1
|
Zaza C, Joseph MD, Dalby OPL, Walther RF, Kołątaj K, Chiarelli G, Pichaud F, Acuna GP, Simoncelli S. Super-resolution imaging in whole cells and tissues via DNA-PAINT on a spinning disk confocal with optical photon reassignment. Nat Commun 2025; 16:4991. [PMID: 40442066 PMCID: PMC12122864 DOI: 10.1038/s41467-025-60263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 05/20/2025] [Indexed: 06/02/2025] Open
Abstract
Single-Molecule Localization Microscopy (SMLM) has traditionally faced challenges to optimize signal-to-noise ratio, penetration depth, field-of-view (FOV), and spatial resolution simultaneously. Here, we show that DNA-PAINT imaging on a Spinning Disk Confocal with Optical Photon Reassignment (SDC-OPR) system overcomes these trade-offs, enabling high-resolution imaging across multiple cellular layers and large FOVs. We demonstrate the system's capability with DNA origami constructs and biological samples, including nuclear pore complexes, mitochondria, and microtubules, achieving a spatial resolution of 6 nm in the basal plane and sub-10 nm localization precision at depths of 9 µm within a 53 × 53 µm² FOV. Additionally, imaging of the developing Drosophila eye epithelium at depths up to 9 µm with sub-13 nm average localization precision, reveals distinct E-cadherin populations in adherens junctions. Quantitative analysis of Collagen IV deposition in this epithelium indicated an average of 46 ± 27 molecules per secretory vesicle. These results underscore the versatility of DNA-PAINT on an SDC-OPR for advancing super-resolution imaging in complex biological systems.
Collapse
Affiliation(s)
- Cecilia Zaza
- London Centre for Nanotechnology, University College London, London, UK
| | - Megan D Joseph
- London Centre for Nanotechnology, University College London, London, UK
| | - Olivia P L Dalby
- London Centre for Nanotechnology, University College London, London, UK
- Department of Chemistry, University College London, London, UK
| | - Rhian F Walther
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Karol Kołątaj
- Department of Physics, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Germán Chiarelli
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| | - Franck Pichaud
- Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Sabrina Simoncelli
- London Centre for Nanotechnology, University College London, London, UK.
- Department of Chemistry, University College London, London, UK.
| |
Collapse
|
2
|
Hori S, Mitani S. An atonal homolog, lin-32, regulates hypodermal morphogenesis in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000754. [PMID: 36873297 PMCID: PMC9975813 DOI: 10.17912/micropub.biology.000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
The transcription factor atonal contributes to patterning and cell fate determination in specialized epithelial cells in various animals, but its function in hypodermis is unknown. Here, we analyzed the atonal homolog lin-32 in C. elegans to clarify whether atonal acts in hypodermal development. The lin-32 null mutants exhibited bulges and cavities in their head, which were prevented by LIN-32 expression. Fluorescent protein was expressed in hypodermis cells at the embryonic stage by the lin-32 promoter. These results certify that atonal plays an essential role in the development of a broader range of tissues as hypodermis than initially thought.
Collapse
Affiliation(s)
- Sayaka Hori
- Tokyo Women's Medical University, Tokyo, Tokyo, Japan
| | - Shohei Mitani
- Physiology, Tokyo Women's Medical University, Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Marchetti M, Zhang C, Edgar BA. An improved organ explant culture method reveals stem cell lineage dynamics in the adult Drosophila intestine. eLife 2022; 11:e76010. [PMID: 36005292 PMCID: PMC9578704 DOI: 10.7554/elife.76010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, live-imaging techniques have been developed for the adult midgut of Drosophila melanogaster that allow temporal characterization of key processes involved in stem cell and tissue homeostasis. However, these organ culture techniques have been limited to imaging sessions of <16 hours, an interval too short to track dynamic processes such as damage responses and regeneration, which can unfold over several days. Therefore, we developed an organ explant culture protocol capable of sustaining midguts ex vivo for up to 3 days. This was made possible by the formulation of a culture medium specifically designed for adult Drosophila tissues with an increased Na+/K+ ratio and trehalose concentration, and by placing midguts at an air-liquid interface for enhanced oxygenation. We show that midgut progenitor cells can respond to gut epithelial damage ex vivo, proliferating and differentiating to replace lost cells, but are quiescent in healthy intestines. Using ex vivo gene induction to promote stem cell proliferation using RasG12V or string and Cyclin E overexpression, we demonstrate that progenitor cell lineages can be traced through multiple cell divisions using live imaging. We show that the same culture set-up is useful for imaging adult renal tubules and ovaries for up to 3 days and hearts for up to 10 days. By enabling both long-term imaging and real-time ex vivo gene manipulation, our simple culture protocol provides a powerful tool for studies of epithelial biology and cell lineage behavior.
Collapse
Affiliation(s)
- Marco Marchetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Chenge Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Bruce A Edgar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| |
Collapse
|
4
|
Spiri S, Berger S, Mereu L, DeMello A, Hajnal A. Reciprocal EGFR signaling in the anchor cell ensures precise inter-organ connection during Caenorhabditis elegans vulval morphogenesis. Development 2022; 149:dev199900. [PMID: 34982813 PMCID: PMC8783044 DOI: 10.1242/dev.199900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023]
Abstract
During Caenorhabditis elegans vulval development, the uterine anchor cell (AC) first secretes an epidermal growth factor (EGF) to specify the vulval cell fates and then invades the underlying vulval epithelium. By doing so, the AC establishes direct contact with the invaginating primary vulF cells and attaches the developing uterus to the vulva. The signals involved and the exact sequence of events joining these two organs are not fully understood. Using a conditional let-23 EGF receptor (EGFR) allele along with novel microfluidic short- and long-term imaging methods, we discovered a specific function of the EGFR in the AC during vulval lumen morphogenesis. Tissue-specific inactivation of let-23 in the AC resulted in imprecise alignment of the AC with the primary vulval cells, delayed AC invasion and disorganized adherens junctions at the contact site forming between the AC and the dorsal vulF toroid. We propose that EGFR signaling, activated by a reciprocal EGF cue from the primary vulval cells, positions the AC at the vulval midline, guides it during invasion and assembles a cytoskeletal scaffold organizing the adherens junctions that connect the developing uterus to the dorsal vulF toroid. Thus, EGFR signaling in the AC ensures the precise alignment of the two developing organs.
Collapse
Affiliation(s)
- Silvan Spiri
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Simon Berger
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institute for Chemical- and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Louisa Mereu
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Andrew DeMello
- Institute for Chemical- and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
5
|
Pichaud F, Casares F. Shaping an optical dome: The size and shape of the insect compound eye. Semin Cell Dev Biol 2021; 130:37-44. [PMID: 34810110 DOI: 10.1016/j.semcdb.2021.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
The insect compound eye is the most abundant eye architecture on earth. It comes in a wide variety of shapes and sizes, which are exquisitely adapted to specific ecosystems. Here, we explore the organisational principles and pathways, from molecular to tissular, that underpin the building of this organ and highlight why it is an excellent model system to investigate the relationship between genes and tissue form. The compound eye offers wide fields of view, high sensitivity in motion detection and infinite depth of field. It is made of an array of visual units called ommatidia, which are precisely tiled in 3D to shape the retinal tissue as a dome-like structure. The eye starts off as a 2D epithelium, and it acquires its 3D organisation as ommatidia get into shape. Each ommatidium is made of a complement of retinal cells, including light-detecting photoreceptors and lens-secreting cells. The lens cells generate the typical hexagonal facet lens that lies atop the photoreceptors so that the eye surface consists of a quasi-crystalline array of these hexagonal facet-lenses. This array is curved to various degree, depending on the size and shape of the eye, and on the region of the retina. This curvature sets the resolution and visual field of the eye and is determined by i) the number and size of the facet lens - large ommatidial lenses can be used to generate flat, higher resolution areas, while smaller facets allow for stronger curvature of the eye, and ii) precise control of the inter facet-lens angle, which determines the optical axis of the each ommatidium. In this review we discuss how combinatorial variation in eye primordium shape, ommatidial number, facet lens size and inter facet-lens angle underpins the wide variety of insect eye shapes, and we explore what is known about the mechanisms that might control these parameters.
Collapse
Affiliation(s)
- Franck Pichaud
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, WC1E 6BT London, United Kingdom.
| | - Fernando Casares
- CABD-Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013 Seville, Spain.
| |
Collapse
|
6
|
Abstract
The epithelium forms a smart barrier to the external environment that can remodel whilst maintaining tissue integrity, a feature important for development, homeostasis, and function. Its dysregulation can lead to diseases ranging from cancer to vision loss. Epithelial remodeling requires reorganization of a thin sheet of actomyosin cortex under the plasma membrane of polarized cells that form basolateral contacts with neighboring cells and the extracellular matrix (ECM). Rho GTPases act as spatiotemporal molecular switches in this process, controlling localized actomyosin dynamics. However, the molecular mechanisms that control actomyosin dynamics at the apical cortex are poorly understood. This review focusses on a growing body of evidence that suggest myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) plays a conserved role in morphogenetic signaling at the apical cortex in diverse cell and tissue remodeling processes. The possible molecular and mechanistic basis for the diverse functions of MRCK at the apical pole will also be discussed.
Collapse
Affiliation(s)
- Ceniz Zihni
- UCL Institute of Ophthalmology, Department of Cell Biology, University College London, London, UK
| |
Collapse
|
7
|
Blackie L, Tozluoglu M, Trylinski M, Walther RF, Schweisguth F, Mao Y, Pichaud F. A combination of Notch signaling, preferential adhesion and endocytosis induces a slow mode of cell intercalation in the Drosophila retina. Development 2021; 148:264928. [PMID: 33999996 PMCID: PMC8180261 DOI: 10.1242/dev.197301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/09/2021] [Indexed: 12/25/2022]
Abstract
Movement of epithelial cells in a tissue occurs through neighbor exchange and drives tissue shape changes. It requires intercellular junction remodeling, a process typically powered by the contractile actomyosin cytoskeleton. This has been investigated mainly in homogeneous epithelia, where intercalation takes minutes. However, in some tissues, intercalation involves different cell types and can take hours. Whether slow and fast intercalation share the same mechanisms remains to be examined. To address this issue, we used the fly eye, where the cone cells exchange neighbors over ∼10 h to shape the lens. We uncovered three pathways regulating this slow mode of cell intercalation. First, we found a limited requirement for MyosinII. In this case, mathematical modeling predicts an adhesion-dominant intercalation mechanism. Genetic experiments support this prediction, revealing a role for adhesion through the Nephrin proteins Roughest and Hibris. Second, we found that cone cell intercalation is regulated by the Notch pathway. Third, we show that endocytosis is required for membrane removal and Notch activation. Taken together, our work indicates that adhesion, endocytosis and Notch can direct slow cell intercalation during tissue morphogenesis.
Collapse
Affiliation(s)
- Laura Blackie
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK
| | - Melda Tozluoglu
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK
| | - Mateusz Trylinski
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,Department of Developmental and Stem Cell Biology, Pasteur Institute, F-75015 Paris, France
| | - Rhian F Walther
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Pasteur Institute, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Franck Pichaud
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Wang Z, Wang C, Jiang BH, Shi L, Lin S, Wang L, Liu LZ, Qiu JG, Qin Y, Jia Y. Predictive significance of STK17A in patients with gastric cancer and association with gastric cancer cell proliferation and migration. Oncol Rep 2021; 45:119. [PMID: 33955523 PMCID: PMC8107654 DOI: 10.3892/or.2021.8070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed types of cancer worldwide, and exploring its potential therapeutic targets is particularly important for improving the prognosis of patients with GC. The aim of the present study was to investigate the association between serine/threonine kinase 17a (STK17A) expression and GC prognosis. STK17A expression was measured by quantitative real-time PCR, western blotting and immunohistochemical staining. Standard stable transfection technology was also used to construct overexpression and knockdown cell lines. Wound healing, Transwell, Cell Counting Kit-8 and colony formation assays, as well as other methods, were used to explore the function and underlying molecular mechanism of STK17A in GC. The results indicated that STK17A overexpression significantly promoted the proliferation and migration of GC cells. The clinical significance of STK17A in a cohort of 102 cases of GC was assessed by clinical correlation and Kaplan-Meier analyses. Overexpression of STK17A was demonstrated to be associated with tumor invasion depth (P<0.001), lymph node metastasis (P<0.001) and poor prognosis in terms of 5-year survival (P<0.001). In addition, Cox multivariate analysis revealed that STK17A expression was an independent risk factor for overall and progress-free survival (P<0.001). Therefore, STK17A may be a valuable biomarker for the prognosis of patients with GC.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenyi Wang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Bing-Hua Jiang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Litong Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shan Lin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lei Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling-Zhi Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jian-Ge Qiu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yongxu Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
9
|
Hildebrand JD, Leventry AD, Aideyman OP, Majewski JC, Haddad JA, Bisi DC, Kaufmann N. A modifier screen identifies regulators of cytoskeletal architecture as mediators of Shroom-dependent changes in tissue morphology. Biol Open 2021; 10:bio.055640. [PMID: 33504488 PMCID: PMC7875558 DOI: 10.1242/bio.055640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of cell architecture is critical in the formation of tissues during animal development. The mechanisms that control cell shape must be both dynamic and stable in order to establish and maintain the correct cellular organization. Previous work has identified Shroom family proteins as essential regulators of cell morphology during vertebrate development. Shroom proteins regulate cell architecture by directing the subcellular distribution and activation of Rho-kinase, which results in the localized activation of non-muscle myosin II. Because the Shroom-Rock-myosin II module is conserved in most animal model systems, we have utilized Drosophila melanogaster to further investigate the pathways and components that are required for Shroom to define cell shape and tissue architecture. Using a phenotype-based heterozygous F1 genetic screen for modifiers of Shroom activity, we identified several cytoskeletal and signaling protein that may cooperate with Shroom. We show that two of these proteins, Enabled and Short stop, are required for ShroomA-induced changes in tissue morphology and are apically enriched in response to Shroom expression. While the recruitment of Ena is necessary, it is not sufficient to redefine cell morphology. Additionally, this requirement for Ena appears to be context dependent, as a variant of Shroom that is apically localized, binds to Rock, but lacks the Ena binding site, is still capable of inducing changes in tissue architecture. These data point to important cellular pathways that may regulate contractility or facilitate Shroom-mediated changes in cell and tissue morphology. Summary: Using Drosophila as a model system, we identify F-actin and microtubules as important determinants of how cells and tissues respond to Shroom induced contractility.
Collapse
Affiliation(s)
- Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Adam D Leventry
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Omoregie P Aideyman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - John C Majewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James A Haddad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dawn C Bisi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nancy Kaufmann
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
10
|
Role of Notch Signaling in Leg Development in Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:103-127. [PMID: 32060874 DOI: 10.1007/978-3-030-34436-8_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Notch pathway plays diverse and fundamental roles during animal development. One of the most relevant, which arises directly from its unique mode of activation, is the specification of cell fates and tissue boundaries. The development of the leg of Drosophila melanogaster is a fine example of this Notch function, as it is required to specify the fate of the cells that will eventually form the leg joints, the flexible structures that separate the different segments of the adult leg. Notch activity is accurately activated and maintained at the distal end of each segment in response to the proximo-distal patterning gene network of the developing leg. Region-specific downstream targets of Notch in turn regulate the formation of the different types of joints. We discuss recent findings that shed light on the molecular and cellular mechanisms that are ultimately governed by Notch to achieve epithelial fold and joint morphogenesis. Finally, we briefly summarize the role that Notch plays in inducing the nonautonomous growth of the leg. Overall, this book chapter aims to highlight leg development as a useful model to study how patterning information is translated into specific cell behaviors that shape the final form of an adult organ.
Collapse
|
11
|
Chen AS, Wardwell-Ozgo J, Shah NN, Wright D, Appin CL, Vigneswaran K, Brat DJ, Kornblum HI, Read RD. Drak/STK17A Drives Neoplastic Glial Proliferation through Modulation of MRLC Signaling. Cancer Res 2018; 79:1085-1097. [PMID: 30530503 DOI: 10.1158/0008-5472.can-18-0482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/21/2018] [Accepted: 12/05/2018] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) and lower grade gliomas (LGG) are the most common primary malignant brain tumors and are resistant to current therapies. Genomic analyses reveal that signature genetic lesions in GBM and LGG include copy gain and amplification of chromosome 7, amplification, mutation, and overexpression of receptor tyrosine kinases (RTK) such as EGFR, and activating mutations in components of the PI3K pathway. In Drosophila melanogaster, constitutive co-activation of RTK and PI3K signaling in glial progenitor cells recapitulates key features of human gliomas. Here we use this Drosophila glioma model to identify death-associated protein kinase (Drak), a cytoplasmic serine/threonine kinase orthologous to the human kinase STK17A, as a downstream effector of EGFR and PI3K signaling pathways. Drak was necessary for glial neoplasia, but not for normal glial proliferation and development, and Drak cooperated with EGFR to promote glial cell transformation. Drak phosphorylated Sqh, the Drosophila ortholog of nonmuscle myosin regulatory light chain (MRLC), which was necessary for transformation. Moreover, Anillin, which is a binding partner of phosphorylated Sqh, was upregulated in a Drak-dependent manner in mitotic cells and colocalized with phosphorylated Sqh in neoplastic cells undergoing mitosis and cytokinesis, consistent with their known roles in nonmuscle myosin-dependent cytokinesis. These functional relationships were conserved in human GBM. Our results indicate that Drak/STK17A, its substrate Sqh/MRLC, and the effector Anillin/ANLN regulate mitosis and cytokinesis in gliomas. This pathway may provide a new therapeutic target for gliomas.Significance: These findings reveal new insights into differential regulation of cell proliferation in malignant brain tumors, which will have a broader impact on research regarding mechanisms of oncogene cooperation and dependencies in cancer.See related commentary by Lathia, p. 1036.
Collapse
Affiliation(s)
- Alexander S Chen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Joanna Wardwell-Ozgo
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Nilang N Shah
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Deidre Wright
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Christina L Appin
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Daniel J Brat
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology, Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Harley I Kornblum
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California.,Department of Psychiatry and Behavioral Sciences, and Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, California
| | - Renee D Read
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia. .,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Hapak SM, Rothlin CV, Ghosh S. PAR3-PAR6-atypical PKC polarity complex proteins in neuronal polarization. Cell Mol Life Sci 2018; 75:2735-2761. [PMID: 29696344 PMCID: PMC11105418 DOI: 10.1007/s00018-018-2828-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Polarity is a fundamental feature of cells. Protein complexes, including the PAR3-PAR6-aPKC complex, have conserved roles in establishing polarity across a number of eukaryotic cell types. In neurons, polarity is evident as distinct axonal versus dendritic domains. The PAR3, PAR6, and aPKC proteins also play important roles in neuronal polarization. During this process, either aPKC kinase activity, the assembly of the PAR3-PAR6-aPKC complex or the localization of these proteins is regulated downstream of a number of signaling pathways. In turn, the PAR3, PAR6, and aPKC proteins control various effector molecules to establish neuronal polarity. Herein, we discuss the many signaling mechanisms and effector functions that have been linked to PAR3, PAR6, and aPKC during the establishment of neuronal polarity.
Collapse
Affiliation(s)
- Sophie M Hapak
- Department of Medicine, School of Medicine, University of Minnesota, 401 East River Parkway, Minneapolis, MN, 55455, USA.
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, 300 George Street, New Haven, CT, 06511, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
13
|
Zihni C, Vlassaks E, Terry S, Carlton J, Leung TKC, Olson M, Pichaud F, Balda MS, Matter K. An apical MRCK-driven morphogenetic pathway controls epithelial polarity. Nat Cell Biol 2017; 19:1049-1060. [PMID: 28825699 PMCID: PMC5617103 DOI: 10.1038/ncb3592] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning-defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown. Here we show that the Cdc42 effector MRCK activates myosin-II at the apical pole to segregate aPKC-Par6 from junctional Par3, defining the apical domain. Apically polarized MRCK-activated actomyosin contractility is reinforced by cooperation with aPKC-Par6 downregulating antagonistic RhoA-driven junctional actomyosin contractility, and drives polarization of cytosolic brush border determinants and apical morphogenesis. MRCK-activated polarized actomyosin contractility is required for apical differentiation and morphogenesis in vertebrate epithelia and Drosophila photoreceptors. Our results identify an apical origin of actomyosin-driven morphogenesis that couples cytoskeletal reorganization to PAR polarity signalling.
Collapse
Affiliation(s)
- Ceniz Zihni
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Evi Vlassaks
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Stephen Terry
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Jeremy Carlton
- Division of Cancer Studies, Section of Cell Biology and Imaging, King's College London, London SE1 1UL, UK
| | - Thomas King Chor Leung
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673 and the Department of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | - Michael Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Franck Pichaud
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Maria Susana Balda
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
14
|
Malartre M. Regulatory mechanisms of EGFR signalling during Drosophila eye development. Cell Mol Life Sci 2016; 73:1825-43. [PMID: 26935860 PMCID: PMC11108404 DOI: 10.1007/s00018-016-2153-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 01/14/2023]
Abstract
EGFR signalling is a well-conserved signalling pathway playing major roles during development and cancers. This review explores what studying the EGFR pathway during Drosophila eye development has taught us in terms of the diversity of its regulatory mechanisms. This model system has allowed the identification of numerous positive and negative regulators acting at specific time and place, thus participating to the tight control of signalling. EGFR signalling regulation is achieved by a variety of mechanisms, including the control of ligand processing, the availability of the receptor itself and the transduction of the cascade in the cytoplasm. Ultimately, the transcriptional responses contribute to the establishment of positive and negative feedback loops. The combination of these multiple mechanisms employed to regulate the EGFR pathway leads to specific cellular outcomes involved in functions as diverse as the acquisition of cell fate, proliferation, survival, adherens junction remodelling and morphogenesis.
Collapse
Affiliation(s)
- Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
15
|
Drak Is Required for Actomyosin Organization During Drosophila Cellularization. G3-GENES GENOMES GENETICS 2016; 6:819-28. [PMID: 26818071 PMCID: PMC4825652 DOI: 10.1534/g3.115.026401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The generation of force by actomyosin contraction is critical for a variety of cellular and developmental processes. Nonmuscle myosin II is the motor that drives actomyosin contraction, and its activity is largely regulated by phosphorylation of the myosin regulatory light chain. During the formation of the Drosophila cellular blastoderm, actomyosin contraction drives constriction of microfilament rings, modified cytokinesis rings. Here, we find that Drak is necessary for most of the phosphorylation of the myosin regulatory light chain during cellularization. We show that Drak is required for organization of myosin II within the microfilament rings. Proper actomyosin contraction of the microfilament rings during cellularization also requires Drak activity. Constitutive activation of myosin regulatory light chain bypasses the requirement for Drak, suggesting that actomyosin organization and contraction are mediated through Drak's regulation of myosin activity. Drak is also involved in the maintenance of furrow canal structure and lateral plasma membrane integrity during cellularization. Together, our observations suggest that Drak is the primary regulator of actomyosin dynamics during cellularization.
Collapse
|
16
|
Turlier H, Maître JL. Mechanics of tissue compaction. Semin Cell Dev Biol 2015; 47-48:110-7. [PMID: 26256955 PMCID: PMC5484403 DOI: 10.1016/j.semcdb.2015.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023]
Abstract
During embryonic development, tissues deform by a succession and combination of morphogenetic processes. Tissue compaction is the morphogenetic process by which a tissue adopts a tighter structure. Recent studies characterized the respective roles of cells' adhesive and contractile properties in tissue compaction. In this review, we formalize the mechanical and molecular principles of tissue compaction and we analyze through the prism of this framework several morphogenetic events: the compaction of the early mouse embryo, the formation of the fly retina, the segmentation of somites and the separation of germ layers during gastrulation.
Collapse
Affiliation(s)
- Hervé Turlier
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jean-Léon Maître
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
17
|
Tamada M, Zallen JA. Square Cell Packing in the Drosophila Embryo through Spatiotemporally Regulated EGF Receptor Signaling. Dev Cell 2015; 35:151-61. [PMID: 26506305 PMCID: PMC4939091 DOI: 10.1016/j.devcel.2015.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/11/2015] [Accepted: 09/23/2015] [Indexed: 01/05/2023]
Abstract
Cells display dynamic and diverse morphologies during development, but the strategies by which differentiated tissues achieve precise shapes and patterns are not well understood. Here we identify a developmental program that generates a highly ordered square cell grid in the Drosophila embryo through sequential and spatially regulated cell alignment, oriented cell division, and apicobasal cell elongation. The basic leucine zipper transcriptional regulator Cnc is necessary and sufficient to produce a square cell grid in the presence of a midline signal provided by the EGF receptor ligand Spitz. Spitz orients cell divisions through a Pins/LGN-dependent spindle-positioning mechanism and controls cell shape and alignment through a transcriptional pathway that requires the Pointed ETS domain protein. These results identify a strategy for producing ordered square cell packing configurations in epithelia and reveal a molecular mechanism by which organized tissue structure is generated through spatiotemporally regulated responses to EGF receptor activation.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
18
|
Fernandes VM, Pradhan-Sundd T, Blaquiere JA, Verheyen EM. Ras/MEK/MAPK-mediated regulation of heparin sulphate proteoglycans promotes retinal fate in the Drosophila eye-antennal disc. Dev Biol 2015; 402:109-18. [PMID: 25848695 DOI: 10.1016/j.ydbio.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/22/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022]
Abstract
Generating cellular heterogeneity is crucial to the development of complex organs. Organ-fate selector genes and signalling pathways generate cellular diversity by subdividing and patterning naïve tissues to assign them regional identities. The Drosophila eye-antennal imaginal disc is a well-characterised system in which to study regional specification; it is first divided into antennal and eye fates and subsequently retinal differentiation occurs within only the eye field. During development, signalling pathways and selector genes compete with and mutually antagonise each other to subdivide the tissue. Wingless (Wg) signalling is the main inhibitor of retinal differentiation; it does so by promoting antennal/head-fate via selector factors and by antagonising Hedgehog (Hh), the principal differentiation-initiating signal. Wg signalling must be suppressed by JAK/STAT at the disc posterior in order to initiate retinal differentiation. Ras/MEK/MAPK signalling has also been implicated in initiating retinal differentiation but its mode of action is not known. We find that compromising Ras/MEK/MAPK signalling in the early larval disc results in expanded antennal/head cuticle at the expense of the compound eye. These phenotypes correspond both to perturbations in selector factor expression, and to de-repressed wg. Indeed, STAT activity is reduced due to decreased mobility of the ligand Unpaired (Upd) along with a corresponding loss in Dally-like protein (Dlp), a heparan sulphate proteoglycan (HSPG) that aids Upd diffusion. Strikingly, blocking HSPG biogenesis phenocopies compromised Ras/MEK/MAPK, while restoring HSPG expression rescues the adult phenotype significantly. This study identifies a novel mode by which the Ras/MEK/MAPK pathway regulates regional-fate specification via HSPGs during development.
Collapse
Affiliation(s)
- Vilaiwan M Fernandes
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| |
Collapse
|
19
|
Chuang M, Chisholm AD. Insights into the functions of the death associated protein kinases from C. elegans and other invertebrates. Apoptosis 2014; 19:392-7. [PMID: 24242918 DOI: 10.1007/s10495-013-0943-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The death associated protein kinases (DAPK) are a phylogenetically widespread family of calcium-regulated serine/threonine kinases, initially identified from their roles in apoptosis. Subsequent studies, principally in vertebrate cells or models, have elucidated the functions of the DAPK family in autophagy and tumor suppression. Invertebrate genetic model organisms such as Drosophila and C. elegans have revealed additional functions for DAPK and related kinases. In the nematode C. elegans, the sole DAPK family member DAPK-1 positively regulates starvation-induced autophagy. Genetic analysis in C. elegans has revealed that DAPK-1 also acts as a negative regulator of epithelial innate immune responses in the epidermis. This negative regulatory role for DAPK in innate immunity may be analogous to the roles of mammalian DAPK in inflammatory responses.
Collapse
Affiliation(s)
- Marian Chuang
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | | |
Collapse
|
20
|
Harding MJ, McGraw HF, Nechiporuk A. The roles and regulation of multicellular rosette structures during morphogenesis. Development 2014; 141:2549-58. [PMID: 24961796 DOI: 10.1242/dev.101444] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multicellular rosettes have recently been appreciated as important cellular intermediates that are observed during the formation of diverse organ systems. These rosettes are polarized, transient epithelial structures that sometimes recapitulate the form of the adult organ. Rosette formation has been studied in various developmental contexts, such as in the zebrafish lateral line primordium, the vertebrate pancreas, the Drosophila epithelium and retina, as well as in the adult neural stem cell niche. These studies have revealed that the cytoskeletal rearrangements responsible for rosette formation appear to be conserved. By contrast, the extracellular cues that trigger these rearrangements in vivo are less well understood and are more diverse. Here, we review recent studies of the genetic regulation and cellular transitions involved in rosette formation. We discuss and compare specific models for rosette formation and highlight outstanding questions in the field.
Collapse
Affiliation(s)
- Molly J Harding
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hillary F McGraw
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alex Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
21
|
Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation. Proc Natl Acad Sci U S A 2014; 111:11732-7. [PMID: 25071215 DOI: 10.1073/pnas.1400520111] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatiotemporally regulated actomyosin contractility generates the forces that drive epithelial cell rearrangements and tissue remodeling. Phosphorylation of the myosin II regulatory light chain (RLC) promotes the assembly of myosin monomers into active contractile filaments and is an essential mechanism regulating the level of myosin activity. However, the effects of phosphorylation on myosin localization, dynamics, and function during epithelial remodeling are not well understood. In Drosophila, planar polarized myosin contractility is required for oriented cell rearrangements during elongation of the body axis. We show that regulated myosin phosphorylation influences spatial and temporal properties of contractile behavior at molecular, cellular, and tissue length scales. Expression of myosin RLC variants that prevent or mimic phosphorylation both disrupt axis elongation, but have distinct effects at the molecular and cellular levels. Unphosphorylatable RLC produces fewer, slower cell rearrangements, whereas phosphomimetic RLC accelerates rearrangement and promotes higher-order cell interactions. Quantitative live imaging and biophysical approaches reveal that both phosphovariants reduce myosin planar polarity and mechanical anisotropy, altering the orientation of cell rearrangements during axis elongation. Moreover, the localized myosin activator Rho-kinase is required for spatially regulated myosin activity, even when the requirement for phosphorylation is bypassed by the expression of phosphomimetic myosin RLC. These results indicate that myosin phosphorylation influences both the level and the spatiotemporal regulation of myosin activity, linking molecular properties of myosin activity to tissue morphogenesis.
Collapse
|
22
|
Baker NE, Li K, Quiquand M, Ruggiero R, Wang LH. Eye development. Methods 2014; 68:252-9. [PMID: 24784530 DOI: 10.1016/j.ymeth.2014.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/21/2022] Open
Abstract
The eye has been one of the most intensively studied organs in Drosophila. The wealth of knowledge about its development, as well as the reagents that have been developed, and the fact that the eye is dispensable for survival, also make the eye suitable for genetic interaction studies and genetic screens. This article provides a brief overview of the methods developed to image and probe eye development at multiple developmental stages, including live imaging, immunostaining of fixed tissues, in situ hybridizations, and scanning electron microscopy and color photography of adult eyes. Also summarized are genetic approaches that can be performed in the eye, including mosaic analysis and conditional mutation, gene misexpression and knockdown, and forward genetic and modifier screens.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| | - Ke Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Robert Ruggiero
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Lan-Hsin Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| |
Collapse
|
23
|
Simões SDM, Mainieri A, Zallen JA. Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension. ACTA ACUST UNITED AC 2014; 204:575-89. [PMID: 24535826 PMCID: PMC3926966 DOI: 10.1083/jcb.201307070] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rho GTPase signaling establishes a planar polarized actomyosin network within which the actin-binding protein Shroom enhances myosin activity locally to generate robust mechanical forces during axis elongation. Actomyosin contraction generates mechanical forces that influence cell and tissue structure. During convergent extension in Drosophila melanogaster, the spatially regulated activity of the myosin activator Rho-kinase promotes actomyosin contraction at specific planar cell boundaries to produce polarized cell rearrangement. The mechanisms that direct localized Rho-kinase activity are not well understood. We show that Rho GTPase recruits Rho-kinase to adherens junctions and is required for Rho-kinase planar polarity. Shroom, an asymmetrically localized actin- and Rho-kinase–binding protein, amplifies Rho-kinase and myosin II planar polarity and junctional localization downstream of Rho signaling. In Shroom mutants, Rho-kinase and myosin II achieve reduced levels of planar polarity, resulting in decreased junctional tension, a disruption of multicellular rosette formation, and defective convergent extension. These results indicate that Rho GTPase activity is required to establish a planar polarized actomyosin network, and the Shroom actin-binding protein enhances myosin contractility locally to generate robust mechanical forces during axis elongation.
Collapse
Affiliation(s)
- Sérgio de Matos Simões
- Howard Hughes Medical Institute and 2 Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
| | | | | |
Collapse
|
24
|
Mao P, Hever-Jardine MP, Rahme GJ, Yang E, Tam J, Kodali A, Biswal B, Fadul CE, Gaur A, Israel MA, Spinella MJ. Serine/threonine kinase 17A is a novel candidate for therapeutic targeting in glioblastoma. PLoS One 2013; 8:e81803. [PMID: 24312360 PMCID: PMC3842963 DOI: 10.1371/journal.pone.0081803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/16/2013] [Indexed: 01/01/2023] Open
Abstract
STK17A is a relatively uncharacterized member of the death-associated protein family of serine/threonine kinases which have previously been associated with cell death and apoptosis. Our prior work established that STK17A is a novel p53 target gene that is induced by a variety of DNA damaging agents in a p53-dependent manner. In this study we have uncovered an additional, unanticipated role for STK17A as a candidate promoter of cell proliferation and survival in glioblastoma (GBM). Unexpectedly, it was found that STK17A is highly overexpressed in a grade-dependent manner in gliomas compared to normal brain and other cancer cell types with the highest level of expression in GBM. Knockdown of STK17A in GBM cells results in a dramatic alteration in cell shape that is associated with decreased proliferation, clonogenicity, migration, invasion and anchorage independent colony formation. STK17A knockdown also sensitizes GBM cells to genotoxic stress. STK17A overexpression is associated with a significant survival disadvantage among patients with glioma which is independent of age, molecular phenotype, IDH1 mutation, PTEN loss, and alterations in the p53 pathway and partially independent of grade. In summary, we demonstrate that STK17A provides a proliferative and survival advantage to GBM cells and is a potential target to be exploited therapeutically in patients with glioma.
Collapse
Affiliation(s)
- Pingping Mao
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Mary P. Hever-Jardine
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gilbert J. Rahme
- Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Eric Yang
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Janice Tam
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Anita Kodali
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Bijesh Biswal
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Camilo E. Fadul
- Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Arti Gaur
- Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Mark A. Israel
- Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Michael J. Spinella
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
25
|
Transcriptional regulation of tissue organization and cell morphogenesis: the fly retina as a case study. Dev Biol 2013; 385:168-78. [PMID: 24099926 DOI: 10.1016/j.ydbio.2013.09.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/27/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
Understanding how a functional organ can be produced from a small group of cells remains an outstanding question in cell and developmental biology. The developing compound eye of Drosophila has long been a model of choice for addressing this question by dissecting the cellular, genetic and molecular pathways that govern cell specification, differentiation, and multicellular patterning during organogenesis. In this review, the author focussed on cell and tissue morphogenesis during fly retinal development, including the regulated changes in cell shape and cell packing that ultimately determine the shape and architecture of the compound eye. In particular, the author reviewed recent studies that highlight the prominent roles of transcriptional and hormonal controls that orchestrate the cell shape changes, cell-cell junction remodeling and polarized membrane growth that underlie photoreceptor morphogenesis and retinal patterning.
Collapse
|
26
|
Treisman JE. Retinal differentiation in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:545-57. [PMID: 24014422 DOI: 10.1002/wdev.100] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drosophila eye development has been extensively studied, due to the ease of genetic screens for mutations disrupting this process. The eye imaginal disc is specified during embryonic and larval development by the Pax6 homolog Eyeless and a network of downstream transcription factors. Expression of these factors is regulated by signaling molecules and also indirectly by growth of the eye disc. Differentiation of photoreceptor clusters initiates in the third larval instar at the posterior of the eye disc and progresses anteriorly, driven by the secreted protein Hedgehog. Within each cluster, the combined activities of Hedgehog signaling and Notch-mediated lateral inhibition induce and refine the expression of the transcription factor Atonal, which specifies the founding R8 photoreceptor of each ommatidium. Seven additional photoreceptors, followed by cone and pigment cells, are successively recruited by the signaling molecules Spitz, Delta, and Bride of sevenless. Combinations of these signals and of intrinsic transcription factors give each ommatidial cell its specific identity. During the pupal stages, rhodopsins are expressed, and the photoreceptors and accessory cells take on their final positions and morphologies to form the adult retina. Over the past few decades, the genetic analysis of this small number of cell types arranged in a repetitive structure has allowed a remarkably detailed understanding of the basic mechanisms controlling cell differentiation and morphological rearrangement.
Collapse
Affiliation(s)
- Jessica E Treisman
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Robertson F, Pinal N, Fichelson P, Pichaud F. Atonal and EGFR signalling orchestrate rok- and Drak -dependent adherens junction remodelling during ommatidia morphogenesis. J Cell Sci 2012. [DOI: 10.1242/jcs.121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|