1
|
Gowripriya T, Yashwanth R, James PB, Suresh R, Balamurugan K. Dopaminergic neuronal regulation determines innate immunity of Caenorhabditis elegans during Klebsiella aerogenes infection. Microbes Infect 2025; 27:105430. [PMID: 39369984 DOI: 10.1016/j.micinf.2024.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
The innate immune signals are the front line of host defense against bacterial pathogens. Pathogen-induced harmful effects, such as reduced neuronal signals to the intestine, affect the host's food sensing and dwelling behavior. Here, we report that dopamine and kpc-1 signals control the intestinal innate immune responses through the p38/PMK-1 MAPK signaling pathway in C. elegans. K. aerogenes infection in C. elegans affects the food-dwelling behavior, which depends on dopamine regulation. The absence of the dopamine receptor (dop-1) and transporter (dat-1) increases attraction to the pathogen instead of avoidance. The K. aerogenes infection affects age-1 regulation through the furin-like proprotein convertase (kpc-1); the absence of kpc-1 affects environment-dependent dauer formation. In contrast, the dop-1 mutation antagonistically regulates intestinal immune regulation, while the kpc-1 mutation partially regulates the p38/PMK-1 MAPK pathway. Our findings indicate that dopamine and kpc-1signaling from the nervous system control intestinal immunity in an antagonistic and agonistic manner, respectively.
Collapse
Affiliation(s)
- Thirumugam Gowripriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, India
| | - Radhakrishnan Yashwanth
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | - Prabhanand Bhaskar James
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | - Ramamurthi Suresh
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | | |
Collapse
|
2
|
St Ange J, Weng Y, Kaletsky R, Stevenson ME, Moore RS, Zhou S, Murphy CT. Adult single-nucleus neuronal transcriptomes of insulin signaling mutants reveal regulators of behavior and learning. CELL GENOMICS 2024; 4:100720. [PMID: 39637862 DOI: 10.1016/j.xgen.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/16/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Gene expression in individual neurons can change during development to adulthood and can have large effects on behavior. Additionally, the insulin/insulin-like signaling (IIS) pathway regulates many of the adult functions of Caenorhabditis elegans, including learning and memory, via transcriptional changes. We used the deep resolution of single-nucleus RNA sequencing to define the adult transcriptome of each neuron in wild-type and daf-2 mutants, revealing expression differences between L4 larval and adult neurons in chemoreceptors, synaptic genes, and learning/memory genes. We used these data to identify adult new AWC-specific regulators of chemosensory function that emerge upon adulthood. daf-2 gene expression changes correlate with improved cognitive functions, particularly in the AWC sensory neuron that controls learning and associative memory; behavioral assays of AWC-specific daf-2 genes revealed their roles in cognitive function. Combining technology and functional validation, we identified conserved genes that function in specific adult neurons to control behavior, including learning and memory.
Collapse
Affiliation(s)
- Jonathan St Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yifei Weng
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Morgan E Stevenson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca S Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shiyi Zhou
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
3
|
Wang Y, Sun X, Feng L, Zhang K, Yang W. Nervous system guides behavioral immunity in Caenorhabditis elegans. PeerJ 2024; 12:e18289. [PMID: 39430568 PMCID: PMC11488496 DOI: 10.7717/peerj.18289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Caenorhabditis elegans is a versatile model organism for exploring complex biological systems. Microbes and the external environment can affect the nervous system and drive behavioral changes in C. elegans. For better survival, C. elegans may develop behavioral immunity to avoid potential environmental pathogens. However, the molecular and cellular mechanisms underlying this avoidance behavior are not fully understood. The dissection of sensorimotor circuits in behavioral immunity may promote advancements in research on the neuronal connectome in uncovering neuronal regulators of behavioral immunity. In this review, we discuss how the nervous system coordinates behavioral immunity by translating various pathogen-derived cues and physiological damage to motor output in response to pathogenic threats in C. elegans. This understanding may provide insights into the fundamental principles of immune strategies that can be applied across species and potentially contribute to the development of novel therapies for immune-related diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuehong Sun
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lixiang Feng
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kui Zhang
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenxing Yang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Zhang MG, Seyedolmohadesin M, Mercado SH, Tauffenberger A, Park H, Finnen N, Schroeder FC, Venkatachalam V, Sternberg PW. Sensory integration of food and population density during the diapause exit decision involves insulin-like signaling in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2024; 121:e2405391121. [PMID: 39316052 PMCID: PMC11459166 DOI: 10.1073/pnas.2405391121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Decisions made over long time scales, such as life cycle decisions, require coordinated interplay between sensory perception and sustained gene expression. The Caenorhabditis elegans dauer (or diapause) exit developmental decision requires sensory integration of population density and food availability to induce an all-or-nothing organismal-wide response, but the mechanism by which this occurs remains unknown. Here, we demonstrate how the Amphid Single Cilium J (ASJ) chemosensory neurons, known to be critical for dauer exit, perform sensory integration at both the levels of gene expression and calcium activity. In response to favorable conditions, dauers rapidly produce and secrete the dauer exit-promoting insulin-like peptide INS-6. Expression of ins-6 in the ASJ neurons integrates population density and food level and can reflect decision commitment since dauers committed to exiting have higher ins-6 expression levels than those of noncommitted dauers. Calcium imaging in dauers reveals that the ASJ neurons are activated by food, and this activity is suppressed by pheromone, indicating that sensory integration also occurs at the level of calcium transients. We find that ins-6 expression in the ASJ neurons depends on neuronal activity in the ASJs, cGMP signaling, and the pheromone components ascr#8 and ascr#2. We propose a model in which decision commitment to exit the dauer state involves an autoregulatory feedback loop in the ASJ neurons that promotes high INS-6 production and secretion. These results collectively demonstrate how insulin-like peptide signaling helps animals compute long-term decisions by bridging sensory perception to decision execution.
Collapse
Affiliation(s)
- Mark G. Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | | | - Soraya Hawk Mercado
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Arnaud Tauffenberger
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Nerissa Finnen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | | | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
5
|
Zhu R, Chin-Sang ID. C. elegans insulin-like peptides. Mol Cell Endocrinol 2024; 585:112173. [PMID: 38346555 DOI: 10.1016/j.mce.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
Insulin-like peptides are a group of hormones crucial for regulating metabolism, growth, and development in animals. Invertebrates, such as C. elegans, have been instrumental in understanding the molecular mechanisms of insulin-like peptides. Here, we review the 40 insulin-like peptide genes encoded in the C. elegans genome. Despite the large number, there is only one C. elegans insulin-like peptide receptor, called DAF-2. The insulin and insulin-like growth factor signaling (IIS) pathway is evolutionarily conserved from worms to humans. Thus C. elegans provides an excellent model to understand how these insulin-like peptides function. C. elegans is unique in that it possesses insulin-like peptides that have antagonistic properties, unlike all human insulin-like peptides, which are agonists. This review provides an overview of the current literature on C. elegans insulin-like peptide structures, processing, tissue localization, and regulation. We will also provide examples of insulin-like peptide signaling in C. elegans during growth, development, germline development, learning/memory, and longevity.
Collapse
Affiliation(s)
- Rain Zhu
- Department of Biology, Queen's University, Kingston ON Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston ON Canada.
| |
Collapse
|
6
|
Zhang MG, Seyedolmohadesin M, Hawk S, Park H, Finnen N, Schroeder F, Venkatachalam V, Sternberg PW. Sensory integration of food availability and population density during the diapause exit decision involves insulin-like signaling in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586022. [PMID: 38586049 PMCID: PMC10996498 DOI: 10.1101/2024.03.20.586022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Decisions made over long time scales, such as life cycle decisions, require coordinated interplay between sensory perception and sustained gene expression. The Caenorhabditis elegans dauer (or diapause) exit developmental decision requires sensory integration of population density and food availability to induce an all-or-nothing organismal-wide response, but the mechanism by which this occurs remains unknown. Here, we demonstrate how the ASJ chemosensory neurons, known to be critical for dauer exit, perform sensory integration at both the levels of gene expression and calcium activity. In response to favorable conditions, dauers rapidly produce and secrete the dauer exit-promoting insulin-like peptide INS-6. Expression of ins-6 in the ASJ neurons integrate population density and food level and can reflect decision commitment since dauers committed to exiting have higher ins-6 expression levels than those of non-committed dauers. Calcium imaging in dauers reveals that the ASJ neurons are activated by food, and this activity is suppressed by pheromone, indicating that sensory integration also occurs at the level of calcium transients. We find that ins-6 expression in the ASJ neurons depends on neuronal activity in the ASJs, cGMP signaling, a CaM-kinase pathway, and the pheromone components ascr#8 and ascr#2. We propose a model in which decision commitment to exit the dauer state involves an autoregulatory feedback loop in the ASJ neurons that promotes high INS-6 production and secretion. These results collectively demonstrate how insulin-like peptide signaling helps animals compute long-term decisions by bridging sensory perception to decision execution.
Collapse
Affiliation(s)
- Mark G Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Soraya Hawk
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nerissa Finnen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Frank Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
7
|
Mishra S, Dabaja M, Akhlaq A, Pereira B, Marbach K, Rovcanin M, Chandra R, Caballero A, Fernandes de Abreu D, Ch'ng Q, Alcedo J. Specific sensory neurons and insulin-like peptides modulate food type-dependent oogenesis and fertilization in Caenorhabditis elegans. eLife 2023; 12:e83224. [PMID: 37975568 PMCID: PMC10665013 DOI: 10.7554/elife.83224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
An animal's responses to environmental cues are critical for its reproductive program. Thus, a mechanism that allows the animal to sense and adjust to its environment should make for a more efficient reproductive physiology. Here, we demonstrate that in Caenorhabditis elegans specific sensory neurons influence onset of oogenesis through insulin signaling in response to food-derived cues. The chemosensory neurons ASJ modulate oogenesis onset through the insulin-like peptide (ILP) INS-6. In contrast, other sensory neurons, the olfactory neurons AWA, regulate food type-dependent differences in C. elegans fertilization rates, but not onset of oogenesis. AWA modulates fertilization rates at least partly in parallel to insulin receptor signaling, since the insulin receptor DAF-2 regulates fertilization independently of food type, which requires ILPs other than INS-6. Together our findings suggest that optimal reproduction requires the integration of diverse food-derived inputs through multiple neuronal signals acting on the C. elegans germline.
Collapse
Affiliation(s)
- Shashwat Mishra
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Mohamed Dabaja
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Asra Akhlaq
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Bianca Pereira
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Kelsey Marbach
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Mediha Rovcanin
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Rashmi Chandra
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Antonio Caballero
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| | | | - QueeLim Ch'ng
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| |
Collapse
|
8
|
Godoy LF, Hochbaum D. Transcriptional and spatiotemporal regulation of the dauer program. Transcription 2023; 14:27-48. [PMID: 36951297 PMCID: PMC10353326 DOI: 10.1080/21541264.2023.2190295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Caenorhabditis elegans can enter a diapause stage called "dauer" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.Abbreviations: AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.
Collapse
Affiliation(s)
- Luciana F Godoy
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Tang LTH, Lee GA, Cook SJ, Ho J, Potter CC, Bülow HE. Anatomical restructuring of a lateralized neural circuit during associative learning by asymmetric insulin signaling. Curr Biol 2023; 33:3835-3850.e6. [PMID: 37591249 PMCID: PMC10639090 DOI: 10.1016/j.cub.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Studies of neuronal connectivity in model organisms, i.e., of their connectomes, have been instrumental in dissecting the structure-function relationship of nervous systems. However, the limited sample size of these studies has impeded analyses into how variation of connectivity across populations may influence circuit architecture and behavior. Moreover, little is known about how experiences induce changes in circuit architecture. Here, we show that an asymmetric salt-sensing circuit in the nematode Caenorhabditis elegans exhibits variation that predicts the animals' salt preferences and undergoes restructuring during salt associative learning. Naive worms memorize and prefer the salt concentration they experience in the presence of food through a left-biased neural network architecture. However, animals conditioned at elevated salt concentrations change this left-biased network to a right-biased network. This change in circuit architecture occurs through the addition of new synapses in response to asymmetric, paracrine insulin signaling. Therefore, experience-dependent changes in an animal's neural connectome are induced by insulin signaling and are fundamental to learning and behavior.
Collapse
Affiliation(s)
- Leo T H Tang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Garrett A Lee
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven J Cook
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jacquelin Ho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cassandra C Potter
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
10
|
Mahapatra A, Dhakal A, Noguchi A, Vadlamani P, Hundley HA. ADAR-mediated regulation of PQM-1 expression in neurons impacts gene expression throughout C. elegans and regulates survival from hypoxia. PLoS Biol 2023; 21:e3002150. [PMID: 37747897 PMCID: PMC10553819 DOI: 10.1371/journal.pbio.3002150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/05/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA-binding protein (RBP), ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RBP, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia, phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important posttranscriptional gene regulatory mechanism in Caenorhabditis elegans that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, Indiana, United States of America
| | - Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Aika Noguchi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Heather A. Hundley
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
11
|
Ghaddar A, Armingol E, Huynh C, Gevirtzman L, Lewis NE, Waterston R, O’Rourke EJ. Whole-body gene expression atlas of an adult metazoan. SCIENCE ADVANCES 2023; 9:eadg0506. [PMID: 37352352 PMCID: PMC10289653 DOI: 10.1126/sciadv.adg0506] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Gene activity defines cell identity, drives intercellular communication, and underlies the functioning of multicellular organisms. We present the single-cell resolution atlas of gene activity of a fertile adult metazoan: Caenorhabditis elegans. This compendium comprises 180 distinct cell types and 19,657 expressed genes. We predict 7541 transcription factor expression profile associations likely responsible for defining cellular identity. We predict thousands of intercellular interactions across the C. elegans body and the ligand-receptor pairs that mediate them, some of which we experimentally validate. We identify 172 genes that show consistent expression across cell types, are involved in basic and essential functions, and are conserved across phyla; therefore, we present them as experimentally validated housekeeping genes. We developed the WormSeq application to explore these data. In addition to the integrated gene-to-systems biology, we present genome-scale single-cell resolution testable hypotheses that we anticipate will advance our understanding of the molecular mechanisms, underlying the functioning of a multicellular organism and the perturbations that lead to its malfunction.
Collapse
Affiliation(s)
- Abbas Ghaddar
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Waterston
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eyleen J. O’Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
12
|
Martinez BA, Gill MS. The SR protein RSP-2 influences expression of the truncated insulin receptor DAF-2B in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2023; 13:jkad064. [PMID: 36966398 PMCID: PMC10234397 DOI: 10.1093/g3journal/jkad064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/27/2023]
Abstract
The alternatively spliced daf-2b transcript in Caenorhabditis elegans encodes a truncated isoform of the nematode insulin receptor that retains the extracellular ligand binding domain but lacks the intracellular signaling domain and is therefore unable to transduce a signal. To identify factors that influence expression of daf-2b, we performed a targeted RNA interference screen of rsp genes, which encode splicing factors from the serine/arginine protein family. Loss of rsp-2 significantly increased the expression of a fluorescent daf-2b splicing reporter, as well as increasing expression of endogenous daf-2b transcripts. Correspondingly, rsp-2 mutants exhibited similar phenotypes to those previously observed with DAF-2B overexpression, namely suppression of pheromone-induced dauer formation, enhancement of dauer entry in insulin signaling mutants, inhibition of dauer recovery, and increased lifespan. However, the epistatic relationship between rsp-2 and daf-2b varied according to the experimental context. Increased dauer entry and delayed dauer exit of rsp-2 mutants in an insulin signaling mutant background were partially dependent on daf-2b. Conversely, suppression of pheromone-induced dauer formation and increased lifespan in rsp-2 mutants were independent of daf-2b. These data demonstrate that C. elegans RSP-2, an ortholog of human splicing factor protein SRSF5/SRp40, is involved in regulating the expression of the truncated DAF-2B isoform. However, we also find that RSP-2 can influence dauer formation and lifespan independently of DAF-2B.
Collapse
Affiliation(s)
- Bryan A Martinez
- Institute on the Biology of Aging and Metabolism and the Department of Genetics, Cell Biology and Development, University of Minnesota, 4-114 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - Matthew S Gill
- Institute on the Biology of Aging and Metabolism and the Department of Genetics, Cell Biology and Development, University of Minnesota, 4-114 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Mahapatra A, Dhakal A, Noguchi A, Vadlamani P, Hundley HA. ADARs employ a neural-specific mechanism to regulate PQM-1 expression and survival from hypoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539519. [PMID: 37205482 PMCID: PMC10187282 DOI: 10.1101/2023.05.05.539519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA binding protein, ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RNA binding protein, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia; phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important post-transcriptional gene regulatory mechanism that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington IN, 47405 USA
| | - Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine – Bloomington, Bloomington IN, 47405 USA
| | - Aika Noguchi
- Department of Biology, Indiana University, Bloomington IN 47405 USA
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine – Bloomington, Bloomington IN, 47405 USA
| | | |
Collapse
|
14
|
Tang LTH, Lee GA, Cook SJ, Ho J, Potter CC, Bülow HE. Restructuring of an asymmetric neural circuit during associative learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523604. [PMID: 36711870 PMCID: PMC9882173 DOI: 10.1101/2023.01.12.523604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Asymmetric brain function is common across the animal kingdom and involved in language processing, and likely in learning and memory. What regulates asymmetric brain function remains elusive. Here, we show that the nematode Caenorhabditis elegans restructures an asymmetric salt sensing neural circuit during associative learning. Worms memorize and prefer the salt concentration at which they were raised in the presence of food through a left-biased network architecture. When conditioned at elevated salt concentrations, animals change the left-biased to a right-biased network, which explains the changed salt-seeking behavior. The changes in circuit architecture require new synapse formation induced through asymmetric, paracrine insulin-signaling. Therefore, experience-dependent changes in asymmetric network architecture rely on paracrine insulin signaling and are fundamental to learning and behavior.
Collapse
|
15
|
Preusser F, Neuschulz A, Junker JP, Rajewsky N, Preibisch S. Long-term imaging reveals behavioral plasticity during C. elegans dauer exit. BMC Biol 2022; 20:277. [PMID: 36514066 DOI: 10.1186/s12915-022-01471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND During their lifetime, animals must adapt their behavior to survive in changing environments. This ability requires the nervous system to undergo adjustments at distinct temporal scales, from short-term dynamic changes in expression of neurotransmitters and receptors to longer-term growth, spatial and connectivity reorganization, while integrating external stimuli. The nematode Caenorhabditis elegans provides a model of nervous system plasticity, in particular its dauer exit decision. Under unfavorable conditions, larvae will enter the non-feeding and non-reproductive stress-resistant dauer stage and adapt their behavior to cope with the harsh new environment, with active reversal under improved conditions leading to resumption of reproductive development. However, how different environmental stimuli regulate the exit decision mechanism and thereby drive the larva's behavioral change is unknown. To fill this gap and provide insights on behavioral changes over extended periods of time, we developed a new open hardware method for long-term imaging (12h) of C. elegans larvae. RESULTS Our WormObserver platform comprises open hardware and software components for video acquisition, automated processing of large image data (> 80k images/experiment) and data analysis. We identified dauer-specific behavioral motifs and characterized the behavioral trajectory of dauer exit in different environments and genetic backgrounds to identify key decision points and stimuli promoting dauer exit. Combining long-term behavioral imaging with transcriptomics data, we find that bacterial ingestion triggers a change in neuropeptide gene expression to establish post-dauer behavior. CONCLUSIONS Taken together, we show how a developing nervous system can robustly integrate environmental changes activate a developmental switch and adapt the organism's behavior to a new environment. WormObserver is generally applicable to other research questions within and beyond the C. elegans field, having a modular and customizable character and allowing assessment of behavioral plasticity over longer periods.
Collapse
Affiliation(s)
- Friedrich Preusser
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, 10099, Berlin, Germany.
| | - Anika Neuschulz
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany.,Institute for Biology, Humboldt University of Berlin, 10099, Berlin, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Stephan Preibisch
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.
| |
Collapse
|
16
|
Wang ME, Zheng H, Xie X, Xu R, Zhu D. Molecular identification and putative role of insulin growth factor binding protein-related protein (IGFBP-rp) in the swimming crab Portunus trituberculatus. Gene 2022; 833:146551. [PMID: 35598682 DOI: 10.1016/j.gene.2022.146551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
The insulin-like growth factor/insulin-like polypeptide (IGF/ILP) signaling is vital for growth, physiological metabolism, development, and reproduction. Insulin-like growth factor-binding protein (IGFBP) is involved in the insulin signaling pathway in both vertebrates and invertebrates and is critical for various physiology functions. Herein, we cloned and characterized the full-length cDNA of IGFBP-rp in the swimming crab, Portunus trituberculatus (PtIGFBP-rp). The deduced amino acid sequence of PtIGFBP-rp was found to contain three key domains (insulin-like binding (IB) domain, the kazale-type serine protease inhibitor (KAZAL) domain, and the immunoglobulin-like C2 (IGc2) domain). Results showed that PtIGFBP-rp shared the same expression pattern as P. trituberculatus insulin androgenic gland hormone (PtIAG) transcripts during the embryonic larval, juvenile crab stage and the androgenic gland (AG) developmental cycle. Moreover, PtIGFBP-rp transcripts were also present in high abundance in hepatopancreas, muscle, and androgenic glands. The regulatory relationship between PtIGFBP-rp and PtIAG was investigated by RNA interference and co-localization assays, which showed a co-localization relationship and feedback regulation between them. Bilateral eye stalk ablation (ESA) increased the expression of PtIGFBP-rp in the AG at 7 d after surgery. These results demonstrate the involvement of PtIGFBP-rp in the signaling regulatory network of IAG in P. trituberculatus.
Collapse
Affiliation(s)
- Meng-En Wang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Hongkun Zheng
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xi Xie
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Rui Xu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Dongfa Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
17
|
Kageyama N, Nose M, Ono M, Matsunaga Y, Iwasaki T, Kawano T. The FMRFamide-like peptide FLP-2 is involved in the modulation of larval development and adult lifespan by regulating the secretion of the insulin-like peptide INS-35 in Caenorhabditis elegans. Biosci Biotechnol Biochem 2022; 86:1231-1239. [PMID: 35786701 DOI: 10.1093/bbb/zbac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/05/2022] [Indexed: 11/12/2022]
Abstract
In the animal kingdom, neuropeptides regulate diverse physiological functions. In invertebrates, FMRFamide and its related peptides, a family of neuropeptides, play an important role as neurotransmitters. The FMRFamide-like peptides (FLPs) are one of the most diverse neuropeptide families and are conserved in nematodes. Our screen for flp genes of the free-living soil nematode Caenorhabditis elegans revealed that the flp-2 gene is involved in larval development. The gene is also conserved in plant-parasitic root-knot nematodes. Our molecular genetic analyses of the C. elegans flp-2 gene demonstrated as follows: 1) the production and secretion of FLP-2, produced in the head neurons, are controlled by environmental factors (growth density and food); 2) the FLP-2 is involved in not only larval development but also adult lifespan by regulating the secretion of one of the insulin-like peptides INS-35, produced in the intestine. These findings provide new insight into the development of new nematicides.
Collapse
Affiliation(s)
- Natsumi Kageyama
- Department of Agricultural Science, Graduate School of Sustainability Science
| | - Masayo Nose
- Department of Agricultural Science, Graduate School of Sustainability Science
| | - Masahiro Ono
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
| | | | - Takashi Iwasaki
- Department of Agricultural Science, Graduate School of Sustainability Science.,Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
| | - Tsuyoshi Kawano
- Department of Agricultural Science, Graduate School of Sustainability Science.,Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
18
|
Handley A, Wu Q, Sherry T, Cornell R, Pocock R. Diet-responsive transcriptional regulation of insulin in a single neuron controls systemic metabolism. PLoS Biol 2022; 20:e3001655. [PMID: 35594303 PMCID: PMC9162364 DOI: 10.1371/journal.pbio.3001655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/02/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic homeostasis is coordinated through a robust network of signaling pathways acting across all tissues. A key part of this network is insulin-like signaling, which is fundamental for surviving glucose stress. Here, we show that Caenorhabditis elegans fed excess dietary glucose reduce insulin-1 (INS-1) expression specifically in the BAG glutamatergic sensory neurons. We demonstrate that INS-1 expression in the BAG neurons is directly controlled by the transcription factor ETS-5, which is also down-regulated by glucose. We further find that INS-1 acts exclusively from the BAG neurons, and not other INS-1-expressing neurons, to systemically inhibit fat storage via the insulin-like receptor DAF-2. Together, these findings reveal an intertissue regulatory pathway where regulation of insulin expression in a specific neuron controls systemic metabolism in response to excess dietary glucose. Metabolic homeostasis is coordinated through a robust network of signaling pathways acting across all tissues. This study shows that Caenorhabditis elegans nematodes fed excess dietary glucose reduce the expression of insulin-1 specifically in the BAG glutamatergic sensory neurons, and that insulin-1 produced by these neurons systemically inhibits fat storage via the insulin-like receptor DAF-2.
Collapse
Affiliation(s)
- Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- * E-mail: (AH); (RP)
| | - Qiuli Wu
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Tessa Sherry
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Rebecca Cornell
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- * E-mail: (AH); (RP)
| |
Collapse
|
19
|
Zhang MG, Sternberg PW. Both entry to and exit from diapause arrest in Caenorhabditis elegans are regulated by a steroid hormone pathway. Development 2022; 149:274989. [PMID: 35394033 PMCID: PMC9148571 DOI: 10.1242/dev.200173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
Diapause arrest in animals such as Caenorhabditis elegans is tightly regulated so that animals make appropriate developmental decisions amidst environmental challenges. Fully understanding diapause requires mechanistic insight of both entry and exit from the arrested state. Although a steroid hormone pathway regulates the entry decision into C. elegans dauer diapause, its role in the exit decision is less clear. A complication to understanding steroid hormonal regulation of dauer has been the peculiar fact that steroid hormone mutants such as daf-9 form partial dauers under normal growth conditions. Here, we corroborate previous findings that daf-9 mutants remain capable of forming full dauers under unfavorable growth conditions and establish that the daf-9 partial dauer state is likely a partially exited dauer that has initiated but cannot complete the dauer exit process. We show that the steroid hormone pathway is both necessary for and promotes complete dauer exit, and that the spatiotemporal dynamics of steroid hormone regulation during dauer exit resembles that of dauer entry. Overall, dauer entry and dauer exit are distinct developmental decisions that are both controlled by steroid hormone signaling. Summary: In animals such as Caenorhabditis elegans, a steroid hormone pathway controls both the entry and exit decisions into and out of the developmentally arrested dauer state in response to environmental signaling.
Collapse
Affiliation(s)
- Mark G. Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
20
|
Dogra D, Kulalert W, Schroeder FC, Kim DH. Neuronal KGB-1 JNK MAPK signaling regulates the dauer developmental decision in response to environmental stress in Caenorhabditis elegans. Genetics 2022; 220:iyab186. [PMID: 34726729 PMCID: PMC8733477 DOI: 10.1093/genetics/iyab186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/15/2021] [Indexed: 11/14/2022] Open
Abstract
In response to stressful growth conditions of high population density, food scarcity, and elevated temperature, young larvae of nematode Caenorhabditis elegans can enter a developmentally arrested stage called dauer that is characterized by dramatic anatomic and metabolic remodeling. Genetic analysis of dauer formation of C. elegans has served as an experimental paradigm for the identification and characterization of conserved neuroendocrine signaling pathways. Here, we report the identification and characterization of a conserved c-Jun N-terminal Kinase-like mitogen-activated protein kinase (MAPK) pathway that is required for dauer formation in response to environmental stressors. We observed that loss-of-function mutations in the MLK-1-MEK-1-KGB-1 MAPK pathway suppress dauer entry. A loss-of-function mutation in the VHP-1 MAPK phosphatase, a negative regulator of KGB-1 signaling, results in constitutive dauer formation, which is dependent on the presence of dauer pheromone but independent of diminished food levels or elevated temperatures. Our data suggest that the KGB-1 pathway acts in the sensory neurons, in parallel to established insulin and TGF-β signaling pathways, to transduce the dauer-inducing environmental cues of diminished food levels and elevated temperature.
Collapse
Affiliation(s)
- Deepshikha Dogra
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Warakorn Kulalert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dennis H Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Schiffer JA, Stumbur SV, Seyedolmohadesin M, Xu Y, Serkin WT, McGowan NG, Banjo O, Torkashvand M, Lin A, Hosea CN, Assié A, Samuel BS, O’Donnell MP, Venkatachalam V, Apfeld J. Modulation of sensory perception by hydrogen peroxide enables Caenorhabditis elegans to find a niche that provides both food and protection from hydrogen peroxide. PLoS Pathog 2021; 17:e1010112. [PMID: 34941962 PMCID: PMC8699984 DOI: 10.1371/journal.ppat.1010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
Hydrogen peroxide (H2O2) is the most common chemical threat that organisms face. Here, we show that H2O2 alters the bacterial food preference of Caenorhabditis elegans, enabling the nematodes to find a safe environment with food. H2O2 induces the nematodes to leave food patches of laboratory and microbiome bacteria when those bacterial communities have insufficient H2O2-degrading capacity. The nematode's behavior is directed by H2O2-sensing neurons that promote escape from H2O2 and by bacteria-sensing neurons that promote attraction to bacteria. However, the input for H2O2-sensing neurons is removed by bacterial H2O2-degrading enzymes and the bacteria-sensing neurons' perception of bacteria is prevented by H2O2. The resulting cross-attenuation provides a general mechanism that ensures the nematode's behavior is faithful to the lethal threat of hydrogen peroxide, increasing the nematode's chances of finding a niche that provides both food and protection from hydrogen peroxide.
Collapse
Affiliation(s)
- Jodie A. Schiffer
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Stephanie V. Stumbur
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Maedeh Seyedolmohadesin
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Yuyan Xu
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - William T. Serkin
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Natalie G. McGowan
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Oluwatosin Banjo
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Mahdi Torkashvand
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Albert Lin
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ciara N. Hosea
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael P. O’Donnell
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Vivek Venkatachalam
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Javier Apfeld
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
- Bioengineering Department, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
daf-16/FOXO blocks adult cell fate in Caenorhabditis elegans dauer larvae via lin-41/TRIM71. PLoS Genet 2021; 17:e1009881. [PMID: 34780472 PMCID: PMC8629381 DOI: 10.1371/journal.pgen.1009881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/29/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Many tissue-specific stem cells maintain the ability to produce multiple cell types during long periods of non-division, or quiescence. FOXO transcription factors promote quiescence and stem cell maintenance, but the mechanisms by which FOXO proteins promote multipotency during quiescence are still emerging. The single FOXO ortholog in C. elegans, daf-16, promotes entry into a quiescent and stress-resistant larval stage called dauer in response to adverse environmental cues. During dauer, stem and progenitor cells maintain or re-establish multipotency to allow normal development to resume after dauer. We find that during dauer, daf-16/FOXO prevents epidermal stem cells (seam cells) from prematurely adopting differentiated, adult characteristics. In particular, dauer larvae that lack daf-16 misexpress collagens that are normally adult-enriched. Using col-19p::gfp as an adult cell fate marker, we find that all major daf-16 isoforms contribute to opposing col-19p::gfp expression during dauer. By contrast, daf-16(0) larvae that undergo non-dauer development do not misexpress col-19p::gfp. Adult cell fate and the timing of col-19p::gfp expression are regulated by the heterochronic gene network, including lin-41 and lin-29. lin-41 encodes an RNA-binding protein orthologous to LIN41/TRIM71 in mammals, and lin-29 encodes a conserved zinc finger transcription factor. In non-dauer development, lin-41 opposes adult cell fate by inhibiting the translation of lin-29, which directly activates col-19 transcription and promotes adult cell fate. We find that during dauer, lin-41 blocks col-19p::gfp expression, but surprisingly, lin-29 is not required in this context. Additionally, daf-16 promotes the expression of lin-41 in dauer larvae. The col-19p::gfp misexpression phenotype observed in dauer larvae with reduced daf-16 requires the downregulation of lin-41, but does not require lin-29. Taken together, this work demonstrates a novel role for daf-16/FOXO as a heterochronic gene that promotes expression of lin-41/TRIM71 to contribute to multipotent cell fate in a quiescent stem cell model. In adults and juveniles, tissue-specific stem cells divide as needed to replace cells that are lost due to injury or normal wear and tear. Many stem cells spend long periods of time in cellular quiescence, or non-division. During quiescence, stem cells remain multipotent, where they retain the ability to produce all cell types within their tissue. In this study, we define a new role for the FOXO protein DAF-16 in promoting multipotency during the quiescent C. elegans dauer larva stage. C. elegans larvae enter dauer midway through development in response to adverse environmental conditions. Epidermal stem cells are multipotent in C. elegans larvae but differentiate at adulthood, a process controlled by the “heterochronic” genes. We found that daf-16 blocks the expression of adult cell fate specifically in dauer larvae by promoting the expression of the heterochronic gene lin-41. lin-41 normally blocks adult fate by repressing the expression of another heterochronic gene, lin-29, but surprisingly, lin-29 is not needed for the expression of adult cell fate in this context. These findings may be relevant to mammals where the orthologs of daf-16 and lin-41 are important in stem cell maintenance and opposing differentiation.
Collapse
|
23
|
Karp X. Hormonal Regulation of Diapause and Development in Nematodes, Insects, and Fishes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diapause is a state of developmental arrest adopted in response to or in anticipation of environmental conditions that are unfavorable for growth. In many cases, diapause is facultative, such that animals may undergo either a diapause or a non-diapause developmental trajectory, depending on environmental cues. Diapause is characterized by enhanced stress resistance, reduced metabolism, and increased longevity. The ability to postpone reproduction until suitable conditions are found is important to the survival of many animals, and both vertebrate and invertebrate species can undergo diapause. The decision to enter diapause occurs at the level of the whole animal, and thus hormonal signaling pathways are common regulators of the diapause decision. Unlike other types of developmental arrest, diapause is programmed, such that the diapause developmental trajectory includes a pre-diapause preparatory phase, diapause itself, recovery from diapause, and post-diapause development. Therefore, developmental pathways are profoundly affected by diapause. Here, I review two conserved hormonal pathways, insulin/IGF signaling (IIS) and nuclear hormone receptor signaling (NHR), and their role in regulating diapause across three animal phyla. Specifically, the species reviewed are Austrofundulus limnaeus and Nothobranchius furzeri annual killifishes, Caenorhabditis elegans nematodes, and insect species including Drosophila melanogaster, Culex pipiens, and Bombyx mori. In addition, the developmental changes that occur as a result of diapause are discussed, with a focus on how IIS and NHR pathways interact with core developmental pathways in C. elegans larvae that undergo diapause.
Collapse
|
24
|
Kurogi Y, Mizuno Y, Imura E, Niwa R. Neuroendocrine Regulation of Reproductive Dormancy in the Fruit Fly Drosophila melanogaster: A Review of Juvenile Hormone-Dependent Regulation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.715029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Animals can adjust their physiology, helping them survive and reproduce under a wide range of environmental conditions. One of the strategies to endure unfavorable environmental conditions such as low temperature and limited food supplies is dormancy. In some insect species, this may manifest as reproductive dormancy, which causes their reproductive organs to be severely depleted under conditions unsuitable for reproduction. Reproductive dormancy in insects is induced by a reduction in juvenile hormones synthesized in the corpus allatum (pl. corpora allata; CA) in response to winter-specific environmental cues, such as low temperatures and short-day length. In recent years, significant progress has been made in the study of dormancy-inducing conditions dependent on CA control mechanisms in Drosophila melanogaster. This review summarizes dormancy control mechanisms in D. melanogaster and discusses the implications for future studies of insect dormancy, particularly focusing on juvenile hormone-dependent regulation.
Collapse
|
25
|
Khanna A, Sellegounder D, Kumar J, Chamoli M, Vargas M, Chinta SJ, Rane A, Nelson C, Peiris TH, Brem R, Andersen J, Lithgow G, Kapahi P. Trimethylamine modulates dauer formation, neurodegeneration, and lifespan through tyra-3/daf-11 signaling in Caenorhabditis elegans. Aging Cell 2021; 20:e13351. [PMID: 33819374 PMCID: PMC8135002 DOI: 10.1111/acel.13351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 11/27/2022] Open
Abstract
In the nematode Caenorhabditis elegans, signals derived from bacteria in the diet, the animal's major nutrient source, can modulate both behavior and healthspan. Here we describe a dual role for trimethylamine (TMA), a human gut flora metabolite, which acts as a nutrient signal and a neurotoxin. TMA and its associated metabolites are produced by the human gut microbiome and have been suggested to serve as risk biomarkers for diabetes and cardiovascular diseases. We demonstrate that the tyramine receptor TYRA-3, a conserved G protein-coupled receptor (GPCR), is required to sense TMA and mediate its responses. TMA activates guanylyl cyclase DAF-11 signaling through TYRA-3 in amphid neurons (ASK) and ciliated neurons (BAG) to mediate food-sensing behavior. Bacterial mutants deficient in TMA production enhance dauer formation, extend lifespan, and are less preferred as a food source. Increased levels of TMA lead to neural damage in models of Parkinson's disease and shorten lifespan. Our results reveal conserved signaling pathways modulated by TMA in C. elegans that are likely to be relevant for its effects in mammalian systems.
Collapse
Affiliation(s)
- Amit Khanna
- Buck Institute for Research on Aging Novato CA USA
- Dovetail Genomics LLC Scotts Valley CA USA
| | | | | | | | | | - Shankar J. Chinta
- Buck Institute for Research on Aging Novato CA USA
- Touro University California Vallejo CA USA
| | - Anand Rane
- Buck Institute for Research on Aging Novato CA USA
| | | | | | - Rachel Brem
- Buck Institute for Research on Aging Novato CA USA
| | | | | | | |
Collapse
|
26
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
27
|
Lee IH, Procko C, Lu Y, Shaham S. Stress-Induced Neural Plasticity Mediated by Glial GPCR REMO-1 Promotes C. elegans Adaptive Behavior. Cell Rep 2021; 34:108607. [PMID: 33440160 PMCID: PMC7845533 DOI: 10.1016/j.celrep.2020.108607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 01/03/2023] Open
Abstract
Animal nervous systems remodel following stress. Although global stress-dependent changes are well documented, contributions of individual neuron remodeling events to animal behavior modification are challenging to study. In response to environmental insults, C. elegans become stress-resistant dauers. Dauer entry induces amphid sensory organ remodeling in which bilateral AMsh glial cells expand and fuse, allowing embedded AWC chemosensory neurons to extend sensory receptive endings. We show that amphid remodeling correlates with accelerated dauer exit upon exposure to favorable conditions and identify a G protein-coupled receptor, REMO-1, driving AMsh glia fusion, AWC neuron remodeling, and dauer exit. REMO-1 is expressed in and localizes to AMsh glia tips, is dispensable for other remodeling events, and promotes stress-induced expression of the remodeling receptor tyrosine kinase VER-1. Our results demonstrate how single-neuron structural changes affect animal behavior, identify key glial roles in stress-induced nervous system plasticity, and demonstrate that remodeling primes animals to respond to favorable conditions.
Collapse
Affiliation(s)
- In Hae Lee
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Carl Procko
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
28
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
29
|
Takeishi A, Yeon J, Harris N, Yang W, Sengupta P. Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity. eLife 2020; 9:e61167. [PMID: 33074105 PMCID: PMC7644224 DOI: 10.7554/elife.61167] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022] Open
Abstract
Internal state alters sensory behaviors to optimize survival strategies. The neuronal mechanisms underlying hunger-dependent behavioral plasticity are not fully characterized. Here we show that feeding state alters C. elegans thermotaxis behavior by engaging a modulatory circuit whose activity gates the output of the core thermotaxis network. Feeding state does not alter the activity of the core thermotaxis circuit comprised of AFD thermosensory and AIY interneurons. Instead, prolonged food deprivation potentiates temperature responses in the AWC sensory neurons, which inhibit the postsynaptic AIA interneurons to override and disrupt AFD-driven thermotaxis behavior. Acute inhibition and activation of AWC and AIA, respectively, restores negative thermotaxis in starved animals. We find that state-dependent modulation of AWC-AIA temperature responses requires INS-1 insulin-like peptide signaling from the gut and DAF-16/FOXO function in AWC. Our results describe a mechanism by which functional reconfiguration of a sensory network via gut-brain signaling drives state-dependent behavioral flexibility.
Collapse
Affiliation(s)
- Asuka Takeishi
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Jihye Yeon
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| |
Collapse
|
30
|
Wong SS, Yu J, Schroeder FC, Kim DH. Population Density Modulates the Duration of Reproduction of C. elegans. Curr Biol 2020; 30:2602-2607.e2. [PMID: 32442457 DOI: 10.1016/j.cub.2020.04.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Population density can modulate the developmental trajectory of Caenorhabditis elegans larvae by promoting entry into dauer diapause, which is characterized by metabolic and anatomical remodeling and stress resistance [1, 2]. Genetic analysis of dauer formation has identified the involvement of evolutionarily conserved endocrine signaling pathways, including the DAF-2/insulin-like receptor signaling pathway [3-7]. Chemical and metabolomic analysis of dauer-inducing pheromone has identified a family of small molecules, ascarosides, which act potently to communicate increased population density and promote dauer formation [1, 8-10]. Here, we show that adult animals respond to ascarosides produced under conditions of increased population density by increasing the duration of reproduction. We observe that the ascarosides that promote dauer entry of larvae also act on adult animals to attenuate expression of the insulin peptide INS-6 from the ASI chemosensory neurons, resulting in diminished neuroendocrine insulin signaling that extends the duration of reproduction. Genetic analysis of ins-6 and corresponding insulin-signaling pathway mutants showed that the effect of increased population density on reproductive span was mimicked by ins-6 loss of function that exerted effects on duration of reproduction through the canonical DAF-2-DAF-16 pathway. We further observed that the effect of population density on reproductive span acted through DAF-16-dependent and DAF-16-independent pathways upstream of DAF-12, paralleling in adults what has been observed for the dauer developmental decision of larvae. Our data suggest that, under conditions of increased population density, C. elegans animals prolong the duration of reproductive egg laying, which may enable the subsequent development of progeny under more favorable conditions.
Collapse
Affiliation(s)
- Spencer S Wong
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jingfang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Dennis H Kim
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Schiffer JA, Servello FA, Heath WR, Amrit FRG, Stumbur SV, Eder M, Martin OMF, Johnsen SB, Stanley JA, Tam H, Brennan SJ, McGowan NG, Vogelaar AL, Xu Y, Serkin WT, Ghazi A, Stroustrup N, Apfeld J. Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies. eLife 2020; 9:e56186. [PMID: 32367802 PMCID: PMC7213980 DOI: 10.7554/elife.56186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogen peroxide is the preeminent chemical weapon that organisms use for combat. Individual cells rely on conserved defenses to prevent and repair peroxide-induced damage, but whether similar defenses might be coordinated across cells in animals remains poorly understood. Here, we identify a neuronal circuit in the nematode Caenorhabditis elegans that processes information perceived by two sensory neurons to control the induction of hydrogen peroxide defenses in the organism. We found that catalases produced by Escherichia coli, the nematode's food source, can deplete hydrogen peroxide from the local environment and thereby protect the nematodes. In the presence of E. coli, the nematode's neurons signal via TGFβ-insulin/IGF1 relay to target tissues to repress expression of catalases and other hydrogen peroxide defenses. This adaptive strategy is the first example of a multicellular organism modulating its defenses when it expects to freeload from the protection provided by molecularly orthologous defenses from another species.
Collapse
Affiliation(s)
| | | | - William R Heath
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sean B Johnsen
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Hannah Tam
- Biology Department, Northeastern UniversityBostonUnited States
| | - Sarah J Brennan
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Yuyan Xu
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburghUnited States
- Departments of Developmental Biology and Cell Biology and Physiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
32
|
Ayoade KO, Carranza FR, Cho WH, Wang Z, Kliewer SA, Mangelsdorf DJ, Stoltzfus JDC. Dafachronic acid and temperature regulate canonical dauer pathways during Nippostrongylus brasiliensis infectious larvae activation. Parasit Vectors 2020; 13:162. [PMID: 32238181 PMCID: PMC7110753 DOI: 10.1186/s13071-020-04035-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/25/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND While immune responses to the murine hookworm Nippostrongylus brasiliensis have been investigated, signaling pathways regulating development of infectious larvae (iL3) are not well understood. We hypothesized that N. brasiliensis would use pathways similar to those controlling dauer development in the free-living nematode Caenorhabditis elegans, which is formally known as the "dauer hypothesis." METHODS To investigate whether dafachronic acid activates the N. brasiliensis DAF-12 homolog, we utilized an in vitro reporter assay. We then utilized RNA-Seq and subsequent bioinformatic analyses to identify N. brasiliensis dauer pathway homologs and examine regulation of these genes during iL3 activation. RESULTS In this study, we demonstrated that dafachronic acid activates the N. brasiliensis DAF-12 homolog. We then identified N. brasiliensis homologs for members in each of the four canonical dauer pathways and examined their regulation during iL3 activation by either temperature or dafachronic acid. Similar to C. elegans, we found that transcripts encoding antagonistic insulin-like peptides were significantly downregulated during iL3 activation, and that a transcript encoding a phylogenetic homolog of DAF-9 increased during iL3 activation, suggesting that both increased insulin-like and DAF-12 nuclear hormone receptor signaling accompanies iL3 activation. In contrast to C. elegans, we observed a significant decrease in transcripts encoding the dauer transforming growth factor beta ligand DAF-7 during iL3 activation, suggesting a different role for this pathway in parasitic nematode development. CONCLUSIONS Our data suggest that canonical dauer pathways indeed regulate iL3 activation in the hookworm N. brasiliensis and that DAF-12 may be a therapeutic target in hookworm infections.
Collapse
Affiliation(s)
- Katherine Omueti Ayoade
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Faith R. Carranza
- Department of Biology, Millersville University of Pennsylvania, Millersville, PA 17551 USA
| | - Woong Hee Cho
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Zhu Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Steven A. Kliewer
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - David J. Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | | |
Collapse
|
33
|
Martinez BA, Reis Rodrigues P, Nuñez Medina RM, Mondal P, Harrison NJ, Lone MA, Webster A, Gurkar AU, Grill B, Gill MS. An alternatively spliced, non-signaling insulin receptor modulates insulin sensitivity via insulin peptide sequestration in C. elegans. eLife 2020; 9:49917. [PMID: 32096469 PMCID: PMC7041946 DOI: 10.7554/elife.49917] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
In the nematode C. elegans, insulin signaling regulates development and aging in response to the secretion of numerous insulin peptides. Here, we describe a novel, non-signaling isoform of the nematode insulin receptor (IR), DAF-2B, that modulates insulin signaling by sequestration of insulin peptides. DAF-2B arises via alternative splicing and retains the extracellular ligand binding domain but lacks the intracellular signaling domain. A daf-2b splicing reporter revealed active regulation of this transcript through development, particularly in the dauer larva, a diapause stage associated with longevity. CRISPR knock-in of mScarlet into the daf-2b genomic locus confirmed that DAF-2B is expressed in vivo and is likely secreted. Genetic studies indicate that DAF-2B influences dauer entry, dauer recovery and adult lifespan by altering insulin sensitivity according to the prevailing insulin milieu. Thus, in C. elegans alternative splicing at the daf-2 locus generates a truncated IR that fine-tunes insulin signaling in response to the environment.
Collapse
Affiliation(s)
- Bryan A Martinez
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, United States
| | - Pedro Reis Rodrigues
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, United States
| | - Ricardo M Nuñez Medina
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, United States
| | - Prosenjit Mondal
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, United States
| | - Neale J Harrison
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, United States
| | - Museer A Lone
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, United States
| | - Amanda Webster
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, United States
| | - Aditi U Gurkar
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, United States
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute - Scripps Florida, Jupiter, United States
| | - Matthew S Gill
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, United States
| |
Collapse
|
34
|
Rashid S, Pho KB, Mesbahi H, MacNeil LT. Nutrient Sensing and Response Drive Developmental Progression in Caenorhabditis elegans. Bioessays 2020; 42:e1900194. [PMID: 32003906 DOI: 10.1002/bies.201900194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/22/2019] [Indexed: 12/18/2022]
Abstract
In response to nutrient limitation, many animals, including Caenorhabditis elegans, slow or arrest their development. This process requires mechanisms that sense essential nutrients and induce appropriate responses. When faced with nutrient limitation, C. elegans can induce both short and long-term survival strategies, including larval arrest, decreased developmental rate, and dauer formation. To select the most advantageous strategy, information from many different sensors must be integrated into signaling pathways, including target of rapamycin (TOR) and insulin, that regulate developmental progression. Here, how nutrient information is sensed and integrated into developmental decisions that determine developmental rate and progression in C. elegans is reviewed.
Collapse
Affiliation(s)
- Sabih Rashid
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Kim B Pho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Hiva Mesbahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| |
Collapse
|
35
|
DAF-16/FoxO in Caenorhabditis elegans and Its Role in Metabolic Remodeling. Cells 2020; 9:cells9010109. [PMID: 31906434 PMCID: PMC7017163 DOI: 10.3390/cells9010109] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/31/2022] Open
Abstract
DAF-16, the only forkhead box transcription factors class O (FoxO) homolog in Caenorhabditis elegans, integrates signals from upstream pathways to elicit transcriptional changes in many genes involved in aging, development, stress, metabolism, and immunity. The major regulator of DAF-16 activity is the insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway, reduction of which leads to lifespan extension in worms, flies, mice, and humans. In C. elegans daf-2 mutants, reduced IIS leads to a heterochronic activation of a dauer survival program during adulthood. This program includes elevated antioxidant defense and a metabolic shift toward accumulation of carbohydrates (i.e., trehalose and glycogen) and triglycerides, and activation of the glyoxylate shunt, which could allow fat-to-carbohydrate conversion. The longevity of daf-2 mutants seems to be partially supported by endogenous trehalose, a nonreducing disaccharide that mammals cannot synthesize, which points toward considerable differences in downstream mechanisms by which IIS regulates aging in distinct groups.
Collapse
|
36
|
Wu T, Duan F, Yang W, Liu H, Caballero A, Fernandes de Abreu DA, Dar AR, Alcedo J, Ch'ng Q, Butcher RA, Zhang Y. Pheromones Modulate Learning by Regulating the Balanced Signals of Two Insulin-like Peptides. Neuron 2019; 104:1095-1109.e5. [PMID: 31676170 PMCID: PMC7009321 DOI: 10.1016/j.neuron.2019.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/09/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Social environment modulates learning through unknown mechanisms. Here, we report that a pheromone mixture that signals overcrowding inhibits C. elegans from learning to avoid pathogenic bacteria. We find that learning depends on the balanced signaling of two insulin-like peptides (ILPs), INS-16 and INS-4, which act respectively in the pheromone-sensing neuron ADL and the bacteria-sensing neuron AWA. Pheromone exposure inhibits learning by disrupting this balance: it activates ADL and increases expression of ins-16, and this cellular effect reduces AWA activity and AWA-expressed ins-4. The activities of the sensory neurons are required for learning and the expression of the ILPs. Interestingly, pheromones also promote the ingestion of pathogenic bacteria while increasing resistance to the pathogen. Thus, the balance of the ILP signals integrates social information into the learning process as part of a coordinated adaptive response that allows consumption of harmful food during times of high population density.
Collapse
Affiliation(s)
- Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Fengyun Duan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Antonio Caballero
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Diana Andrea Fernandes de Abreu
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Abdul Rouf Dar
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - QueeLim Ch'ng
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
37
|
Horowitz LB, Brandt JP, Ringstad N. Repression of an activity-dependent autocrine insulin signal is required for sensory neuron development in C. elegans. Development 2019; 146:dev.182873. [PMID: 31628111 DOI: 10.1242/dev.182873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022]
Abstract
Nervous system development is instructed by genetic programs and refined by distinct mechanisms that couple neural activity to gene expression. How these processes are integrated remains poorly understood. Here, we report that the regulated release of insulin-like peptides (ILPs) during development of the Caenorhabditis elegans nervous system accomplishes such an integration. We find that the p38 MAP kinase PMK-3, which is required for the differentiation of chemosensory BAG neurons, limits an ILP signal that represses expression of a BAG neuron fate. ILPs are released from BAGs themselves in an activity-dependent manner during development, indicating that ILPs constitute an autocrine signal that regulates the differentiation of BAG neurons. Expression of a specialized neuronal fate is, therefore, coordinately regulated by a genetic program that sets levels of ILP expression during development, and by neural activity, which regulates ILP release. Autocrine signals of this kind might have general and conserved functions as integrators of deterministic genetic programs with activity-dependent mechanisms during neurodevelopment.
Collapse
Affiliation(s)
- Lauren Bayer Horowitz
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Julia P Brandt
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
38
|
Posner R, Toker IA, Antonova O, Star E, Anava S, Azmon E, Hendricks M, Bracha S, Gingold H, Rechavi O. Neuronal Small RNAs Control Behavior Transgenerationally. Cell 2019; 177:1814-1826.e15. [PMID: 31178120 PMCID: PMC6579485 DOI: 10.1016/j.cell.2019.04.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/18/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally. C. elegans neuronal small RNAs are characterized by RNA sequencing RDE-4-dependent neuronal endogenous small RNAs communicate with the germline Germline HRDE-1 mediates transgenerational regulation by neuronal small RNAs Neuronal small RNAs regulate germline genes to control behavior transgenerationally
Collapse
Affiliation(s)
- Rachel Posner
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itai Antoine Toker
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Olga Antonova
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ekaterina Star
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Azmon
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michael Hendricks
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Shahar Bracha
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
39
|
Harris G, Wu T, Linfield G, Choi MK, Liu H, Zhang Y. Molecular and cellular modulators for multisensory integration in C. elegans. PLoS Genet 2019; 15:e1007706. [PMID: 30849079 PMCID: PMC6426271 DOI: 10.1371/journal.pgen.1007706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/20/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
In the natural environment, animals often encounter multiple sensory cues that are simultaneously present. The nervous system integrates the relevant sensory information to generate behavioral responses that have adaptive values. However, the neuronal basis and the modulators that regulate integrated behavioral response to multiple sensory cues are not well defined. Here, we address this question using a behavioral decision in C. elegans when the animal is presented with an attractive food source together with a repulsive odorant. We identify specific sensory neurons, interneurons and neuromodulators that orchestrate the decision-making process, suggesting that various states and contexts may modulate the multisensory integration. Among these modulators, we characterize a new function of a conserved TGF-β pathway that regulates the integrated decision by inhibiting the signaling from a set of central neurons. Interestingly, we find that a common set of modulators, including the TGF-β pathway, regulate the integrated response to the pairing of different foods and repellents. Together, our results provide mechanistic insights into the modulatory signals regulating multisensory integration. The present study characterizes the modulation of a behavioral decision in C. elegans when the worm is presented with a food lawn that is paired with a repulsive smell. We show that multiple specific sensory neurons and interneurons play roles in making the decision. We also identify several modulatory molecules that are essential for the integrated decision when the animal faces a choice between the cues of opposing valence. We further show that many of these factors, which often represent different states and contexts, are common for behavioral decisions that integrate sensory information from different types of foods and repellents. Overall, our results reveal the molecular and cellular basis for integration of simultaneously present attractive and repulsive cues to fine-tune decision-making.
Collapse
Affiliation(s)
- Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Gaia Linfield
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| |
Collapse
|
40
|
de Pablo F, Hernández-Sánchez C, de la Rosa EJ. The Prohormone Proinsulin as a Neuroprotective Factor: Past History and Future Prospects. Front Mol Neurosci 2018; 11:426. [PMID: 30534050 PMCID: PMC6275302 DOI: 10.3389/fnmol.2018.00426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/02/2018] [Indexed: 01/22/2023] Open
Abstract
Proinsulin was first identified as the primary translation product of the insulin gene in Donald Steiner’s laboratory in 1967, and was the first prohormone to be isolated and sequenced. While its role as an insulin precursor has been extensively studied in the field of endocrinology, the bioactivity of the proinsulin molecule itself has received much less attention. Insulin binds to isoforms A and B of the insulin receptor (IR) with high affinity. Proinsulin, in contrast, binds with high affinity only to IR-A, which is present in the nervous system, among other tissues and elicits antiapoptotic and neuroprotective effects in the developing and postnatal nervous system. Proinsulin specifically exerts neuroprotection in the degenerating retina in mouse and rat models of retinitis pigmentosa (RP), delaying photoreceptor and vision loss after local administration in the eye or systemic (intramuscular) administration of an adeno-associated viral (AAV) vector that induces constitutive proinsulin release. AAV-mediated proinsulin expression also decreases the expression of neuroinflammation markers in the hippocampus and sustains cognitive performance in a mouse model of precocious brain senescence. We have therefore proposed that proinsulin should be considered a functionally distinct member of the insulin superfamily. Here, we briefly review the legacy of Steiner’s research, the neural expression of proinsulin, and the tissue expression patterns and functional characteristics of IR-A. We discuss the neuroprotective activity of proinsulin and its potential as a therapeutic tool in neurodegenerative conditions of the central nervous system, particularly in retinal dystrophies.
Collapse
Affiliation(s)
- Flora de Pablo
- 3D Lab, Development, Differentiation and Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Catalina Hernández-Sánchez
- 3D Lab, Development, Differentiation and Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Enrique J de la Rosa
- 3D Lab, Development, Differentiation and Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| |
Collapse
|
41
|
Pervasive Positive and Negative Feedback Regulation of Insulin-Like Signaling in Caenorhabditis elegans. Genetics 2018; 211:349-361. [PMID: 30425043 DOI: 10.1534/genetics.118.301702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
The Caenorhabditis elegans insulin-like signaling network supports homeostasis and developmental plasticity. The genome encodes 40 insulin-like peptides and one known receptor. Feedback regulation has been reported, but the extent of feedback and its effect on signaling dynamics in response to changes in nutrient availability has not been determined. We measured messenger RNA expression for each insulin-like peptide, the receptor daf-2, components of the PI3K pathway, and its transcriptional effectors daf-16/FoxO and skn-1/Nrf at high temporal resolution during transition from a starved, quiescent state to a fed, growing state in wild type and mutants affecting daf-2/InsR and daf-16/FoxO. We also analyzed the effect of temperature on insulin-like gene expression. We found that most PI3K pathway components and insulin-like peptides are affected by signaling activity, revealing pervasive positive and negative feedback regulation at intra- and intercellular levels. Reporter gene analysis demonstrated that the daf-2/InsR agonist daf-28 positively regulates its own transcription and that the putative agonist ins-6 cross-regulates DAF-28 protein expression through feedback. Our results show that positive and negative feedback regulation of insulin-like signaling is widespread, giving rise to an organismal FoxO-to-FoxO signaling network that supports homeostasis during fluctuations in nutrient availability.
Collapse
|
42
|
Zheng S, Chiu H, Boudreau J, Papanicolaou T, Bendena W, Chin-Sang I. A functional study of all 40 Caenorhabditis elegans insulin-like peptides. J Biol Chem 2018; 293:16912-16922. [PMID: 30206121 PMCID: PMC6204898 DOI: 10.1074/jbc.ra118.004542] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Indexed: 01/27/2023] Open
Abstract
The human genome encodes 10 insulin-like genes, whereas the Caenorhabditis elegans genome remarkably encodes 40 insulin-like genes. Knockout strategies to determine the roles of all the insulin/insulin-like peptide ligands (INS) in C. elegans has been challenging due to functional redundancy. Here, we individually overexpressed each of the 40 ins genes pan-neuronally, and monitored multiple phenotypes including: L1 arrest life span, neuroblast divisions under L1 arrest, dauer formation, and fat accumulation, as readouts to characterize the functions of each INS in vivo Of the 40 INS peptides, we found functions for 35 INS peptides and functionally categorized each as agonists, antagonists, or of pleiotropic function. In particular, we found that 9 of 16 agonistic INS peptides shortened L1 arrest life span and promoted neuroblast divisions during L1 arrest. Our study revealed that a subset of β-class INS peptides that contain a distinct F peptide sequence are agonists. Our work is the first to categorize the structures of INS peptides and relate these structures to the functions of all 40 INS peptides in vivo Our findings will promote the study of insulin function on development, metabolism, and aging-related diseases.
Collapse
Affiliation(s)
- Shanqing Zheng
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hilton Chiu
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jeffrey Boudreau
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tony Papanicolaou
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - William Bendena
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ian Chin-Sang
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
43
|
Kaltdorf KV, Theiss M, Markert SM, Zhen M, Dandekar T, Stigloher C, Kollmannsberger P. Automated classification of synaptic vesicles in electron tomograms of C. elegans using machine learning. PLoS One 2018; 13:e0205348. [PMID: 30296290 PMCID: PMC6175533 DOI: 10.1371/journal.pone.0205348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/24/2018] [Indexed: 11/18/2022] Open
Abstract
Synaptic vesicles (SVs) are a key component of neuronal signaling and fulfil different roles depending on their composition. In electron micrograms of neurites, two types of vesicles can be distinguished by morphological criteria, the classical “clear core” vesicles (CCV) and the typically larger “dense core” vesicles (DCV), with differences in electron density due to their diverse cargos. Compared to CCVs, the precise function of DCVs is less defined. DCVs are known to store neuropeptides, which function as neuronal messengers and modulators [1]. In C. elegans, they play a role in locomotion, dauer formation, egg-laying, and mechano- and chemosensation [2]. Another type of DCVs, also referred to as granulated vesicles, are known to transport Bassoon, Piccolo and further constituents of the presynaptic density in the center of the active zone (AZ), and therefore are important for synaptogenesis [3]. To better understand the role of different types of SVs, we present here a new automated approach to classify vesicles. We combine machine learning with an extension of our previously developed vesicle segmentation workflow, the ImageJ macro 3D ART VeSElecT. With that we reliably distinguish CCVs and DCVs in electron tomograms of C. elegans NMJs using image-based features. Analysis of the underlying ground truth data shows an increased fraction of DCVs as well as a higher mean distance between DCVs and AZs in dauer larvae compared to young adult hermaphrodites. Our machine learning based tools are adaptable and can be applied to study properties of different synaptic vesicle pools in electron tomograms of diverse model organisms.
Collapse
Affiliation(s)
- Kristin Verena Kaltdorf
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Maria Theiss
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | | | - Mei Zhen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail: (PK); (CS); (TD)
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail: (PK); (CS); (TD)
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
- * E-mail: (PK); (CS); (TD)
| |
Collapse
|
44
|
Kaplan REW, Webster AK, Chitrakar R, Dent JA, Baugh LR. Food perception without ingestion leads to metabolic changes and irreversible developmental arrest in C. elegans. BMC Biol 2018; 16:112. [PMID: 30296941 PMCID: PMC6176503 DOI: 10.1186/s12915-018-0579-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Developmental physiology is very sensitive to nutrient availability. For instance, in the nematode Caenorhabditis elegans, newly hatched L1-stage larvae require food to initiate postembryonic development. In addition, larvae arrested in the dauer diapause, a non-feeding state of developmental arrest that occurs during the L3 stage, initiate recovery when exposed to food. Despite the essential role of food in C. elegans development, the contribution of food perception versus ingestion on physiology has not been delineated. RESULTS We used a pharmacological approach to uncouple the effects of food (bacteria) perception and ingestion in C. elegans. Perception was not sufficient to promote postembryonic development in L1-stage larvae. However, L1 larvae exposed to food without ingestion failed to develop upon return to normal culture conditions, instead displaying an irreversible arrest phenotype. Inhibition of gene expression during perception rescued subsequent development, demonstrating that the response to perception without feeding is deleterious. Perception altered DAF-16/FOXO subcellular localization, reflecting activation of insulin/IGF signaling (IIS). The insulin-like peptide daf-28 was specifically required, suggesting perception in chemosensory neurons, where it is expressed, regulates peptide synthesis and possibly secretion. However, genetic manipulation of IIS did not modify the irreversible arrest phenotype caused by food perception, revealing that wild-type function of the IIS pathway is not required to produce this phenotype and that other pathways affected by perception of food in the absence of its ingestion are likely to be involved. Gene expression and Nile red staining showed that food perception could alter lipid metabolism and storage. We found that starved larvae sense environmental polypeptides, with similar molecular and developmental effects as perception of bacteria. Environmental polypeptides also promoted recovery from dauer diapause, suggesting that perception of polypeptides plays an important role in the life history of free-living nematodes. CONCLUSIONS We conclude that actual ingestion of food is required to initiate postembryonic development in C. elegans. We also conclude that polypeptides are perceived as a food-associated cue in this and likely other animals, initiating a signaling and gene regulatory cascade that alters metabolism in anticipation of feeding and development, but that this response is detrimental if feeding does not occur.
Collapse
Affiliation(s)
- Rebecca E W Kaplan
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA
| | - Amy K Webster
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA
| | - Rojin Chitrakar
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA
| | - Joseph A Dent
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - L Ryan Baugh
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA.
| |
Collapse
|
45
|
O’Donnell MP, Chao PH, Kammenga JE, Sengupta P. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS Genet 2018; 14:e1007213. [PMID: 29415022 PMCID: PMC5819832 DOI: 10.1371/journal.pgen.1007213] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/20/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023] Open
Abstract
Animals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2) controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via a PDF-2/PDFR-1 neuropeptide signaling-dependent pathway. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL) associated with these traits. Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state. Decision-making in all animals, including humans, involves weighing available information about the external environment as well as the animals’ internal conditions. Information about the environment is obtained via the sensory nervous system, whereas internal state can be assessed via cues such as levels of hormones or nutrients. How multiple external and internal inputs are processed in the nervous system to drive behavior or development is not fully understood. In this study, we examine how the nematode C. elegans integrates dietary information received by the gut with environmental signals to alter nervous system function. We have found that a signaling complex, called TORC2, acts in the gut to relay nutrition signals to alter hormonal signaling by the nervous system in C. elegans. Altered neuronal signaling in turn affects a food-dependent binary developmental decision in larvae, as well as food-dependent foraging behaviors in adults. Our results provide a mechanism by which animals prioritize specific signals such as feeding status to appropriately alter their development and/or behavior.
Collapse
Affiliation(s)
- Michael P. O’Donnell
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| | - Pin-Hao Chao
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| |
Collapse
|
46
|
Abstract
In Caenorhabditis elegans, there is a single FOXO transcription factor homolog, encoded by the gene, daf-16. As a central regulator for multiple signaling pathways, DAF-16 integrates these signals which results in modulation of several biological processes including longevity, development, fat storage, stress resistance, innate immunity, and reproduction. Using C. elegans allows for studies of FOXO in the context of the whole animal. Therefore, manipulating levels or the activity of daf-16 results in phenotypic changes. Genetic and molecular analysis revealed that similar to other systems, DAF-16 is the downstream target of the conserved insulin/IGF-1 signaling (IIS) pathway; a PI 3-kinase/AKT signaling cascade that ultimately controls the regulation of DAF-16 nuclear localization. In this chapter, I will focus on understanding how a single gene daf-16 can incorporate signals from multiple upstream pathways and in turn modulate different phenotypes as well as the study of FOXO in the context of a whole organism.
Collapse
Affiliation(s)
- Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
47
|
Matsunaga Y, Matsukawa T, Iwasaki T, Nagata K, Kawano T. Comparison of physiological functions of antagonistic insulin-like peptides, INS-23 and INS-18, in Caenorhabditis elegans. Biosci Biotechnol Biochem 2018; 82:90-96. [DOI: 10.1080/09168451.2017.1415749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In Caenorhabditis elgans, insulin-like peptides have significant roles in modulating larval diapause and adult lifespan via the insulin/IGF-1 signaling (IIS) pathway. Although 40 insulin-like peptides (ILPs) have been identified, it remains unknown how ILPs act as either agonists or antagonists for their sole receptor, DAF-2. Here we found 1) INS-23 functions as an antagonistic ILP to promote larval diapause through the IIS pathway like a DAF-2 antagonist, INS-18, 2) INS-23 and INS-18 have similar biochemical functions. In addition, our molecular modeling suggests that INS-23 and INS-18 have characteristic insertions in the B-domain, which are crucial for the recognition of the insulin receptor, when compared with DAF-2 agonists. These characteristic insertions in the B-domain of INS-23 and INS-18 would modulate their intermolecular interactions with the DAF-2 receptor, which may lead these molecules to act as antagonistic ligands. Our study provides new insight into the function and structure of ILPs.
Collapse
Affiliation(s)
- Yohei Matsunaga
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Toshiya Matsukawa
- Department of Bioresource Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
- Department of Molecular Metabolic Regulation, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takashi Iwasaki
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
- Department of Bioresource Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Kawano
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
- Department of Bioresource Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
48
|
|
49
|
Thapliyal S, Babu K. C. elegans Locomotion: Finding Balance in Imbalance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:185-196. [PMID: 30637699 DOI: 10.1007/978-981-13-3065-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The excitation-inhibition (E-I) imbalance in neural circuits represents a hallmark of several neuropsychiatric disorders. The tiny nematode Caenorhabditis elegans has emerged as an excellent system to study the molecular mechanisms underlying this imbalance in neuronal circuits. The C. elegans body wall muscles receive inputs from both excitatory cholinergic and inhibitory GABAergic motor neurons at neuromuscular junctions (NMJ), making it an excellent model for studying the genetic and molecular mechanisms required for maintaining E-I balance at the NMJ. The cholinergic neurons form dyadic synapses wherein they synapse onto ipsilateral body wall muscles allowing for muscle contraction as well as onto GABAergic motor neurons that in turn synapse on the contralateral body wall muscles causing muscle relaxation. An alternating wave of contraction and relaxation mediated by excitatory and inhibitory signals maintains locomotion in C. elegans. This locomotory behavior requires an intricate balance between the excitatory cholinergic signaling and the inhibitory GABAergic signaling mechanisms.Studies on the C. elegans NMJ have provided insights into several molecular mechanisms that could regulate this balance in neural circuits. This review provides a discussion on multiple genetic factors including neuropeptides and their receptors, cell adhesion molecules, and other molecular pathways that have been associated with maintaining E-I balance in C. elegans motor circuits. Further, it also discusses the implications of these studies that could help us in understanding the role of E-I balance in mammalian neural circuits and how changes in this balance could give rise to brain disorders.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| | - Kavita Babu
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| |
Collapse
|
50
|
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, Adey A, Waterston RH, Trapnell C, Shendure J. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017; 357:661-667. [PMID: 28818938 DOI: 10.1126/science.aam8940] [Citation(s) in RCA: 924] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/12/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022]
Abstract
To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold "shotgun" cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type-specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.
Collapse
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Jonathan S Packer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Riza Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiaojie Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Scott N Furlan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Andrew Adey
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Portland, OR, USA
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|