1
|
Araya C, Boekemeyer R, Farlie F, Moon L, Darwish F, Rookyard C, Allison L, Vizcay-Barrena G, Fleck R, Aranda M, Tada M, Clarke JDW. An analysis of contractile and protrusive cell behaviors at the superficial surface of the zebrafish neural plate. Dev Dyn 2025. [PMID: 39985313 DOI: 10.1002/dvdy.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The forces underlying convergence and internalization of the teleost neural plate remain unknown. To help understand this morphogenesis, we analyzed collective and individual cell behaviors at the superficial surface of the neural plate as internalization begins to form the neural keel in the hindbrain region of the zebrafish embryo. RESULTS Convergence to the midline is not accompanied by anteroposterior elongation at this stage, and it is characterized by oscillatory contractile behaviors at the superficial surface of the neural plate, a punctate distribution of Cdh2 and medially polarized actin-rich protrusions at the surface of the neural plate. We also characterize the intimate relationship and dynamic protrusive cell behaviors between the surfaces of the motile neural plate and the stationary overlying non-neural enveloping layer. CONCLUSIONS Superficial neural plate cells are coupled by a punctate distribution of Cdh2-rich adhesions. At this surface, cells tug on neighbors using oscillatory contractions. Oscillatory contractions accompany convergence and shrinkage of the cells' superficial surface for internalization during keeling. Some shrinkage for internalization occurs without oscillations. The deep surface of the overlying non-neural enveloping layer is in contact with the superficial surface of the neural plate, suggesting that it may constrain the neural plate movements of convergence and internalization.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Raegan Boekemeyer
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francesca Farlie
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Lauren Moon
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Freshta Darwish
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Chris Rookyard
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Leanne Allison
- Centre for Ultrastructural Imaging, King's College London, London, UK
| | | | - Roland Fleck
- Centre for Ultrastructural Imaging, King's College London, London, UK
| | - Millaray Aranda
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Masa Tada
- Department of Cell and Developmental Biology, University College London, London, UK
| | | |
Collapse
|
2
|
Matsuda M, Rozman J, Ostvar S, Kasza KE, Sokol SY. Mechanical control of neural plate folding by apical domain alteration. Nat Commun 2023; 14:8475. [PMID: 38123550 PMCID: PMC10733383 DOI: 10.1038/s41467-023-43973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. At the onset of Xenopus neural tube folding, we observed alternation of apically constricted and apically expanded cells. This apical domain heterogeneity was accompanied by biased cell orientation along the anteroposterior axis, especially at neural plate hinges, and required planar cell polarity signaling. Vertex models suggested that dispersed isotropically constricting cells can cause the elongation of adjacent cells. Consistently, in ectoderm, cell-autonomous apical constriction was accompanied by neighbor expansion. Thus, a subset of isotropically constricting cells may initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the body axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that apical domain changes reflect planar polarity-dependent mechanical forces operating during neural folding.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Sassan Ostvar
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Mizoguchi Y, Nakashima K, Sato A, Shindo A. β-adrenergic receptor regulates embryonic epithelial extensibility through actomyosin inhibition. iScience 2023; 26:108469. [PMID: 38213788 PMCID: PMC10783608 DOI: 10.1016/j.isci.2023.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024] Open
Abstract
During morphogenesis, epithelial tissues reshape and expand to cover the body and organs. The molecular mechanisms of this deformability remain elusive. Here, we investigate the role of the β-adrenergic receptor (ADRB) in orchestrating actomyosin contractility, pivotal for epithelial extensibility. Chemical screens on Xenopus laevis embryos pinpointed ADRB2 as a principal regulator. ADRB2 promotes actomyosin relaxation, facilitating apical cell area expansion during body elongation. In contrast, ADRB2 knockdown results in heightened cell contraction, marked by synchronous oscillation of F-actin and myosin, impeding body elongation. ADRB2 mutants with reduced affinity for ligand binding lack the function to induce cellular relaxation, highlighting the ligand's essential roles even in the developing epidermis. Our findings unveil ADRB2's critical contribution to extensibility of the epidermis and subsequent body elongation during development. This study also offers insights into the physiology of mature epithelial organs deformed by the smooth muscle response to the adrenergic autonomic nervous system.
Collapse
Affiliation(s)
- Yohei Mizoguchi
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya 464-8602, Japan
| | - Kaoru Nakashima
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Asako Shindo
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
4
|
Kunz D, Wang A, Chan CU, Pritchard RH, Wang W, Gallo F, Bradshaw CR, Terenzani E, Müller KH, Huang YYS, Xiong F. Downregulation of extraembryonic tension controls body axis formation in avian embryos. Nat Commun 2023; 14:3266. [PMID: 37277340 PMCID: PMC10241863 DOI: 10.1038/s41467-023-38988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
Embryonic tissues undergoing shape change draw mechanical input from extraembryonic substrates. In avian eggs, the early blastoderm disk is under the tension of the vitelline membrane (VM). Here we report that the chicken VM characteristically downregulates tension and stiffness to facilitate stage-specific embryo morphogenesis. Experimental relaxation of the VM early in development impairs blastoderm expansion, while maintaining VM tension in later stages resists the convergence of the posterior body causing stalled elongation, failure of neural tube closure, and axis rupture. Biochemical and structural analysis shows that VM weakening is associated with the reduction of outer-layer glycoprotein fibers, which is caused by an increasing albumen pH due to CO2 release from the egg. Our results identify a previously unrecognized potential cause of body axis defects through mis-regulation of extraembryonic tissue tension.
Collapse
Affiliation(s)
- Daniele Kunz
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Anfu Wang
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Chon U Chan
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Robyn H Pritchard
- Department of Physics, University of Cambridge, Cambridge, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Wenyu Wang
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Filomena Gallo
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Charles R Bradshaw
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Elisa Terenzani
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | | | - Fengzhu Xiong
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
The cellular dynamics of neural tube formation. Biochem Soc Trans 2023; 51:343-352. [PMID: 36794768 PMCID: PMC9987952 DOI: 10.1042/bst20220871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
The vertebrate brain and spinal cord arise from a common precursor, the neural tube, which forms very early during embryonic development. To shape the forming neural tube, changes in cellular architecture must be tightly co-ordinated in space and time. Live imaging of different animal models has provided valuable insights into the cellular dynamics driving neural tube formation. The most well-characterised morphogenetic processes underlying this transformation are convergent extension and apical constriction, which elongate and bend the neural plate. Recent work has focused on understanding how these two processes are spatiotemporally integrated from the tissue- to the subcellular scale. Various mechanisms of neural tube closure have also been visualised, yielding a growing understanding of how cellular movements, junctional remodelling and interactions with the extracellular matrix promote fusion and zippering of the neural tube. Additionally, live imaging has also now revealed a mechanical role for apoptosis in neural plate bending, and how cell intercalation forms the lumen of the secondary neural tube. Here, we highlight the latest research on the cellular dynamics underlying neural tube formation and provide some perspectives for the future.
Collapse
|
6
|
Christodoulou N, Skourides PA. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure. Development 2022; 149:275604. [PMID: 35662330 PMCID: PMC9340557 DOI: 10.1242/dev.200358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Neural tube closure (NTC) is a fundamental process during vertebrate development and is indispensable for the formation of the central nervous system. Here, using Xenopus laevis embryos, live imaging, single-cell tracking, optogenetics and loss-of-function experiments, we examine the roles of convergent extension and apical constriction, and define the role of the surface ectoderm during NTC. We show that NTC is a two-stage process with distinct spatiotemporal contributions of convergent extension and apical constriction at each stage. Convergent extension takes place during the first stage and is spatially restricted at the posterior tissue, whereas apical constriction occurs during the second stage throughout the neural plate. We also show that the surface ectoderm is mechanically coupled with the neural plate and its movement during NTC is driven by neural plate morphogenesis. Finally, we show that an increase in surface ectoderm resistive forces is detrimental for neural plate morphogenesis. Summary: Detailed characterization of the contribution of distinct morphogenetic processes and mechanical tissue coupling during neural tube closure, a process indispensable for central nervous system formation in vertebrates.
Collapse
Affiliation(s)
- Neophytos Christodoulou
- University of Cyprus Department of Biological Sciences , , P.O. Box 20537, 2109 Nicosia , Cyprus
| | - Paris A. Skourides
- University of Cyprus Department of Biological Sciences , , P.O. Box 20537, 2109 Nicosia , Cyprus
| |
Collapse
|
7
|
Noshiro K, Umazume T, Hattori R, Kataoka S, Yamada T, Watari H. Changes in Serum Levels of Ketone Bodies and Human Chorionic Gonadotropin during Pregnancy in Relation to the Neonatal Body Shape: A Retrospective Analysis. Nutrients 2022; 14:nu14091971. [PMID: 35565938 PMCID: PMC9099686 DOI: 10.3390/nu14091971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/10/2022] Open
Abstract
Among the physiological changes occurring during pregnancy, the benefits of morning sickness, which is likely mediated by human chorionic gonadotropin (HCG) and induces serum ketone production, are unclear. We investigated the relationship between serum levels of ketone bodies and HCG in the first, second, and third trimesters and neonatal body shape (i.e., birth weight, length, head circumference, and chest circumference) in 245 pregnant women. Serum levels of 3-hydroxybutyric acid peaked in late-stage compared with early stage pregnancy (27.8 [5.0−821] vs. 42.2 [5.0−1420] μmol/L, median [range], p < 0.001). However, serum levels of ketone bodies and HCG did not correlate with neonatal body shape. When weight loss during pregnancy was used as an index of morning sickness, a higher pre-pregnancy body mass index was associated with greater weight loss. This study is the first to show that serum ketone body levels are maximal in the third trimester of pregnancy. As the elevation of serum ketone bodies in the third trimester is a physiological change, high serum levels of ketone bodies may be beneficial for mothers and children. One of the possible biological benefits of morning sickness is the prevention of diseases that have an increased incidence due to weight gain during pregnancy.
Collapse
Affiliation(s)
- Kiwamu Noshiro
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.N.); (H.W.)
| | - Takeshi Umazume
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.N.); (H.W.)
- Correspondence: ; Tel.: +81-11-706-5941
| | - Rifumi Hattori
- Department of Obstetrics and Gynecology, Obihiro-Kosei General Hospital, Obihiro 080-0024, Japan;
| | - Soromon Kataoka
- Department of Obstetrics and Gynecology, Hakodate Central General Hospital, Hakodate 040-8585, Japan;
| | - Takashi Yamada
- Department of Obstetrics and Gynecology, Japan Community Health Care Organization Hokkaido Hospital, Sapporo 062-8618, Japan;
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.N.); (H.W.)
| |
Collapse
|
8
|
Bredov DV, Volodyaev IV, Luchinskaya NN. Spatio-Temporal Dynamics of Embryonic Tissue Deformations during Gastrulation in Xenopus laevis: Morphometric Analysis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421050027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mechanics of neural tube morphogenesis. Semin Cell Dev Biol 2021; 130:56-69. [PMID: 34561169 DOI: 10.1016/j.semcdb.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
The neural tube is an important model system of morphogenesis representing the developmental module of out-of-plane epithelial deformation. As the embryonic precursor of the central nervous system, the neural tube also holds keys to many defects and diseases. Recent advances begin to reveal how genetic, cellular and environmental mechanisms work in concert to ensure correct neural tube shape. A physical model is emerging where these factors converge at the regulation of the mechanical forces and properties within and around the tissue that drive tube formation towards completion. Here we review the dynamics and mechanics of neural tube morphogenesis and discuss the underlying cellular behaviours from the viewpoint of tissue mechanics. We will also highlight some of the conceptual and technical next steps.
Collapse
|
10
|
Composite morphogenesis during embryo development. Semin Cell Dev Biol 2021; 120:119-132. [PMID: 34172395 DOI: 10.1016/j.semcdb.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 11/21/2022]
Abstract
Morphogenesis drives the formation of functional living shapes. Gene expression patterns and signaling pathways define the body plans of the animal and control the morphogenetic processes shaping the embryonic tissues. During embryogenesis, a tissue can undergo composite morphogenesis resulting from multiple concomitant shape changes. While previous studies have unraveled the mechanisms that drive simple morphogenetic processes, how a tissue can undergo multiple and simultaneous changes in shape is still not known and not much explored. In this chapter, we focus on the process of concomitant tissue folding and extension that is vital for the animal since it is key for embryo gastrulation and neurulation. Recent pioneering studies focus on this problem highlighting the roles of different spatially coordinated cell mechanisms or of the synergy between different patterns of gene expression to drive composite morphogenesis.
Collapse
|
11
|
Au KS, Hebert L, Hillman P, Baker C, Brown MR, Kim DK, Soldano K, Garrett M, Ashley-Koch A, Lee S, Gleeson J, Hixson JE, Morrison AC, Northrup H. Human myelomeningocele risk and ultra-rare deleterious variants in genes associated with cilium, WNT-signaling, ECM, cytoskeleton and cell migration. Sci Rep 2021; 11:3639. [PMID: 33574475 PMCID: PMC7878900 DOI: 10.1038/s41598-021-83058-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Myelomeningocele (MMC) affects one in 1000 newborns annually worldwide and each surviving child faces tremendous lifetime medical and caregiving burdens. Both genetic and environmental factors contribute to disease risk but the mechanism is unclear. This study examined 506 MMC subjects for ultra-rare deleterious variants (URDVs, absent in gnomAD v2.1.1 controls that have Combined Annotation Dependent Depletion score ≥ 20) in candidate genes either known to cause abnormal neural tube closure in animals or previously associated with human MMC in the current study cohort. Approximately 70% of the study subjects carried one to nine URDVs among 302 candidate genes. Half of the study subjects carried heterozygous URDVs in multiple genes involved in the structure and/or function of cilium, cytoskeleton, extracellular matrix, WNT signaling, and/or cell migration. Another 20% of the study subjects carried heterozygous URDVs in candidate genes associated with gene transcription regulation, folate metabolism, or glucose metabolism. Presence of URDVs in the candidate genes involving these biological function groups may elevate the risk of developing myelomeningocele in the study cohort.
Collapse
Affiliation(s)
- K S Au
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - L Hebert
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - P Hillman
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - C Baker
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - M R Brown
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - D-K Kim
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - K Soldano
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - M Garrett
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - A Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - S Lee
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J Gleeson
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J E Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - A C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - H Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
12
|
Wang Y, Qin Y, Peng R, Wang H. Loss-of-function or gain-of-function variations in VINCULIN (VCL) are risk factors of human neural tube defects. Mol Genet Genomic Med 2021; 9:e1563. [PMID: 33491343 PMCID: PMC8077129 DOI: 10.1002/mgg3.1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 11/12/2022] Open
Abstract
Background Neural tube defects (NTDs) are severe birth defects resulting from the failure of neural tube closure during embryogenesis. Both genetic and environmental factors contribute to the occurrence of NTDs and the heritability of NTDs is approximately 70%. As a key component of focal adhesions, Vinculin (VCL) plays pivotal roles in cell skeleton remodeling and signal transduction. Vcl deficient mice displayed NTD, but how VCL variants contribute to human NTDs has not been addressed yet. Methods We screened VCL variants in a Chinese cohort of 387 NTDs and 244 controls by targeted next‐generation sequencing. Results We identified four case‐specific VCL variations (p.M209L, p.D256fs, p.L555V and p.R586Q). VCL p.D256fs and p.L555V are novel variations that have never been reported. Our analysis revealed that p.D256fs is a loss‐of‐function variant, while p.L555V showed a gain of function in planner cell polarity (PCP) pathway regulation and cell migration, probably due to its enhanced protein stability. Conclusion Our study reports human NTD specific novel variations in VCL and provides the functional evaluation of VCL variants related to the etiology of human NTDs.
Collapse
Affiliation(s)
- Yalan Wang
- Obstetrics & Gynecology Hospital, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Yue Qin
- State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Peng
- Obstetrics & Gynecology Hospital, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Hongyan Wang
- Obstetrics & Gynecology Hospital, Institute of Reproduction & Development, Fudan University, Shanghai, China.,State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
14
|
Guillon E, Das D, Jülich D, Hassan AR, Geller H, Holley S. Fibronectin is a smart adhesive that both influences and responds to the mechanics of early spinal column development. eLife 2020; 9:48964. [PMID: 32228864 PMCID: PMC7108867 DOI: 10.7554/elife.48964] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 02/18/2020] [Indexed: 01/22/2023] Open
Abstract
An extracellular matrix of Fibronectin adheres the neural tube to the two flanking columns of paraxial mesoderm and is required for normal vertebrate development. Here, we find that the bilaterally symmetric interfaces between the zebrafish neural tube and paraxial mesoderm function as optimally engineered adhesive lap joints with rounded edges, graded Fibronectin ‘adhesive’ and an arced adhesive spew filet. Fibronectin is a ‘smart adhesive’ that remodels to the lateral edges of the neural tube-paraxial mesoderm interfaces where shear stress is highest. Fibronectin remodeling is mechanically responsive to contralateral variation morphogenesis, and Fibronectin-mediated inter-tissue adhesion is required for bilaterally symmetric morphogenesis of the paraxial mesoderm. Strikingly, however, perturbation of the Fibronectin matrix rescues the neural tube convergence defect of cadherin 2 mutants. Therefore, Fibronectin-mediated inter-tissue adhesion dynamically coordinates bilaterally symmetric morphogenesis of the vertebrate trunk but predisposes the neural tube to convergence defects that lead to spina bifida. In embryos, the spinal cord starts out as a flat sheet of cells that curls up to form a closed cylinder called the neural tube. The folding tube is attached to the surrounding tissues through an extracellular matrix of proteins and sugars. Overlapping strands of a protein from the extracellular matrix called Fibronectin connect the neural tube to adjacent tissues, like a kind of biological glue. However, it remained unclear what effect this attachment had on the embryonic development of the spinal cord. Connecting two overlapping objects with glue to form what is known as an ‘adhesive lap joint’ is common in fields such as woodworking and aeronautical engineering. The glue in these joints comes under shearing stress whenever the two objects it connects try to pull apart. But, thanks to work in engineering, it is possible to predict how different joints will perform under tension. Now, Guillon et al. have deployed these engineering principles to shed light on neural tube development. Using zebrafish embryos and computational models, Guillon et al. investigated what happens when the strength of the adhesive lap joints in the developing spine changes. This revealed that Fibronectin works like a smart adhesive: rather than staying in one place like a conventional glue, it moves around. As the neural tube closes, cells remodel the Fibronectin, concentrating it on the areas under the highest stress. This seemed to both help and hinder neural tube development. On the one hand, by anchoring the tube equally to the left and right sides of the embryo, the Fibronectin glue helped the spine to develop symmetrically. On the other hand, the strength of the adhesive lap joints made it harder for the neural tube to curl up and close. If the neural tube fails to close properly, it can lead to birth defects like spina bifida. One of the best-known causes of these birth defects in humans is a lack of a vitamin known as folic acid. Cell culture experiments suggest that this might have something to do with the mechanics of the cells during development. It may be that faulty neural tubes could close more easily if they were able to unglue themselves from the surrounding tissues. Further use of engineering principles could shed more light on this idea in the future.
Collapse
Affiliation(s)
- Emilie Guillon
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Dipjyoti Das
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Abdel-Rahman Hassan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Hannah Geller
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Scott Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
15
|
Abstract
Epiboly is a conserved gastrulation movement describing the thinning and spreading of a sheet or multi-layer of cells. The zebrafish embryo has emerged as a vital model system to address the cellular and molecular mechanisms that drive epiboly. In the zebrafish embryo, the blastoderm, consisting of a simple squamous epithelium (the enveloping layer) and an underlying mass of deep cells, as well as a yolk nuclear syncytium (the yolk syncytial layer) undergo epiboly to internalize the yolk cell during gastrulation. The major events during zebrafish epiboly are: expansion of the enveloping layer and the internal yolk syncytial layer, reduction and removal of the yolk membrane ahead of the advancing blastoderm margin and deep cell rearrangements between the enveloping layer and yolk syncytial layer to thin the blastoderm. Here, work addressing the cellular and molecular mechanisms as well as the sources of the mechanical forces that underlie these events is reviewed. The contribution of recent findings to the current model of epiboly as well as open questions and future prospects are also discussed.
Collapse
|
16
|
Bredov D, Volodyaev I. Increasing complexity: Mechanical guidance and feedback loops as a basis for self-organization in morphogenesis. Biosystems 2018; 173:133-156. [PMID: 30292533 DOI: 10.1016/j.biosystems.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
The article is devoted to physical views on embryo development as a combination of structurally stable dynamics and symmetry-breaking events in the general process of self-organization. The first corresponds to the deterministic aspect of embryo development. The second type of processes is associated with sudden increase of variability in the periods of symmetry-breaking, which manifests unstable dynamics. The biological basis under these considerations includes chemokinetics (a system of inductors, repressors, and interaction with their next surrounding) and morphomechanics (i.e. mechanotransduction, mechanosensing, and related feedback loops). Although the latter research area is evolving rapidly, up to this time the role of mechanical properties of embryonic tissues and mechano-dependent processes in them are integrated in the general picture of embryo development to a lesser extent than biochemical signaling. For this reason, the present article is mostly devoted to experimental data on morphomechanics in the process of embryo development, also including analysis of its limitations and possible contradictions. The general system of feedback-loops and system dynamics delineated in this review is in large part a repetition of the views of Lev Beloussov, who was one of the founders of the whole areas of morphomechanics and morphodynamics, and to whose memory this article is dedicated.
Collapse
Affiliation(s)
- Denis Bredov
- Laboratory of Developmental biophysics, Department of Embryology, Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Ilya Volodyaev
- Laboratory of Developmental biophysics, Department of Embryology, Faculty of Biology, Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
17
|
Nagel M, Winklbauer R. PDGF-A suppresses contact inhibition during directional collective cell migration. Development 2018; 145:dev.162651. [PMID: 29884673 DOI: 10.1242/dev.162651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/25/2018] [Indexed: 12/15/2022]
Abstract
The leading-edge mesendoderm (LEM) of the Xenopus gastrula moves as an aggregate by collective migration. However, LEM cells on fibronectin in vitro show contact inhibition of locomotion by quickly retracting lamellipodia upon mutual contact. We found that a fibronectin-integrin-syndecan module acts between p21-activated kinase 1 upstream and ephrin B1 downstream to promote the contact-induced collapse of lamellipodia. To function in this module, fibronectin has to be present as puncta on the surface of LEM cells. To overcome contact inhibition in LEM cell aggregates, PDGF-A deposited in the endogenous substratum of LEM migration blocks the fibronectin-integrin-syndecan module at the integrin level. This stabilizes lamellipodia preferentially in the direction of normal LEM movement and supports cell orientation and the directional migration of the coherent LEM cell mass.
Collapse
Affiliation(s)
- Martina Nagel
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, Toronto M5S 3G5, ON, Canada
| | - Rudolf Winklbauer
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, Toronto M5S 3G5, ON, Canada
| |
Collapse
|
18
|
Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 2018; 554:523-527. [PMID: 29443958 PMCID: PMC6013044 DOI: 10.1038/nature25742] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023]
Abstract
Collective cell migration (CCM) is essential for morphogenesis, tissue remodelling, and cancer invasion1,2. In vivo, groups of cells move in an orchestrated way through tissues. This movement requires forces and involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in CCM is comparatively well understood1,2, how tissue mechanics influence CCM in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion3. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiated an epithelial-to-mesenchymal transition (EMT) in neural crest cells and triggered their collective migration. To detect changes in their mechanical environment, neural crest use integrin/vinculin/talin-mediated mechanosensing. By performing mechanical and molecular manipulations, we showed that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrated that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results unveil a novel role for mesodermal convergent extension as a mechanical coordinator of morphogenesis, and thus reveal a new link between two apparently unconnected processes, gastrulation and neural crest migration, via changes in tissue mechanics. Overall, we provide the first demonstration that changes in substrate stiffness can trigger CCM by promoting EMT in vivo. More broadly, our results raise the exciting idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis4.
Collapse
|
19
|
Hayashi K, Yamamoto TS, Ueno N. Intracellular calcium signal at the leading edge regulates mesodermal sheet migration during Xenopus gastrulation. Sci Rep 2018; 8:2433. [PMID: 29402947 PMCID: PMC5799360 DOI: 10.1038/s41598-018-20747-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
During the gastrulation stage in animal embryogenesis, the cells leading the axial mesoderm migrate toward the anterior side of the embryo, vigorously extending cell protrusions such as lamellipodia. It is thought that the leading cells sense gradients of chemoattractants emanating from the ectodermal cells and translate them to initiate and maintain the cell movements necessary for gastrulation. However, it is unclear how the extracellular information is converted to the intracellular chemical reactions that lead to motion. Here we demonstrated that intracellular Ca2+ levels in the protrusion-forming leading cells are markedly higher than those of the following cells and the axial mesoderm cells. We also showed that inhibiting the intracellular Ca2+ significantly retarded the gastrulation cell movements, while increasing the intracellular Ca2+ with an ionophore enhanced the migration. We further found that the ionophore treatment increased the active form of the small GTPase Rac1 in these cells. Our results suggest that transient intracellular Ca2+ signals play an essential role in the active cell migration during gastrulation.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takamasa S Yamamoto
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
20
|
Nikolopoulou E, Galea GL, Rolo A, Greene NDE, Copp AJ. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 2017; 144:552-566. [PMID: 28196803 DOI: 10.1242/dev.145904] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neural tube closure has been studied for many decades, across a range of vertebrates, as a paradigm of embryonic morphogenesis. Neurulation is of particular interest in view of the severe congenital malformations - 'neural tube defects' - that result when closure fails. The process of neural tube closure is complex and involves cellular events such as convergent extension, apical constriction and interkinetic nuclear migration, as well as precise molecular control via the non-canonical Wnt/planar cell polarity pathway, Shh/BMP signalling, and the transcription factors Grhl2/3, Pax3, Cdx2 and Zic2. More recently, biomechanical inputs into neural tube morphogenesis have also been identified. Here, we review these cellular, molecular and biomechanical mechanisms involved in neural tube closure, based on studies of various vertebrate species, focusing on the most recent advances in the field.
Collapse
Affiliation(s)
- Evanthia Nikolopoulou
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Gabriel L Galea
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Ana Rolo
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
21
|
Galea GL, Cho YJ, Galea G, Molè MA, Rolo A, Savery D, Moulding D, Culshaw LH, Nikolopoulou E, Greene NDE, Copp AJ. Biomechanical coupling facilitates spinal neural tube closure in mouse embryos. Proc Natl Acad Sci U S A 2017; 114:E5177-E5186. [PMID: 28607062 PMCID: PMC5495245 DOI: 10.1073/pnas.1700934114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neural tube (NT) formation in the spinal region of the mammalian embryo involves a wave of "zippering" that passes down the elongating spinal axis, uniting the neural fold tips in the dorsal midline. Failure of this closure process leads to open spina bifida, a common cause of severe neurologic disability in humans. Here, we combined a tissue-level strain-mapping workflow with laser ablation of live-imaged mouse embryos to investigate the biomechanics of mammalian spinal closure. Ablation of the zippering point at the embryonic dorsal midline causes far-reaching, rapid separation of the elevating neural folds. Strain analysis revealed tissue expansion around the zippering point after ablation, but predominant tissue constriction in the caudal and ventral neural plate zone. This zone is biomechanically coupled to the zippering point by a supracellular F-actin network, which includes an actin cable running along the neural fold tips. Pharmacologic inhibition of F-actin or laser ablation of the cable causes neural fold separation. At the most advanced somite stages, when completion of spinal closure is imminent, the cable forms a continuous ring around the neuropore, and simultaneously, a new caudal-to-rostral zippering point arises. Laser ablation of this new closure initiation point causes neural fold separation, demonstrating its biomechanical activity. Failure of spinal closure in pre-spina bifida Zic2Ku mutant embryos is associated with altered tissue biomechanics, as indicated by greater neuropore widening after ablation. Thus, this study identifies biomechanical coupling of the entire region of active spinal neurulation in the mouse embryo as a prerequisite for successful NT closure.
Collapse
Affiliation(s)
- Gabriel L Galea
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom;
| | - Young-June Cho
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Gauden Galea
- Division of Noncommunicable Diseases and Promoting Health Through the Life Course, World Health Organization Regional Office for Europe, Copenhagen DK-2100, Denmark
| | - Matteo A Molè
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Ana Rolo
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Dawn Savery
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Dale Moulding
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Lucy H Culshaw
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Evanthia Nikolopoulou
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| |
Collapse
|
22
|
Morita H, Grigolon S, Bock M, Krens SFG, Salbreux G, Heisenberg CP. The Physical Basis of Coordinated Tissue Spreading in Zebrafish Gastrulation. Dev Cell 2017; 40:354-366.e4. [PMID: 28216382 PMCID: PMC5364273 DOI: 10.1016/j.devcel.2017.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 12/18/2016] [Accepted: 01/20/2017] [Indexed: 11/21/2022]
Abstract
Embryo morphogenesis relies on highly coordinated movements of different tissues. However, remarkably little is known about how tissues coordinate their movements to shape the embryo. In zebrafish embryogenesis, coordinated tissue movements first become apparent during "doming," when the blastoderm begins to spread over the yolk sac, a process involving coordinated epithelial surface cell layer expansion and mesenchymal deep cell intercalations. Here, we find that active surface cell expansion represents the key process coordinating tissue movements during doming. By using a combination of theory and experiments, we show that epithelial surface cells not only trigger blastoderm expansion by reducing tissue surface tension, but also drive blastoderm thinning by inducing tissue contraction through radial deep cell intercalations. Thus, coordinated tissue expansion and thinning during doming relies on surface cells simultaneously controlling tissue surface tension and radial tissue contraction.
Collapse
Affiliation(s)
- Hitoshi Morita
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Silvia Grigolon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Martin Bock
- Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - S F Gabriel Krens
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Guillaume Salbreux
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany.
| | | |
Collapse
|
23
|
Suzuki M, Sato M, Koyama H, Hara Y, Hayashi K, Yasue N, Imamura H, Fujimori T, Nagai T, Campbell RE, Ueno N. Distinct intracellular Ca 2+ dynamics regulate apical constriction and differentially contribute to neural tube closure. Development 2017; 144:1307-1316. [PMID: 28219946 DOI: 10.1242/dev.141952] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/07/2017] [Indexed: 01/24/2023]
Abstract
Early in the development of the central nervous system, progenitor cells undergo a shape change, called apical constriction, that triggers the neural plate to form a tubular structure. How apical constriction in the neural plate is controlled and how it contributes to tissue morphogenesis are not fully understood. In this study, we show that intracellular calcium ions (Ca2+) are required for Xenopus neural tube formation and that there are two types of Ca2+-concentration changes, a single-cell and a multicellular wave-like fluctuation, in the developing neural plate. Quantitative imaging analyses revealed that transient increases in Ca2+ concentration induced cortical F-actin remodeling, apical constriction and accelerations of the closing movement of the neural plate. We also show that extracellular ATP and N-cadherin (cdh2) participate in the Ca2+-induced apical constriction. Furthermore, our mathematical model suggests that the effect of Ca2+ fluctuations on tissue morphogenesis is independent of fluctuation frequency and that fluctuations affecting individual cells are more efficient than those at the multicellular level. We propose that distinct Ca2+ signaling patterns differentially modulate apical constriction for efficient epithelial folding and that this mechanism has a broad range of physiological outcomes.
Collapse
Affiliation(s)
- Makoto Suzuki
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan .,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| | - Masanao Sato
- Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan.,Division of Developmental Genetics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Biodesign Research, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hiroshi Koyama
- Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan.,Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yusuke Hara
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| | - Kentaro Hayashi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| | - Naoko Yasue
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Hiromi Imamura
- Department of Functional Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshihiko Fujimori
- Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan.,Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan .,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| |
Collapse
|
24
|
D. S. V, L. A. D. Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube. Birth Defects Res 2017; 109:153-168. [PMID: 27620928 PMCID: PMC9972508 DOI: 10.1002/bdra.23557] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural tube defects arise from mechanical failures in the process of neurulation. At the most fundamental level, formation of the neural tube relies on coordinated, complex tissue movements that mechanically transform the flat neural epithelium into a lumenized epithelial tube (Davidson, 2012). The nature of this mechanical transformation has mystified embryologists, geneticists, and clinicians for more than 100 years. Early embryologists pondered the physical mechanisms that guide this transformation. Detailed observations of cell and tissue movements as well as experimental embryological manipulations allowed researchers to generate and test elementary hypotheses of the intrinsic and extrinsic forces acting on the neural tissue. Current research has turned toward understanding the molecular mechanisms underlying neurulation. Genetic and molecular perturbation have identified a multitude of subcellular components that correlate with cell behaviors and tissue movements during neural tube formation. In this review, we focus on methods and conceptual frameworks that have been applied to the study of amphibian neurulation that can be used to determine how molecular and physical mechanisms are integrated and responsible for neurulation. We will describe how qualitative descriptions and quantitative measurements of strain, force generation, and tissue material properties as well as simulations can be used to understand how embryos use morphogenetic programs to drive neurulation. Birth Defects Research 109:153-168, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vijayraghavan D. S.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260
| | - Davidson L. A.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260,Department of Developmental Biology, School of Medicine, University of Pittsburgh Pittsburgh, PA 15213,Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
25
|
Negishi T, Miyazaki N, Murata K, Yasuo H, Ueno N. Physical association between a novel plasma-membrane structure and centrosome orients cell division. eLife 2016; 5:e16550. [PMID: 27502556 PMCID: PMC4978527 DOI: 10.7554/elife.16550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023] Open
Abstract
In the last mitotic division of the epidermal lineage in the ascidian embryo, the cells divide stereotypically along the anterior-posterior axis. During interphase, we found that a unique membrane structure invaginates from the posterior to the centre of the cell, in a microtubule-dependent manner. The invagination projects toward centrioles on the apical side of the nucleus and associates with one of them. Further, a cilium forms on the posterior side of the cell and its basal body remains associated with the invagination. A laser ablation experiment suggests that the invagination is under tensile force and promotes the posterior positioning of the centrosome. Finally, we showed that the orientation of the invaginations is coupled with the polarized dynamics of centrosome movements and the orientation of cell division. Based on these findings, we propose a model whereby this novel membrane structure orchestrates centrosome positioning and thus the orientation of cell division axis.
Collapse
Affiliation(s)
- Takefumi Negishi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Laboratoire de Biologie du Développement de Villefranche-sur-mer UMR7009, Observatoire Océanologique, Sorbonne Universités, UPMC Université Paris 06, CNRS, Villefranche-sur-Mer, France
| | - Naoyuki Miyazaki
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-mer UMR7009, Observatoire Océanologique, Sorbonne Universités, UPMC Université Paris 06, CNRS, Villefranche-sur-Mer, France
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
26
|
Inoue Y, Suzuki M, Watanabe T, Yasue N, Tateo I, Adachi T, Ueno N. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus. Biomech Model Mechanobiol 2016; 15:1733-1746. [PMID: 27193152 PMCID: PMC5106510 DOI: 10.1007/s10237-016-0794-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/02/2016] [Indexed: 01/18/2023]
Abstract
Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.
Collapse
Affiliation(s)
- Yasuhiro Inoue
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Makoto Suzuki
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Tadashi Watanabe
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Naoko Yasue
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Itsuki Tateo
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Taiji Adachi
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Naoto Ueno
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| |
Collapse
|
27
|
Araya C, Carmona-Fontaine C, Clarke JDW. Extracellular matrix couples the convergence movements of mesoderm and neural plate during the early stages of neurulation. Dev Dyn 2016; 245:580-9. [PMID: 26933766 DOI: 10.1002/dvdy.24401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/01/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND During the initial stages zebrafish neurulation, neural plate cells undergo highly coordinated movements before they assemble into a multicellular solid neural rod. We have previously identified that the underlying mesoderm is critical to ensure such coordination and generate correct neural tube organization. However, how intertissue coordination is achieved in vivo during zebrafish neural tube morphogenesis is unknown. RESULTS In this work, we use quantitative live imaging to study the coordinated movements of neural ectoderm and mesoderm during dorsal tissue convergence. We show the extracellular matrix components laminin and fibronectin that lie between mesoderm and neural plate act to couple the movements of neural plate and mesoderm during early stages of neurulation and to maintain the close apposition of these two tissues. CONCLUSIONS Our study highlights the importance of the extracellular matrix proteins laminin and libronectin in coupling the movements and spatial proximity of mesoderm and neuroectoderm during the morphogenetic movements of neurulation. Developmental Dynamics 245:580-589, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile.,MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London, United Kingdom
| | - Carlos Carmona-Fontaine
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Jonathan D W Clarke
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London, United Kingdom
| |
Collapse
|
28
|
Ray HJ, Niswander LA. Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure. Development 2016; 143:1192-204. [PMID: 26903501 DOI: 10.1242/dev.129825] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/16/2016] [Indexed: 12/29/2022]
Abstract
The transcription factor grainyhead-like 2 (GRHL2) is expressed in non-neural ectoderm (NNE) and Grhl2 loss results in fully penetrant cranial neural tube defects (NTDs) in mice. GRHL2 activates expression of several epithelial genes; however, additional molecular targets and functional processes regulated by GRHL2 in the NNE remain to be determined, as well as the underlying cause of the NTDs in Grhl2 mutants. Here, we find that Grhl2 loss results in abnormal mesenchymal phenotypes in the NNE, including aberrant vimentin expression and increased cellular dynamics that affects the NNE and neural crest cells. The resulting loss of NNE integrity contributes to an inability of the cranial neural folds to move toward the midline and results in NTD. Further, we identified Esrp1, Sostdc1, Fermt1, Tmprss2 and Lamc2 as novel NNE-expressed genes that are downregulated in Grhl2 mutants. Our in vitro assays show that they act as suppressors of the epithelial-to-mesenchymal transition (EMT). Thus, GRHL2 promotes the epithelial nature of the NNE during the dynamic events of neural tube formation by both activating key epithelial genes and actively suppressing EMT through novel downstream EMT suppressors.
Collapse
Affiliation(s)
- Heather J Ray
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Lee A Niswander
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
29
|
Araya C, Ward LC, Girdler GC, Miranda M. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis. Dev Dyn 2015; 245:197-208. [PMID: 26177834 DOI: 10.1002/dvdy.24304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/15/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022] Open
Abstract
The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile.,UACh Program in Cellular Dynamics and Microscopy.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), UACh
| | - Laura C Ward
- University of Bristol, School of Physiology and Pharmacology, Medical Sciences, University Walk, Bristol, United Kingdom
| | - Gemma C Girdler
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, United Kingdom
| | - Miguel Miranda
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile
| |
Collapse
|
30
|
Kondo T, Hayashi S. Mechanisms of cell height changes that mediate epithelial invagination. Dev Growth Differ 2015; 57:313-23. [DOI: 10.1111/dgd.12224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/24/2015] [Accepted: 04/26/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Takefumi Kondo
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Kobe Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Kobe Japan
- Department of Biology; Kobe University Graduate School of Science; Kobe Japan
| |
Collapse
|
31
|
Hashimoto H, Robin FB, Sherrard KM, Munro EM. Sequential contraction and exchange of apical junctions drives zippering and neural tube closure in a simple chordate. Dev Cell 2015; 32:241-55. [PMID: 25625209 DOI: 10.1016/j.devcel.2014.12.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 11/07/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
Abstract
Unidirectional zippering is a key step in neural tube closure that remains poorly understood. Here, we combine experimental and computational approaches to identify the mechanism for zippering in a basal chordate, Ciona intestinalis. We show that myosin II is activated sequentially from posterior to anterior along the neural/epidermal (Ne/Epi) boundary just ahead of the advancing zipper. This promotes rapid shortening of Ne/Epi junctions, driving the zipper forward and drawing the neural folds together. Cell contact rearrangements (Ne/Epi + Ne/Epi → Ne/Ne + Epi/Epi) just behind the zipper lower tissue resistance to zipper progression by allowing transiently stretched cells to detach and relax toward isodiametric shapes. Computer simulations show that measured differences in junction tension, timing of primary contractions, and delay before cell detachment are sufficient to explain the speed and direction of zipper progression and highlight key advantages of a sequential contraction mechanism for robust efficient zippering.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Francois B Robin
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Kristin M Sherrard
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin M Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
32
|
Maartens AP, Brown NH. Anchors and signals: the diverse roles of integrins in development. Curr Top Dev Biol 2015; 112:233-72. [PMID: 25733142 DOI: 10.1016/bs.ctdb.2014.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integrins mediate cell adhesion by providing a link between the actin cytoskeleton and the extracellular matrix. As well as acting to anchor cells, integrin adhesions provide sensory input via mechanotransduction and synergism with signaling pathways, and provide the cell with the conditions necessary for differentiation in a permissive manner. In this review, we explore how integrins contribute to development, and what this tells us about how they work. From a signaling perspective, the influence of integrins on cell viability and fate is muted in a developmental context as compared to cell culture. Integrin phenotypes tend to arise from a failure of normally specified cells to create tissues properly, due to defective adhesion. The diversity of integrin functions in development shows how cell adhesion is continuously adjusted, both within and between animals, to fit developmental purpose.
Collapse
Affiliation(s)
- Aidan P Maartens
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
33
|
Ikeuchi M, Igarashi H, Okada K, Tsukaya H. Acropetal leaflet initiation of Eschscholzia californica is achieved by constant spacing of leaflets and differential growth of leaf. PLANTA 2014; 240:125-35. [PMID: 24718490 DOI: 10.1007/s00425-014-2071-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/24/2014] [Indexed: 05/24/2023]
Abstract
In compound leaves, leaflet primordia are initiated directionally along the lateral sides. Our understanding of the molecular basis of leaflet initiation has improved, but the regulatory mechanisms underlying spatio-temporal patterns remain unclear. In this study, we investigated the mechanisms of acropetal (from the base to the tip) progression of leaflet initiation in Eschscholzia californica. We established an ultraviolet-laser ablation system to manipulate compound-leaf development. Local ablation at the leaflet incipient site generated leaves with asymmetric morphology. In the majority of cases, leaflets that were initiated on the ablated sides shifted apically. Finite time-course observation revealed that the timing of leaflet initiation was delayed, but the distance from the leaf tip did not decrease. These results were suggestive of the local spacing mechanism in leaflet initiation, whereby the distance from the leaf tip and adjacent pre-existing leaflet determines the position of leaflet initiation. To understand how such a local patterning mechanism generates a global pattern of successive leaflet initiation, we assessed the growth rate gradient along the apical-basal axis. Our time-course analysis revealed differential growth rates along the apical-basal axis of the leaf, which can explain the acropetal progression of leaflet initiation. We propose that a leaflet is initiated at a site where the distances from pre-existing leaflets and the leaf tip are sufficient. Furthermore, the differential growth rate may be a developmental factor underlying the directionality of leaflet initiation.
Collapse
Affiliation(s)
- Momoko Ikeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | |
Collapse
|
34
|
Araya C, Tawk M, Girdler GC, Costa M, Carmona-Fontaine C, Clarke JD. Mesoderm is required for coordinated cell movements within zebrafish neural plate in vivo. Neural Dev 2014; 9:9. [PMID: 24755297 PMCID: PMC4022452 DOI: 10.1186/1749-8104-9-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 04/01/2014] [Indexed: 01/24/2023] Open
Abstract
Background Morphogenesis of the zebrafish neural tube requires the coordinated movement of many cells in both time and space. A good example of this is the movement of the cells in the zebrafish neural plate as they converge towards the dorsal midline before internalizing to form a neural keel. How these cells are regulated to ensure that they move together as a coherent tissue is unknown. Previous work in other systems has suggested that the underlying mesoderm may play a role in this process but this has not been shown directly in vivo. Results Here we analyze the roles of subjacent mesoderm in the coordination of neural cell movements during convergence of the zebrafish neural plate and neural keel formation. Live imaging demonstrates that the normal highly coordinated movements of neural plate cells are lost in the absence of underlying mesoderm and the movements of internalization and neural tube formation are severely disrupted. Despite this, neuroepithelial polarity develops in the abnormal neural primordium but the resulting tissue architecture is very disorganized. Conclusions We show that the movements of cells in the zebrafish neural plate are highly coordinated during the convergence and internalization movements of neurulation. Our results demonstrate that the underlying mesoderm is required for these coordinated cell movements in the zebrafish neural plate in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Jonathan Dw Clarke
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London SE1 1UL, UK.
| |
Collapse
|
35
|
Hara Y, Nagayama K, Yamamoto TS, Matsumoto T, Suzuki M, Ueno N. Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation. Dev Biol 2013; 382:482-95. [PMID: 23933171 DOI: 10.1016/j.ydbio.2013.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/15/2013] [Accepted: 07/27/2013] [Indexed: 12/17/2022]
Abstract
Gastrulation is a dynamic tissue-remodeling process occurring during early development and fundamental to the later organogenesis. It involves both chemical signals and physical factors. Although much is known about the molecular pathways involved, the roles of physical forces in regulating cellular behavior and tissue remodeling during gastrulation have just begun to be explored. Here, we characterized the force generated by the leading edge mesoderm (LEM) that migrates preceding axial mesoderm (AM), and investigated the contribution of LEM during Xenopus gastrulation. First, we constructed an assay system using micro-needle which could measure physical forces generated by the anterior migration of LEM, and estimated the absolute magnitude of the force to be 20-80nN. Second, laser ablation experiments showed that LEM could affect the force distribution in the AM (i.e. LEM adds stretch force on axial mesoderm along anterior-posterior axis). Third, migrating LEM was found to be necessary for the proper gastrulation cell movements and the establishment of organized notochord structure; a reduction of LEM migratory activity resulted in the disruption of mediolateral cell orientation and convergence in AM. Finally, we found that LEM migration cooperates with Wnt/PCP to form proper notochord. These results suggest that the force generated by the directional migration of LEM is transmitted to AM and assists the tissue organization of notochord in vivo independently of the regulation by Wnt/PCP. We propose that the LEM may have a mechanical role in aiding the AM elongation through the rearrangement of force distribution in the dorsal marginal zone.
Collapse
Affiliation(s)
- Yusuke Hara
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Escobedo N, Contreras O, Muñoz R, Farías M, Carrasco H, Hill C, Tran U, Pryor SE, Wessely O, Copp AJ, Larraín J. Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity. Development 2013; 140:3008-17. [PMID: 23760952 PMCID: PMC3699283 DOI: 10.1242/dev.091173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Syndecan 4 (Sdc4) is a cell-surface heparan sulfate proteoglycan (HSPG) that regulates gastrulation, neural tube closure and directed neural crest migration in Xenopus development. To determine whether Sdc4 participates in Wnt/PCP signaling during mouse development, we evaluated a possible interaction between a null mutation of Sdc4 and the loop-tail allele of Vangl2. Sdc4 is expressed in multiple tissues, but particularly in the non-neural ectoderm, hindgut and otic vesicles. Sdc4;Vangl2Lp compound mutant mice have defective spinal neural tube closure, disrupted orientation of the stereocilia bundles in the cochlea and delayed wound healing, demonstrating a strong genetic interaction. In Xenopus, co-injection of suboptimal amounts of Sdc4 and Vangl2 morpholinos resulted in a significantly greater proportion of embryos with defective neural tube closure than each individual morpholino alone. To probe the mechanism of this interaction, we overexpressed or knocked down Vangl2 function in HEK293 cells. The Sdc4 and Vangl2 proteins colocalize, and Vangl2, particularly the Vangl2Lp mutant form, diminishes Sdc4 protein levels. Conversely, Vangl2 knockdown enhances Sdc4 protein levels. Overall HSPG steady-state levels were regulated by Vangl2, suggesting a molecular mechanism for the genetic interaction in which Vangl2Lp/+ enhances the Sdc4-null phenotype. This could be mediated via heparan sulfate residues, as Vangl2Lp/+ embryos fail to initiate neural tube closure and develop craniorachischisis (usually seen only in Vangl2Lp/Lp) when cultured in the presence of chlorate, a sulfation inhibitor. These results demonstrate that Sdc4 can participate in the Wnt/PCP pathway, unveiling its importance during neural tube closure in mammalian embryos.
Collapse
Affiliation(s)
- Noelia Escobedo
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340 Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Massarwa R, Ray HJ, Niswander L. Morphogenetic movements in the neural plate and neural tube: mouse. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:59-68. [DOI: 10.1002/wdev.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- R'ada Massarwa
- Department of Molecular Genetics; The Weizmann Institute of Science; Rehovot Israel
| | - Heather J. Ray
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program; University of Colorado School of Medicine and Children's Hospital Colorado; Aurora CO USA
| | - Lee Niswander
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program; University of Colorado School of Medicine and Children's Hospital Colorado; Aurora CO USA
| |
Collapse
|
38
|
Takagi C, Sakamaki K, Morita H, Hara Y, Suzuki M, Kinoshita N, Ueno N. Transgenic Xenopus laevis for live imaging in cell and developmental biology. Dev Growth Differ 2013; 55:422-33. [PMID: 23480392 DOI: 10.1111/dgd.12042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 01/28/2023]
Abstract
The stable transgenesis of genes encoding functional or spatially localized proteins, fused to fluorescent proteins such as green fluorescent protein (GFP) or red fluorescent protein (RFP), is an extremely important research tool in cell and developmental biology. Transgenic organisms constructed with fluorescent labels for cell membranes, subcellular organelles, and functional proteins have been used to investigate cell cycles, lineages, shapes, and polarity, in live animals and in cells or tissues derived from these animals. Genes of interest have been integrated and maintained in generations of transgenic animals, which have become a valuable resource for the cell and developmental biology communities. Although the use of Xenopus laevis as a transgenic model organism has been hampered by its relatively long reproduction time (compared to Drosophila melanogaster and Caenorhabditis elegans), its large embryonic cells and the ease of manipulation in early embryos have made it a historically valuable preparation that continues to have tremendous research potential. Here, we report on the Xenopus laevis transgenic lines our lab has generated and discuss their potential use in biological imaging.
Collapse
Affiliation(s)
- Chiyo Takagi
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Wallingford JB, Niswander LA, Shaw GM, Finnell RH. The continuing challenge of understanding, preventing, and treating neural tube defects. Science 2013; 339:1222002. [PMID: 23449594 DOI: 10.1126/science.1222002] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human birth defects are a major public health burden: The Center for Disease Control estimates that 1 of every 33 United States newborns presents with a birth defect, and worldwide the estimate approaches 6% of all births. Among the most common and debilitating of human birth defects are those affecting the formation of the neural tube, the precursor to the central nervous system. Neural tube defects (NTDs) arise from a complex combination of genetic and environmental interactions. Although substantial advances have been made in the prevention and treatment of these malformations, NTDs remain a substantial public health problem, and we are only now beginning to understand their etiology. Here, we review the process of neural tube development and how defects in this process lead to NTDs, both in humans and in the animal models that serve to inform our understanding of these processes. The insights we are gaining will help generate new intervention strategies to tackle the clinical challenges and to alleviate the personal and societal burdens that accompany these defects.
Collapse
Affiliation(s)
- John B Wallingford
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
40
|
Suzuki M, Morita H, Ueno N. Molecular mechanisms of cell shape changes that contribute to vertebrate neural tube closure. Dev Growth Differ 2012; 54:266-76. [DOI: 10.1111/j.1440-169x.2012.01346.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Hitoshi Morita
- Division of Morphogenesis; Department of Developmental Biology; National Institute for Basic Biology; Nishigonaka 38, Myodaiji; Okazaki; 444-8585; Aichi; Japan
| | | |
Collapse
|