosion injury, nerve injury or burns. Severe HO can lead to pain and limited joint activity, affecting functional rehabilitation and quality of life. Increasing evidence shows that inflammatory processes and mesenchymal stem cells (MSCs) can drive HO. However, explicit knowledge about the specific mechanisms that result in HO and related cell precursors is still limited. Moreover, there are no effective methods to prevent or reduce HO formation. In this review, we provide an update of known risk factors and relevant cellular origins for HO. In particular, we focus on the underlying mechanisms of MSCs in acquired HO, which follow the osteogenic program. We also discuss the latest therapeutic value and implications for acquired HO. Our review highlights the current gaps in knowledge regarding the pathogenesis of acquired HO and identifies potential targets for the prevention and treatment of HO.
Collapse
Affiliation(s)
- Guorui Cao
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China.
| | - Shaoyun Zhang
- Department of Orthopedics, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan Province, People's Republic of China
| | - Yixuan Wang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Songtao Quan
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China
| | - Chen Yue
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China
| | - Junna Yao
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, United States of America.
| | - Honglue Tan
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China.
| |
Collapse
|
27
|
Stecco A, Giordani F, Fede C, Pirri C, De Caro R, Stecco C. From Muscle to the Myofascial Unit: Current Evidence and Future Perspectives. Int J Mol Sci 2023; 24:ijms24054527. [PMID: 36901958 PMCID: PMC10002604 DOI: 10.3390/ijms24054527] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The "motor unit" or the "muscle" has long been considered the quantal element in the control of movement. However, in recent years new research has proved the strong interaction between muscle fibers and intramuscular connective tissue, and between muscles and fasciae, suggesting that the muscles can no longer be considered the only elements that organize movement. In addition, innervation and vascularization of muscle is strongly connected with intramuscular connective tissue. This awareness induced Luigi Stecco, in 2002, to create a new term, the "myofascial unit", to describe the bilateral dependent relationship, both anatomical and functional, that occurs between fascia, muscle and accessory elements. The aim of this narrative review is to understand the scientific support for this new term, and whether it is actually correct to consider the myofascial unit the physiological basic element for peripheral motor control.
Collapse
Affiliation(s)
- Antonio Stecco
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Federico Giordani
- Department of Rehabilitation Medicine, Padova University, 35141 Padova, Italy
| | - Caterina Fede
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35141 Padova, Italy
| | - Carmelo Pirri
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35141 Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35141 Padova, Italy
| | - Carla Stecco
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35141 Padova, Italy
- Correspondence: ; Tel.: +39-04-9827-2315
| |
Collapse
|
28
|
Flynn CGK, Ginkel PRV, Hubert KA, Guo Q, Hrycaj SM, McDermott AE, Madruga A, Miller AP, Wellik DM. Hox11-expressing interstitial cells contribute to adult skeletal muscle at homeostasis. Development 2023; 150:dev201026. [PMID: 36815629 PMCID: PMC10110422 DOI: 10.1242/dev.201026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023]
Abstract
Interstitial stromal cells play critical roles in muscle development, regeneration and repair and we have previously reported that Hoxa11 and Hoxd11 are expressed in the interstitial cells of muscles attached to the zeugopod, and are crucial for the proper embryonic patterning of these muscles. Hoxa11eGFP expression continues in a subset of muscle interstitial cells through adult stages. The induction of Hoxa11-CreERT2-mediated lineage reporting (Hoxa11iTom) at adult stages in mouse results in lineage induction only in the interstitial cells. However, Hoxa11iTom+ cells progressively contribute to muscle fibers at subsequent stages. The contribution to myofibers exceeds parallel Pax7-CreERT2-mediated lineage labeling. Nuclear-specific lineage labeling demonstrates that Hoxa11-expressing interstitial cells contribute nuclear contents to myofibers. Crucially, at no point after Hoxa11iTom induction are satellite cells lineage labeled. When examined in vitro, isolated Hoxa11iTom+ interstitial cells are not capable of forming myotubes, but Hoxa11iTom+ cells can contribute to differentiating myotubes, supporting Hox-expressing interstitial cells as a new population of muscle progenitors, but not stem cells. This work adds to a small but growing body of evidence that supports a satellite cell-independent source of muscle tissue in vivo.
Collapse
Affiliation(s)
- Corey G. K. Flynn
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul R. Van Ginkel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Katharine A. Hubert
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI 53703, USA
| | - Qingyuan Guo
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Steven M. Hrycaj
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aubrey E. McDermott
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Angelo Madruga
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Anna P. Miller
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
29
|
Lipp SN, Jacobson KR, Colling HA, Tuttle TG, Miles DT, McCreery KP, Calve S. Mechanical loading is required for initiation of extracellular matrix deposition at the developing murine myotendinous junction. Matrix Biol 2023; 116:28-48. [PMID: 36709857 PMCID: PMC10218368 DOI: 10.1016/j.matbio.2023.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The myotendinous junction (MTJ) contributes to the generation of motion by connecting muscle to tendon. At the adult MTJ, a specialized extracellular matrix (ECM) is thought to contribute to the mechanical integrity of the muscle-tendon interface, but the factors that influence MTJ formation during mammalian development are unclear. Here, we combined 3D imaging and proteomics with murine models in which muscle contractility and patterning are disrupted to resolve morphological and compositional changes in the ECM during MTJ development. We found that MTJ-specific ECM deposition can be initiated via static loading due to growth; however, it required cyclic loading to develop a mature morphology. Furthermore, the MTJ can mature without the tendon terminating into cartilage. Based on these results, we describe a model wherein MTJ development depends on mechanical loading but not insertion into an enthesis.
Collapse
Affiliation(s)
- Sarah N Lipp
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; The Indiana University Medical Scientist/Engineer Training Program, Indianapolis, IN 46202, United States
| | - Kathryn R Jacobson
- Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907, United States
| | - Haley A Colling
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder CO, 80309, United States
| | - Tyler G Tuttle
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Dalton T Miles
- Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, CO 80309, United States
| | - Kaitlin P McCreery
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907, United States; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States.
| |
Collapse
|
30
|
Alway SE, Paez HG, Pitzer CR, Ferrandi PJ, Khan MM, Mohamed JS, Carson JA, Deschenes MR. Mitochondria transplant therapy improves regeneration and restoration of injured skeletal muscle. J Cachexia Sarcopenia Muscle 2023; 14:493-507. [PMID: 36604839 PMCID: PMC9891964 DOI: 10.1002/jcsm.13153] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Injection of exogenous mitochondria has been shown to improve the ischaemia-damaged myocardium, but the effect of mitochondrial transplant therapy (MTT) to restore skeletal muscle mass and function has not been tested following neuromuscular injury. Therefore, we tested the hypothesis that MTT would improve the restoration of muscle function after injury. METHODS BaCl2 was injected into the gastrocnemius muscle of one limb of 8-12-week-old C57BL/6 mice to induce damage without injury to the resident stem cells. The contralateral gastrocnemius muscle was injected with phosphate-buffered saline (PBS) and served as the non-injured intra-animal control. Mitochondria were isolated from donor mice. Donor mitochondria were suspended in PBS or PBS without mitochondria (sham treatment) and injected into the tail vein of BaCl2 injured mice 24 h after the initial injury. Muscle repair was examined 7, 14 and 21 days after injury. RESULTS MTT did not increase systemic inflammation in mice. Muscle mass 7 days following injury was 21.9 ± 2.1% and 17.4 ± 1.9% lower (P < 0.05) in injured as compared with non-injured intra-animal control muscles in phosphate-buffered saline (PBS)- and MTT-treated animals, respectively. Maximal plantar flexor muscle force was significantly lower in injured as compared with uninjured muscles of PBS-treated (-43.4 ± 4.2%, P < 0.05) and MTT-treated mice (-47.7 ± 7.3%, P < 0.05), but the reduction in force was not different between the experimental groups. The percentage of collagen and other non-contractile tissue in histological muscle cross sections, was significantly greater in injured muscles of PBS-treated mice (33.2 ± 0.2%) compared with MTT-treated mice (26.5 ± 0.2%) 7 days after injury. Muscle wet weight and maximal muscle force from injured MTT-treated mice had recovered to control levels by 14 days after the injury. However, muscle mass and force had not improved in PBS-treated animals by 14 days after injury. The non-contractile composition of the gastrocnemius muscle tissue cross sections was not different between control, repaired PBS-treated and repaired MTT-treated mice 14 days after injury. By 21 days following injury, PBS-treated mice had fully restored gastrocnemius muscle mass of the injured muscle to that of the uninjured muscle, although maximal plantar flexion force was still 19.4 ± 3.7% (P < 0.05) lower in injured/repaired gastrocnemius as compared with uninjured intra-animal control muscles. CONCLUSIONS Our results suggest that systemic mitochondria delivery can enhance the rate of muscle regeneration and restoration of muscle function following injury.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Tennessee Institute of Regenerative Medicine, Memphis, TN, USA
| | - Hector G Paez
- Laboratory of Muscle Biology and Sarcopenia, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Christopher R Pitzer
- Laboratory of Muscle Biology and Sarcopenia, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peter J Ferrandi
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA.,Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mohammad Moshahid Khan
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Junaith S Mohamed
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Tennessee Institute of Regenerative Medicine, Memphis, TN, USA.,Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - James A Carson
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Tennessee Institute of Regenerative Medicine, Memphis, TN, USA.,Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
31
|
Gao M, Liu X, Guo P, Wang J, Li J, Wang W, Stoddart MJ, Grad S, Li Z, Wu H, Li B, He Z, Zhou G, Liu S, Zhu W, Chen D, Zou X, Zhou Z. Deciphering postnatal limb development at single-cell resolution. iScience 2023; 26:105808. [PMID: 36619982 PMCID: PMC9813795 DOI: 10.1016/j.isci.2022.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The early postnatal limb developmental progression bridges embryonic and mature stages and mirrors the pathological remodeling of articular cartilage. However, compared with multitudinous research on embryonic limb development, the early postnatal stage seems relatively unnoticed. Here, a systematic work to portray the postnatal limb developmental landscape was carried out by characterization of 19,952 single cells from murine hindlimbs at 4 postnatal stages using single-cell RNA sequencing technique. By delineation of cell heterogeneity, the candidate progenitor sub-clusters marked by Cd34 and Ly6e were discovered in articular cartilage and enthesis, and three cellular developmental branches marked by Col10a1, Spp1, and Tnni2 were reflected in growth plate. The representative transcriptomes and developmental patterns were intensively explored, and the key regulation mechanisms as well as evolvement in osteoarthritis were discussed. Above all, these results expand horizons of postnatal limb developmental biology and reach the interconnections between limb development, remodeling, and regeneration.
Collapse
Affiliation(s)
- Manman Gao
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Sport Medicine, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peng Guo
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jianmin Wang
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Junhong Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wentao Wang
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | - Sibylle Grad
- AO Research Institute Davos, Davos 7270, Switzerland
| | - Zhen Li
- AO Research Institute Davos, Davos 7270, Switzerland
| | - Huachuan Wu
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Baoliang Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongyuan He
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Shaoyu Liu
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Weimin Zhu
- Department of Sport Medicine, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing 100035, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiyu Zhou
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
32
|
Sastourné-Arrey Q, Mathieu M, Contreras X, Monferran S, Bourlier V, Gil-Ortega M, Murphy E, Laurens C, Varin A, Guissard C, Barreau C, André M, Juin N, Marquès M, Chaput B, Moro C, O'Gorman D, Casteilla L, Girousse A, Sengenès C. Adipose tissue is a source of regenerative cells that augment the repair of skeletal muscle after injury. Nat Commun 2023; 14:80. [PMID: 36604419 PMCID: PMC9816314 DOI: 10.1038/s41467-022-35524-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Fibro-adipogenic progenitors (FAPs) play a crucial role in skeletal muscle regeneration, as they generate a favorable niche that allows satellite cells to perform efficient muscle regeneration. After muscle injury, FAP content increases rapidly within the injured muscle, the origin of which has been attributed to their proliferation within the muscle itself. However, recent single-cell RNAseq approaches have revealed phenotype and functional heterogeneity in FAPs, raising the question of how this differentiation of regenerative subtypes occurs. Here we report that FAP-like cells residing in subcutaneous adipose tissue (ScAT), the adipose stromal cells (ASCs), are rapidly released from ScAT in response to muscle injury. Additionally, we find that released ASCs infiltrate the damaged muscle, via a platelet-dependent mechanism and thus contribute to the FAP heterogeneity. Moreover, we show that either blocking ASCs infiltration or removing ASCs tissue source impair muscle regeneration. Collectively, our data reveal that ScAT is an unsuspected physiological reservoir of regenerative cells that support skeletal muscle regeneration, underlining a beneficial relationship between muscle and fat.
Collapse
Affiliation(s)
- Quentin Sastourné-Arrey
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Maxime Mathieu
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Xavier Contreras
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Sylvie Monferran
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Virginie Bourlier
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Marta Gil-Ortega
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Enda Murphy
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Claire Laurens
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Audrey Varin
- RESTORE, Research Center, Team 2 FLAMES, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Christophe Guissard
- RESTORE, Research Center, Team 4 GOT-IT, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Corinne Barreau
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Mireille André
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Noémie Juin
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Marie Marquès
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Benoit Chaput
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 31100, Toulouse, France
| | - Cédric Moro
- Institute of Metabolic and Cardiovascular Diseases, INSERM /Paul Sabatier University UMR 1297, Team MetaDiab, Toulouse, France
| | - Donal O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Louis Casteilla
- RESTORE, Research Center, Team 4 GOT-IT, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Amandine Girousse
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Coralie Sengenès
- RESTORE, Research Center, Team 1 STROMAGICS, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.
| |
Collapse
|
33
|
Maldonado L, Orozco-Aguilar J, Valero-Breton M, Tacchi F, Cifuentes-Silva E, Cabello-Verrugio C. Differential Fibrotic Response of Muscle Fibroblasts, Myoblasts, and Myotubes to Cholic and Deoxycholic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:219-234. [PMID: 37093430 DOI: 10.1007/978-3-031-26163-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Fibrosis is a condition characterized by an increase in the components of the extracellular matrix (ECM). In skeletal muscle, the cells that participate in the synthesis of ECM are fibroblasts, myoblasts, and myotubes. These cells respond to soluble factors that increase ECM. Fibrosis is a phenomenon that develops in conditions of chronic inflammation, extensive lesions, or chronic diseases. A pathological condition with muscle weakness and increased bile acids (BA) in the blood is cholestatic chronic liver diseases (CCLD). Skeletal muscle expresses the membrane receptor for BA called TGR5. To date, muscle fibrosis in CCLD has not been evaluated. This study aims to assess whether BA can induce a fibrotic condition in muscle fibroblasts, myoblasts, and myotubes. The cells were incubated with deoxycholic (DCA) and cholic (CA) acids, and fibronectin protein levels were evaluated by Western blot. In muscle fibroblasts, both DCA and CA induced an increase in fibronectin protein levels. The same response was found in fibroblasts when activating TGR5 with the specific receptor agonist (INT-777). Interestingly, DCA reduced fibronectin protein levels in both myoblasts and myotubes, while CA did not show changes in fibronectin protein levels in myoblasts and myotubes. These results suggest that DCA and CA can induce a fibrotic phenotype in muscle-derived fibroblasts. On the other hand, DCA decreased the fibronectin in myoblasts and myotubes, whereas CA did not show any effect in these cell populations. Our results show that BA has different effects depending on the cell population to be analyzed.
Collapse
Affiliation(s)
- Luis Maldonado
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Eduardo Cifuentes-Silva
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile.
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
34
|
Yamaguchi Y, Kodama R, Yamada S. Morphogenetic progression of thigh and lower leg muscles during human embryonic development. Anat Rec (Hoboken) 2022. [PMID: 36571467 DOI: 10.1002/ar.25140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/12/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022]
Abstract
Fetal musculoskeletal movements are first observed at approximately seven to 8 weeks of gestation. However, the separation and formation of skeletal muscles, especially the limbs, have not yet been described in detail. In this study, we elucidate the sequence of events leading to the formation of each thigh and lower leg muscle using serial sections. To observe muscle formation, 26 serial sections (50 legs) of human embryonic specimens ranging from Carnegie stages (CS) 19 to 23 were selected from the Kyoto collection stored at the Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine. As a result, we show the detailed formation and separation processes of the thigh and lower leg muscles. In the thigh, sartorius and tensor fasciae latae are separated at CS19, and the individual muscles observed in adults are identified after CS21. In the lower leg, the tibialis anterior exhibits early separation at CS20, and all muscles are identified at CS22. This study enables future research into the relationship between embryonic development and the evolution of muscle action from quadrupedal to erect bipedal walking.
Collapse
Affiliation(s)
- Yutaka Yamaguchi
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryota Kodama
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
35
|
Demri N, Dumas S, Nguyen M, Gropplero G, Abou‐Hassan A, Descroix S, Wilhelm C. Remote Magnetic Microengineering and Alignment of Spheroids into 3D Cellular Fibers. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202204850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/05/2025]
Abstract
AbstractDeveloping in vitro models that recapitulate the in vivo organization of living cells in a 3D microenvironment is one of the current challenges in the field of tissue engineering. In particular for anisotropic tissues where alignment of precursor cells is required for them to create functional structures. Herein, a new method is proposed that allows aligning in the direction of a uniform magnetic field both individual cells (muscle, stromal, and stem cells) or spheroids in a thermoresponsive collagen hydrogel. In an all‐in‐one approach, spheroids are generated at high throughput by magnetic engineering using microfabricated micromagnets and are used as building blocks to create 3D anisotropic tissue structures of different scales. The magnetic cells and spheroids alignment process is optimized in terms of magnetic cell labeling, concentration, and size. Anisotropic structures are induced to form fibers in the direction of the magnetic alignment, with the respective roles of the magnetic field, the mechanical stretching of hydrogel or co‐culture of the aligned cells with non‐magnetic stromal cells, being investigated. Over days, spheroids fuse into 3D tubular structures, oriented in the direction of the magnetic alignment. Moreover, in the case of the muscle cells model, multinucleated cells can be observed within the fibers.
Collapse
Affiliation(s)
- Noam Demri
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Simon Dumas
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Manh‐Louis Nguyen
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Giacomo Gropplero
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Ali Abou‐Hassan
- Institut Universitaire de France (IUF) 75231 Paris Cedex 05 France
- PHysico‐chimie des Electrolytes et Nanosystèmes InterfaciauX PHENIX CNRS UMR234 Sorbonne University 75005 Paris France
| | - Stéphanie Descroix
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| |
Collapse
|
36
|
Yuan Y, Yang B, He Y, Zhang W, E G. Genome-Wide Selection Signal Analysis of Australian Boer Goat by Insertion/Deletion Variants. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Case analysis and clinical implications of interconnected accessory abductor pollicis longus tendons and abductor pollicis brevis muscles. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Snow EL, White AC, Tyce AM, McCumber TL. Coexistence of five extrinsic accessory flexor muscles collectively able to flex all five digits of the hand. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
39
|
Cellular taxonomy of Hic1 + mesenchymal progenitor derivatives in the limb: from embryo to adult. Nat Commun 2022; 13:4989. [PMID: 36008423 PMCID: PMC9411605 DOI: 10.1038/s41467-022-32695-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/05/2022] [Indexed: 12/18/2022] Open
Abstract
Tissue development and regeneration rely on the cooperation of multiple mesenchymal progenitor (MP) subpopulations. We recently identified Hic1 as a marker of quiescent MPs in multiple adult tissues. Here, we describe the embryonic origin of appendicular Hic1+ MPs and demonstrate that they arise in the hypaxial somite, and migrate into the developing limb at embryonic day 11.5, well after limb bud initiation. Time-resolved single-cell-omics analyses coupled with lineage tracing reveal that Hic1+ cells generate a unique MP hierarchy, that includes both recently identified adult universal fibroblast populations (Dpt+, Pi16+ and Dpt+ Col15a1+) and more specialised mesenchymal derivatives such as, peri and endoneurial cells, pericytes, bone marrow stromal cells, myotenocytes, tenocytes, fascia-resident fibroblasts, with limited contributions to chondrocytes and osteocytes within the skeletal elements. MPs endure within these compartments, continue to express Hic1 and represent a critical reservoir to support post-natal growth and regeneration.
Collapse
|
40
|
Bidirectional roles of skeletal muscle fibro-adipogenic progenitors in homeostasis and disease. Ageing Res Rev 2022; 80:101682. [PMID: 35809776 DOI: 10.1016/j.arr.2022.101682] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
Sarcopenia and myopathies cause progressive muscle weakness and degeneration, which are closely associated with fat infiltration and fibrosis in muscle. Recently, experimental research has shed light on fibro-adipogenic progenitors (FAPs), also known as muscle-resident mesenchymal progenitors with multiple differentiation potential for adipogenesis, fibrosis, osteogenesis and chondrogenesis. They are considered key regulators of muscle homeostasis and integrity. They play supportive roles in muscle development and repair by orchestrating the regulatory interplay between muscle stem cells (MuSCs) and immune cells. Interestingly, FAPs also contribute to intramuscular fat infiltration, fibrosis and other pathologies when the functional integrity of the network is compromised. In this review, we summarize recent insights into the roles of FAPs in maintenance of skeletal muscle homeostasis, and discuss the underlying mechanisms regulating FAPs behavior and fate, highlighting their roles in participating in efficient muscle repair and fat infiltrated muscle degeneration as well as during muscle atrophy. We suggest that controlling and predicting FAPs differentiation may become a promising strategy to improve muscle function and prevent irreparable muscle damage.
Collapse
|
41
|
Wang D, Ding J, Chen B, Liu Y, Jiang Y, Zhu S, Zang M, Li S. Synergistic effects of myogenic cells and fibroblasts on the promotion of engineered tendon regeneration with muscle derived cells. Connect Tissue Res 2022; 63:329-338. [PMID: 34030527 DOI: 10.1080/03008207.2021.1924158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS Tendon development requires the coordinated interaction of muscles and tendons. Muscle-derived cells (MDCs), a mixed cell population containing both myogenic and fibroblastic cell subsets, have been found to be ideal seed cells for tendon regeneration. However, the necessity of these cell types for tendon regeneration has not yet been tested. In this study, we aim to explore the possible synergistic effects of myogenic cells and fibroblasts in engineered tendon regeneration. METHODS MDCs were separated into rapidly adhering cell (RAC; fibroblasts) and slowly adhering cell (SAC; myogenic cells) populations. Myogenic- and tenogenic-related molecules were analyzed by immunofluorescent staining, RT-PCR and real-time PCR. The proliferative abilities of MDCs, RACs and SACs were also evaluated. Cell-scaffold constructs were implanted into nude mice, and subsequently evaluated for their histologic, ultrastructure, gene expression, and biomechanical characteristics. RESULTS MDCs have better proliferative activity than RAC and SAC population. RACs could express higher levels of tenogenic-related molecules tenomodulin (TNMD) and scleraxis (SCX) than SACs. Whereas SACs only expressed myogenic-related molecules MyoD. In contrast to the tendons engineered using RACs and SACs, the tendons engineered using MDCs exhibited a relatively more mature and well-organized tissue structure and ultrastructure as well as better mechanical properties. CONCLUSIONS Fibroblasts in muscle may be the primary cell population involved in tendon regeneration and that myogenic cells are an important component of the niche and control the fibroblast activity during tendon regeneration. The synergistic effects between fibroblasts and myogenic cells significantly contribute to efficient and effective regeneration of engineered tendons.
Collapse
Affiliation(s)
- Danying Wang
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| | - Jinping Ding
- Department of Plastic Surgery, Beijing Hospital, National Center of Gerontology, Beijing PR China
| | - Bo Chen
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| | - Yuanbo Liu
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai PR China
| | - Shan Zhu
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| | - Mengqing Zang
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| | - Shanshan Li
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| |
Collapse
|
42
|
Liu R, Han M, Liu X, Yu K, Bai X, Dong Y. Genome-Wide Identification and Characterization of Long Non-Coding RNAs in Longissimus dorsi Skeletal Muscle of Shandong Black Cattle and Luxi Cattle. Front Genet 2022; 13:849399. [PMID: 35651943 PMCID: PMC9149217 DOI: 10.3389/fgene.2022.849399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022] Open
Abstract
There is an increasing understanding of the possible regulatory role of long non-coding RNAs (LncRNA). Studies on livestock have mainly focused on the regulation of cell differentiation, fat synthesis, and embryonic development. However, there has been little study of skeletal muscle of domestic animals and the potential role of lncRNA. In this study, the transcriptome numbers of longissimus muscle of different beef cattle (Shandong black catle and Luxi catlle) were used to construct muscle related lncRNAs-miRNA-mRNA interaction network through bioinformatics analysis. This is helpful to clarify the molecular mechanism of bovine muscle development, and can be used to promote animal husbandry and improve animal husbandry production. According to the screening criteria of |FC|≧2 and q < 0.05, a total of 1,415 transcripts (of which 480 were LncRNAs) were differentially expressed (q < 0.05) in the different breeds. Further, we found that the most differentially expressed LncRNAs were found on chromosome 9, in which the differentially expressed LncRNAs targeted 1,164 protein coding genes (MYORG, Wnt4, PAK1, ADCY7,etc) (upstream and downstream<50 Kb). In addition, Pearson’s correlation coefficients of co-expression levels indicated a potential trans regulatory relationship between the differentially expressed LncRNAs and 43844 mRNAs (r > 0.9). The identified co-expressed mRNAs (MYORG, Dll1, EFNB2, SOX6, MYOCD, and MYLK3) are related to the formation of muscle structure, and enriched in muscle system process, strained muscle cell differentiation, muscle cell development, striated muscle tissue development, calcium signaling, and AMPK signaling. Additionally, we also found that some LncRNAs (LOC112444238, LOC101903367, LOC104975788, LOC112441863, LOC112449549, and LOC101907194) may interact with miRNAs related to cattle muscle growth and development. Based on this, we constructed a LncRNAs-miRNA-mRNA interaction network as the putative basis for biological regulation in cattle skeletal muscle. Interestingly, a candidate differential LncRNA (LOC104975788) and a protein-coding gene (Pax7) contain miR-133a binding sites and binding was confirmed by luciferase reporter assay. LOC104975788 may combined miR-133a competitively with Pax7, thus relieving the inhibitory effect of miR-133a on Pax7 to regulate skeletal muscle development. These results will provide the theoretical basis for further study of LncRNA regulation and activity in different cattle breeds.
Collapse
Affiliation(s)
- Ruili Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Mingxuan Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xianxun Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kun Yu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xuejin Bai
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Yajuan Dong
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
43
|
Identification of distinct non-myogenic skeletal-muscle-resident mesenchymal cell populations. Cell Rep 2022; 39:110785. [PMID: 35545045 PMCID: PMC9535675 DOI: 10.1016/j.celrep.2022.110785] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal progenitors of the lateral plate mesoderm give rise to various cell fates within limbs, including a heterogeneous group of muscle-resident mesenchymal cells. Often described as fibro-adipogenic progenitors, these cells are key players in muscle development, disease, and regeneration. To further define this cell population(s), we perform lineage/reporter analysis, flow cytometry, single-cell RNA sequencing, immunofluorescent staining, and differentiation assays on normal and injured murine muscles. Here we identify six distinct Pdgfra+ non-myogenic muscle-resident mesenchymal cell populations that fit within a bipartite differentiation trajectory from a common progenitor. One branch of the trajectory gives rise to two populations of immune-responsive mesenchymal cells with strong adipogenic potential and the capability to respond to acute and chronic muscle injury, whereas the alternative branch contains two cell populations with limited adipogenic capacity and inherent mineralizing capabilities; one of the populations displays a unique neuromuscular junction association and an ability to respond to nerve injury. Leinroth et al. explore the heterogeneity of Pdgfra+ muscle-resident mesenchymal cells, demonstrating that Pdgfra+ subpopulations have unique gene expression profiles, exhibit two distinct cell trajectories from a common progenitor, differ in their abilities to respond to muscle injuries, and show variable adipogenic and mineralizing capacities.
Collapse
|
44
|
Zschüntzsch J, Meyer S, Shahriyari M, Kummer K, Schmidt M, Kummer S, Tiburcy M. The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells 2022; 11:1233. [PMID: 35406795 PMCID: PMC8997482 DOI: 10.3390/cells11071233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Mina Shahriyari
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Karsten Kummer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Matthias Schmidt
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Susann Kummer
- Risk Group 4 Pathogens–Stability and Persistence, Biosafety Level-4 Laboratory, Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| |
Collapse
|
45
|
Kanazawa Y, Nagano M, Koinuma S, Sugiyo S, Shigeyoshi Y. Effects of Aging on Basement Membrane of Tibialis Anterior Muscle During Recovery Following Muscle Injury in Rats. Microscopy (Oxf) 2022; 71:245-248. [PMID: 35349694 PMCID: PMC9340794 DOI: 10.1093/jmicro/dfac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 12/03/2022] Open
Abstract
We investigated the effect of aging on the basement membrane (BM) during postinjury muscle recovery. Using a rat model, we found that aging delayed muscle fiber and BM recovery. In addition, expression of BM-related factors peaked 7 days after muscle injury among both young and older rats. Peak expression of collagen IV synthetic factors decreased with age, whereas expression of the degradative factor was unaffected by age. These results suggest that age-related delays in postinjury muscle fiber and BM recovery may be related to the suppression of collagen IV synthetic factors.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Medical Technology and Clinical Engineering, Hokuriku University, Kanazawa 920-1180, Japan.,Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Shinichi Sugiyo
- Department of Physical Therapy, Osaka University of Human Sciences, Shojyaku, Settsu 566-8501, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan
| |
Collapse
|
46
|
Hillege MMG, Shi A, Galli RA, Wu G, Bertolino P, Hoogaars WMH, Jaspers RT. Lack of Tgfbr1 and Acvr1b synergistically stimulates myofibre hypertrophy and accelerates muscle regeneration. eLife 2022; 11:77610. [PMID: 35323108 PMCID: PMC9005187 DOI: 10.7554/elife.77610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/05/2022] [Indexed: 12/02/2022] Open
Abstract
In skeletal muscle, transforming growth factor-β (TGF-β) family growth factors, TGF-β1 and myostatin, are involved in atrophy and muscle wasting disorders. Simultaneous interference with their signalling pathways may improve muscle function; however, little is known about their individual and combined receptor signalling. Here, we show that inhibition of TGF-β signalling by simultaneous muscle-specific knockout of TGF-β type I receptors Tgfbr1 and Acvr1b in mice, induces substantial hypertrophy, while such effect does not occur by single receptor knockout. Hypertrophy is induced by increased phosphorylation of Akt and p70S6K and reduced E3 ligases expression, while myonuclear number remains unaltered. Combined knockout of both TGF-β type I receptors increases the number of satellite cells, macrophages and improves regeneration post cardiotoxin-induced injury by stimulating myogenic differentiation. Extra cellular matrix gene expression is exclusively elevated in muscle with combined receptor knockout. Tgfbr1 and Acvr1b are synergistically involved in regulation of myofibre size, regeneration, and collagen deposition.
Collapse
Affiliation(s)
- Michèle M G Hillege
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andi Shi
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ricardo A Galli
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon, UMR INSERM U1052, CNRS 5286, Lyon, France
| | - Willem M H Hoogaars
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Richard T Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
47
|
Han S, Zhang Y, Zhang X, Zhang H, Meng S, Kong M, Liu X, Ma X. Single-Cell RNA Sequencing of the Nucleus Pulposus Reveals Chondrocyte Differentiation and Regulation in Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 10:824771. [PMID: 35265617 PMCID: PMC8899542 DOI: 10.3389/fcell.2022.824771] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 01/07/2023] Open
Abstract
The nucleus pulposus (NP), a heterogeneous tissue, is an essential functional component of the intervertebral disc. However, NP cell development route and regulation mechanism in intervertebral disc degeneration (IVDD) remain unknown. Here, we performed single-cell RNA sequencing of six NP samples with normal control, mild degeneration, and severe degeneration. Based on unbiased clustering of gene expression patterns from 30,300 single-cell RNA sequencing, we identified three cell lineage families of macrophages, endothelial, and chondrocyte cells and characterized seven chondrocyte subtypes, and defined two developmental pathways of the chondrocyte cell lineage families in the process of IVDD. Additionally, CellPhoneDB analysis revealed potential interactions between chondrocyte cells and other cells in IVDD. Chondrocytes in one of the differentiated orientations interact with macrophages and endothelial cells and have an inflammatory amplification effect, which were key factors causing IVDD. Collectively, these results revealed the dynamic cell landscape of IVDD development and offered new insights into the influence of NP cells differentiation on extracellular matrix homeostasis during degeneration, providing potential treatment targets for IVDD.
Collapse
Affiliation(s)
- Shuo Han
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Medicine, Qingdao University, Qingdao, China
| | - Yiran Zhang
- Medical Research Center, Shandong Institute of Orthopaedics and Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Medicine, Qingdao University, Qingdao, China.,Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| | - Hao Zhang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Medicine, Qingdao University, Qingdao, China
| | - Shengwei Meng
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Medicine, Qingdao University, Qingdao, China
| | - Meng Kong
- Department of Spinal Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaojie Liu
- Department of Medicine, Qingdao University, Qingdao, China.,970 Hospital of the PLA Joint Logistic Support Force, Weihai, China
| | - Xuexiao Ma
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Development and Regeneration of Muscle, Tendon, and Myotendinous Junctions in Striated Skeletal Muscle. Int J Mol Sci 2022; 23:ijms23063006. [PMID: 35328426 PMCID: PMC8950615 DOI: 10.3390/ijms23063006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Owing to a rapid increase in aging population in recent years, the deterioration of motor function in older adults has become an important social problem, and several studies have aimed to investigate the mechanisms underlying muscle function decline. Furthermore, structural maintenance of the muscle–tendon–bone complexes in the muscle attachment sites is important for motor function, particularly for joints; however, the development and regeneration of these complexes have not been studied thoroughly and require further elucidation. Recent studies have provided insights into the roles of mesenchymal progenitors in the development and regeneration of muscles and myotendinous junctions. In particular, studies on muscles and myotendinous junctions have—through the use of the recently developed scRNA-seq—reported the presence of syncytia, thereby suggesting that fibroblasts may be transformed into myoblasts in a BMP-dependent manner. In addition, the high mobility group box 1—a DNA-binding protein found in nuclei—is reportedly involved in muscle regeneration. Furthermore, studies have identified several factors required for the formation of locomotor apparatuses, e.g., tenomodulin (Tnmd) and mohawk (Mkx), which are essential for tendon maturation.
Collapse
|
49
|
Hur MS, Lee S, Jung HS, Schneider RA. Anatomical connections among the depressor supercilii, levator labii superioris alaeque nasi, and inferior fibers of orbicularis oculi: Implications for variation in human facial expressions. PLoS One 2022; 17:e0264148. [PMID: 35231048 PMCID: PMC8887774 DOI: 10.1371/journal.pone.0264148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to determine how the depressor supercilii (DS) connects to the levator labii superioris alaeque nasi (LLSAN) and inferior fibers of the orbicularis oculi (OOc INF) in the human midface. While grimacing, contraction of the DS with fibers connecting to the LLSAN and OOc INF can assist in pulling the medial eyebrow downward more than when these connecting fibers are not present. Contraction of these distinct connecting fibers between the DS and the LLSAN can also slightly elevate the nasal ala and upper lip. The DS was examined in 44 specimens of embalmed adult Korean cadavers. We found that the DS connected to the LLSAN or the OOc INF by muscle fibers or thin aponeuroses in 33 (75.0%) of the 44 specimens. The DS was connected to both the LLSAN and OOc INF by muscle fibers or aponeuroses and had no connection to either in 5 (11.4%) and 11 (25.0%) specimens, respectively. The DS was connected to the LLSAN by the muscle fibers and thin aponeuroses in 6 (13.6%) and 4 (9.1%) specimens, respectively. The DS was connected to the OOc INF by the muscle fibers and thin aponeuroses in 5 (11.4%) and 23 (52.3%) specimens, respectively. Our findings regarding the anatomical connections of the glabellar region DS to the midface LLSAN and OOc INF provide insights on the dynamic balance between the brow depressors such as the DS and brow-elevating muscle and contribute to understanding the anatomical origins of individual variation in facial expressions. These results can also improve the safety, predictability, and aesthetics of treatments for the glabellar region with botulinum toxin type A and can be helpful when performing electromyography.
Collapse
Affiliation(s)
- Mi-Sun Hur
- Department of Anatomy, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Seunggyu Lee
- Division of Applied Mathematical Sciences, Korea University, Sejong, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States of America
| |
Collapse
|
50
|
Grimaldi A, Comai G, Mella S, Tajbakhsh S. Identification of bipotent progenitors that give rise to myogenic and connective tissues in mouse. eLife 2022; 11:70235. [PMID: 35225230 PMCID: PMC9020825 DOI: 10.7554/elife.70235] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
How distinct cell fates are manifested by direct lineage ancestry from bipotent progenitors, or by specification of individual cell types is a key question for understanding the emergence of tissues. The interplay between skeletal muscle progenitors and associated connective tissue cells provides a model for examining how muscle functional units are established. Most craniofacial structures originate from the vertebrate-specific neural crest cells except in the dorsal portion of the head, where they arise from cranial mesoderm. Here, using multiple lineage-tracing strategies combined with single cell RNAseq and in situ analyses, we identify bipotent progenitors expressing Myf5 (an upstream regulator of myogenic fate) that give rise to both muscle and juxtaposed connective tissue. Following this bifurcation, muscle and connective tissue cells retain complementary signalling features and maintain spatial proximity. Disrupting myogenic identity shifts muscle progenitors to a connective tissue fate. The emergence of Myf5-derived connective tissue is associated with the activity of several transcription factors, including Foxp2. Interestingly, this unexpected bifurcation in cell fate was not observed in craniofacial regions that are colonised by neural crest cells. Therefore, we propose that an ancestral bi-fated program gives rise to muscle and connective tissue cells in skeletal muscles that are deprived of neural crest cells.
Collapse
Affiliation(s)
| | - Glenda Comai
- UMR 3738, Department of Developmental and Stem Cell Biology, CNRS, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers UTechS, Institut Pasteur, Paris, France
| | | |
Collapse
|