1
|
Andrews TGR, Priya R. The Mechanics of Building Functional Organs. Cold Spring Harb Perspect Biol 2025; 17:a041520. [PMID: 38886066 PMCID: PMC7616527 DOI: 10.1101/cshperspect.a041520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Organ morphogenesis is multifaceted, multiscale, and fundamentally a robust process. Despite the complex and dynamic nature of embryonic development, organs are built with reproducible size, shape, and function, allowing them to support organismal growth and life. This striking reproducibility of tissue form exists because morphogenesis is not entirely hardwired. Instead, it is an emergent product of mechanochemical information flow, operating across spatial and temporal scales-from local cellular deformations to organ-scale form and function, and back. In this review, we address the mechanical basis of organ morphogenesis, as understood by observations and experiments in living embryos. To this end, we discuss how mechanical information controls the emergence of a highly conserved set of structural motifs that shape organ architectures across the animal kingdom: folds and loops, tubes and lumens, buds, branches, and networks. Moving forward, we advocate for a holistic conceptual framework for the study of organ morphogenesis, which rests on an interdisciplinary toolkit and brings the embryo center stage.
Collapse
Affiliation(s)
| | - Rashmi Priya
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
2
|
Heikes KL, Goldstein B. Expression patterns of FGF and BMP pathway genes in the tardigrade Hypsibius exemplaris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577774. [PMID: 38352320 PMCID: PMC10862696 DOI: 10.1101/2024.01.29.577774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
A small number of conserved signaling pathways regulate development of most animals, yet we do not know where these pathways are deployed in most embryos. This includes tardigrades, a phylum with a unique body shape. We examined expression patterns of components of the BMP and FGF signaling pathways during embryonic segmentation and mesoderm development of the tardigrade Hypsibius exemplaris. Among the patterns examined, we found that an FGF ligand gene is expressed in ectodermal segment posteriors and an FGF receptor gene is expressed in underlying endomesodermal pouches, suggesting possible FGF signaling between these developing germ layers. We found that a BMP ligand gene is expressed in lateral ectoderm and dorsolateral bands along segment posteriors, while the BMP antagonist Sog gene is expressed in lateral ectoderm and also in a subset of endomesodermal cells, suggesting a possible role of BMP signaling in dorsal-ventral patterning of lateral ectoderm. In combination with known roles of these pathways during development of common model systems, we developed hypotheses for how the BMP and FGF pathways might regulate embryo segmentation and mesoderm formation of the tardigrade H. exemplaris. These results identify the expression patterns of genes from two conserved signaling pathways for the first time in the tardigrade phylum.
Collapse
Affiliation(s)
- Kira L. Heikes
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Naturale VF, Pickett MA, Feldman JL. Persistent cell contacts enable E-cadherin/HMR-1- and PAR-3-based symmetry breaking within a developing C. elegans epithelium. Dev Cell 2023; 58:1830-1846.e12. [PMID: 37552986 PMCID: PMC10592304 DOI: 10.1016/j.devcel.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/10/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Tissue-wide patterning is essential to multicellular development, requiring cells to individually generate polarity axes and coordinate them in space and time with neighbors. Using the C. elegans intestinal epithelium, we identified a patterning mechanism that is informed by cell contact lifetime asymmetry and executed via the scaffolding protein PAR-3 and the transmembrane protein E-cadherin/HMR-1. Intestinal cells break symmetry as PAR-3 and HMR-1 recruit apical determinants into punctate "local polarity complexes" (LPCs) at homotypic contacts. LPCs undergo an HMR-1-based migration to a common midline, thereby establishing tissue-wide polarity. Thus, symmetry breaking results from PAR-3-dependent intracellular polarization coupled to HMR-1-based tissue-level communication, which occurs through a non-adhesive signaling role for HMR-1. Differential lifetimes between homotypic and heterotypic cell contacts are created by neighbor exchanges and oriented divisions, patterning where LPCs perdure and thereby breaking symmetry. These cues offer a logical and likely conserved framework for how epithelia without obvious molecular asymmetries can polarize.
Collapse
Affiliation(s)
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Jafari G, Khan LA, Zhang H, Membreno E, Yan S, Dempsey G, Gobel V. Branched-chain actin dynamics polarizes vesicle trajectories and partitions apicobasal epithelial membrane domains. SCIENCE ADVANCES 2023; 9:eade4022. [PMID: 37379384 PMCID: PMC10306301 DOI: 10.1126/sciadv.ade4022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
In prevailing epithelial polarity models, membrane- and junction-based polarity cues such as the partitioning-defective PARs specify the positions of apicobasal membrane domains. Recent findings indicate, however, that intracellular vesicular trafficking can determine the position of the apical domain, upstream of membrane-based polarity cues. These findings raise the question of how vesicular trafficking becomes polarized independent of apicobasal target membrane domains. Here, we show that the apical directionality of vesicle trajectories depends on actin dynamics during de novo polarized membrane biogenesis in the C. elegans intestine. We find that actin, powered by branched-chain actin modulators, determines the polarized distribution of apical membrane components, PARs, and itself. Using photomodulation, we demonstrate that F-actin travels through the cytoplasm and along the cortex toward the future apical domain. Our findings support an alternative polarity model where actin-directed trafficking asymmetrically inserts the nascent apical domain into the growing epithelial membrane to partition apicobasal membrane domains.
Collapse
Affiliation(s)
- Gholamali Jafari
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Liakot A. Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Hongjie Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Edward Membreno
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Siyang Yan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Graham Dempsey
- Chemistry and Chemical Biology Department, Harvard University, Cambridge, MA, USA
| | - Verena Gobel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Crellin HA, Buckley CE. Using Optogenetics to Investigate the Shared Mechanisms of Apical-Basal Polarity and Mitosis. Cells Tissues Organs 2023; 213:161-180. [PMID: 36599311 DOI: 10.1159/000528796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking, and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation, and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as AB polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and AB polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.
Collapse
Affiliation(s)
- Helena A Crellin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Clare E Buckley
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Naturale VF, Pickett MA, Feldman JL. Context matters: Lessons in epithelial polarity from the Caenorhabditis elegans intestine and other tissues. Curr Top Dev Biol 2023; 154:37-71. [PMID: 37100523 DOI: 10.1016/bs.ctdb.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Epithelia are tissues with diverse morphologies and functions across metazoans, ranging from vast cell sheets encasing internal organs to internal tubes facilitating nutrient uptake, all of which require establishment of apical-basolateral polarity axes. While all epithelia tend to polarize the same components, how these components are deployed to drive polarization is largely context-dependent and likely shaped by tissue-specific differences in development and ultimate functions of polarizing primordia. The nematode Caenorhabditis elegans (C. elegans) offers exceptional imaging and genetic tools and possesses unique epithelia with well-described origins and roles, making it an excellent model to investigate polarity mechanisms. In this review, we highlight the interplay between epithelial polarization, development, and function by describing symmetry breaking and polarity establishment in a particularly well-characterized epithelium, the C. elegans intestine. We compare intestinal polarization to polarity programs in two other C. elegans epithelia, the pharynx and epidermis, correlating divergent mechanisms with tissue-specific differences in geometry, embryonic environment, and function. Together, we emphasize the importance of investigating polarization mechanisms against the backdrop of tissue-specific contexts, while also underscoring the benefits of cross-tissue comparisons of polarity.
Collapse
Affiliation(s)
- Victor F Naturale
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA, United States; Department of Biological Sciences, San José State University, San José, CA, United States
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
7
|
Rousselle P, Laigle C, Rousselet G. The basement membrane in epidermal polarity, stemness, and regeneration. Am J Physiol Cell Physiol 2022; 323:C1807-C1822. [PMID: 36374168 DOI: 10.1152/ajpcell.00069.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermis is a specialized epithelium that constitutes the outermost layer of the skin, and it provides a protective barrier against environmental assaults. Primarily consisting of multilayered keratinocytes, the epidermis is continuously renewed by proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. Basal keratinocytes rest on a basement membrane at the dermal-epidermal junction that is composed of specific extracellular matrix proteins organized into interactive and mechanically supportive networks. Firm attachment of basal keratinocytes, and their dynamic regulation via focal adhesions and hemidesmosomes, is essential for maintaining major skin processes, such as self-renewal, barrier function, and resistance to physical and chemical stresses. The adhesive integrin receptors expressed by epidermal cells serve structural, signaling, and mechanosensory roles that are critical for epidermal cell anchorage and tissue homeostasis. More specifically, the basement membrane components play key roles in preserving the stem cell pool, and establishing cell polarity cues enabling asymmetric cell divisions, which result in the transition from a proliferative basal cell layer to suprabasal cells committed to terminal differentiation. Finally, through a well-regulated sequence of synthesis and remodeling, the components of the dermal-epidermal junction play an essential role in regeneration of the epidermis during skin healing. Here too, they provide biological and mechanical signals that are essential to the restoration of barrier function.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Chloé Laigle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Gaelle Rousselet
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| |
Collapse
|
8
|
Cote LE, Feldman JL. Won't You be My Neighbor: How Epithelial Cells Connect Together to Build Global Tissue Polarity. Front Cell Dev Biol 2022; 10:887107. [PMID: 35800889 PMCID: PMC9253303 DOI: 10.3389/fcell.2022.887107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues form continuous barriers to protect against external environments. Within these tissues, epithelial cells build environment-facing apical membranes, junction complexes that anchor neighbors together, and basolateral surfaces that face other cells. Critically, to form a continuous apical barrier, neighboring epithelial cells must align their apico-basolateral axes to create global polarity along the entire tissue. Here, we will review mechanisms of global tissue-level polarity establishment, with a focus on how neighboring epithelial cells of different origins align their apical surfaces. Epithelial cells with different developmental origins and/or that polarize at different times and places must align their respective apico-basolateral axes. Connecting different epithelial tissues into continuous sheets or tubes, termed epithelial fusion, has been most extensively studied in cases where neighboring cells initially dock at an apical-to-apical interface. However, epithelial cells can also meet basal-to-basal, posing several challenges for apical continuity. Pre-existing basement membrane between the tissues must be remodeled and/or removed, the cells involved in docking are specialized, and new cell-cell adhesions are formed. Each of these challenges can involve changes to apico-basolateral polarity of epithelial cells. This minireview highlights several in vivo examples of basal docking and how apico-basolateral polarity changes during epithelial fusion. Understanding the specific molecular mechanisms of basal docking is an area ripe for further exploration that will shed light on complex morphogenetic events that sculpt developing organisms and on the cellular mechanisms that can go awry during diseases involving the formation of cysts, fistulas, atresias, and metastases.
Collapse
|
9
|
The basement membrane controls size and integrity of the Drosophila tracheal tubes. Cell Rep 2022; 39:110734. [PMID: 35476979 DOI: 10.1016/j.celrep.2022.110734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Biological tubes are fundamental units of most metazoan organs. Their defective morphogenesis can cause malformations and pathologies. An integral component of biological tubes is the extracellular matrix, present apically (aECM) and basally (BM). Studies using the Drosophila tracheal system established an essential function for the aECM in tubulogenesis. Here, we demonstrate that the BM also plays a critical role in this process. We find that BM components are deposited in a spatial-temporal manner in the trachea. We show that laminins, core BM components, control size and shape of tracheal tubes and their topology within the embryo. At a cellular level, laminins control cell shape changes and distribution of the cortical cytoskeleton component α-spectrin. Finally, we report that the BM and aECM act independently-yet cooperatively-to control tube elongation and together to guarantee tissue integrity. Our results unravel key roles for the BM in shaping, positioning, and maintaining biological tubes.
Collapse
|
10
|
Pitsidianaki I, Morgan J, Adams J, Campbell K. Mesenchymal-to-epithelial transitions require tissue-specific interactions with distinct laminins. THE JOURNAL OF CELL BIOLOGY 2021; 220:212200. [PMID: 34047771 PMCID: PMC8167899 DOI: 10.1083/jcb.202010154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023]
Abstract
Mesenchymal-to-epithelial transition (MET) converts cells from migratory mesenchymal to polarized epithelial states. Despite its importance for both normal and pathological processes, very little is known about the regulation of MET in vivo. Here we exploit midgut morphogenesis in Drosophila melanogaster to investigate the mechanisms underlying MET. We show that down-regulation of the EMT transcription factor Serpent is required for MET, but not sufficient, as interactions with the surrounding mesoderm are also essential. We find that midgut MET relies on the secretion of specific laminins via the CopII secretory pathway from both mesoderm and midgut cells. We show that secretion of the laminin trimer containing the Wingblister α-subunit from the mesoderm is an upstream cue for midgut MET, leading to basal polarization of αPS1 integrin in midgut cells. Polarized αPS1 is required for the formation of a monolayered columnar epithelium and for the apical polarization of αPS3, Baz, and E-Cad. Secretion of a distinct LamininA-containing trimer from midgut cells is required to reinforce the localization of αPS1 basally, and αPS3 apically, for robust repolarization. Our data suggest that targeting these MET pathways, in conjunction with therapies preventing EMT, may present a two-pronged strategy toward blocking metastasis in cancer.
Collapse
Affiliation(s)
- Ioanna Pitsidianaki
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Jason Morgan
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Jamie Adams
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Kyra Campbell
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Grimbert S, Mastronardi K, Richard V, Christensen R, Law C, Zardoui K, Fay D, Piekny A. Multi-tissue patterning drives anterior morphogenesis of the C. elegans embryo. Dev Biol 2021; 471:49-64. [PMID: 33309948 PMCID: PMC8597047 DOI: 10.1016/j.ydbio.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022]
Abstract
Complex structures derived from multiple tissue types are challenging to study in vivo, and our knowledge of how cells from different tissues are coordinated is limited. Model organisms have proven invaluable for improving our understanding of how chemical and mechanical cues between cells from two different tissues can govern specific morphogenetic events. Here we used Caenorhabditis elegans as a model system to show how cells from three different tissues are coordinated to give rise to the anterior lumen. While some aspects of pharyngeal morphogenesis have been well-described, it is less clear how cells from the pharynx, epidermis and neuroblasts coordinate to define the location of the anterior lumen and supporting structures. Using various microscopy and software approaches, we define the movements and patterns of these cells during anterior morphogenesis. Projections from the anterior-most pharyngeal cells (arcade cells) provide the first visible markers for the location of the future lumen, and facilitate patterning of the surrounding neuroblasts. These neuroblast patterns control the rate of migration of the anterior epidermal cells, whereas the epidermal cells ultimately reinforce and control the position of the future lumen, as they must join with the pharyngeal cells for their epithelialization. Our studies are the first to characterize anterior morphogenesis in C. elegans in detail and should lay the framework for identifying how these different patterns are controlled at the molecular level.
Collapse
Affiliation(s)
- Stéphanie Grimbert
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Karina Mastronardi
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Victoria Richard
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, NIH/NIBIB, 13 South Drive, Bethesda, MD, 20892, USA
| | - Christopher Law
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Khashayar Zardoui
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - David Fay
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA
| | - Alisa Piekny
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| |
Collapse
|
12
|
Vong KI, Ma TC, Li B, Leung TCN, Nong W, Ngai SM, Hui JHL, Jiang L, Kwan KM. SOX9-COL9A3-dependent regulation of choroid plexus epithelial polarity governs blood-cerebrospinal fluid barrier integrity. Proc Natl Acad Sci U S A 2021; 118:e2009568118. [PMID: 33526661 PMCID: PMC8017668 DOI: 10.1073/pnas.2009568118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The choroid plexus (CP) is an extensively vascularized neuroepithelial tissue that projects into the brain ventricles. The restriction of transepithelial transport across the CP establishes the blood-cerebrospinal fluid (CSF) barrier that is fundamental to the homeostatic regulation of the central nervous system microenvironment. However, the molecular mechanisms that control this process remain elusive. Here we show that the genetic ablation of Sox9 in the hindbrain CP results in a hyperpermeable blood-CSF barrier that ultimately upsets the CSF electrolyte balance and alters CSF protein composition. Mechanistically, SOX9 is required for the transcriptional up-regulation of Col9a3 in the CP epithelium. The reduction of Col9a3 expression dramatically recapitulates the blood-CSF barrier defects of Sox9 mutants. Loss of collagen IX severely disrupts the structural integrity of the epithelial basement membrane in the CP, leading to progressive loss of extracellular matrix components. Consequently, this perturbs the polarized microtubule dynamics required for correct orientation of apicobasal polarity and thereby impedes tight junction assembly in the CP epithelium. Our findings reveal a pivotal cascade of SOX9-dependent molecular events that is critical for construction of the blood-CSF barrier.
Collapse
Affiliation(s)
- Keng Ioi Vong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Tsz Ching Ma
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Baiying Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Thomas Chun Ning Leung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Sai Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jerome Ho Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Liwen Jiang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China;
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
13
|
Kunz P, Lehmann C, Pohl C. Differential Thresholds of Proteasome Activation Reveal Two Separable Mechanisms of Sensory Organ Polarization in C. elegans. Front Cell Dev Biol 2021; 9:619596. [PMID: 33634121 PMCID: PMC7900421 DOI: 10.3389/fcell.2021.619596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Cephalization is a major innovation of animal evolution and implies a synchronization of nervous system, mouth, and foregut polarization to align alimentary tract and sensomotoric system for effective foraging. However, the underlying integration of morphogenetic programs is poorly understood. Here, we show that invagination of neuroectoderm through de novo polarization and apical constriction creates the mouth opening in the Caenorhabditis elegans embryo. Simultaneously, all 18 juxta-oral sensory organ dendritic tips become symmetrically positioned around the mouth: While the two bilaterally symmetric amphid sensilla endings are towed to the mouth opening, labial and cephalic sensilla become positioned independently. Dendrite towing is enabled by the pre-polarized sensory amphid pores intercalating into the leading edge of the anteriorly migrating epidermal sheet, while apical constriction-mediated cell–cell re-arrangements mediate positioning of all other sensory organs. These two processes can be separated by gradual inactivation of the 26S proteasome activator, RPN-6.1. Moreover, RPN-6.1 also shows a dose-dependent requirement for maintenance of coordinated apical polarization of other organs with apical lumen, the pharynx, and the intestine. Thus, our data unveil integration of morphogenetic programs during the coordination of alimentary tract and sensory organ formation and suggest that this process requires tight control of ubiquitin-dependent protein degradation.
Collapse
Affiliation(s)
- Patricia Kunz
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Christina Lehmann
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Christian Pohl
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
14
|
Abstract
As multi-cellular organisms evolved from small clusters of cells to complex metazoans, biological tubes became essential for life. Tubes are typically thought of as mainly playing a role in transport, with the hollow space (lumen) acting as a conduit to distribute nutrients and waste, or for gas exchange. However, biological tubes also provide a platform for physiological, mechanical, and structural functions. Indeed, tubulogenesis is often a critical aspect of morphogenesis and organogenesis. C. elegans is made up of tubes that provide structural support and protection (the epidermis), perform the mechanical and enzymatic processes of digestion (the buccal cavity, pharynx, intestine, and rectum), transport fluids for osmoregulation (the excretory system), and execute the functions necessary for reproduction (the germline, spermatheca, uterus and vulva). Here we review our current understanding of the genetic regulation, molecular processes, and physical forces involved in tubulogenesis and morphogenesis of the epidermal, digestive and excretory systems in C. elegans.
Collapse
Affiliation(s)
- Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago-College of Medicine, Chicago, IL, United States.
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
15
|
Barnes KM, Fan L, Moyle MW, Brittin CA, Xu Y, Colón-Ramos DA, Santella A, Bao Z. Cadherin preserves cohesion across involuting tissues during C. elegans neurulation. eLife 2020; 9:e58626. [PMID: 33030428 PMCID: PMC7544503 DOI: 10.7554/elife.58626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The internalization of the central nervous system, termed neurulation in vertebrates, is a critical step in embryogenesis. Open questions remain regarding how force propels coordinated tissue movement during the process, and little is known as to how internalization happens in invertebrates. We show that in C. elegans morphogenesis, apical constriction in the retracting pharynx drives involution of the adjacent neuroectoderm. HMR-1/cadherin mediates this process via inter-tissue attachment, as well as cohesion within the neuroectoderm. Our results demonstrate that HMR-1 is capable of mediating embryo-wide reorganization driven by a centrally located force generator, and indicate a non-canonical use of cadherin on the basal side of an epithelium that may apply to vertebrate neurulation. Additionally, we highlight shared morphology and gene expression in tissues driving involution, which suggests that neuroectoderm involution in C. elegans is potentially homologous with vertebrate neurulation and thus may help elucidate the evolutionary origin of the brain.
Collapse
Affiliation(s)
- Kristopher M Barnes
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Graduate Program in Neuroscience, Weill Cornell MedicineNew YorkUnited States
| | - Li Fan
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Mark W Moyle
- Department of Neuroscience and Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
| | - Christopher A Brittin
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Yichi Xu
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of MedicineNew HavenUnited States
- Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto RicoSan JuanUnited States
| | - Anthony Santella
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Molecular Cytology Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Zhirong Bao
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
16
|
Keeley DP, Hastie E, Jayadev R, Kelley LC, Chi Q, Payne SG, Jeger JL, Hoffman BD, Sherwood DR. Comprehensive Endogenous Tagging of Basement Membrane Components Reveals Dynamic Movement within the Matrix Scaffolding. Dev Cell 2020; 54:60-74.e7. [PMID: 32585132 DOI: 10.1016/j.devcel.2020.05.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Basement membranes (BMs) are supramolecular matrices built on laminin and type IV collagen networks that provide structural and signaling support to tissues. BM complexity, however, has hindered an understanding of its formation, dynamics, and regulation. Using genome editing, we tagged 29 BM matrix components and receptors in C. elegans with mNeonGreen. Here, we report a common template that initiates BM formation, which rapidly diversifies during tissue differentiation. Through photobleaching studies, we show that BMs are not static-surprisingly, many matrix proteins move within the laminin and collagen scaffoldings. Finally, quantitative imaging, conditional knockdown, and optical highlighting indicate that papilin, a poorly studied glycoprotein, is the most abundant component in the gonadal BM, where it facilitates type IV collagen removal during BM expansion and tissue growth. Together, this work introduces methods for holistic investigation of BM regulation and reveals that BMs are highly dynamic and capable of rapid change to support tissues.
Collapse
Affiliation(s)
- Daniel P Keeley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Eric Hastie
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Sara G Payne
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Department of Cell Biology, Duke University, Box 3709, Durham, NC 27710, USA
| | - Jonathan L Jeger
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Regeneration Next Initiative, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
17
|
Loganathan R, Little CD, Rongish BJ. Extracellular matrix dynamics in tubulogenesis. Cell Signal 2020; 72:109619. [PMID: 32247774 DOI: 10.1016/j.cellsig.2020.109619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Biological tubes form in a variety of shapes and sizes. Tubular topology of cells and tissues is a widely recognizable histological feature of multicellular life. Fluid secretion, storage, transport, absorption, exchange, and elimination-processes central to metazoans-hinge on the exquisite tubular architectures of cells, tissues, and organs. In general, the apparent structural and functional complexity of tubular tissues and organs parallels the architectural and biophysical properties of their constitution, i.e., cells and the extracellular matrix (ECM). Together, cellular and ECM dynamics determine the developmental trajectory, topological characteristics, and functional efficacy of biological tubes. In this review of tubulogenesis, we highlight the multifarious roles of ECM dynamics-the less recognized and poorly understood morphogenetic counterpart of cellular dynamics. The ECM is a dynamic, tripartite composite spanning the luminal, abluminal, and interstitial space within the tubulogenic realm. The critical role of ECM dynamics in the determination of shape, size, and function of tubes is evinced by developmental studies across multiple levels-from morphological through molecular-in model tubular organs.
Collapse
Affiliation(s)
| | - Charles D Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Brenda J Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
18
|
Niche Cell Wrapping Ensures Primordial Germ Cell Quiescence and Protection from Intercellular Cannibalism. Curr Biol 2020; 30:708-714.e4. [PMID: 32008902 DOI: 10.1016/j.cub.2019.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 11/12/2019] [Accepted: 12/06/2019] [Indexed: 12/25/2022]
Abstract
Niche cells often wrap membrane extensions around stem cell surfaces. Niche wrapping has been proposed to retain stem cells in defined positions and affect signaling [e.g., 1, 2]. To test these hypotheses and uncover additional functions of wrapping, we investigated niche wrapping of primordial germ cells (PGCs) in the C. elegans embryonic gonad primordium. The gonad primordium contains two PGCs that are wrapped individually by two somatic gonad precursor cells (SGPs). SGPs are known to promote PGC survival during embryogenesis and exit from quiescence after hatching, although how they do so is unknown [3]. Here, we identify two distinct functions of SGP wrapping that are critical for PGC quiescence and survival. First, niche cell wrapping templates a laminin-based basement membrane around the gonad primordium. Laminin and the basement membrane receptor dystroglycan function to maintain niche cell wrapping, which is critical for normal gonad development. We find that laminin also preserves PGC quiescence during embryogenesis. Exit from quiescence following laminin depletion requires glp-1/Notch and is accompanied by inappropriate activation of the GLP-1 target sygl-1 in PGCs. Independent of basement membrane, SGP wrapping performs a second, crucial function to ensure PGC survival. Endodermal cells normally engulf and degrade large lobes extended by the PGCs [4]. When SGPs are absent, we show that endodermal cells can inappropriately engulf and cannibalize the PGC cell body. Our findings demonstrate how niche cell wrapping protects germ cells by manipulating their signaling environment and by shielding germ cells from unwanted cellular interactions that can compromise their survival.
Collapse
|
19
|
Bai X, Melesse M, Sorensen Turpin CG, Sloan DE, Chen CY, Wang WC, Lee PY, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen BC, Cheerambathur D, Bembenek JN. Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans. Development 2020; 147:dev.181099. [PMID: 31806662 PMCID: PMC6983721 DOI: 10.1242/dev.181099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Although cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant Caenorhabditis elegans embryonic divisions and found several parameters that are altered at different stages in a reproducible manner. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis, including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, we demonstrate that cytokinesis is implemented in a specialized way during epithelial polarization and that Aurora B has a role in the formation of the apical surface.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael Melesse
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Dillon E. Sloan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - James R. Simmons
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Nebenfuehr
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Mitchell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey R. Klebanow
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicholas Mattson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric Betzig
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
20
|
Jayadev R, Chi Q, Keeley DP, Hastie EL, Kelley LC, Sherwood DR. α-Integrins dictate distinct modes of type IV collagen recruitment to basement membranes. J Cell Biol 2019; 218:3098-3116. [PMID: 31387941 PMCID: PMC6719451 DOI: 10.1083/jcb.201903124] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023] Open
Abstract
Basement membranes (BMs) are cell-associated extracellular matrices that support tissue integrity, signaling, and barrier properties. Type IV collagen is critical for BM function, yet how it is directed into BMs in vivo is unclear. Through live-cell imaging of endogenous localization, conditional knockdown, and misexpression experiments, we uncovered distinct mechanisms of integrin-mediated collagen recruitment to Caenorhabditis elegans postembryonic gonadal and pharyngeal BMs. The putative laminin-binding αINA-1/βPAT-3 integrin was selectively activated in the gonad and recruited laminin, which directed moderate collagen incorporation. In contrast, the putative Arg-Gly-Asp (RGD)-binding αPAT-2/βPAT-3 integrin was activated in the pharynx and recruited high levels of collagen in an apparently laminin-independent manner. Through an RNAi screen, we further identified the small GTPase RAP-3 (Rap1) as a pharyngeal-specific PAT-2/PAT-3 activator that modulates collagen levels. Together, these studies demonstrate that tissues can use distinct mechanisms to direct collagen incorporation into BMs to precisely control collagen levels and construct diverse BMs.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Eric L Hastie
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
21
|
Tharp KM, Weaver VM. Modeling Tissue Polarity in Context. J Mol Biol 2018; 430:3613-3628. [PMID: 30055167 DOI: 10.1016/j.jmb.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Polarity is critical for development and tissue-specific function. However, the acquisition and maintenance of tissue polarity is context dependent. Thus, cell and tissue polarity depend on cell adhesion which is regulated by the cytoskeleton and influenced by the biochemical composition of the extracellular microenvironment and modified by biomechanical cues within the tissue. These biomechanical cues include fluid flow induced shear stresses, cell-density and confinement-mediated compression, and cellular actomyosin tension intrinsic to the tissue or induced in response to morphogens or extracellular matrix stiffness. Here, we discuss how extracellular matrix stiffness and fluid flow influence cell-cell and cell-extracellular matrix adhesion and alter cytoskeletal organization to modulate cell and tissue polarity. We describe model systems that when combined with state of the art molecular screens and high-resolution imaging can be used to investigate how force modulates cell and tissue polarity.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Díaz de la Loza MC, Díaz-Torres A, Zurita F, Rosales-Nieves AE, Moeendarbary E, Franze K, Martín-Bermudo MD, González-Reyes A. Laminin Levels Regulate Tissue Migration and Anterior-Posterior Polarity during Egg Morphogenesis in Drosophila. Cell Rep 2018; 20:211-223. [PMID: 28683315 PMCID: PMC5507772 DOI: 10.1016/j.celrep.2017.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/26/2017] [Accepted: 06/10/2017] [Indexed: 10/31/2022] Open
Abstract
Basement membranes (BMs) are specialized extracellular matrices required for tissue organization and organ formation. We study the role of laminin and its integrin receptor in the regulation of tissue migration during Drosophila oogenesis. Egg production in Drosophila involves the collective migration of follicle cells (FCs) over the BM to shape the mature egg. We show that laminin content in the BM increases with time, whereas integrin amounts in FCs do not vary significantly. Manipulation of integrin and laminin levels reveals that a dynamic balance of integrin-laminin amounts determines the onset and speed of FC migration. Thus, the interplay of ligand-receptor levels regulates tissue migration in vivo. Laminin depletion also affects the ultrastructure and biophysical properties of the BM and results in anterior-posterior misorientation of developing follicles. Laminin emerges as a key player in the regulation of collective cell migration, tissue stiffness, and the organization of anterior-posterior polarity in Drosophila.
Collapse
Affiliation(s)
- María C Díaz de la Loza
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Alfonsa Díaz-Torres
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Federico Zurita
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica, 18071 Granada, Spain
| | - Alicia E Rosales-Nieves
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Emad Moeendarbary
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - María D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain.
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain.
| |
Collapse
|
23
|
Bazellières E, Aksenova V, Barthélémy-Requin M, Massey-Harroche D, Le Bivic A. Role of the Crumbs proteins in ciliogenesis, cell migration and actin organization. Semin Cell Dev Biol 2017; 81:13-20. [PMID: 29056580 DOI: 10.1016/j.semcdb.2017.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
Epithelial cell organization relies on a set of proteins that interact in an intricate way and which are called polarity complexes. These complexes are involved in the determination of the apico-basal axis and in the positioning and stability of the cell-cell junctions called adherens junctions at the apico-lateral border in invertebrates. Among the polarity complexes, two are present at the apical side of epithelial cells. These are the Par complex including aPKC, PAR3 and PAR6 and the Crumbs complex including, CRUMBS, PALS1 and PATJ/MUPP1. These two complexes interact directly and in addition to their already well described functions, they play a role in other cellular processes such as ciliogenesis and polarized cell migration. In this review, we will focus on these aspects that involve the apical Crumbs polarity complex and its relation with the cortical actin cytoskeleton which might provide a more comprehensive hypothesis to explain the many facets of Crumbs cell and tissue properties.
Collapse
Affiliation(s)
- Elsa Bazellières
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| | - Veronika Aksenova
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| | | | | | - André Le Bivic
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France.
| |
Collapse
|
24
|
Matlin KS, Myllymäki SM, Manninen A. Laminins in Epithelial Cell Polarization: Old Questions in Search of New Answers. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027920. [PMID: 28159878 DOI: 10.1101/cshperspect.a027920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Laminin, a basement membrane protein discovered in 1979, was shortly thereafter implicated in the polarization of epithelial cells in both mammals and a variety of lower organisms. To transduce a spatial cue to the intrinsic polarization machinery, laminin must polymerize into a dense network that forms the foundation of the basement membrane. Evidence suggests that activation of the small GTPase Rac1 by β1-integrins mobilizes laminin-binding integrins and dystroglycan to consolidate formation of the laminin network and initiate rearrangements of both the actin and microtubule cytoskeleton to help establish the apicobasal axis. A key coordinator of spatial signals from laminin is the serine-threonine kinase Par-1, which is known to affect dystroglycan availability, microtubule and actin organization, and lumen formation. The signaling protein integrin-linked kinase (ILK) may also play a role. Despite significant advances, knowledge of the mechanism by which assembled laminin produces a spatial signal remains fragmentary, and much more research into the complex functions of laminin in polarization and other cellular processes is needed.
Collapse
Affiliation(s)
- Karl S Matlin
- Department of Surgery, The University of Chicago, Chicago, Illinois 60637-1470
| | - Satu-Marja Myllymäki
- Biocenter Oulu, Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| | - Aki Manninen
- Biocenter Oulu, Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| |
Collapse
|
25
|
Dor-On E, Raviv S, Cohen Y, Adir O, Padmanabhan K, Luxenburg C. T-plastin is essential for basement membrane assembly and epidermal morphogenesis. Sci Signal 2017; 10:10/481/eaal3154. [PMID: 28559444 DOI: 10.1126/scisignal.aal3154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The establishment of epithelial architecture is a complex process involving cross-talk between cells and the basement membrane. Basement membrane assembly requires integrin activity but the role of the associated actomyosin cytoskeleton is poorly understood. Here, we identify the actin-bundling protein T-plastin (Pls3) as a regulator of basement membrane assembly and epidermal morphogenesis. In utero depletion of Pls3 transcripts in mouse embryos caused basement membrane and polarity defects in the epidermis but had little effect on cell adhesion and differentiation. Loss-of-function experiments demonstrated that the apicobasal polarity defects were secondary to the disruption of the basement membrane. However, the basement membrane itself was profoundly sensitive to subtle perturbations in the actin cytoskeleton. We further show that Pls3 localized to the cell cortex, where it was essential for the localization and activation of myosin II. Inhibition of myosin II motor activity disrupted basement membrane organization. Our results provide insights into the regulation of cortical actomyosin and its importance for basement membrane assembly and skin morphogenesis.
Collapse
Affiliation(s)
- Eyal Dor-On
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaul Raviv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yonatan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
26
|
Von Stetina SE, Liang J, Marnellos G, Mango SE. Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6. Mol Biol Cell 2017; 28:2042-2065. [PMID: 28539408 PMCID: PMC5509419 DOI: 10.1091/mbc.e16-09-0644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
During embryo morphogenesis, minor epithelia are generated after, and then form bridges between, major epithelia (e.g., epidermis and gut). In Caenorhabditis elegans, this delay is regulated by four proteins that control production and localization of polarity proteins: the pioneer factor PHA-4/FoxA, kinesin ZEN-4/MKLP1, its partner CYK-4/MgcRacGAP, and PAR-6. To establish the animal body plan, embryos link the external epidermis to the internal digestive tract. In Caenorhabditis elegans, this linkage is achieved by the arcade cells, which form an epithelial bridge between the foregut and epidermis, but little is known about how development of these three epithelia is coordinated temporally. The arcade cell epithelium is generated after the epidermis and digestive tract epithelia have matured, ensuring that both organs can withstand the mechanical stress of embryo elongation; mistiming of epithelium formation leads to defects in morphogenesis. Using a combination of genetic, bioinformatic, and imaging approaches, we find that temporal regulation of the arcade cell epithelium is mediated by the pioneer transcription factor and master regulator PHA-4/FoxA, followed by the cytoskeletal regulator and kinesin ZEN-4/MKLP1 and the polarity protein PAR-6. We show that PHA-4 directly activates mRNA expression of a broad cohort of epithelial genes, including junctional factor dlg-1. Accumulation of DLG-1 protein is delayed by ZEN-4, acting in concert with its binding partner CYK-4/MgcRacGAP. Our structure–function analysis suggests that nuclear and kinesin functions are dispensable, whereas binding to CYK-4 is essential, for ZEN-4 function in polarity. Finally, PAR-6 is necessary to localize polarity proteins such as DLG-1 within adherens junctions and at the apical surface, thereby generating arcade cell polarity. Our results reveal that the timing of a landmark event during embryonic morphogenesis is mediated by the concerted action of four proteins that delay the formation of an epithelial bridge until the appropriate time. In addition, we find that mammalian FoxA associates with many epithelial genes, suggesting that direct regulation of epithelial identity may be a conserved feature of FoxA factors and a contributor to FoxA function in development and cancer.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| | - Jennifer Liang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| | - Georgios Marnellos
- Informatics and Scientific Applications, Science Division, Faculty of Arts and Sciences, Harvard University, Cambridge; MA 02138
| | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| |
Collapse
|
27
|
McClatchey ST, Wang Z, Linden LM, Hastie EL, Wang L, Shen W, Chen A, Chi Q, Sherwood DR. Boundary cells restrict dystroglycan trafficking to control basement membrane sliding during tissue remodeling. eLife 2016; 5. [PMID: 27661254 PMCID: PMC5061546 DOI: 10.7554/elife.17218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
Epithelial cells and their underlying basement membranes (BMs) slide along each other to renew epithelia, shape organs, and enlarge BM openings. How BM sliding is controlled, however, is poorly understood. Using genetic and live cell imaging approaches during uterine-vulval attachment in C. elegans, we have discovered that the invasive uterine anchor cell activates Notch signaling in neighboring uterine cells at the boundary of the BM gap through which it invades to promote BM sliding. Through an RNAi screen, we found that Notch activation upregulates expression of ctg-1, which encodes a Sec14-GOLD protein, a member of the Sec14 phosphatidylinositol-transfer protein superfamily that is implicated in vesicle trafficking. Through photobleaching, targeted knockdown, and cell-specific rescue, our results suggest that CTG-1 restricts BM adhesion receptor DGN-1 (dystroglycan) trafficking to the cell-BM interface, which promotes BM sliding. Together, these studies reveal a new morphogenetic signaling pathway that controls BM sliding to remodel tissues.
Collapse
Affiliation(s)
| | - Zheng Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastrointestinal Surgery, Union Hospital, Wuhan, China.,Development and Molecular Oncology Laboratory, Union Hospital, Wuhan, China
| | - Lara M Linden
- Department of Biology, Duke University, Durham, United States
| | - Eric L Hastie
- Department of Biology, Duke University, Durham, United States
| | - Lin Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanqing Shen
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alan Chen
- Department of Biology, Duke University, Durham, United States
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, United States
| | | |
Collapse
|
28
|
Tanimizu N, Mitaka T. Morphogenesis of liver epithelial cells. Hepatol Res 2016; 46:964-76. [PMID: 26785307 DOI: 10.1111/hepr.12654] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
The mammalian liver is a physiologically important organ performing various types of metabolism, producing serum proteins, detoxifying bilirubin and ammonia, and protecting the body from infection. Those physiological functions are achieved with the 3D tissue architecture of liver epithelial cells. The liver contains two types of epithelial cells, namely, hepatocytes and cholangiocytes. They split from hepatoblasts (embryonic liver stem cells) in mid-gestation and differentiate into structurally and functionally mature cells. Analyses of mutant mice showing abnormal liver organogenesis have identified genes involved in liver development. In vitro culture systems have been used to examine the mechanism in which each molecule or signaling pathway regulates the morphogenesis and functional differentiation of hepatocytes and cholangiocytes. In addition, liver epithelial cells as well as mesenchymal, sinusoidal endothelial and hematopoietic cells can be purified from developing livers, which enables us to perform genome-wide screening to identify novel genes regulating epithelial morphogenesis in the liver. By combining these in vivo and in vitro systems, the liver could be a unique and suitable model for revealing a principle, governing epithelial morphogenesis. In this review, we summarize recent progress in the understanding of the development of liver epithelial tissue structures.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
29
|
Li S, Qi Y, McKee K, Liu J, Hsu J, Yurchenco PD. Integrin and dystroglycan compensate each other to mediate laminin-dependent basement membrane assembly and epiblast polarization. Matrix Biol 2016; 57-58:272-284. [PMID: 27449702 DOI: 10.1016/j.matbio.2016.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 01/17/2023]
Abstract
During early embryogenesis, endodermal γ1-laminin expression is required for basement membrane (BM) assembly, promoting conversion of non-polar pluripotent cells into polarized epiblast. The influence of laminin-111 (Lm111) and its integrin and dystroglycan (DG) receptors on epiblast in embryoid bodies (EBs), a model for differentiation of the embryonic plate, was further investigated. Lm111 added to the medium of EBs initiated conversion of inner nonpolar cell to the polarized epiblast epithelium with an exterior-to-central basal-to-apical orientation. Microinjection of Lm111 into EB interiors resulted in an interior BM with complete inversion of cell polarity. Lm111 assembled a BM on integrin-β1 null EBs with induction of polarization at reduced efficiency. β-Integrin compensation was not detected in these nulls with integrin adaptor proteins failing to assemble. A dimer of laminin LG domains 4-5 (LZE3) engineered to strongly bind to α-dystroglycan almost completely inhibited laminin accumulation on integrin β1-null EBs, reducing BM and ablating cell polarization. When Lm111 was incubated with integrin-β1/dystroglycan double-knockout EBs, laminin failed to accumulate on the EBs, the EBs did not differentiate, and the EBs underwent apoptosis. Collectively the findings support the hypotheses that the locus of laminin cell surface assembly can determine the axis of epithelial polarity. This requires integrin- and/or dystroglycan-dependent binding to laminin LG domains with the highest efficiency achieved when both receptors are present. Finally, EBs that cannot assemble a matrix undergo apoptosis.
Collapse
Affiliation(s)
- Shaohua Li
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; Department of Pathology & Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Yanmei Qi
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Karen McKee
- Department of Pathology & Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Jie Liu
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - June Hsu
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Hastie EL, Sherwood DR. A new front in cell invasion: The invadopodial membrane. Eur J Cell Biol 2016; 95:441-448. [PMID: 27402208 DOI: 10.1016/j.ejcb.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023] Open
Abstract
Invadopodia are F-actin-rich membrane protrusions that breach basement membrane barriers during cell invasion. Since their discovery more than 30 years ago, invadopodia have been extensively investigated in cancer cells in vitro, where great advances in understanding their composition, formation, cytoskeletal regulation, and control of the matrix metalloproteinase MT1-MMP trafficking have been made. In contrast, few studies examining invadopodia have been conducted in vivo, leaving their physiological regulation unclear. Recent live-cell imaging and gene perturbation studies in C. elegans have revealed that invadopodia are formed with a unique invadopodial membrane, defined by its specialized lipid and associated protein composition, which is rapidly recycled through the endolysosome. Here, we provide evidence that the invadopodial membrane is conserved and discuss its possible functions in traversing basement membrane barriers. Discovery and examination of the invadopodial membrane has important implications in understanding the regulation, assembly, and function of invadopodia in both normal and disease settings.
Collapse
Affiliation(s)
- Eric L Hastie
- Department of Biology, Duke University, 124 Science Drive, Box 90388, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 124 Science Drive, Box 90388, Durham, NC 27708, USA.
| |
Collapse
|
31
|
Jay Burr AH, Baldwin JG. The nematode stoma: Homology of cell architecture with improved understanding by confocal microscopy of labeled cell boundaries. J Morphol 2016; 277:1168-86. [DOI: 10.1002/jmor.20567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- A. H. Jay Burr
- Department of Biological Sciences; Simon Fraser University; Burnaby British Columbia V5A 1S6 Canada
- Department of Nematology; University of California; Riverside California 92521
| | - James G. Baldwin
- Department of Nematology; University of California; Riverside California 92521
| |
Collapse
|
32
|
Abstract
A major gap in our understanding of cell biology is how cells generate and interact with their surrounding extracellular matrix. Studying this problem during development has been particularly fruitful. Recent work on the basement membrane in developmental systems is transforming our view of this matrix from one of a static support structure to that of a dynamic scaffold that is regularly remodeled to actively shape tissues and direct cell behaviors.
Collapse
|
33
|
Araya C, Carmona-Fontaine C, Clarke JDW. Extracellular matrix couples the convergence movements of mesoderm and neural plate during the early stages of neurulation. Dev Dyn 2016; 245:580-9. [PMID: 26933766 DOI: 10.1002/dvdy.24401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/01/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND During the initial stages zebrafish neurulation, neural plate cells undergo highly coordinated movements before they assemble into a multicellular solid neural rod. We have previously identified that the underlying mesoderm is critical to ensure such coordination and generate correct neural tube organization. However, how intertissue coordination is achieved in vivo during zebrafish neural tube morphogenesis is unknown. RESULTS In this work, we use quantitative live imaging to study the coordinated movements of neural ectoderm and mesoderm during dorsal tissue convergence. We show the extracellular matrix components laminin and fibronectin that lie between mesoderm and neural plate act to couple the movements of neural plate and mesoderm during early stages of neurulation and to maintain the close apposition of these two tissues. CONCLUSIONS Our study highlights the importance of the extracellular matrix proteins laminin and libronectin in coupling the movements and spatial proximity of mesoderm and neuroectoderm during the morphogenetic movements of neurulation. Developmental Dynamics 245:580-589, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile.,MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London, United Kingdom
| | - Carlos Carmona-Fontaine
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Jonathan D W Clarke
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London, United Kingdom
| |
Collapse
|
34
|
Asan A, Raiders SA, Priess JR. Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes. PLoS Genet 2016; 12:e1005950. [PMID: 27035721 PMCID: PMC4817974 DOI: 10.1371/journal.pgen.1005950] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/01/2016] [Indexed: 11/21/2022] Open
Abstract
Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik’s cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells. This report uses the intestine of the nematode C. elegans as a model system to address how progenitor cells form a three-dimensional organ. The fully formed intestine is a cylindrical tube of only 20 epithelial cells, and all of these cells are descendants of a single cell, the E blastomere. The E descendants form a primordium that changes shape over time as different E descendants divide and move. Cells in the primordium must continually adhere to each other during these movements to maintain the integrity of the primordium. Here, we generated a 3D graphic reconstruction of the developing intestine in order to analyze these events. We found that the cell movements are highly reproducible, suggesting that they are programmed by asymmetric gene expression in the primordium. In particular, we found that the conserved receptor LIN-12/Notch appears to modulate left-right adhesion in the primordium, leading to the asymmetric packing of cells. One of the most remarkable events in intestinal morphogenesis is the circumferential rotation of a subset of cells. We found that rotation appears to have a role in aligning the developing lumen of the intestine, and involves a conserved, UNC-6/netrin signaling pathway that is best known for its roles in the guided growth of neurons.
Collapse
Affiliation(s)
- Alparsan Asan
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Stephan A. Raiders
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
35
|
Basement Membranes in the Worm: A Dynamic Scaffolding that Instructs Cellular Behaviors and Shapes Tissues. CURRENT TOPICS IN MEMBRANES 2015; 76:337-71. [PMID: 26610919 DOI: 10.1016/bs.ctm.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nematode worm Caenorhabditis elegans has all the major basement membrane proteins found in vertebrates, usually with a smaller gene family encoding each component. With its powerful forward genetics, optical clarity, simple tissue organization, and the capability to functionally tag most basement membrane components with fluorescent proteins, C. elegans has facilitated novel insights into the assembly and function of basement membranes. Although basement membranes are generally thought of as static structures, studies in C. elegans have revealed their active properties and essential functions in tissue formation and maintenance. Here, we review discoveries from C. elegans development that highlight dynamic aspects of basement membrane assembly, function, and regulation during organ growth, tissue polarity, cell migration, cell invasion, and tissue attachment. These studies have helped transform our view of basement membranes from static support structures to dynamic scaffoldings that play broad roles in regulating tissue organization and cellular behavior that are essential for development and have important implications in human diseases.
Collapse
|
36
|
Chen CH, Merriman AF, Savage J, Willer J, Wahlig T, Katsanis N, Yin VP, Poss KD. Transient laminin beta 1a Induction Defines the Wound Epidermis during Zebrafish Fin Regeneration. PLoS Genet 2015; 11:e1005437. [PMID: 26305099 PMCID: PMC4549328 DOI: 10.1371/journal.pgen.1005437] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/10/2015] [Indexed: 12/12/2022] Open
Abstract
The first critical stage in salamander or teleost appendage regeneration is creation of a specialized epidermis that instructs growth from underlying stump tissue. Here, we performed a forward genetic screen for mutations that impair this process in amputated zebrafish fins. Positional cloning and complementation assays identified a temperature-sensitive allele of the ECM component laminin beta 1a (lamb1a) that blocks fin regeneration. lamb1a, but not its paralog lamb1b, is sharply induced in a subset of epithelial cells after fin amputation, where it is required to establish and maintain a polarized basal epithelial cell layer. These events facilitate expression of the morphogenetic factors shha and lef1, basolateral positioning of phosphorylated Igf1r, patterning of new osteoblasts, and regeneration of bone. By contrast, lamb1a function is dispensable for juvenile body growth, homeostatic adult tissue maintenance, repair of split fins, or renewal of genetically ablated osteoblasts. fgf20a mutations or transgenic Fgf receptor inhibition disrupt lamb1a expression, linking a central growth factor to epithelial maturation during regeneration. Our findings reveal transient induction of lamb1a in epithelial cells as a key, growth factor-guided step in formation of a signaling-competent regeneration epidermis. Unlike mammals, adult teleost fish and urodele amphibians can fully regenerate lost appendages. Understanding what initiates regeneration in these vertebrates is of great interest to the scientific community. It has long been known that the epidermis that forms quickly over an amputated limb stump is critical for initiating regenerative programs. Yet, little of understood of the molecular and cellular mechanisms by which a simple adult epithelium transforms into this key signaling source. Here, we performed a large-scale, unbiased genetic screen for epithelial signaling deficiencies during the regeneration of amputated adult zebrafish fins, from which we identified several new mutants. One gene identified from this screen disrupts a specific component of the extracellular matrix material Laminin, Laminin beta 1a, a factor that we find to be dispensable in uninjured adult animals but required for all stages fin regeneration. Transient induction of this component by amputation polarizes the basal layer of the nascent epithelium, and, in turn, facilitates the synthesis of signaling factors, the positioning of ligand receptors, and the patterning of new bone cells. We also find that normal induction of Laminin beta 1a by injury relies on the function of Fibroblast growth factors, secreted polypeptide signals that are released early upon injury. Our results identify key early steps in the endogenous program for vertebrate appendage regeneration.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Alexander F. Merriman
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jeremiah Savage
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Jason Willer
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Taylor Wahlig
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Viravuth P. Yin
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Kenneth D. Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
37
|
Lohmer LL, Kelley LC, Hagedorn EJ, Sherwood DR. Invadopodia and basement membrane invasion in vivo. Cell Adh Migr 2015; 8:246-55. [PMID: 24717190 DOI: 10.4161/cam.28406] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over 20 years ago, protrusive, F-actin-based membrane structures, termed invadopodia, were identified in highly metastatic cancer cell lines. Invadopodia penetrate artificial or explanted extracellular matrices in 2D culture conditions and have been hypothesized to facilitate the migration of cancer cells through basement membrane, a thin, dense, barrier-like matrix surrounding most tissues. Despite intensive study, the identification of invadopodia in vivo has remained elusive and until now their possible roles during invasion or even existence have remained unclear. Studies in remarkably different cellular contexts-mouse tumor models, zebrafish intestinal epithelia, and C. elegans organogenesis-have recently identified invadopodia structures associated with basement membrane invasion. These studies are providing the first in vivo insight into the regulation, function, and role of these fascinating subcellular devices with critical importance to both development and human disease.
Collapse
|
38
|
Von Stetina SE, Mango SE. PAR-6, but not E-cadherin and β-integrin, is necessary for epithelial polarization in C. elegans. Dev Biol 2015; 403:5-14. [PMID: 25773364 DOI: 10.1016/j.ydbio.2015.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/29/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Cell polarity is a fundamental characteristic of epithelial cells. Classical cell biological studies have suggested that establishment and orientation of polarized epithelia depend on outside-in cues that derive from interactions with either neighboring cells or the substratum (Akhtar and Streuli, 2013; Chen and Zhang, 2013; Chung and Andrew, 2008; McNeill et al., 1990; Nejsum and Nelson, 2007; Nelson et al., 2013; Ojakian and Schwimmer, 1994; Wang et al., 1990; Yu et al., 2005). This paradigm has been challenged by examples of epithelia generated in the absence of molecules that mediate cell-cell or cell-matrix interactions, notably E-cadherin and integrins (Baas et al., 2004; Choi et al., 2013; Costa et al., 1998; Harris and Peifer, 2004; Raich et al., 1999; Roote and Zusman, 1995; Vestweber et al., 1985; Williams and Waterston, 1994; Wu et al., 2009). Here we explore an alternative hypothesis, that cadherins and integrins function redundantly to substitute for one another during epithelium formation (Martinez-Rico et al., 2010; Ojakian et al., 2001; Rudkouskaya et al., 2014; Weber et al., 2011). We use C. elegans, which possesses a single E-cadherin (Costa et al., 1998; Hardin et al., 2013; Tepass, 1999) and a single β-integrin (Gettner et al., 1995; Lee et al., 2001), and analyze the arcade cells, which generate an epithelium late in embryogenesis (Portereiko and Mango, 2001; Portereiko et al., 2004), after most maternal factors are depleted. Loss of E-cadherin(HMR-1) in combination with β-integrin(PAT-3) had no impact on the onset or formation of the arcade cell epithelium, nor the epidermis or digestive tract. Moreover, ß-integrin(PAT-3) was not enriched at the basal surface of the arcades, and the candidate PAT-3 binding partner β-laminin(LAM-1) was not detected until after arcade cell polarity was established and exhibited no obvious polarity defect when mutated. Instead, the polarity protein par-6 (Chen and Zhang, 2013; Watts et al., 1996) was required to polarize the arcade cells, and par-6 mutants exhibited mislocalized or absent apical and junctional proteins. We conclude that the arcade cell epithelium polarizes by a PAR-6-mediated pathway that is independent of E-cadherin, β-integrin and β-laminin.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA 02138, USA.
| | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA 02138, USA.
| |
Collapse
|
39
|
Morrissey MA, Sherwood DR. An active role for basement membrane assembly and modification in tissue sculpting. J Cell Sci 2015; 128:1661-8. [PMID: 25717004 DOI: 10.1242/jcs.168021] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Basement membranes are a dense, sheet-like form of extracellular matrix (ECM) that underlie epithelia and endothelia, and surround muscle, fat and Schwann cells. Basement membranes separate tissues and protect them from mechanical stress. Although traditionally thought of as a static support structure, a growing body of evidence suggests that dynamic basement membrane deposition and modification instructs coordinated cellular behaviors and acts mechanically to sculpt tissues. In this Commentary, we highlight recent studies that support the idea that far from being a passive matrix, basement membranes play formative roles in shaping tissues.
Collapse
Affiliation(s)
- Meghan A Morrissey
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, NC 27708, USA
| |
Collapse
|
40
|
Maartens AP, Brown NH. Anchors and signals: the diverse roles of integrins in development. Curr Top Dev Biol 2015; 112:233-72. [PMID: 25733142 DOI: 10.1016/bs.ctdb.2014.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integrins mediate cell adhesion by providing a link between the actin cytoskeleton and the extracellular matrix. As well as acting to anchor cells, integrin adhesions provide sensory input via mechanotransduction and synergism with signaling pathways, and provide the cell with the conditions necessary for differentiation in a permissive manner. In this review, we explore how integrins contribute to development, and what this tells us about how they work. From a signaling perspective, the influence of integrins on cell viability and fate is muted in a developmental context as compared to cell culture. Integrin phenotypes tend to arise from a failure of normally specified cells to create tissues properly, due to defective adhesion. The diversity of integrin functions in development shows how cell adhesion is continuously adjusted, both within and between animals, to fit developmental purpose.
Collapse
Affiliation(s)
- Aidan P Maartens
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
41
|
Goehring NW. PAR polarity: from complexity to design principles. Exp Cell Res 2014; 328:258-66. [PMID: 25128809 DOI: 10.1016/j.yexcr.2014.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022]
Abstract
The par-titioning-defective or PAR proteins comprise the core of an essential cell polarity network that underlies polarization in a wide variety of cell types and developmental contexts. The output of this network in nearly every case is the establishment of opposing and complementary membrane domains that define a cell׳s polarity axis. Yet, behind this simple pattern is a complex system of interactions, regulation and dynamic behaviors. How these various parts combine to generate polarized patterns of protein localization in cells is only beginning to become clear. This review, part of the Special Issue on Cell Polarity, aims to highlight several emerging themes and design principles that underlie the process of cell polarization by components of the PAR network.
Collapse
Affiliation(s)
- Nathan W Goehring
- Cancer Research UK London Research Institute, 44 Lincoln׳s Inn Fields, London WC2A 3LY, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
42
|
Basement membrane and cell integrity of self-tissues in maintaining Drosophila immunological tolerance. PLoS Genet 2014; 10:e1004683. [PMID: 25329560 PMCID: PMC4199487 DOI: 10.1371/journal.pgen.1004683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
The mechanism underlying immune system recognition of different types of pathogens has been extensively studied over the past few decades; however, the mechanism by which healthy self-tissue evades an attack by its own immune system is less well-understood. Here, we established an autoimmune model of melanotic mass formation in Drosophila by genetically disrupting the basement membrane. We found that the basement membrane endows otherwise susceptible target tissues with self-tolerance that prevents autoimmunity, and further demonstrated that laminin is a key component for both structural maintenance and the self-tolerance checkpoint function of the basement membrane. Moreover, we found that cell integrity, as determined by cell-cell interaction and apicobasal polarity, functions as a second discrete checkpoint. Target tissues became vulnerable to blood cell encapsulation and subsequent melanization only after loss of both the basement membrane and cell integrity.
Collapse
|
43
|
Rodriguez-Fraticelli AE, Martin-Belmonte F. Picking up the threads: extracellular matrix signals in epithelial morphogenesis. Curr Opin Cell Biol 2014; 30:83-90. [DOI: 10.1016/j.ceb.2014.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 01/30/2023]
|
44
|
Abstract
Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Jessica L Lee
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
45
|
Pilon M. Developmental genetics of the Caenorhabditis elegans pharynx. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:263-80. [PMID: 25262818 PMCID: PMC4314705 DOI: 10.1002/wdev.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 11/07/2022]
Abstract
The Caenorhabditis elegans pharynx is a rhythmically pumping organ composed initially of 80 cells that, through fusions, amount to 62 cells in the adult worm. During the first 100 min of development, most future pharyngeal cells are born and gather into a double-plate primordium surrounded by a basal lamina. All pharyngeal cells express the transcription factor PHA-4, of which the concentration increases throughout development, triggering a sequential activation of genes with promoters responding differentially to PHA-4 protein levels. The oblong-shaped pharyngeal primordium becomes polarized, many cells taking on wedge shapes with their narrow ends toward the center, hence forming an epithelial cyst. The primordium then elongates, and reorientations of the cells at the anterior and posterior ends form the mouth and pharyngeal-intestinal openings, respectively. The 20 pharyngeal neurons establish complex but reproducible trajectories using 'fishing line' and growth cone-driven mechanisms, and the gland cells also similarly develop their processes. The genetics behind many fate decisions and morphogenetic processes are being elucidated, and reveal the pharynx to be a fruitful model for developmental biologists.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburg, Sweden
| |
Collapse
|
46
|
Polarized deposition of basement membrane proteins depends on Phosphatidylinositol synthase and the levels of Phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci U S A 2014; 111:7689-94. [PMID: 24828534 DOI: 10.1073/pnas.1407351111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The basement membrane (BM), a specialized sheet of the extracellular matrix contacting the basal side of epithelial tissues, plays an important role in the control of the polarized structure of epithelial cells. However, little is known about how BM proteins themselves achieve a polarized distribution. Here, we identify phosphatidylinositol 4,5-bisphosphate (PIP2) as a critical regulator of the polarized secretion of BM proteins. A decrease of PIP2 levels, in particular through mutations in Phosphatidylinositol synthase (Pis) and other members of the phosphoinositide pathway, leads to the aberrant accumulation of BM components at the apical side of the cell without primarily affecting the distribution of apical and basolateral polarity proteins. In addition, PIP2 controls the apical and lateral localization of Crag (Calmodulin-binding protein related to a Rab3 GDP/GTP exchange protein), a factor specifically required to prevent aberrant apical secretion of BM. We propose that PIP2, through the control of Crag's subcellular localization, restricts the secretion of BM proteins to the basal side.
Collapse
|
47
|
Ivanovitch K, Cavodeassi F, Wilson S. Precocious acquisition of neuroepithelial character in the eye field underlies the onset of eye morphogenesis. Dev Cell 2013; 27:293-305. [PMID: 24209576 PMCID: PMC3898423 DOI: 10.1016/j.devcel.2013.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 08/16/2013] [Accepted: 09/24/2013] [Indexed: 11/30/2022]
Abstract
Using high-resolution live imaging in zebrafish, we show that presumptive eye cells acquire apicobasal polarity and adopt neuroepithelial character prior to other regions of the neural plate. Neuroepithelial organization is first apparent at the margin of the eye field, whereas cells at its core have mesenchymal morphology. These core cells subsequently intercalate between the marginal cells contributing to the bilateral expansion of the optic vesicles. During later evagination, optic vesicle cells shorten, drawing their apical surfaces laterally relative to the basal lamina, resulting in further laterally directed evagination. The early neuroepithelial organization of the eye field requires Laminin1, and ectopic Laminin1 can redirect the apicobasal orientation of eye field cells. Furthermore, disrupting cell polarity through combined abrogation of the polarity protein Pard6γb and Laminin1 severely compromises optic vesicle evagination. Our studies elucidate the cellular events underlying early eye morphogenesis and provide a framework for understanding epithelialization and complex tissue formation.
Collapse
Affiliation(s)
- Kenzo Ivanovitch
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
48
|
Rasmussen JP, Feldman JL, Reddy SS, Priess JR. Cell interactions and patterned intercalations shape and link epithelial tubes in C. elegans. PLoS Genet 2013; 9:e1003772. [PMID: 24039608 PMCID: PMC3764189 DOI: 10.1371/journal.pgen.1003772] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/19/2013] [Indexed: 01/15/2023] Open
Abstract
Many animal organs are composed largely or entirely of polarized epithelial tubes, and the formation of complex organ systems, such as the digestive or vascular systems, requires that separate tubes link with a common polarity. The Caenorhabditis elegans digestive tract consists primarily of three interconnected tubes—the pharynx, valve, and intestine—and provides a simple model for understanding the cellular and molecular mechanisms used to form and connect epithelial tubes. Here, we use live imaging and 3D reconstructions of developing cells to examine tube formation. The three tubes develop from a pharynx/valve primordium and a separate intestine primordium. Cells in the pharynx/valve primordium polarize and become wedge-shaped, transforming the primordium into a cylindrical cyst centered on the future lumenal axis. For continuity of the digestive tract, valve cells must have the same, radial axis of apicobasal polarity as adjacent intestinal cells. We show that intestinal cells contribute to valve cell polarity by restricting the distribution of a polarizing cue, laminin. After developing apicobasal polarity, many pharyngeal and valve cells appear to explore their neighborhoods through lateral, actin-rich lamellipodia. For a subset of cells, these lamellipodia precede more extensive intercalations that create the valve. Formation of the valve tube begins when two valve cells become embedded at the left-right boundary of the intestinal primordium. Other valve cells organize symmetrically around these two cells, and wrap partially or completely around the orthogonal, lumenal axis, thus extruding a small valve tube from the larger cyst. We show that the transcription factors DIE-1 and EGL-43/EVI1 regulate cell intercalations and cell fates during valve formation, and that the Notch pathway is required to establish the proper boundary between the pharyngeal and valve tubes. Tubes composed of epithelial cells are universal building blocks of animal organs, and complex organs typically contain multiple interconnected tubes, such as in the digestive tract or vascular system. The nematode Caenorhabditis elegans provides a simple genetic system to study how tubes form and link. Understanding these events provides insight into basic biology, and can inform engineering strategies for building or repairing cellular tubes. A small tube called the valve connects the two major tubular organs of the nematode digestive tract, the pharynx and intestine. The pharynx and valve form from the same primordium, while the intestine forms from a separate primordium. Cells in each primordium polarize around a central axis, and valve formation involves connecting these axes. Using live imaging, we show that valve cells initially resemble other pharyngeal cells, but undergo additional and extensive intercalations around the lumenal axis, effectively squeezing a small tube from the larger primordium. Valve cells develop the same polarity axis as intestinal cells, and we show that this depends on interactions with the intestinal cells. We show that valve formation involves dynamic changes in the localization of adhesive proteins, and identify transcription factors that play a role in valve cell specification and intercalation.
Collapse
Affiliation(s)
- Jeffrey P. Rasmussen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Jessica L. Feldman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Sowmya Somashekar Reddy
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
49
|
Rohrschneider MR, Nance J. The union of somatic gonad precursors and primordial germ cells during Caenorhabditis elegans embryogenesis. Dev Biol 2013; 379:139-51. [PMID: 23562590 DOI: 10.1016/j.ydbio.2013.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/12/2013] [Accepted: 03/26/2013] [Indexed: 11/17/2022]
Abstract
Somatic gonadal niche cells control the survival, differentiation, and proliferation of germline stem cells. The establishment of this niche-stem cell relationship is critical, and yet the precursors to these two cell types are often born at a distance from one another. The simple Caenorhabditis elegans gonadal primordium, which contains two somatic gonad precursors (SGPs) and two primordial germ cells (PGCs), provides an accessible model for determining how stem cell and niche cell precursors first assemble during development. To visualize the morphogenetic events that lead to formation of the gonadal primordium, we generated transgenic strains to label the cell membranes of the SGPs and PGCs and captured time-lapse movies as the gonadal primordium formed. We identify three distinct phases of SGP behavior: posterior migration along the endoderm towards the PGCs, extension of a single long projection around the adjacent PGC, and a dramatic wrapping over the PGC surfaces. We show that the endoderm and PGCs are dispensable for SGP posterior migration and initiation of projections. However, both tissues are required for the final positioning of the SGPs and the morphology of their projections, and PGCs are absolutely required for SGP wrapping behaviors. Finally, we demonstrate that the basement membrane component laminin, which localizes adjacent to the developing gonadal primordium, is required to prevent the SGPs from over-extending past the PGCs. Our findings provide a foundation for understanding the cellular and molecular regulation of the establishment of a niche-stem cell relationship.
Collapse
Affiliation(s)
- Monica R Rohrschneider
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York, NY 10016, USA
| | | |
Collapse
|
50
|
Abstract
Interconnection of epithelial tubules is a crucial process during organogenesis. Organisms have evolved sets of molecular and cellular strategies to generate an interconnected tubular network during animal development. Spatiotemporal control of common cellular strategies includes dissolution of the basement membrane, apoptosis, rearrangements of cell adhesion junctions, and mesenchymal-like invasive cellular behaviors prior to tubular interconnection. Different model systems exhibit varying degrees of active invasive-like behaviors that precede tubular interconnection, which may reflect changes in cell polarity or differential adhesive cell states. Studies in this newly-emerging field of tubular interconnections will provide a greater understanding of pediatric diseases and cancer metastasis, as well as generate fundamentally new insights into lumen formation pathology, or lumopathies.
Collapse
Affiliation(s)
- Robert M Kao
- Departments of Molecular and Cellular Biology and Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|