1
|
Lin W, Zhang X, Liu Z, Huo H, Chang Y, Zhao J, Gong S, Zhao G, Huo J. Isoform-resolution single-cell RNA sequencing reveals the transcriptional panorama of adult Baoshan pig testis cells. BMC Genomics 2025; 26:459. [PMID: 40340725 PMCID: PMC12063418 DOI: 10.1186/s12864-025-11636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND As the primary organ of the male reproductive system, the testis facilitates spermatogenesis and androgen secretion. Due to the complexity of spermatogenesis, elucidating cellular heterogeneity and gene expression dynamics within the porcine testis is critical for advancing reproductive biology. Nevertheless, the cellular composition and regulatory mechanisms of porcine testes remain insufficiently characterized. In this study, we applied integrated long-read (Nanopore) and short-read (Illumina) scRNA-seq to Baoshan pig testes, establishing a comprehensive transcriptional profile to delineate cellular heterogeneity and molecular regulation. RESULTS Through systematic analysis of testicular architecture and the temporal progression of spermatogenesis, we characterized 11,520 single cells and 23,402 genes, delineating germ cell developmental stages: proliferative-phase spermatogonia (SPG), early-stage spermatocytes (Early SPC) and late-stage spermatocytes (Late SPC) during meiosis, and spermiogenic-phase round spermatids (RS) followed by elongating/elongated spermatids (ES), culminating in mature spermatozoa (Sperm). We further identified nine distinct testicular cell types, with germ cells spanning all developmental stages and somatic components comprising Sertoli cells, macrophages, and peritubular myoid cells as microenvironmental constituents, revealing the cellular heterogeneity of testicular tissue and dynamic characteristics of spermatogenesis. We obtained the dynamic expression changes of 16 vital marker genes during spermatogenesis and performed immunofluorescence validation on 7 marker genes. Gene ontology analysis revealed that germ cells at various stages were involved in specific biological processes, while cell communication networks highlighted eight pivotal signaling pathways, including MIF, NRG, WNT, VEGF, BMP, CCL, PARs, and ENHO pathways. Long-read sequencing further captured the full integrity and diversity of RNA transcripts, identifying 60% of the novel annotated isoforms and revealing that FSM isoforms exhibited longer transcript lengths, longer coding sequences, longer open reading frames, and a great number of exons, suggesting the complexity of isoforms within the testicular microenvironment. CONCLUSIONS Our results provide insight into the cellular heterogeneity, intercellular communication, and gene expression/transcript diversity in porcine testes, and offer a valuable resource for understanding the molecular mechanisms of porcine spermatogenesis.
Collapse
Affiliation(s)
- Wan Lin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xia Zhang
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, 033001, Shanxi, China
| | - Zhipeng Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hailong Huo
- Yunnan Open University, Kunming, 650500, Yunnan, China
| | - Yongcheng Chang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiading Zhao
- Baoshan Pig Research Institute, Baoshan, 678200, Yunnan, China
| | - Shaorong Gong
- Baoshan Pig Research Institute, Baoshan, 678200, Yunnan, China
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
2
|
Nadeem A, Sharma P, Gupta P, Sandeep P, Sharma B, Sharma N, Yadav M, Dhiman N. Exploring Neuregulin3: From physiology to pathology, a novel target for rational drug design. Biochem Pharmacol 2025; 238:116964. [PMID: 40320052 DOI: 10.1016/j.bcp.2025.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Neuregulin 3 (NRG3) is an epidermal growth factor related protein that binds to and stimulates the Erb-B2 receptor tyrosine kinase 4 (ErbB4). NRG3 is a multifunctional protein with fifteen alternative splicing isoforms categorized into four classes. Numerous physiological processes, such as the formation of cortical plate, cortical patterning, synaptic development, neuronal proliferation, regulation of neurotransmission, control of impulsive behavior, mammary gland morphogenesis, spermatogonial proliferation and cardiac homeostasis are influenced by NRG3. Besides its physiological roles, NRG3 also modulates anxiogenic phenotypes. It is a susceptibility gene for schizophrenia, autism spectrum disorder and Hirschsprung's Disease. Furthermore, anxiety during nicotine withdrawal is dependent on NRG3-ErbB4 signaling. Research on a range of solid carcinomas, such as brain tumors, ovarian cancer, gastrointestinal cancer and breast cancer, has demonstrated NRG3 gene as a therapeutic target. NRG3 also has potential involvement in epilepsy, angular limb malformation in Rambouillet rams, amyotrophic lateral sclerosis and polythelia. Nevertheless, little is known about the molecular characteristics, activities specific to isoforms, and molecular mechanisms of NRG3. Examining its potential involvement in a range of physiological processes and pathological states is a unique area that needs in-depth study and may offer new mechanistic insights and comprehension of these elements. Thus, the purpose of this review is to shed light on the utility of NRG3 as a potential target in various health and disease conditions.
Collapse
Affiliation(s)
- Aqsa Nadeem
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India.
| | - Palak Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| | - Nitin Sharma
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mahendra Yadav
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Liu W, Du L, Li J, He Y, Tang M. Microenvironment of spermatogonial stem cells: a key factor in the regulation of spermatogenesis. Stem Cell Res Ther 2024; 15:294. [PMID: 39256786 PMCID: PMC11389459 DOI: 10.1186/s13287-024-03893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in the male reproductive system, responsible for maintaining continuous spermatogenesis. The microenvironment or niche of SSCs is a key factor in regulating their self-renewal, differentiation and spermatogenesis. This microenvironment consists of multiple cell types, extracellular matrix, growth factors, hormones and other molecular signals that interact to form a complex regulatory network. This review aims to provide an overview of the main components of the SSCs microenvironment, explore how they regulate the fate decisions of SSCs, and discuss the potential impact of microenvironmental abnormalities on male reproductive health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Junjun Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Yan He
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| | - Mengjie Tang
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
4
|
Wang H, Yu H, Li Q. Integrative analysis of single-nucleus RNA-seq and bulk RNA-seq reveals germline cells development dynamics and niches in the Pacific oyster gonad. iScience 2024; 27:109499. [PMID: 38571762 PMCID: PMC10987912 DOI: 10.1016/j.isci.2024.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Gametogenesis drives the maturation of germ cell precursors into functional gametes, facilitated by interactions with the niche environment. However, the molecular mechanisms, especially in invertebrates, remain incompletely understood. In this study, the gonadal microenvironment and gametogenic processes in the Pacific oyster, a model for diffuse gonadal organization and periodic gametogenesis, are investigated. We combine single-nucleus RNA-seq and bulk RNA-seq to analyze gonadal microenvironments in oysters. Twenty-three male and nineteen female gonadal cell clusters are identified, revealing four male and three female germ cell types, alongside follicular cells in females and Sertoli/Leydig cells in males. The NOTCH and BMP (bone morphogenetic protein) signaling pathways play a significant role in the male germline niche, suggesting similarities with mammalian germ cell microenvironment. This study offers valuable insights into germ cell developmental transitions and microenvironmental characteristics.
Collapse
Affiliation(s)
- Huihui Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
5
|
Zhang Y, Li X, Gao L, Dong X, Xue J, Zhao M, Xie J, Niyaz A, Ren L, Zhou X. The role of Sertoli cells-secreted factors in different stages of germ cells development in mice exposed to BDE-209. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123775. [PMID: 38503350 DOI: 10.1016/j.envpol.2024.123775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Decabromodiphenyl ether (BDE-209), a frequently used brominated flame retardant, readily enters the environment and is difficult to degrade with bioaccumulation. BDE-209 could cause male reproductive toxicity, but the regulatory functions of Sertoli cells-secreted factors remain uncertain. In present study, male mice were treated with 75 mg/kg BDE-209 and then stopped exposure for 50 days. Exogenous Glial cell line-derived neurotrophic factor (GDNF), a Sertoli cell-secreted factor, was injected into testes of mice treated with BDE-209 for 50 days to explore the role of GDNF in BDE-209-induced reproductive toxicity. The mouse spermatogonia cell line GC-1 spg was used in vitro to further verify regulatory effects of Sertoli cells-secreted factors on meiotic initiation. The results showed that BDE-209 inhibited expressions of the self-renewal pathway GFRα-1/RAS/ERK1/2 in spermatogonial stem cells (SSCs), and reduced expressions of spermatogonia proliferation-related pathway NRG3/ERBB4 and meiosis initiation factor Stra8. Furthermore, BDE-209 decreased the levels of both GDNF and retinoic acid (RA) secreted by Sertoli cells in testes. Importantly, the alterations of above indicators induced by BDE-209 did not recover after 50-day recovery period. After exogenous GDNF injection, the decreased expression of GFRα-1/RAS/ERK in SSCs was reversed. However, the level of RA and expressions of NRG3/ERBB4/Stra8 were not restored. The in vitro experimental results showed that exogenous RA reversed the reductions in NRG3/ERBB4/Stra8 and ameliorated inhibition of GC-1 spg cells proliferation induced by BDE-209. These results suggested that Sertoli cells-secreted factors play roles in regulating various stages of germ cell development. Specifically, BDE-209 affected the self-renewal of SSCs by decreasing GDNF secretion resulting in the inhibition of GFRα-1/RAS/ERK pathway; BDE-209 hindered the proliferation of spermatogonia and initiation of meiosis by inhibiting the secretion of RA and preventing RA from binding to RARα, resulting in the suppression of NRG3/ERBB4/Stra8 pathway. As a consequence, spermatogenesis was compromised, leading to persistent male reproductive toxicity.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaomin Dong
- Experimental Center for Basic Medical Teaching, Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jinglong Xue
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Moxuan Zhao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junhong Xie
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Aliekram Niyaz
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
Jing J, Ouyang L, Zhang H, Liang K, Ma R, Ge X, Tang T, Zhao S, Xue T, Shen J, Ma J, Li Z, Wu J, Yang Y, Zhao W, Zheng L, Qian Z, Sun S, Ge Y, Chen L, Li C, Yao B. Omega-3 polyunsaturated fatty acids and its metabolite 12-HEPE rescue busulfan disrupted spermatogenesis via target to GPR120. Cell Prolif 2024; 57:e13551. [PMID: 37743695 PMCID: PMC10849791 DOI: 10.1111/cpr.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Busulfan is an antineoplastic, which is always accompanied with the abnormal of spermatogonia self-renewal and differentiation. It has been demonstrated that the omega-3 polyunsaturated fatty acids (PUFAs) benefits mature spermatozoa. However, whether omega-3 can protect endogenous spermatogonia and the detailed mechanisms are still unclear. Evaluate of spermatogenesis function (in vivo) were examined by histopathological analysis, immunofluorescence staining, and western blotting. The levels of lipid metabolites in testicular tissue were determined via liquid chromatography. We investigated the effect of lipid metabolites on Sertoli cells provided paracrine factors to regulate spermatogonia proliferation and differentiation using co-culture system. In our study, we showed that omega-3 PUFAs significantly improved the process of sperm production and elevated the quantity of both undifferentiated Lin28+ spermatogonia and differentiated c-kit+ spermatogonia in a mouse model where spermatogenic function was disrupted by busulfan. Mass spectrometry revealed an increase in the levels of several omega-3 metabolites in the testes of mice fed with omega-3 PUFAs. The eicosapentaenoic acid metabolite 12-hydroxyeicosapentaenoic acid (12-HEPE) up-regulated bone morphogenic protein 4 (BMP4) expression through GPR120-ERK1/2 pathway activation in Sertoli cells and restored spermatogonia proliferation and differentiation. Our study provides evidence that omega-3 PUFAs metabolite 12-HEPE effectively protects spermatogonia and reveals that GPR120 might be a tractable pharmacological target for fertility in men received chemotherapy or severe spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Jun Jing
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Lei Ouyang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
| | - Hong Zhang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Kuan Liang
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
| | - Rujun Ma
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Xie Ge
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Ting Tang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Shanmeizi Zhao
- School of Life ScienceNanjing Normal UniversityNanjingChina
| | - Tongmin Xue
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Reproductive Medical Center, Clinical Medical College (Northern Jiangsu People's Hospital)Yangzhou UniversityYangzhouChina
| | - Jiaming Shen
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Jinzhao Ma
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Zhou Li
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Jing Wu
- Core Laboratory, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Yang Yang
- Basic Medical Laboratory, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Wei Zhao
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Lu Zheng
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Zhang Qian
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Shanshan Sun
- School of Life ScienceNanjing Normal UniversityNanjingChina
| | - Yifeng Ge
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Li Chen
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Bing Yao
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
- School of Life ScienceNanjing Normal UniversityNanjingChina
| |
Collapse
|
7
|
Peng YJ, Tang XT, Shu HS, Dong W, Shao H, Zhou BO. Sertoli cells are the source of stem cell factor for spermatogenesis. Development 2023; 150:297262. [PMID: 36861441 PMCID: PMC10112922 DOI: 10.1242/dev.200706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Several cell types have been proposed to create the required microenvironment for spermatogenesis. However, expression patterns of the key growth factors produced by these somatic cells have not been systematically studied and no such factor has been conditionally deleted from its primary source(s), raising the question of which cell type(s) are the physiological sources of these growth factors. Here, using single-cell RNA sequencing and a series of fluorescent reporter mice, we found that stem cell factor (Scf), one of the essential growth factors for spermatogenesis, was broadly expressed in testicular stromal cells, including Sertoli, endothelial, Leydig, smooth muscle and Tcf21-CreER+ stromal cells. Both undifferentiated and differentiating spermatogonia were associated with Scf-expressing Sertoli cells in the seminiferous tubule. Conditional deletion of Scf from Sertoli cells, but not any other Scf-expressing cells, blocked the differentiation of spermatogonia, leading to complete male infertility. Conditional overexpression of Scf in Sertoli cells, but not endothelial cells, significantly increased spermatogenesis. Our data reveal the importance of anatomical localization for Sertoli cells in regulating spermatogenesis and that SCF produced specifically by Sertoli cells is essential for spermatogenesis.
Collapse
Affiliation(s)
- Yi Jacky Peng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Xinyu Thomas Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Hui Sophie Shu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Wenjie Dong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Hongfang Shao
- Center of Reproductive Medicine, Department of Gynecology and Obstetrics, Shanghai Jiao Tong University School of Medicine-Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Bo O Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, People's Republic of China
| |
Collapse
|
8
|
scATAC-Seq reveals heterogeneity associated with spermatogonial differentiation in cultured male germline stem cells. Sci Rep 2022; 12:21482. [PMID: 36509798 PMCID: PMC9744833 DOI: 10.1038/s41598-022-25729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Spermatogonial stem cells are the most primitive spermatogonia in testis, which can self-renew to maintain the stem cell pool or differentiate to give rise to germ cells including haploid spermatids. All-trans-retinoic acid (RA), a bioactive metabolite of vitamin A, plays a fundamental role in initiating spermatogonial differentiation. In this study, single-cell ATAC-seq (scATAC-seq) was used to obtain genome-wide chromatin maps of cultured germline stem cells (GSCs) that were in control and RA-induced differentiation states. We showed that different subsets of GSCs can be distinguished based on chromatin accessibility of self-renewal and differentiation signature genes. Importantly, both progenitors and a subset of stem cells are able to respond to RA and give rise to differentiating cell subsets with distinct chromatin accessibility profiles. In this study, we identified regulatory regions that undergo chromatin remodeling and are associated with the retinoic signaling pathway. Moreover, we reconstructed the differentiation trajectory and identified novel transcription factor candidates enriched in different spermatogonia subsets. Collectively, our work provides a valuable resource for understanding the heterogeneity associated with differentiation and RA response in GSCs.
Collapse
|
9
|
Wang JM, Li ZF, Yang WX, Tan FQ. Follicle-stimulating hormone signaling in Sertoli cells: a licence to the early stages of spermatogenesis. Reprod Biol Endocrinol 2022; 20:97. [PMID: 35780146 PMCID: PMC9250200 DOI: 10.1186/s12958-022-00971-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Follicle-stimulating hormone signaling is essential for the initiation and early stages of spermatogenesis. Follicle-stimulating hormone receptor is exclusively expressed in Sertoli cells. As the only type of somatic cell in the seminiferous tubule, Sertoli cells regulate spermatogenesis not only by controlling their own number and function but also through paracrine actions to nourish germ cells surrounded by Sertoli cells. After follicle-stimulating hormone binds to its receptor and activates the follicle-stimulating hormone signaling pathway, follicle-stimulating hormone signaling will establish a normal Sertoli cell number and promote their differentiation. Spermatogonia pool maintenance, spermatogonia differentiation and their entry into meiosis are also positively regulated by follicle-stimulating hormone signaling. In addition, follicle-stimulating hormone signaling regulates germ cell survival and limits their apoptosis. Our review summarizes the aforementioned functions of follicle-stimulating hormone signaling in Sertoli cells. We also describe the clinical potential of follicle-stimulating hormone treatment in male patients with infertility. Furthermore, our review may be helpful for developing better therapies for treating patients with dysfunctional follicle-stimulating hormone signaling in Sertoli cells.
Collapse
Affiliation(s)
- Jia-Ming Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
10
|
Xing H, Chen S, Wang X, Li J, Ren F. 3-Monochloropropane-1,2-diol causes spermatogenesis failure in male rats via Sertoli cell dysfunction but not testosterone reduction. Toxicol Lett 2022; 360:1-10. [DOI: 10.1016/j.toxlet.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
|
11
|
Bhardwaj A, Sohni A, Lou CH, De Gendt K, Zhang F, Kim E, Subbarayalu P, Chan W, Kerkhofs S, Claessens F, Kimmins S, Rao MK, Meistrich M, Wilkinson MF. Concordant Androgen-Regulated Expression of Divergent Rhox5 Promoters in Sertoli Cells. Endocrinology 2022; 163:6432187. [PMID: 34902009 PMCID: PMC8667857 DOI: 10.1210/endocr/bqab237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 11/19/2022]
Abstract
Concordant transcriptional regulation can generate multiple gene products that collaborate to achieve a common goal. Here we report a case of concordant transcriptional regulation that instead drives a single protein to be produced in the same cell type from divergent promoters. This gene product-the RHOX5 homeobox transcription factor-is translated from 2 different mRNAs with different 5' untranslated regions (UTRs) transcribed from alternative promoters. Despite the fact that these 2 promoters-the proximal promoter (Pp) and the distal promoter (Pd)-exhibit different patterns of tissue-specific activity, share no obvious sequence identity, and depend on distinct transcription factors for expression, they exhibit a remarkably similar expression pattern in the testes. In particular, both depend on androgen signaling for expression in the testes, where they are specifically expressed in Sertoli cells and have a similar stage-specific expression pattern during the seminiferous epithelial cycle. We report evidence for 3 mechanisms that collaborate to drive concordant Pp/Pd expression. First, both promoters have an intrinsic ability to respond to androgen receptor and androgen. Second, the Pp acts as an enhancer to promote androgen-dependent transcription from the Pd. Third, Pd transcription is positively autoregulated by the RHOX5 protein, which is first produced developmentally from the Pp. Together, our data support a model in which the Rhox5 homeobox gene evolved multiple mechanisms to activate both of its promoters in Sertoli cells to produce Rhox5 in an androgen-dependent manner during different phases of spermatogenesis.
Collapse
Affiliation(s)
- Anjana Bhardwaj
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Department of Breast Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Abhishek Sohni
- School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Chih-Hong Lou
- School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Karel De Gendt
- School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0695, USA
- KU Leuven, Campus Gasthuisberg, O/N1, BE-3000 Leuven, Belgium
| | - Fanmao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Eunah Kim
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Department of Environmental Health and Safety, University of Texas Health Sciences Center, Houston, TX, USA
| | - Panneerdoss Subbarayalu
- Department of Cell Systems and Anatomy, University of Texas HealthSan Antonio, San Antonio, TX 78229, USA
| | - Waikin Chan
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Frank Claessens
- KU Leuven, Campus Gasthuisberg, O/N1, BE-3000 Leuven, Belgium
| | - Sarah Kimmins
- Department of Animal Sciences, McGill UniversityMontreal, Quebec H3A 0G4, Canada
| | - Manjeet K Rao
- Department of Cell Systems and Anatomy, University of Texas HealthSan Antonio, San Antonio, TX 78229, USA
| | - Marvin Meistrich
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Miles F Wilkinson
- School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0695, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: M. F. Wilkinson, PhD, University of California San Diego, San Diego, 9500 Gilman Drive # 0695, La Jolla, CA 92093-0695, USA. . Previous Affiliation: Miles F. Wilkinson’s previous affiliation is Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Recchia K, Jorge AS, Pessôa LVDF, Botigelli RC, Zugaib VC, de Souza AF, Martins DDS, Ambrósio CE, Bressan FF, Pieri NCG. Actions and Roles of FSH in Germinative Cells. Int J Mol Sci 2021; 22:10110. [PMID: 34576272 PMCID: PMC8470522 DOI: 10.3390/ijms221810110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic-pituitary-gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
| | - Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Ramon Cesar Botigelli
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Vanessa Cristiane Zugaib
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontary Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Daniele dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| |
Collapse
|
13
|
Yamamuro T, Nakamura S, Yamano Y, Endo T, Yanagawa K, Tokumura A, Matsumura T, Kobayashi K, Mori H, Enokidani Y, Yoshida G, Imoto H, Kawabata T, Hamasaki M, Kuma A, Kuribayashi S, Takezawa K, Okada Y, Ozawa M, Fukuhara S, Shinohara T, Ikawa M, Yoshimori T. Rubicon prevents autophagic degradation of GATA4 to promote Sertoli cell function. PLoS Genet 2021; 17:e1009688. [PMID: 34351902 PMCID: PMC8341604 DOI: 10.1371/journal.pgen.1009688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Autophagy degrades unnecessary proteins or damaged organelles to maintain cellular function. Therefore, autophagy has a preventive role against various diseases including hepatic disorders, neurodegenerative diseases, and cancer. Although autophagy in germ cells or Sertoli cells is known to be required for spermatogenesis and male fertility, it remains poorly understood how autophagy participates in spermatogenesis. We found that systemic knockout mice of Rubicon, a negative regulator of autophagy, exhibited a substantial reduction in testicular weight, spermatogenesis, and male fertility, associated with upregulation of autophagy. Rubicon-null mice also had lower levels of mRNAs of Sertoli cell–related genes in testis. Importantly, Rubicon knockout in Sertoli cells, but not in germ cells, caused a defect in spermatogenesis and germline stem cell maintenance in mice, indicating a critical role of Rubicon in Sertoli cells. In mechanistic terms, genetic loss of Rubicon promoted autophagic degradation of GATA4, a transcription factor that is essential for Sertoli cell function. Furthermore, androgen antagonists caused a significant decrease in the levels of Rubicon and GATA4 in testis, accompanied by elevated autophagy. Collectively, we propose that Rubicon promotes Sertoli cell function by preventing autophagic degradation of GATA4, and that this mechanism could be regulated by androgens. Androgens, known as “male” hormones, stimulate and activate their receptors in various tissues, including testicular cells and skeletal muscle cells, thereby maintaining spermatogenesis and muscle mass. Notably, androgens-dependent maintenance of male reproduction is of particular interest because the incidence of male infertility has increased in recent decades. Previous studies revealed that Androgen receptor knockout in Sertoli cells causes defective spermatogenesis, indicating a crucial role of androgens in Sertoli cells. Another study suggested that fatherhood-dependent downregulation of androgens could decrease male fertility, leading the male to concentrate on parenting existing offspring. However, it remains largely unknown how androgen regulates Sertoli cell function for male reproduction. In the present study, our results suggest that androgens regulate testicular levels of Rubicon, a negative regulator of autophagy, to control autophagic degradation of GATA4 that is required for Sertoli cell function. Because autophagy and androgens participate in various cellular processes, we anticipate that this study will provide a solid evidence for understanding such processes.
Collapse
Affiliation(s)
- Tadashi Yamamuro
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
- * E-mail: (SN); (TY)
| | - Yu Yamano
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tsutomu Endo
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kyosuke Yanagawa
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ayaka Tokumura
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takafumi Matsumura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kiyonori Kobayashi
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hideto Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Yusuke Enokidani
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Gota Yoshida
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hitomi Imoto
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tsuyoshi Kawabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Akiko Kuma
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Sohei Kuribayashi
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kentaro Takezawa
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, The Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Sakyo-Ku, Kyoto, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Reproductive Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- * E-mail: (SN); (TY)
| |
Collapse
|
14
|
Gao H, Li J, Zhao G, Li Y. 3,5,6-trichloro-2-pyridinol intensifies the effect of chlorpyrifos on the paracrine function of Sertoli cells by preventing binding of testosterone and the androgen receptor. Toxicology 2021; 460:152883. [PMID: 34352351 DOI: 10.1016/j.tox.2021.152883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
3,5,6-Trichloro-2-pyridinol (TCP) is an important biomarker and one of the final metabolites of chlorpyrifos (CPF). TCP inhibits secretion of sex hormones. Similar to CPF, TCP can bind to sex steroid hormone receptors and decrease the secretion of sex hormones. However, little attention has been paid to the ability of TCP and CPF to interfere with androgen receptor (AR) in Sertoli cells. This study aimed to explain how TCP promotes the inhibitory effect of CPF on the paracrine function of Sertoli cells. Western blotting indicated that after 20 weeks of exposure, expression of AR in testes was significantly reduced by CPF. An in vitro assay measured the cytotoxicity of CPF, TCP and diethylphosphate (DEP) on viability of Sertoli cells by Cell Counting Kit-8. CPF cytotoxicity was greater than that of TCP, and TCP cytotoxicity was greater than that of DEP at concentrations of 1000 μmol/L. Western blotting indicated that TCP and CPF both decreased expression of AR and cAMP-response element binding protein phosphorylation, while DEP had no effect in Sertoli cells, which are important in regulating paracrine function of Sertoli cells. The fluorescence measurements and docking studies revealed that testosterone, CPF and TCP showed four types of intermolecular interactions with AR, highlighting alkyl bonds with some of the same amino acids. Compared with testosterone, CPF and TCP also showed significant synergistic interaction with AR. CPF interacted with more amino acids and interaction energy than TCP did. This research elucidates TCP in the antiandrogenic effect of CPF on the paracrine function and suggests that TCP or chemicals with a trichloropyridine structure must be considered during reproductive toxicity assessment of potential environmental pollutants.
Collapse
Affiliation(s)
- Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Jinwang Li
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Guoping Zhao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
15
|
Chadourne M, Poumerol E, Jouneau L, Passet B, Castille J, Sellem E, Pailhoux E, Mandon-Pépin B. Structural and Functional Characterization of a Testicular Long Non-coding RNA (4930463O16Rik) Identified in the Meiotic Arrest of the Mouse Topaz1 -/- Testes. Front Cell Dev Biol 2021; 9:700290. [PMID: 34277642 PMCID: PMC8281061 DOI: 10.3389/fcell.2021.700290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
Spermatogenesis involves coordinated processes, including meiosis, to produce functional gametes. We previously reported Topaz1 as a germ cell-specific gene highly conserved in vertebrates. Topaz1 knockout males are sterile with testes that lack haploid germ cells because of meiotic arrest after prophase I. To better characterize Topaz1–/– testes, we used RNA-sequencing analyses at two different developmental stages (P16 and P18). The absence of TOPAZ1 disturbed the expression of genes involved in microtubule and/or cilium mobility, biological processes required for spermatogenesis. Moreover, a quarter of P18 dysregulated genes are long non-coding RNAs (lncRNAs), and three of them are testis-specific and located in spermatocytes, their expression starting between P11 and P15. The suppression of one of them, 4939463O16Rik, did not alter fertility although sperm parameters were disturbed and sperm concentration fell. The transcriptome of P18-4939463O16Rik–/– testes was altered and the molecular pathways affected included microtubule-based processes, the regulation of cilium movement and spermatogenesis. The absence of TOPAZ1 protein or 4930463O16Rik produced the same enrichment clusters in mutant testes despite a contrasted phenotype on male fertility. In conclusion, although Topaz1 is essential for the meiosis in male germ cells and regulate the expression of numerous lncRNAs, these studies have identified a Topaz1 regulated lncRNA (4930463O16Rik) that is key for both sperm production and motility.
Collapse
Affiliation(s)
- Manon Chadourne
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elodie Poumerol
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Passet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Johan Castille
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Eric Pailhoux
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
16
|
Khanehzad M, Abbaszadeh R, Holakuyee M, Modarressi MH, Nourashrafeddin SM. FSH regulates RA signaling to commit spermatogonia into differentiation pathway and meiosis. Reprod Biol Endocrinol 2021; 19:4. [PMID: 33407539 PMCID: PMC7789255 DOI: 10.1186/s12958-020-00686-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Spermatogenesis is a complex process that is controlled by interactions between germ cells and somatic cells. The commitment of undifferentiated spermatogonia to differentiating spermatogonia and normal spermatogenesis requires the action of gonadotropins. Additionally, numerous studies revealed the role of retinoic acid signaling in induction of germ cell differentiation and meiosis entry. MAIN TEXT Recent studies have shown that expression of several RA signaling molecules including Rdh10, Aldh1a2, Crabp1/2 are influenced by changes in gonadotropin levels. Components of signaling pathways that are regulated by FSH signaling such as GDNF, Sohlh1/2, c-Kit, DMRT, BMP4 and NRGs along with transcription factors that are important for proliferation and differentiation of spermatogonia are also affected by retinoic acid signaling. CONCLUSION According to all studies that demonstrate the interface between FSH and RA signaling, we suggest that RA may trigger spermatogonia differentiation and initiation of meiosis through regulation by FSH signaling in testis. Therefore, to the best of our knowledge, this is the first time that the correlation between FSH and RA signaling in spermatogenesis is highlighted.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Abbaszadeh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
E4 Transcription Factor 1 (E4F1) Regulates Sertoli Cell Proliferation and Fertility in Mice. Animals (Basel) 2020; 10:ani10091691. [PMID: 32962114 PMCID: PMC7552733 DOI: 10.3390/ani10091691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Male fertility relies on the generation of functional sperm in seminiferous tubules of the testis. In mammals, Sertoli cells are the only somatic cells that directly interact with spermatogenic cells. Compelling evidences suggest that the number of Sertoli cells determines testis size and sperm output, however, molecular mechanisms regulating Sertoli cell proliferation and maturation are not well-understood. Using a Sertoli cell specific loss-of-function approach, here we showed that transcription factor E4F1 played an important role in murine Sertoli cell proliferation. Compared with their littermate control, E4f1 conditional knockout male mice sired a significantly low number of pups. E4f1 deletion resulted in reduced Sertoli cell number and testis size. Further analyses revealed that E4f1 deletion affected Sertoli cell proliferation in the neonatal testis and caused an increase in apoptosis of spermatogenic cells without affecting normal development of spermatogonia, meiotic and post-meiotic germ cells. These findings have shed new light on molecular controlling of spermatogenesis in mice and a similar mechanism likely exists in other animals. Abstract In the mammalian testes, Sertoli cells are the only somatic cells in the seminiferous tubules that provide structural, nutritional and regulatory support for developing spermatogenic cells. Sertoli cells only proliferate during the fetal and neonatal periods and enter a quiescent state after puberty. Functional evidences suggest that the size of Sertoli cell population determines sperm production and fertility. However, factors that direct Sertoli cell proliferation and maturation are not fully understood. Transcription factor E4F1 is a multifunctional protein that serves essential roles in cell fate decisions and because it interacts with pRB, a master regulator of Sertoli cell function, we hypothesized that E4F1 may have a functional role in Sertoli cells. E4f1 mRNA was present in murine testis and immunohistochemical staining confirmed that E4F1 was enriched in mature Sertoli cells. We generated a conditional knockout mouse model using Amh-cre and E4f1flox/flox lines to study E4F1 fucntion in Sertoli cells and the results showed that E4f1 deletion caused a significant reduction in testis size and fertility. Further analyses revealed that meiosis progression and spermiogenesis were normal, however, Sertoli cell proliferation was impaired and germ cell apoptosis was elevated in the testis of E4f1 conditional knockout mice. On the basis of these findings, we concluded that E4F1 was expressed in murine Sertoli cells and served important functions in regulating Sertoli cell proliferation and fertility.
Collapse
|
18
|
Xie Y, Wei BH, Ni FD, Yang WX. Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene 2020; 764:145080. [PMID: 32858178 DOI: 10.1016/j.gene.2020.145080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Spermatocyte (spc) formation from spermatogonia (spg) differentiation is the first step of spermatogenesis which produces prodigious spermatozoa for a lifetime. After decades of studies, several factors involved in the functioning of a mouse were discovered both inside and outside spg. Considering the peculiar expression and working pattern of each factor, this review divides the whole conversion of spg to spc into four consecutive development processes with a focus on extracellular cues and downstream transcription network in each one. Potential coordination among Dmrt1, Sohlh1/2 and BMP families mediates Ngn3 upregulation, which marks progenitor spg, with other changes. After that, retinoic acid (RA), as a master regulator, promotes A1 spg formation with its helpers and Sall4. A1-to-B spg transition is under the control of Kitl and impulsive RA signaling together with early and late transcription factors Stra8 and Dmrt6. Finally, RA and its responsive effectors conduct the entry into meiosis. The systematic transcription network from outside to inside still needs research to supplement or settle the controversials in each process. As a step further ahead, this review provides possible drug targets for infertility therapy by cross-linking humans and mouse model.
Collapse
Affiliation(s)
- Yi Xie
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Jardé T, Chan WH, Rossello FJ, Kaur Kahlon T, Theocharous M, Kurian Arackal T, Flores T, Giraud M, Richards E, Chan E, Kerr G, Engel RM, Prasko M, Donoghue JF, Abe SI, Phesse TJ, Nefzger CM, McMurrick PJ, Powell DR, Daly RJ, Polo JM, Abud HE. Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell 2020; 27:646-662.e7. [PMID: 32693086 DOI: 10.1016/j.stem.2020.06.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor (EGF) maintains intestinal stem cell (ISC) proliferation and is a key component of organoid growth media yet is dispensable for intestinal homeostasis, suggesting roles for multiple EGF family ligands in ISC function. Here, we identified neuregulin 1 (NRG1) as a key EGF family ligand that drives tissue repair following injury. NRG1, but not EGF, is upregulated upon damage and is expressed in mesenchymal stromal cells, macrophages, and Paneth cells. NRG1 deletion reduces proliferation in intestinal crypts and compromises regeneration capacity. NRG1 robustly stimulates proliferation in crypts and induces budding in organoids, in part through elevated and sustained activation of mitogen-activated protein kinase (MAPK) and AKT. Consistently, NRG1 treatment induces a proliferative gene signature and promotes organoid formation from progenitor cells and enhances regeneration following injury. These data suggest mesenchymal-derived NRG1 is a potent mediator of tissue regeneration and may inform the development of therapies for enhancing intestinal repair after injury.
Collapse
Affiliation(s)
- Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Tanvir Kaur Kahlon
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Mandy Theocharous
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Teni Kurian Arackal
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Tracey Flores
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Mégane Giraud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Elizabeth Richards
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Eva Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Rebekah M Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, VIC 3144, Australia
| | - Mirsada Prasko
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jacqueline F Donoghue
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Royal Women's Hospital, Melbourne University, Melbourne, VIC 3052, Australia
| | - Shin-Ichi Abe
- Center for Education, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| | - Toby J Phesse
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Paul J McMurrick
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, VIC 3144, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia.
| |
Collapse
|
20
|
Whiley PAF, O'Donnell L, Moody SC, Handelsman DJ, Young JC, Richards EA, Almstrup K, Western PS, Loveland KL. Activin A Determines Steroid Levels and Composition in the Fetal Testis. Endocrinology 2020; 161:5818588. [PMID: 32274496 DOI: 10.1210/endocr/bqaa058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
Activin A promotes fetal mouse testis development, including driving Sertoli cell proliferation and cord morphogenesis, but its mechanisms of action are undefined. We performed ribonucleic acid sequencing (RNA-seq) on testicular somatic cells from fetal activin A-deficient mice (Inhba KO) and wildtype littermates at embryonic day (E) E13.5 and E15.5. Analysis of whole gonads provided validation, and cultures with a pathway inhibitor discerned acute from chronic effects of altered activin A bioactivity. Activin A deficiency predominantly affects the Sertoli cell transcriptome. New candidate targets include Minar1, Sel1l3, Vnn1, Sfrp4, Masp1, Nell1, Tthy1 and Prss12. Importantly, the testosterone (T) biosynthetic enzymes present in fetal Sertoli cells, Hsd17b1 and Hsd17b3, were identified as activin-responsive. Activin-deficient testes contained elevated androstenedione (A4), displayed an Inhba gene dose-dependent A4/T ratio, and contained 11-keto androgens. The remarkable accumulation of lipid droplets in both Sertoli and germ cells at E15.5 indicated impaired lipid metabolism in the absence of activin A. This demonstrated for the first time that activin A acts on Sertoli cells to determine local steroid production during fetal testis development. These outcomes reveal how compounds that perturb fetal steroidogenesis can function through cell-specific mechanisms and can indicate how altered activin levels in utero may impact testis development.
Collapse
Affiliation(s)
- Penny A F Whiley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Liza O'Donnell
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Sarah C Moody
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | | | - Julia C Young
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Elizabeth A Richards
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Kristian Almstrup
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital, Copenhagen, Denmark
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Li X, Long XY, Xie YJ, Zeng X, Chen X, Mo ZC. The roles of retinoic acid in the differentiation of spermatogonia and spermatogenic disorders. Clin Chim Acta 2019; 497:54-60. [PMID: 31302099 DOI: 10.1016/j.cca.2019.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
Male fertility depends on the regulatory balance between germ cell self-renewal and differentiation, and the spatial and temporal patterns of this balance must be maintained throughout the life cycle. Retinoic acid and its receptors are important factors in spermatogenesis. Spermatogonia cells can self-proliferate and differentiate and have unique meiotic capabilities; they halve their genetic material and produce monomorphic sperm to pass genetic material to the next generation. A number of studies have found that the spermatogenesis process is halted in animals with vitamin A deficiency and that most germ cells are degraded, but they tend to recover after treatment with RA or vitamin A. This literature review discusses our understanding of how RA regulates sperm cell differentiation and meiosis and also reviews the functional information and details of RA.
Collapse
Affiliation(s)
- Xuan Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiang-Yang Long
- Department of Urology, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Yuan-Jie Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xin Zeng
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Zhong-Cheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
22
|
Alfano M, Pederzoli F, Locatelli I, Ippolito S, Longhi E, Zerbi P, Ferrari M, Brendolan A, Montorsi F, Drago D, Andolfo A, Nebuloni M, Salonia A. Impaired testicular signaling of vitamin A and vitamin K contributes to the aberrant composition of the extracellular matrix in idiopathic germ cell aplasia. Fertil Steril 2019; 111:687-698. [DOI: 10.1016/j.fertnstert.2018.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
|
23
|
Gregoire EP, Stevant I, Chassot AA, Martin L, Lachambre S, Mondin M, de Rooij DG, Nef S, Chaboissier MC. NRG1 signalling regulates the establishment of Sertoli cell stock in the mouse testis. Mol Cell Endocrinol 2018; 478:17-31. [PMID: 30040984 DOI: 10.1016/j.mce.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/31/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Testis differentiation requires high levels of proliferation of progenitor cells that give rise to two cell lineages forming the testis, the Sertoli and the Leydig cells. Hence defective cell cycling leads to testicular dysgenesis that has profound effects on androgen production and fertility. The growth factor NRG1 has been implicated in adult Leydig cell proliferation, but a potential function in the fetal testis has not been analysed to date. Here we show that Nrg1 and its receptors ErbB2/3 are already expressed in early gonadal development. Using tissue-specific deletion, we further demonstrate that Nrg1 is required in a dose-dependent manner to induce proliferation of Sertoli progenitor cells and then differentiated Sertoli cells. As a result of reduced numbers of Sertoli cells, Nrg1 knockout mice display a delay in testis differentiation and defects in sex cord partitioning. Taken together Nrg1 signalling is essential for the establishment of the stock of Sertoli cells and thus required to prevent testicular hypoplasia.
Collapse
Affiliation(s)
| | - Isabelle Stevant
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Switzerland
| | | | - Luc Martin
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | | | | | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Switzerland
| | | |
Collapse
|
24
|
Zang ZJ, Liu Q, Hu J, Feng J, Zhu YQ, Ma G, Jiang MH. The impact of low-intensity extracorporeal shock wave therapy on testicular function in adult rats. Andrology 2018; 6:936-942. [PMID: 30079463 DOI: 10.1111/andr.12534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/12/2018] [Accepted: 07/16/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Z.-J. Zang
- Department of Infertility and Sexual Medicine; The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Q. Liu
- Cell-gene Therapy Translational Medicine Research Center; The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - J. Hu
- Department of Pediatric Surgery; Guangzhou Women and Children's Medical Center; Guangzhou China
| | - J. Feng
- Department of Infertility and Sexual Medicine; The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Y.-Q. Zhu
- Department of Infertility and Sexual Medicine; The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - G. Ma
- Department of Infertility and Sexual Medicine; The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - M.-H. Jiang
- Cell-gene Therapy Translational Medicine Research Center; The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| |
Collapse
|
25
|
Gautam M, Bhattacharya I, Rai U, Majumdar SS. Hormone induced differential transcriptome analysis of Sertoli cells during postnatal maturation of rat testes. PLoS One 2018; 13:e0191201. [PMID: 29342173 PMCID: PMC5771609 DOI: 10.1371/journal.pone.0191201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/30/2017] [Indexed: 11/18/2022] Open
Abstract
Sertoli cells (Sc) are unique somatic cells of testis that are the target of both FSH and testosterone (T) and regulate spermatogenesis. Although Sc of neonatal rat testes are exposed to high levels of FSH and T, robust differentiation of spermatogonial cells becomes conspicuous only after 11-days of postnatal age. We have demonstrated earlier that a developmental switch in terms of hormonal responsiveness occurs in rat Sc at around 12 days of postnatal age during the rapid transition of spermatogonia A to B. Therefore, such “functional maturation” of Sc, during pubertal development becomes prerequisite for the onset of spermatogenesis. However, a conspicuous difference in robust hormone (both T and FSH) induced gene expression during the different phases of Sc maturation restricts our understanding about molecular events necessary for the spermatogenic onset and maintenance. Here, using microarray technology, we for the first time have compared the differential transcriptional profile of Sc isolated and cultured from immature (5 days old), maturing (12 days old) and mature (60 days old) rat testes. Our data revealed that immature Sc express genes involved in cellular growth, metabolism, chemokines, cell division, MAPK and Wnt pathways, while mature Sc are more specialized expressing genes involved in glucose metabolism, phagocytosis, insulin signaling and cytoskeleton structuring. Taken together, this differential transcriptome data provide an important resource to reveal the molecular network of Sc maturation which is necessary to govern male germ cell differentiation, hence, will improve our current understanding of the etiology of some forms of idiopathic male infertility.
Collapse
Affiliation(s)
- Mukesh Gautam
- Department of Zoology, University of Delhi, Delhi, India
| | | | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
- National Institute of Animal Biotechnology, Hyderabad, India
- * E-mail:
| |
Collapse
|
26
|
DMRTC2, PAX7, BRACHYURY/T and TERT Are Implicated in Male Germ Cell Development Following Curative Hormone Treatment for Cryptorchidism-Induced Infertility. Genes (Basel) 2017; 8:genes8100267. [PMID: 29019938 PMCID: PMC5664117 DOI: 10.3390/genes8100267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/25/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Defective mini-puberty results in insufficient testosterone secretion that impairs the differentiation of gonocytes into dark-type (Ad) spermatogonia. The differentiation of gonocytes into Ad spermatogonia can be induced by administration of the gonadotropin-releasing hormone agonist, GnRHa (Buserelin, INN)). Nothing is known about the mechanism that underlies successful GnRHa treatment in the germ cells. Using RNA-sequencing of testicular biopsies, we recently examined RNA profiles of testes with and without GnRHa treatment. Here, we focused on the expression patterns of known gene markers for gonocytes and spermatogonia, and found that DMRTC2, PAX7, BRACHYURY/T, and TERT were associated with defective mini-puberty and were responsive to GnRHa. These results indicate novel testosterone-dependent genes and provide valuable insight into the transcriptional response to both defective mini-puberty and curative GnRHa treatment, which prevents infertility in man with one or both undescended (cryptorchid) testes.
Collapse
|
27
|
Chowdhury I, Branch A, Mehrabi S, Ford BD, Thompson WE. Gonadotropin-Dependent Neuregulin-1 Signaling Regulates Female Rat Ovarian Granulosa Cell Survival. Endocrinology 2017; 158:3647-3660. [PMID: 28938399 PMCID: PMC5659703 DOI: 10.1210/en.2017-00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022]
Abstract
Mammalian ovarian follicular development and maturation of an oocyte competent to be fertilized and develop into an embryo depends on tightly regulated, spatiotemporally orchestrated crosstalk among cell death, survival, and differentiation signals through extra- and intraovarian signals, as well as on a permissive ovarian follicular microenvironment. Neuregulin-1 (NRG1) is a member of the epidermal growth factor-like factor family that mediates its effects by binding to a member of the erythroblastoma (ErbB) family. Our experimental results suggest gonadotropins promote differential expression of NRG1 and erbB receptors in granulosa cells (GCs), and NRG1 in theca cells during follicular development, and promote NRG1 secretions in the follicular fluid (FF) of rat ovaries. During the estrous cycle of rat, NRG1 and erbB receptors are differentially expressed in GCs and correlate positively with serum gonadotropins and steroid hormones. Moreover, in vitro experimental studies suggest that the protein kinase C inhibitor staurosporine (STS) causes the physical destruction of GCs by the activation of caspase-3. Exogenous NRG1 treatment of GCs delayed onset of STS-induced apoptosis and inhibited cleaved caspase-3 expressions. Moreover, exogenous NRG1 treatment of GCs alters STS-induced death by maintaining the expression of ErbB2, ErbB3, pAkt, Bcl2, and BclxL proteins. Taken together, these studies demonstrate that NRG1 is gonadotropin dependent, differentially regulated in GCs and theca cells, and secreted in ovarian FF as an intracellular survival factor that may govern follicular maturation.
Collapse
Affiliation(s)
- Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Alicia Branch
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Sharifeh Mehrabi
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Byron D. Ford
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, California 92521
| | - Winston E. Thompson
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia 30310
- Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310
| |
Collapse
|
28
|
A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles. J Neurosci 2017; 36:10337-10355. [PMID: 27707970 DOI: 10.1523/jneurosci.2160-16.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/22/2016] [Indexed: 11/21/2022] Open
Abstract
Axon-Schwann cell interactions are crucial for the development, function, and repair of the peripheral nervous system, but mechanisms underlying communication between axons and nonmyelinating Schwann cells are unclear. Here, we show that ER81 is functionally required in a subset of mouse RET+ mechanosensory neurons for formation of Pacinian corpuscles, which are composed of a single myelinated axon and multiple layers of nonmyelinating Schwann cells, and Ret is required for the maintenance of Er81 expression. Interestingly, Er81 mutants have normal myelination but exhibit deficient interactions between axons and corpuscle-forming nonmyelinating Schwann cells. Finally, ablating Neuregulin-1 (Nrg1) in mechanosensory neurons results in no Pacinian corpuscles, and an Nrg1 isoform not required for communication with myelinating Schwann cells is specifically decreased in Er81-null somatosensory neurons. Collectively, our results suggest that a RET-ER81-NRG1 signaling pathway promotes axon communication with nonmyelinating Schwann cells, and that neurons use distinct mechanisms to interact with different types of Schwann cells. SIGNIFICANCE STATEMENT Communication between neurons and Schwann cells is critical for development, normal function, and regeneration of the peripheral nervous system. Despite many studies about axonal communication with myelinating Schwann cells, mostly via a specific isoform of Neuregulin1, the molecular nature of axonal communication with nonmyelinating Schwann cells is poorly understood. Here, we described a RET-ER81-Neuregulin1 signaling pathway in neurons innervating Pacinian corpuscle somatosensory end organs, which is essential for communication between the innervating axon and the end organ nonmyelinating Schwann cells. We also showed that this signaling pathway uses isoforms of Neuregulin1 that are not involved in myelination, providing evidence that neurons use different isoforms of Neuregulin1 to interact with different types of Schwann cells.
Collapse
|
29
|
Zang ZJ, Wang J, Chen Z, Zhang Y, Gao Y, Su Z, Tuo Y, Liao Y, Zhang M, Yuan Q, Deng C, Jiang MH, Xiang AP. Transplantation of CD51 + Stem Leydig Cells: A New Strategy for the Treatment of Testosterone Deficiency. Stem Cells 2017; 35:1222-1232. [PMID: 28090714 DOI: 10.1002/stem.2569] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 11/19/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
Stem Leydig cell (SLC) transplantation could provide a new strategy for treating the testosterone deficiency. Our previous study demonstrated that CD51 (also called integrin αv) might be a putative cell surface marker for SLCs, but the physiological function and efficacy of CD51+ SLCs treatment remain unclear. Here, we explore the potential therapeutic benefits of CD51+ SLCs transplantation and whether these transplanted cells can be regulated by the hypothalamic-pituitary-gonadal (HPG) axis. CD51+ cells were isolated from the testes of 12-weeks-old C57BL/6 mice, and we showed that such cells expressed SLC markers and that they were capable of self-renewal, extensive proliferation, and differentiation into multiple mesenchymal cell lineages and LCs in vitro. As a specific cytotoxin that eliminates Leydig cells (LCs) in adult rats, ethane dimethanesulfonate (EDS) was used to ablate LCs before the SLC transplantation. After being transplanted into the testes of EDS-treated rats, the CD51+ cells differentiated into mature LCs, and the recipient rats showed a partial recovery of testosterone production and spermatogenesis. Notably, a testosterone analysis revealed a circadian rhythm of testosterone secretion in cell-transplanted rats, and these testosterone secretions could be suppressed by decapeptyl (a luteinizing hormone-releasing hormone agonist), suggesting that the transplanted cells might be regulated by the HPG axis. This study is the first to demonstrate that CD51+ SLCs can restore the neuroendocrine regulation of testicular function by physiologically recovering the expected episodic changes in diurnal testosterone serum levels and that SLC transplantation may provide a new tool for the studies of testosterone deficiency treatment. Stem Cells 2017;35:1222-1232.
Collapse
Affiliation(s)
- Zhi Jun Zang
- The Biological Therapy Center, The Third Affiliated Hospital, Guangzhou, China.,Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, China
| | - Jiancheng Wang
- The Biological Therapy Center, The Third Affiliated Hospital, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, China
| | - Zhihong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, China
| | - Yan Zhang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Guangzhou, China
| | - Yong Gao
- Reproductive Medicine Center and Guangdong provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital, Guangzhou, China
| | - Zhijian Su
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Ying Tuo
- Department of Histopathology, The First Affiliated Hospital, Guangzhou, China
| | - Yan Liao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, China
| | - Min Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, China
| | - Qunfang Yuan
- Department of Anatomy, Zhongshan School of Medicine, Guangzhou, China
| | - Chunhua Deng
- Department of Urology, The First Affiliated Hospital, Guangzhou, China
| | - Mei Hua Jiang
- The Biological Therapy Center, The Third Affiliated Hospital, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, China.,Department of Anatomy, Zhongshan School of Medicine, Guangzhou, China
| | - Andy Peng Xiang
- The Biological Therapy Center, The Third Affiliated Hospital, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Chen SR, Hao XX, Zhang Y, Deng SL, Wang ZP, Wang YQ, Wang XX, Liu YX. Androgen receptor in Sertoli cells regulates DNA double-strand break repair and chromosomal synapsis of spermatocytes partially through intercellular EGF-EGFR signaling. Oncotarget 2017; 7:18722-35. [PMID: 26959739 PMCID: PMC4951324 DOI: 10.18632/oncotarget.7916] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/13/2016] [Indexed: 01/10/2023] Open
Abstract
Spermatogenesis does not progress beyond the pachytene stages of meiosis in Sertoli cell-specific AR knockout (SCARKO) mice. However, further evidence of meiotic arrest and underlying paracrine signals in SCARKO testes is still lacking. We utilized co-immunostaining of meiotic surface spreads to examine the key events during meiotic prophase I. SCARKO spermatocytes exhibited a failure in chromosomal synapsis observed by SCP1/SCP3 double-staining and CREST foci quantification. In addition, DNA double-strand breaks (DSBs) were formed but were not repaired in the mutant spermatocytes, as revealed by γ-H2AX staining and DNA-dependent protein kinase (DNA-PK) activity examination. The later stages of DSB repair, such as the accumulation of the RAD51 strand exchange protein and the localization of mismatch repair protein MLH1, were correspondingly altered in SCARKO spermatocytes. Notably, the expression of factors that guide RAD51 loading onto sites of DSBs, including TEX15, BRCA1/2 and PALB2, was severely impaired when either AR was down-regulated or EGF was up-regulated. We observed that some ligands in the epidermal growth factor (EGF) family were over-expressed in SCARKO Sertoli cells and that some receptors in the EGF receptor (EGFR) family were ectopically activated in the mutant spermatocytes. When EGF-EGFR signaling was repressed to approximately normal by the specific inhibitor AG1478 in the cultured SCARKO testis tissues, the arrested meiosis was partially rescued, and functional haploid cells were generated. Based on these data, we propose that AR in Sertoli cells regulates DSB repair and chromosomal synapsis of spermatocytes partially through proper intercellular EGF-EGFR signaling.
Collapse
Affiliation(s)
- Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiao-Xia Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhi-Peng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yu-Qian Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
31
|
Arai T, Ono Y, Arimura Y, Sayama K, Suzuki T, Shinjo S, Kanai M, Abe SI, Semba K, Goda N. Type I neuregulin1α is a novel local mediator to suppress hepatic gluconeogenesis in mice. Sci Rep 2017; 7:42959. [PMID: 28218289 PMCID: PMC5317163 DOI: 10.1038/srep42959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/17/2017] [Indexed: 12/18/2022] Open
Abstract
Neuregulin1 is an epidermal growth factor (EGF)-like domain-containing protein that has multiple isoforms and functions as a local mediator in the control of various cellular functions. Here we show that type I isoform of neuregulin1 with an α-type EGF-like domain (Nrg1α) is the major isoform in mouse liver and regulates hepatic glucose production. Forced expression of Nrg1α in mouse liver enhanced systemic glucose disposal and decreased hepatic glucose production with reduced fasting blood glucose levels. Nuclear forkhead box protein O1 (FoxO1) and its downstream targets, PEPCK and G6Pase, were suppressed in liver and isolated hepatocytes by Nrg1α overexpression. In contrast, silencing of Nrg1α enhanced glucose production with increased PEPCK and G6Pase expressions in cAMP/dexamethasone-stimulated hepatocytes. Mechanistically, the recombinant α-type EGF-like domain of NRG1α (rNRG1α) stimulated the ERBB3 signalling pathway in hepatocytes, resulting in decreased nuclear FoxO1 accumulation via activation of both the AKT and ERK pathways. In addition, acute treatment with rNRG1α also suppressed elevation of blood glucose levels after both glucose and pyruvate challenge. Although a liver-specific deletion of Nrg1 gene in mice showed little effect on systemic glucose metabolism, these results suggest that NRG1α have a novel regulatory function in hepatic gluconeogenesis by regulating the ERBB3-AKT/ERK-FoxO1 cascade.
Collapse
Affiliation(s)
- Takatomo Arai
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Yumika Ono
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Yujiro Arimura
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Keimon Sayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Tomohiro Suzuki
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Satoko Shinjo
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Mai Kanai
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Shin-Ichi Abe
- Center for General Education, Kumamoto Health Science University, Kumamoto, 861-5598, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| |
Collapse
|
32
|
Zang ZJ, Ji SY, Zhang YN, Gao Y, Zhang B. Effects of Saikokaryukotsuboreito on Spermatogenesis and Fertility in Aging Male Mice. Chin Med J (Engl) 2017; 129:846-53. [PMID: 26996482 PMCID: PMC4819307 DOI: 10.4103/0366-6999.178972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Aspermia caused by exogenous testosterone limit its usage in late-onset hypogonadism (LOH) patients desiring fertility. Saikokaryukotsuboreito (SKRBT) is reported to improve serum testosterone and relieve LOH-related symptoms. However, it is unclear whether SKRBT affects fertility. We aimed to examine the effects of SKRBT on spermatogenesis and fertility in aging male mice. Methods: Thirty aging male mice were randomly assigned to three groups. Mice were orally administered with phosphate-buffer solution or SKRBT (300 mg/kg, daily) or received testosterone by subcutaneous injections (10 mg/kg, every 3 days). Thirty days later, each male mouse was mated with two female mice. All animals were sacrificed at the end of 90 days. Intratesticular testosterone (ITT) levels, quality of sperm, expression of synaptonemal complex protein 3 (SYCP3), and fertility were assayed. Results: In the SKRBT-treated group, ITT, quality of sperm, and expression of SYCP3 were all improved compared with the control group (ITT: 85.50 ± 12.31 ng/g vs. 74.10 ± 11.45 ng/g, P = 0.027; sperm number: [14.94 ± 4.63] × 106 cells/ml vs. [8.79 ± 4.38] × 106 cells/ml, P = 0.002; sperm motility: 43.16 ± 9.93% vs. 33.51 ± 6.98%, P = 0.015; the number of SYCP3-positive cells/tubule: 77.50 ± 11.01 ng/ml vs. 49.30 ± 8.73 ng/ml, P < 0.001; the expression of SYCP3 protein: 1.23 ± 0.09 vs. 0.84 ± 0.10, P < 0.001), but fertility was not significantly changed (P > 0.05, respectively). In the testosterone-treated group, ITT, quality of sperm, and expression of SYCP3 were markedly lower than the control group (ITT: 59.00 ± 8.67, P = 0.005; sperm number: [4.34 ± 2.45] × 106 cells/ml, P = 0.018; sperm motility: 19.53 ± 7.69%, P = 0.001; the number of SYCP3-positive cells/tubule: 30.00 ± 11.28, P < 0.001; the percentage of SYCP3-positive tubules/section 71.98 ± 8.88%, P = 0.001; the expression of SYCP3 protein: 0.71 ± 0.09, P < 0.001), and fertility was also suppressed (P < 0.05, respectively). Conclusion: SKRBT had no adverse effect on fertility potential in aging male mice.
Collapse
Affiliation(s)
- Zhi-Jun Zang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | | | | | | | | |
Collapse
|
33
|
Umehara T, Kawashima I, Kawai T, Hoshino Y, Morohashi KI, Shima Y, Zeng W, Richards JS, Shimada M. Neuregulin 1 Regulates Proliferation of Leydig Cells to Support Spermatogenesis and Sexual Behavior in Adult Mice. Endocrinology 2016; 157:4899-4913. [PMID: 27732090 PMCID: PMC5133346 DOI: 10.1210/en.2016-1478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult Leydig cells are derived from proliferating stem/progenitor Leydig cells in the infant testis and subsequent differentiation to steroidogenic cells in adult mice. Leydig cell proliferation in the infant testis occurs primarily in response to increased levels of LH that induce Leydig cell expression of neuregulin 1 (NRG1). Depletion of NRG1 in Nrg1 mutant mice (Nrg1flox;flox;Cyp19a1Cre mice) dramatically reduces Leydig cell proliferation in the infant testes, leading to a reduction of testis weight, epididymial weight, and serum T in the adult mutant mice. The mutant mice are subfertile due to impaired sexual behavior and abnormal elongation of the spermatogenic cells. These defects were reversed by T treatment of the mutant mice in vivo. Furthermore, NRG1 alone induces the proliferation of Leydig cells in cultures of infant (d 10) testes obtained from mutant mice. Collectively these results show that LH induction of NRG1 directly drives the proliferation of Leydig cells in the infant testis, leading to an obligatory number of adult Leydig cells required for the production of sufficient androgen to support and maintain spermatogenesis and sexual behavior of adult male mice.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Ikko Kawashima
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Tomoko Kawai
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Yumi Hoshino
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Ken-Ichirou Morohashi
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Yuichi Shima
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Wenxian Zeng
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - JoAnne S Richards
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Masayuki Shimada
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
34
|
Chen SR, Tang JX, Cheng JM, Li J, Jin C, Li XY, Deng SL, Zhang Y, Wang XX, Liu YX. Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget 2016; 6:37012-27. [PMID: 26473289 PMCID: PMC4741912 DOI: 10.18632/oncotarget.6115] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/28/2015] [Indexed: 02/07/2023] Open
Abstract
Sertoli cells, the primary somatic cell in the seminiferous epithelium, provide the spermatogonial stem cell (SSC) microenvironment (niche) through physical support and the expression of paracrine factors. However, the regulatory mechanisms within the SSC niche, which is primarily controlled by Sertoli cells, remain largely unknown. GATA4 is a Sertoli cell marker, involved in genital ridge initiation, sex determination and differentiation during the embryonic stage. Here, we showed that neonatal mice with a targeted disruption of Gata4 in Sertoli cells (Gata4(flox/flox); Amh-Cre; hereafter termed Gata4 cKO) displayed a loss of the establishment and maintenance of the SSC pool and apoptosis of both gonocyte-derived differentiating spermatogonia and meiotic spermatocytes. Thus, progressive germ cell depletion and a Sertoli-cell-only syndrome were observed as early as the first wave of murine spermatogenesis. Transplantation of germ cells from postnatal day 5 (P5) Gata4 cKO mice into Kit(W/W-v) recipient seminiferous tubules restored spermatogenesis. In addition, microarray analyses of P5 Gata4 cKO mouse testes showed alterations in chemokine signaling factors, including Cxcl12, Ccl3, Cxcr4 (CXCL12 receptor), Ccr1 (CCL3 receptor), Ccl9, Xcl1 and Ccrl2. Deletion of Gata4 in Sertoli cells markedly attenuated Sertoli cell chemotaxis, which guides SSCs or prospermatogonia to the stem cell niche. Finally, we showed that GATA4 transcriptionally regulated Cxcl12 and Ccl9, and the addition of CXCL12 and CCL9 to an in vitro testis tissue culture system increased the number of PLZF+ undifferentiated spermatogonia within Gata4 cKO testes. Together, these results reveal a novel role for GATA4 in controlling the SSC niche via the transcriptional regulation of chemokine signaling shortly after birth.
Collapse
Affiliation(s)
- Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Ji-Xin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| |
Collapse
|
35
|
Heidargholizadeh S, Aydos SE, Yukselten Y, Ozkavukcu S, Sunguroglu A, Aydos K. A differential cytokine expression profile before and after rFSH treatment in Sertoli cell cultures of men with nonobstructive azoospermia. Andrologia 2016; 49. [DOI: 10.1111/and.12647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- S. Heidargholizadeh
- Department of Medical Biology; School of Medicine; Ankara University; Ankara Turkey
| | - S. E. Aydos
- Department of Medical Biology; School of Medicine; Ankara University; Ankara Turkey
| | - Y. Yukselten
- Department of Medical Biology; School of Medicine; Ankara University; Ankara Turkey
| | - S. Ozkavukcu
- Department of Obstetrics and Gynecology; School of Medicine; Assisted Reproduction Center; Ankara University; Ankara Turkey
| | - A. Sunguroglu
- Department of Medical Biology; School of Medicine; Ankara University; Ankara Turkey
| | - K. Aydos
- Department of Urology; School of Medicine; Ankara University; Ankara Turkey
| |
Collapse
|
36
|
Promoting effect of licorice extract on spermatogonial proliferation and spermatocytes differentiation of neonatal mice in vitro. In Vitro Cell Dev Biol Anim 2015; 52:149-55. [PMID: 26676954 DOI: 10.1007/s11626-015-9966-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/12/2015] [Indexed: 01/23/2023]
Abstract
Licorice (glycyrrhiza uralensis) is known as an herb with detoxication, and it has been widely used in clinical prescription of Oriental herbal medicine. Studies on the effects of licorice in the reproductive system were very rare, especially in spermatogenesis. In order to elucidate the effects of licorice on spermatogonial proliferation and spermatocyte differentiation during neonatal mice spermatogenesis, the organ culture model of testis tissue from neonatal C57BL/6N mice (born 6 d) was established. Then, in the presence of licorice extract (LE), the proliferation activity of spermatogonia was identified with the positive rate quantitative analysis of 5-bromo-2-deoxyuridine (BrdU) and anti-proliferating cell nuclear antigen (PCNA) antibody by immunohistochemical staining. The results showed that, compared to the control group, the percentage of positive cells by BrdU staining enhanced dramatically and that the expression of PCNA protein increased significantly in the spermatogonia from the LE group and showed a concentration-dependent manner (P < 0.05). This indicated that the LE can significantly promote the proliferation of spermatogonia in the spermatogenesis of neonatal mice. Furthermore, proteins related to spermatocyte differentiation, synaptonemal complex protein 3 (SCP3) and meiotic recombinant protein Spo11, were detected by immunohistochemical staining. The results showed that the differentiated spermatocyte in the LE group was significantly increased compared with that of the control group and showed a concentration-dependent manner (P < 0.05). The above results suggested that the LE can significantly accelerate the proliferation of spermatogonia and the differentiation of spermatocytes in the testicular tissue of the neonatal mice, which may be a potential drug for male infertility.
Collapse
|
37
|
Chapman KM, Medrano GA, Chaudhary J, Hamra FK. NRG1 and KITL Signal Downstream of Retinoic Acid in the Germline to Support Soma-Free Syncytial Growth of Differentiating Spermatogonia. Cell Death Discov 2015; 1. [PMID: 26500786 PMCID: PMC4613782 DOI: 10.1038/cddiscovery.2015.18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Defined culture systems supporting spermatogonial differentiation will provide experimental platforms to study spermatogenesis. However, germline-intrinsic signaling mechanisms sufficient to support spermatogonial differentiation without somatic cells remain largely undefined. Here, we analyzed EGF superfamily receptor and ligand diversity in rat testis cells, and delineated germline-intrinsic signaling via an ERBB3 co-transducer, ERBB2, as essential for retinoic acid-induced syncytial growth by differentiating spermatogonia. Like the ERBB2/3 agonist NRG1, we found KIT Ligand (KITL) robustly supported spermatogonial differentiation without serum or somatic cells. ERBB2 inhibitors failed to disrupt KITL-dependent spermatogonial development, and, KITL prevented ERBB3-deficient spermatogonial degeneration upon differentiation. Thus, we report NRG1 and KITL activate alternative pathways downstream of retinoic acid signaling in the germline that are essential for stem cells to undergo pre-meiotic steps of spermatogenesis in culture. Robust serum/soma-free spermatogonial differentiation opens new doors to study mammalian germ cell biology in culture, which will facilitate the discovery of spermatogenic factors that can drive meiotic progression in vitro.
Collapse
Affiliation(s)
- Karen M Chapman
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Gerardo A Medrano
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Jaideep Chaudhary
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - F Kent Hamra
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA ; Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| |
Collapse
|
38
|
Role of retinoic acid receptor (RAR) signaling in post-natal male germ cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:84-93. [DOI: 10.1016/j.bbagrm.2014.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022]
|
39
|
Chen SR, Liu YX. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 2014; 149:R159-67. [PMID: 25504872 DOI: 10.1530/rep-14-0481] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is a continuous and productive process supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs), which arise from undifferentiated precursors known as gonocytes and are strictly controlled in a special 'niche' microenvironment in the seminiferous tubules. Sertoli cells, the only somatic cell type in the tubules, directly interact with SSCs to control their proliferation and differentiation through the secretion of specific factors. Spermatocyte meiosis is another key step of spermatogenesis, which is regulated by Sertoli cells on the luminal side of the blood-testis barrier through paracrine signaling. In this review, we mainly focus on the role of Sertoli cells in the regulation of SSC self-renewal and spermatocyte meiosis, with particular emphasis on paracrine and endocrine-mediated signaling pathways. Sertoli cell growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), as well as Sertoli cell transcription factors, such as ETS variant 5 (ERM; also known as ETV5), nociceptin, neuregulin 1 (NRG1), and androgen receptor (AR), have been identified as the most important upstream factors that regulate SSC self-renewal and spermatocyte meiosis. Other transcription factors and signaling pathways (GDNF-RET-GFRA1 signaling, FGF2-MAP2K1 signaling, CXCL12-CXCR4 signaling, CCL9-CCR1 signaling, FSH-nociceptin/OPRL1, retinoic acid/FSH-NRG/ERBB4, and AR/RB-ARID4A/ARID4B) are also addressed.
Collapse
Affiliation(s)
- Su-Ren Chen
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Xun Liu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Zhang J, Hatakeyama J, Eto K, Abe SI. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix. Gen Comp Endocrinol 2014; 205:121-32. [PMID: 24717811 DOI: 10.1016/j.ygcen.2014.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 11/20/2022]
Abstract
Male gonad development is initiated by the aggregation of pre-Sertoli cells (SCs), which surround germ cells to form cords. Several attempts to reconstruct testes from dissociated testicular cells have been made; however, only very limited morphogenesis beyond seminiferous cord formation has been achieved. Therefore, we aimed to reconstruct seminiferous tubules using a 3-dimensional (D) re-aggregate culture of testicular cells, which were dissociated from 6-dpp neonatal mice, inside a collagen matrix. We performed a short-term culture (for 3 days) and a long-term culture (up to 3 wks). The addition of KnockOut Serum Replacement (KSR) promoted (1) the enlargement of SC re-aggregates; (2) the attachment of peritubular myoid (PTM) cells around the SC re-aggregates; (3) the sorting of germ cells inside, and Leydig cells outside, seminiferous cord-like structures; (4) the alignment of SC polarity inside a seminiferous cord-like structure relative to the basement membrane; (5) the differentiation of SCs (the expression of the androgen receptor); (6) the formation of a blood-testis-barrier between the SCs; (7) SC elongation and lumen formation; and (8) the proliferation of SCs and spermatogonia, as well as the differentiation of spermatogonia into primary spermatocytes. Eventually, KSR promoted the formation of seminiferous tubule-like structures, which accompanied germ cell differentiation. However, these morphogenetic events did not occur in the absence of KSR. This in vitro system presents an excellent model with which to identify the possible factors that induce these events and to analyze the mechanisms that underlie cellular interactions during testicular morphogenesis and germ cell differentiation.
Collapse
Affiliation(s)
- Jidong Zhang
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Jun Hatakeyama
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| | - Ko Eto
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Shin-Ichi Abe
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
41
|
Kurihara M, Shiraishi A, Satake H, Kimura AP. A conserved noncoding sequence can function as a spermatocyte-specific enhancer and a bidirectional promoter for a ubiquitously expressed gene and a testis-specific long noncoding RNA. J Mol Biol 2014; 426:3069-93. [PMID: 25020229 DOI: 10.1016/j.jmb.2014.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
Tissue-specific gene expression is tightly regulated by various elements such as promoters, enhancers, and long noncoding RNAs (lncRNAs). In the present study, we identified a conserved noncoding sequence (CNS1) as a novel enhancer for the spermatocyte-specific mouse testicular cell adhesion molecule 1 (Tcam1) gene. CNS1 was located 3.4kb upstream of the Tcam1 gene and associated with histone H3K4 mono-methylation in testicular germ cells. By the in vitro reporter gene assay, CNS1 could enhance Tcam1 promoter activity only in GC-2spd(ts) cells, which were derived from mouse spermatocytes. When we integrated the 6.9-kb 5'-flanking sequence of Tcam1 with or without a deletion of CNS1 linked to the enhanced green fluorescent protein gene into the chromatin of GC-2spd(ts) cells, CNS1 significantly enhanced Tcam1 promoter activity. These results indicate that CNS1 could function as a spermatocyte-specific enhancer. Interestingly, CNS1 also showed high bidirectional promoter activity in the reporter assay, and consistent with this, the Smarcd2 gene and lncRNA, designated lncRNA-Tcam1, were transcribed from adjacent regions of CNS1. While Smarcd2 was ubiquitously expressed, lncRNA-Tcam1 expression was restricted to testicular germ cells, although this lncRNA did not participate in Tcam1 activation. Ubiquitous Smarcd2 expression was correlated to CpG hypo-methylation of CNS1 and partially controlled by Sp1. However, for lncRNA-Tcam1 transcription, the strong association with histone acetylation and histone H3K4 tri-methylation also appeared to be required. The present data suggest that CNS1 is a spermatocyte-specific enhancer for the Tcam1 gene and a bidirectional promoter of Smarcd2 and lncRNA-Tcam1.
Collapse
Affiliation(s)
- Misuzu Kurihara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Shiraishi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka 618-8503, Japan
| | - Honoo Satake
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka 618-8503, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
42
|
Kogata N, Zvelebil M, Howard BA. Neuregulin 3 and erbb signalling networks in embryonic mammary gland development. J Mammary Gland Biol Neoplasia 2013; 18:149-54. [PMID: 23649700 DOI: 10.1007/s10911-013-9286-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022] Open
Abstract
We review the role of Neuregulin 3 (Nrg3) and Erbb receptor signalling in embryonic mammary gland development. Neuregulins are growth factors that bind and activate its cognate Erbb receptor tyrosine kinases, which form a signalling network with established roles in breast development and breast cancer. Studies have shown that Nrg3 expression profoundly impacts early stages of embryonic mammary development. Network analysis shows how Nrg/Erbb signals could integrate with other major regulators of embryonic mammary development to elicit the morphogenetic processes and cell fate decisions that occur as the mammary lineage is established.
Collapse
Affiliation(s)
- Naoko Kogata
- Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | | | | |
Collapse
|
43
|
Yoneda R, Takahashi T, Matsui H, Takano N, Hasebe Y, Ogiwara K, Kimura AP. Three testis-specific paralogous serine proteases play different roles in murine spermatogenesis and are involved in germ cell survival during meiosis. Biol Reprod 2013; 88:118. [PMID: 23536369 DOI: 10.1095/biolreprod.112.106328] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Spermatogenesis is a complex process that generates spermatozoa; its molecular mechanisms are not completely understood. Here we focused on the functions of three testis-specific serine proteases: Prss42/Tessp-2, Prss43/Tessp-3, and Prss44/Tessp-4. These protease genes, which constitute a gene cluster on chromosome 9F2-F3, were presumed to be paralogs and were expressed only in the testis. By investigating their mRNA distribution, we found that all three genes were expressed in primary and secondary spermatocytes. However, interestingly, the translated proteins were produced at different locations. Prss42/Tessp-2 was found in the membranes and cytoplasm of secondary spermatocytes and spermatids, whereas Prss43/Tessp-3 was present only in the membranes of spermatocytes and spermatids. Prss44/Tessp-4 was detected in the cytoplasm of spermatocytes and spermatids. To assess the roles of these proteases in spermatogenesis, we used organ culture of mouse testis fragments. Adding antibodies against Prss42/Tessp-2 and Prss43/Tessp-3 resulted in meiotic arrest at the stage when each protease was beginning to be translated. Furthermore, the number of apoptotic cells dramatically increased after the addition of these antibodies. These results strongly suggest that the three paralogous Prss/Tessp proteases play different roles in spermatogenesis and that Prss42/Tessp-2 and Prss43/Tessp-3 are required for germ cell survival during meiosis.
Collapse
Affiliation(s)
- Ryoma Yoneda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Kasimanickam VR, Kasimanickam RK. Retinoic acid signaling biomarkers after treatment with retinoic acid and retinoic acid receptor alpha antagonist (Ro 41-5253) in canine testis: an in vitro organ culture study. Theriogenology 2012; 79:10-6. [PMID: 23102850 DOI: 10.1016/j.theriogenology.2012.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/17/2012] [Accepted: 09/03/2012] [Indexed: 01/01/2023]
Abstract
Retinoic acid (RA) is an essential component for development and maintenance of the male genital tract and for spermatogenesis. Aldehyde dehydrogenase (ALDH)1, cytochrome P450 (CYP)26b1, RA receptor (RAR)α, cellular RA-binding protein (CRAB)II, and stimulated by RA gene (STRA)8 are involved in synthesis, metabolism signaling pathways, and as downstream effectors of RA. The objective was to elucidate the effects of exogenous RA and a RARα antagonist on gene expression of ALDH1, CYP26b1, RARα, cellular RA-binding protein II, and STRA8 in an in vitro organ culture model of canine testis. Testicular tissues from medium-sized mixed breed dogs (N = 5; age 8 ± 0.17 mo) were subjected to exogenous all trans-RA (final concentrations of 1, 2, and 10 μM, and DMSO as control) for 24 h. Similarly, testicular tissues were treated with Ro 41-5253 (RARα antagonist), at 1, 10, and 50 μM final concentrations (DMSO as control) for 24 h. Exogenous RA or the RARα antagonist decreased (P < 0.05) mRNA abundance of ALDH1 in a dose-dependent manner compared with control. The CRABII mRNA abundance was greater after RA treatment compared with control (P < 0.01), but only 50 μM Ro 41-5253 effectively decreased CRABII mRNA abundance compared with control (P < 0.01). Although RA did not affect RARα mRNA abundance, the RARα antagonist treatment lowered RARα mRNA abundance compared with control (P < 0.05). Abundance of CYP26b1and STRA8 mRNA were greater (P < 0.05) after RA treatment, but lower (P < 0.05) after RARα antagonist treatment compared with control. In conclusion, exogenous RA decreased mRNA abundance of ALDH1 and increased mRNA abundance of RA signaling molecules and its downstream effectors (CYP26b1, CRABII, and STRA8), whereas treatment with a RARα antagonist effectively decreased RARα and RA metabolism molecules and its downstream effectors in canine testis. Perhaps pharmacological intervention via the RA pathway would enable canine male contraception or treatment of testicular pathology.
Collapse
Affiliation(s)
- Vanmathy R Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | | |
Collapse
|
45
|
Zhang J, Pippin JW, Vaughan MR, Krofft RD, Taniguchi Y, Romagnani P, Nelson PJ, Liu ZH, Shankland SJ. Retinoids augment the expression of podocyte proteins by glomerular parietal epithelial cells in experimental glomerular disease. Nephron Clin Pract 2012; 121:e23-37. [PMID: 23107969 DOI: 10.1159/000342808] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS A decrease in glomerular podocyte number in membranous nephropathy and focal segmental glomerulosclerosis (FSGS) ultimately underlines glomerulosclerosis and the decrease in kidney function. Recent studies have shown that in these diseases, glomerular parietal epithelial cells begin to express proteins considered unique to podocytes, and that these glomerular epithelial transition cells might serve as podocyte progenitors. Because retinoids improve many forms of experimental glomerular disease characterized by podocyte injury and loss, we asked if all-trans retinoic acid (ATRA) induces parietal epithelial cells to express podocyte proteins. METHODS ATRA or vehicle was administered to rats with experimental membranous nephropathy (passive Heymann nephritis model) and mice with experimental FSGS (anti-glomerular antibody model) following the onset of proteinuria. Immunohistochemistry staining of PAX2 (parietal epithelial cell marker), WT-1 (podocyte cell marker), and Ki-67 (proliferation marker) were performed on kidney tissues. RESULTS Compared to diseased animals receiving vehicle, ATRA statistically significantly increased the number of glomerular transition cells, defined as cells double-staining for PAX2 and WT-1, in membranous nephropathy at weeks 2, 5 and 16, and in FSGS at weeks 1 and 2. This was accompanied by an increase in the number of podocytes compared to diseased controls receiving vehicle. CONCLUSION ATRA increases the number of glomerular epithelial transition cells in experimental proteinuric glomerular diseases. Thus, ATRA may provide a useful pharmacologic approach to decipher the mechanisms underlying the possible progenitor role of parietal epithelial cells.
Collapse
Affiliation(s)
- Jiong Zhang
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Wash 98195-6521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|