1
|
Guiraud A, Couturier N, Christin E, Castellano L, Daura M, Kretz-Remy C, Janin A, Ghasemizadeh A, Del Carmine P, Monteiro L, Rotard L, Sanchez C, Jacquemond V, Burny C, Janczarski S, Durieux AC, Arnould D, Romero NB, Bui MT, Buchman VL, Julien L, Bitoun M, Gache V. SH3KBP1 promotes skeletal myofiber formation and functionality through ER/SR architecture integrity. EMBO Rep 2025; 26:2166-2191. [PMID: 40065183 PMCID: PMC12019163 DOI: 10.1038/s44319-025-00413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 04/25/2025] Open
Abstract
Dynamic changes in the arrangement of myonuclei and the organization of the sarcoplasmic reticulum are important determinants of myofiber formation and muscle function. To find factors associated with muscle integrity, we perform an siRNA screen and identify SH3KBP1 as a new factor controlling myoblast fusion, myonuclear positioning, and myotube elongation. We find that the N-terminus of SH3KBP1 binds to dynamin-2 while the C-terminus associates with the endoplasmic reticulum through calnexin, which in turn control myonuclei dynamics and ER integrity, respectively. Additionally, in mature muscle fibers, SH3KBP1 contributes to the formation of triads and modulates the Excitation-Contraction Coupling process efficiency. In Dnm2R465W/+ mice, a model for centronuclear myopathy (CNM), depletion of Sh3kbp1 expression aggravates CNM-related atrophic phenotypes and impaired autophagic flux in mutant skeletal muscle fiber. Altogether, our results identify SH3KBP1 as a new regulator of myofiber integrity and function.
Collapse
MESH Headings
- Animals
- Mice
- Muscle Fibers, Skeletal/metabolism
- Dynamin II/metabolism
- Dynamin II/genetics
- Sarcoplasmic Reticulum/metabolism
- Humans
- Endoplasmic Reticulum/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Muscle, Skeletal/metabolism
- Protein Binding
- Myoblasts/metabolism
Collapse
Affiliation(s)
- Alexandre Guiraud
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Nathalie Couturier
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Emilie Christin
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Léa Castellano
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Marine Daura
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Carole Kretz-Remy
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Alexandre Janin
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Alireza Ghasemizadeh
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Peggy Del Carmine
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Laloe Monteiro
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Ludivine Rotard
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Colline Sanchez
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Vincent Jacquemond
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Claire Burny
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, CEDEX 07, France
| | - Stéphane Janczarski
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, CEDEX 07, France
| | - Anne-Cécile Durieux
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet, Saint Etienne, France
| | - David Arnould
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet, Saint Etienne, France
| | - Norma Beatriz Romero
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Mai Thao Bui
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Laura Julien
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, F-75013, Paris, France
| | - Marc Bitoun
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, F-75013, Paris, France
| | - Vincent Gache
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France.
| |
Collapse
|
2
|
Rahmati M, Nikooie R. High-intensity interval training alleviates STZ-induced muscle atrophy by restoration of nuclear positioning defects in C57BL/6 male mice. Sci Rep 2025; 15:6891. [PMID: 40011606 PMCID: PMC11865543 DOI: 10.1038/s41598-025-91259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
We tested the hypothesis that improper myonuclei arrangement and morphology are involved in diabetes-induced myofiber atrophy and whether and how high-intensity interval training (HIIT) affects these impairments in isolated skeletal muscle myofibers. STZ-induced diabetes decreased muscle fiber cross-sectional area (CSA) mediated by reduced myonuclear number, enhanced nuclear apoptotic, and failed nuclear accretion from satellite cells. STZ-induced muscle atrophy was accompanied by improper nuclear positioning (sinus of the maximum diameter angles and distance between adjacent myonuclei) and morphology (maximum diameter, area, and volume of the nuclei), which was mediated by suppressed expression of proteins involved in nuclear positioning including KIF5B, dynein, and Nesprin1. Disturbing nuclear positioning by inhibition of Kinsein1 activity reduced CSA to a greater extent than in diabetes alone, suggesting STZ-induced muscle atrophy is mediated by changes in nuclear positioning. HIIT alleviated the STZ-induced decline in muscle CSA and myonuclei per fiber by restoring myonuclear morphometry impairments and improper nuclear positioning to the normal level. HIIT-induced increase in muscle CSA deterred by inhibition of Kinesin1 activity, suggesting its effect is mediated by proper nuclear positioning. These findings suggest that normal nuclear positioning are required for the changes in fiber size properties associated with HIIT in diabetic skeletal muscle fibers.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Exercise Physiology, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran.
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Rohollah Nikooie
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
3
|
Masiero C, Aresi C, Forlino A, Tonelli F. Zebrafish Models for Skeletal and Extraskeletal Osteogenesis Imperfecta Features: Unveiling Pathophysiology and Paving the Way for Drug Discovery. Calcif Tissue Int 2024; 115:931-959. [PMID: 39320469 PMCID: PMC11607041 DOI: 10.1007/s00223-024-01282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
In the last decades, the easy genetic manipulation, the external fertilization, the high percentage of homology with human genes and the reduced husbandry costs compared to rodents, made zebrafish a valid model for studying human diseases and for developing new therapeutical strategies. Since zebrafish shares with mammals the same bone cells and ossification types, it became widely used to dissect mechanisms and possible new therapeutic approaches in the field of common and rare bone diseases, such as osteoporosis and osteogenesis imperfecta (OI), respectively. OI is a heritable skeletal disorder caused by defects in gene encoding collagen I or proteins/enzymes necessary for collagen I synthesis and secretion. Nevertheless, OI patients can be also characterized by extraskeletal manifestations such as dentinogenesis imperfecta, muscle weakness, cardiac valve and pulmonary abnormalities and skin laxity. In this review, we provide an overview of the available zebrafish models for both dominant and recessive forms of OI. An updated description of all the main similarities and differences between zebrafish and mammal skeleton, muscle, heart and skin, will be also discussed. Finally, a list of high- and low-throughput techniques available to exploit both larvae and adult OI zebrafish models as unique tools for the discovery of new therapeutic approaches will be presented.
Collapse
Affiliation(s)
- Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Carla Aresi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| |
Collapse
|
4
|
Nicolas R, Bonnin MA, Blavet C, de Lima JE, Legallais C, Duprez D. 3D-environment and muscle contraction regulate the heterogeneity of myonuclei. Skelet Muscle 2024; 14:27. [PMID: 39529179 PMCID: PMC11552141 DOI: 10.1186/s13395-024-00359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Skeletal muscle formation involves tight interactions between muscle cells and associated connective tissue fibroblasts. Every muscle displays the same type of organisation, they are innervated in the middle and attached at both extremities to tendons. Myonuclei are heterogeneous along myotubes and regionalised according to these middle and tip domains. During development, as soon as myotubes are formed, myonuclei at muscle tips facing developing tendons display their own molecular program. In addition to molecular heterogeneity, a subset of tip myonuclei has a fibroblastic origin different to the classical somitic origin, highlighting a cellular heterogeneity of myonuclei in foetal myotubes. To gain insights on the functional relevance of myonucleus heterogeneity during limb development, we used 2D culture and co-culture systems to dissociate autonomous processes (occurring in 2D-cultures) from 3D-environment of tissue development. We also assessed the role of muscle contraction in myonucleus heterogeneity in paralysed limb muscles. The regionalisation of cellular heterogeneity was not observed in 2D cell culture systems and paralyzed muscles. The molecular signature of MTJ myonuclei was lost in a dish and paralysed muscles indicating a requirement of 3D-enviroment and muscle contraction for MTJ formation. Tip genes that maintain a regionalized expression at myotube tips in cultures are linked to sarcomeres. The behaviour of regionalized markers in cultured myotubes and paralyzed muscles allows us to speculate whether the genes intervene in myogenesis, myotube attachment or MTJ formation.
Collapse
Affiliation(s)
- Rosa Nicolas
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
| | - Marie-Ange Bonnin
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
| | - Cédrine Blavet
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
| | - Joana Esteves de Lima
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
- University Paris Est Creteil, Inserm, EnvA, EFS, AP-HP, IRMB, Creteil, 94010, France
| | - Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, Compiegne, 60203, France
| | - Delphine Duprez
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France.
| |
Collapse
|
5
|
Dias AP, Rehmani T, Salih M, Tuana B. Tail-anchored membrane protein SLMAP3 is essential for targeting centrosomal proteins to the nuclear envelope in skeletal myogenesis. Open Biol 2024; 14:240094. [PMID: 39378988 PMCID: PMC11461071 DOI: 10.1098/rsob.240094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 10/10/2024] Open
Abstract
The positioning and communication between the nucleus and centrosomes are essential in cell division, differentiation and tissue formation. During skeletal myogenesis, the nuclei become evenly spaced with the switch of the microtubule-organizing centre (MTOC) from the centrosome to the nuclear envelope (NE). We report that the tail-anchored sarcolemmal membrane associated protein 3 (SLMAP3), a component of the MTOC and NE, is crucial for myogenesis because its deletion in mice leads to a reduction in the NE-MTOC formation, mislocalization of the nuclei, dysregulation of the myogenic programme and abnormal embryonic myofibres. SLMAP3-/- myoblasts also displayed a similar disorganized distribution of nuclei with an aberrant NE-MTOC and defective myofibre formation and differentiation programming. We identified novel interactors of SLMAP3, including pericentrin, PCM1 (pericentriolar material 1), AKAP9 (A-kinase anchoring protein 9), kinesin-1 members Kif5B (kinesin family member 5B), KCL1 (kinesin light chain 1), KLC2 (kinesin light chain 2) and nuclear lamins, and observed that the distribution of centrosomal proteins at the NE together with Nesprin-1 was significantly altered by the loss of SLMAP3 in differentiating myoblasts. SLMAP3 is believed to negatively regulate Hippo signalling, but its loss was without impact on this pathway in developing muscle. These results reveal that SLMAP3 is essential for skeletal myogenesis through unique mechanisms involving the positioning of nuclei, NE-MTOC dynamics and gene programming.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| |
Collapse
|
6
|
Huang HH, Wang YJ, Jiang HY, Yu HW, Chen YQ, Chiou A, Kuo JC. Sarcopenia-related changes in serum GLP-1 level affect myogenic differentiation. J Cachexia Sarcopenia Muscle 2024; 15:1708-1721. [PMID: 38926763 PMCID: PMC11446708 DOI: 10.1002/jcsm.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Sarcopenia, a group of muscle-related disorders, leads to the gradual decline and weakening of skeletal muscle over time. Recognizing the pivotal role of gastrointestinal conditions in maintaining metabolic homeostasis within skeletal muscle, we hypothesize that the effectiveness of the myogenic programme is influenced by the levels of gastrointestinal hormones in the bloodstream, and this connection is associated with the onset of sarcopenia. METHODS We first categorized 145 individuals from the Emergency Room of Taipei Veterans General Hospital into sarcopenia and non-sarcopenia groups, following the criteria established by the Asian Working Group for Sarcopenia. A thorough examination of specific gastrointestinal hormone levels in plasma was conducted to identify the one most closely associated with sarcopenia. Techniques, including immunofluorescence, western blotting, glucose uptake assays, seahorse real-time cell metabolic analysis, flow cytometry analysis, kinesin-1 activity assays and qPCR analysis, were applied to investigate its impacts and mechanisms on myogenic differentiation. RESULTS Individuals in the sarcopenia group exhibited elevated plasma levels of glucagon-like peptide 1 (GLP-1) at 1021.5 ± 313.5 pg/mL, in contrast to non-sarcopenic individuals with levels at 351.1 ± 39.0 pg/mL (P < 0.05). Although it is typical for GLP-1 levels to rise post-meal and subsequently drop naturally, detecting higher GLP-1 levels in starving individuals with sarcopenia raised the possibility of GLP-1 influencing myogenic differentiation in skeletal muscle. Further investigation using a cell model revealed that GLP-1 (1, 10 and 100 ng/mL) dose-dependently suppressed the expression of the myogenic marker, impeding myocyte fusion and the formation of polarized myotubes during differentiation. GLP-1 significantly inhibited the activity of the microtubule motor kinesin-1, interfering with the translocation of glucose transporter 4 (GLUT4) to the cell membrane and the dispersion of mitochondria. These impairments subsequently led to a reduction in glucose uptake to 0.81 ± 0.04 fold (P < 0.01) and mitochondrial adenosine triphosphate (ATP) production from 25.24 ± 1.57 pmol/min to 18.83 ± 1.11 pmol/min (P < 0.05). Continuous exposure to GLP-1, even under insulin induction, attenuated the elevated glucose uptake. CONCLUSIONS The elevated GLP-1 levels observed in individuals with sarcopenia are associated with a reduction in myogenic differentiation. The impact of GLP-1 on both the membrane translocation of GLUT4 and the dispersion of mitochondria significantly hinders glucose uptake and the production of mitochondrial ATP necessary for the myogenic programme. These findings point us towards strategies to establish the muscle-gut axis, particularly in the context of sarcopenia. Additionally, these results present the potential of identifying relevant diagnostic biomarkers.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Jie Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Yu Jiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yin-Quan Chen
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
8
|
Chiang WY, Yu HW, Wu MC, Huang YM, Chen YQ, Lin JW, Liu YW, You LR, Chiou A, Kuo JC. Matrix mechanics regulates muscle regeneration by modulating kinesin-1 activity. Biomaterials 2024; 308:122551. [PMID: 38593710 DOI: 10.1016/j.biomaterials.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo. To investigate whether the biomechanical properties of skeletal muscle directly impact the myogenic program, we established an in vitro system to explore the intrinsic mechanism involving matrix stiffness control of myogenic differentiation. Our findings identify the microtubule motor protein, kinesin-1, as a mechano-transduction hub that senses and responds to matrix stiffness, crucial for myogenic differentiation and muscle regeneration. Specifically, kinesin-1 activity is positively regulated by stiff matrices, facilitating its role in transporting mitochondria and enhancing translocation of the glucose transporter GLUT4 to the cell surface for glucose uptake. Conversely, the softer matrices significantly suppress kinesin-1 activity, leading to the accumulation of mitochondria around nuclei and hindering glucose uptake by inhibiting GLUT4 membrane translocation, consequently impairing myogenic differentiation. The insights gained from the in-vitro system highlight the mechano-transduction significance of kinesin-1 motor proteins in myogenic differentiation. Furthermore, our study confirms that enhancing kinesin-1 activity in the sarcopenic mouse model restores satellite cell expansion, myogenic differentiation, and muscle regeneration. Taken together, our findings provide a potential target for improving muscle regeneration in sarcopenia.
Collapse
Affiliation(s)
- Wan-Yu Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Man Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yin-Quan Chen
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Jong-Wei Lin
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yen-Wenn Liu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
9
|
Marom R, Zhang B, Washington ME, Song IW, Burrage LC, Rossi VC, Berrier AS, Lindsey A, Lesinski J, Nonet ML, Chen J, Baldridge D, Silverman GA, Sutton VR, Rosenfeld JA, Tran AA, Hicks MJ, Murdock DR, Dai H, Weis M, Jhangiani SN, Muzny DM, Gibbs RA, Caswell R, Pottinger C, Cilliers D, Stals K, Undiagnosed Diseases Network, Eyre D, Krakow D, Schedl T, Pak SC, Lee BH. Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling. PLoS Genet 2023; 19:e1011005. [PMID: 37934770 PMCID: PMC10656020 DOI: 10.1371/journal.pgen.1011005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/17/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Bo Zhang
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Megan E. Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Vittoria C. Rossi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ava S. Berrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anika Lindsey
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacob Lesinski
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael L. Nonet
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jian Chen
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Gary A. Silverman
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alyssa A. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - M. John Hicks
- Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David R. Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Carrie Pottinger
- All Wales Medical Genomics Service, Wrexham Maelor Hospital, Wrexham, UK
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | | | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Deborah Krakow
- Human Genetics, Obstetrics & Gynecology, Orthopedic Surgery, University of California, Los Angeles, California, United States of America
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Stephen C. Pak
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| |
Collapse
|
10
|
De Silva S, Fan Z, Kang B, Shanahan CM, Zhang Q. Nesprin-1: novel regulator of striated muscle nuclear positioning and mechanotransduction. Biochem Soc Trans 2023; 51:1331-1345. [PMID: 37171063 PMCID: PMC10317153 DOI: 10.1042/bst20221541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Nesprins (nuclear envelope spectrin repeat proteins) are multi-isomeric scaffolding proteins. Giant nesprin-1 and -2 localise to the outer nuclear membrane, interact with SUN (Sad1p/UNC-84) domain-containing proteins at the inner nuclear membrane to form the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex, which, in association with lamin A/C and emerin, mechanically couples the nucleus to the cytoskeleton. Despite ubiquitous expression of nesprin giant isoforms, pathogenic mutations in nesprin-1 and -2 are associated with tissue-specific disorders, particularly related to striated muscle such as dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. Recent evidence suggests this muscle-specificity might be attributable in part, to the small muscle specific isoform, nesprin-1α2, which has a novel role in striated muscle function. Our current understanding of muscle-specific functions of nesprin-1 and its isoforms will be summarised in this review to provide insight into potential pathological mechanisms of nesprin-related muscle disease and may inform potential targets of therapeutic modulation.
Collapse
Affiliation(s)
- Shanelle De Silva
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Zhijuan Fan
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
- Clinical Laboratory, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Baoqiang Kang
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Catherine M. Shanahan
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Qiuping Zhang
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| |
Collapse
|
11
|
Bagley JR, Denes LT, McCarthy JJ, Wang ET, Murach KA. The myonuclear domain in adult skeletal muscle fibres: past, present and future. J Physiol 2023; 601:723-741. [PMID: 36629254 PMCID: PMC9931674 DOI: 10.1113/jp283658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.
Collapse
Affiliation(s)
- James R. Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, California
| | | | - John J. McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, Florida
- Myology Institute, University of Florida
- Genetics Institute, University of Florida
| | - Kevin A. Murach
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
- Cell and Molecular Biology Graduate Program, University of Arkansas
| |
Collapse
|
12
|
Noë S, Corvelyn M, Willems S, Costamagna D, Aerts JM, Van Campenhout A, Desloovere K. The Myotube Analyzer: how to assess myogenic features in muscle stem cells. Skelet Muscle 2022; 12:12. [PMID: 35689270 PMCID: PMC9185954 DOI: 10.1186/s13395-022-00297-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The analysis of in vitro cultures of human adult muscle stem cells obtained from biopsies delineates the potential of skeletal muscles and may help to understand altered muscle morphology in patients. In these analyses, the fusion index is a commonly used quantitative metric to assess the myogenic potency of the muscle stem cells. Since the fusion index only partly describes myogenic potency, we developed the Myotube Analyzer tool, which combines the definition of the fusion index with extra features of myonuclei and myotubes obtained from satellite cell cultures. RESULTS The software contains image adjustment and mask editing functions for preprocessing and semi-automatic segmentation, while other functions can be used to determine the features of nuclei and myotubes. The fusion index and a set of five novel parameters were tested for reliability and validity in a comparison between satellite cell cultures from children with cerebral palsy and typically developing children. These novel parameters quantified extra nucleus and myotube properties and can be used to describe nucleus clustering and myotube shape. Two analyzers who were trained in cell culture defined all parameters using the Myotube Analyzer app. Out of the six parameters, five had good reliability reflected by good intra-class correlation coefficients (> 0.75). Children with cerebral palsy were significantly different from the typically developing children (p < 0.05) for five parameters, and for three of the six parameters, these differences exceeded the minimal detectable differences. CONCLUSIONS The Myotube Analyzer can be used for the analysis of fixed differentiated myoblast cultures with nuclear and MyHC staining. The app can calculate the fusion index, an already existing parameter, but also provides multiple new parameters to comprehensively describe myogenic potential in its output. The raw data used to determine these parameters are also available in the output. The parameters calculated by the tool can be used to detect differences between cultures from children with cerebral palsy and typically developing children. Since the program is open source, users can customize it to fit their own analysis requirements.
Collapse
Affiliation(s)
- Simon Noë
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | - Marlies Corvelyn
- Translational Cardiomyology, Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Sarah Willems
- Translational Cardiomyology, Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Translational Cardiomyology, Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jean-Marie Aerts
- M3-BIORES, Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Department of Orthopedic Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Myoparr-Associated and -Independent Multiple Roles of Heterogeneous Nuclear Ribonucleoprotein K during Skeletal Muscle Cell Differentiation. Int J Mol Sci 2021; 23:ijms23010108. [PMID: 35008534 PMCID: PMC8744952 DOI: 10.3390/ijms23010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of heterogeneous nuclear ribonucleoprotein K (hnRNPK) for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level. The hnRNPK-binding region of Myoparr was required to repress myogenin expression. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays lncRNA-associated and -independent multiple roles during myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.
Collapse
|
14
|
Rahmati M, Taherabadi SJ. The effects of exercise training on Kinesin and GAP-43 expression in skeletal muscle fibers of STZ-induced diabetic rats. Sci Rep 2021; 11:9535. [PMID: 33953268 PMCID: PMC8099856 DOI: 10.1038/s41598-021-89106-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Kinesin-1 and Growth Associated Protein 43 (GAP-43) localization in muscle fiber are crucial for proper skeletal muscle hypertrophy. To evaluate this assumption, we investigated the beneficial effects of endurance training on GAP-43 and Kinesin Family Member 5B (KIF5B) expression in gastrocnemius muscle of streptozotocin (STZ)-induced diabetic rats. Fifty-two male rats were randomly divided into four groups: healthy control (C), healthy trained (T), diabetic control (DC) and diabetic trained (DT). Diabetes was induced by a single intraperitoneal injection of STZ (45 mg/kg). The rats in DT and T groups were subjected to treadmill running for 5 days a week over 6 weeks. The results indicated that the GAP-43 and KIF5B protein levels in the DC group were significantly lower than those in the C group. Additionally, chronic treadmill running in diabetic rats was accompanied by significant increase of GAP-43 and KIF5B protein expression, compared to DC group. Furthermore, the endurance training in healthy rats was associated with a significant increase of GAP-43 and KIF5B protein levels. In addition, we found positive correlation between GAP-43 and KIF5B protein levels and myonuclear number per fiber and average gastrocnemius cross-sectional area (CSA). GAP43 and KIF5B protein levels were decreased in skeletal muscles of diabetic rats, and exercise training had beneficial effects and could restore their abnormal expression. Moreover, there is a strong relationship between muscle hypertrophy and GAP-43 and KIF5B protein levels.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran.
| | - Seyed Jalal Taherabadi
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| |
Collapse
|
15
|
Dexamethasone accelerates muscle regeneration by modulating kinesin-1-mediated focal adhesion signals. Cell Death Discov 2021; 7:35. [PMID: 33597503 PMCID: PMC7889929 DOI: 10.1038/s41420-021-00412-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/11/2023] Open
Abstract
During differentiation, skeletal muscle develops mature multinucleated muscle fibers, which could contract to exert force on a substrate. Muscle dysfunction occurs progressively in patients with muscular dystrophy, leading to a loss of the ability to walk and eventually to death. The synthetic glucocorticoid dexamethasone (Dex) has been used therapeutically to treat muscular dystrophy by an inhibition of inflammation, followed by slowing muscle degeneration and stabilizing muscle strength. Here, in mice with muscle injury, we found that Dex significantly promotes muscle regeneration via promoting kinesin-1 motor activity. Nevertheless, how Dex promotes myogenesis through kinesin-1 motors remains unclear. We found that Dex directly increases kinesin-1 motor activity, which is required for the expression of a myogenic marker (muscle myosin heavy chain 1/2), and also for the process of myoblast fusion and the formation of polarized myotubes. Upon differentiation, kinesin-1 mediates the recruitment of integrin β1 onto microtubules allowing delivery of the protein into focal adhesions. Integrin β1-mediated focal adhesion signaling then guides myoblast fusion towards a polarized morphology. By imposing geometric constrains via micropatterns, we have proved that cell adhesion is able to rescue the defects caused by kinesin-1 inhibition during the process of myogenesis. These discoveries reveal a mechanism by which Dex is able to promote myogenesis, and lead us towards approaches that are more efficient in improving skeletal muscle regeneration.
Collapse
|
16
|
Computational Assessment of Transport Distances in Living Skeletal Muscle Fibers Studied In Situ. Biophys J 2020; 119:2166-2178. [PMID: 33121941 DOI: 10.1016/j.bpj.2020.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/10/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022] Open
Abstract
Transport distances in skeletal muscle fibers are mitigated by these cells having multiple nuclei. We have studied mouse living slow (soleus) and fast (extensor digitorum longus) muscle fibers in situ and determined cellular dimensions and the positions of all the nuclei within fiber segments. We modeled the effect of placing nuclei optimally and randomly using the nuclei as the origin of a transportation network. It appeared that an equidistant positioning of nuclei minimizes transport distances along the surface for both muscles. In the soleus muscle, however, which were richer in nuclei, positioning of nuclei to reduce transport distances to the cytoplasm were of less importance, and these fibers exhibit a pattern not statistically different from a random positioning of nuclei. We also simulated transport times for myoglobin and found that they were remarkably similar between the two muscles despite differences in nuclear patterning and distances. Together, these results highlight the importance of spatially distributed nuclei to minimize transport distances to the surface when nuclear density is low, whereas it appears that the distribution are of less importance at higher nuclear densities.
Collapse
|
17
|
Corvelyn M, De Beukelaer N, Duelen R, Deschrevel J, Van Campenhout A, Prinsen S, Gayan-Ramirez G, Maes K, Weide G, Desloovere K, Sampaolesi M, Costamagna D. Muscle Microbiopsy to Delineate Stem Cell Involvement in Young Patients: A Novel Approach for Children With Cerebral Palsy. Front Physiol 2020; 11:945. [PMID: 32848872 PMCID: PMC7424076 DOI: 10.3389/fphys.2020.00945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral palsy (CP), the single largest cause of childhood physical disability, is characterized firstly by a lesion in the immature brain, and secondly by musculoskeletal problems that progress with age. Previous research reported altered muscle properties, such as reduced volume and satellite cell (SC) numbers and hypertrophic extracellular matrix compared to typically developing (TD) children (>10 years). Unfortunately, data on younger CP patients are scarce and studies on SCs and other muscle stem cells in CP are insufficient or lacking. Therefore, it remains difficult to understand the early onset and trajectory of altered muscle properties in growing CP children. Because muscle stem cells are responsible for postnatal growth, repair and remodeling, multiple adult stem cell populations from young CP children could play a role in altered muscle development. To this end, new methods for studying muscle samples of young children, valid to delineate the features and to elucidate the regenerative potential of muscle tissue, are necessary. Using minimal invasive muscle microbiopsy, which was applied in young subjects under general anaesthesia for the first time, we aimed to isolate and characterize muscle stem cell-derived progenitors of TD children and patients with CP. Data of 15 CP patients, 3–9 years old, and 5 aged-matched TD children were reported. The muscle microbiopsy technique was tolerated well in all participants. Through the explant technique, we provided muscle stem cell-derived progenitors from the Medial Gastrocnemius. Via fluorescent activated cell sorting, using surface markers CD56, ALP, and PDGFRa, we obtained SC-derived progenitors, mesoangioblasts and fibro-adipogenic progenitors, respectively. Adipogenic, skeletal, and smooth muscle differentiation assays confirmed the cell identity and ability to give rise to different cell types after appropriate stimuli. Myogenic differentiation in CP SC-derived progenitors showed enhanced fusion index and altered myotube formation based on MYOSIN HEAVY CHAIN expression, as well as disorganization of nuclear spreading, which were not observed in TD myotubes. In conclusion, the microbiopsy technique allows more focused muscle research in young CP patients. Current results show altered differentiation abilities of muscle stem cell-derived progenitors and support the hypothesis of their involvement in CP-altered muscle growth.
Collapse
Affiliation(s)
- Marlies Corvelyn
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Nathalie De Beukelaer
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jorieke Deschrevel
- Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Pediatric Orthopedics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Sandra Prinsen
- Pediatric Orthopedics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Guido Weide
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Bergeron A, Brezai A, Shukr R, Villeneuve L, Allen BG, Qureshi WMS, Hentges KE, Calderone A. Filamentous nestin and nonmuscle myosin IIB are associated with a migratory phenotype in neonatal rat cardiomyocytes. J Cell Physiol 2020; 236:1281-1294. [PMID: 32654195 DOI: 10.1002/jcp.29934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Cardiomyocyte migration represents a requisite event of cardiogenesis and the regenerative response of the injured adult zebrafish and neonatal rodent heart. The present study tested the hypothesis that the appearance of the intermediate filament protein nestin in neonatal rat ventricular cardiomyocytes (NNVMs) was associated in part with the acquisition of a migratory phenotype. The cotreatment of NNVMs with phorbol 12,13-dibutyrate (PDBu) and the p38α/β mitogen-activated protein kinase inhibitor SB203580 led to the de novo synthesis of nestin. The intermediate filament protein was subsequently reorganized into a filamentous pattern and redistributed to the leading edge of elongated membrane protrusions translating to significant lengthening of NNVMs. PDBu/SB203580 treatment concomitantly promoted the reorganization of nonmuscle myosin IIB (NMIIB) located predominantly at the periphery of the plasma membrane of NNVMs to a filamentous phenotype extending to the leading edge of elongated membrane protrusions. Coimmunoprecipitation assay revealed a physical interaction between NMIIB and nestin after PDBu/SB203580 treatment of NNVMs. In wild-type and heterozygous NMIIB embryonic hearts at E11.5-E14.5 days, nestin immunoreactivity was identified in a subpopulation of cardiomyocytes elongating perpendicular to the compact myocardium, at the leading edge of nascent trabeculae and during thickening of the compact myocardium. In mutant embryonic hearts lacking NMIIB protein expression, trabeculae formation was reduced, the compact myocardium significantly thinner and nestin immunoreactivity undetectable in cardiomyocytes at E14.5 days. These data suggest that NMIIB and nestin may act in a coordinated fashion to facilitate the acquisition of a migratory phenotype in neonatal and embryonic cardiomyocytes.
Collapse
Affiliation(s)
- Alexandre Bergeron
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Andra Brezai
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Rami Shukr
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Bruce G Allen
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Wasay M S Qureshi
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kathryn E Hentges
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Angelino Calderone
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
19
|
Emmott A, Hertig V, Bergeron A, Villeneuve L, Lefebvre L, Leask RL, Calderone A, El-Hamamsy I. Distinct Expression of Nonmuscle Myosin IIB in Pulmonary Arteries of Patients With Aortic Stenosis vs Insufficiency Undergoing a Ross Procedure. Can J Cardiol 2020; 37:47-56. [PMID: 32544488 DOI: 10.1016/j.cjca.2020.02.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Clinical studies have revealed a greater risk of pulmonary autograft dilation after the Ross procedure in patients with preoperative aortic insufficiency (AI). The present study examined whether the morphologic, biomechanical, and cellular properties of the pulmonary artery (PA) from patients with AI were phenotypically different compared with patients diagnosed with aortic stenosis (AS). METHODS PA segments were harvested from patients undergoing the Ross procedure for AS (n = 16) and AI (n = 6). Preoperative aortic annulus was significantly larger (P < 0.05) in patients with AI (28.5 ± 1.8 mm) vs AS (22.8 ± 1.2 mm). Morphologic, biomechanical, and cellular phenotypes of the PA were analyzed. RESULTS Collagen and elastin content in the media of the PA wall were similar in patients with AS and AI. Elastic modulus and energy loss of the PA were not significantly different between the groups. In the media of the PA, expression of a panel of vascular smooth muscle cell-specific proteins were similar in patients with AS and AI. In contrast, nonmuscle myosin IIB protein levels in the PA of AS patients were significantly higher compared with AI patients, and immunofluorescence identified staining in α-smooth muscle actin-positive vascular smooth muscle cells. CONCLUSIONS Despite similar morphological and biomechanical properties, the disparate expression of nonmuscle myosin IIB protein distinguishes the PA of patients with AI from patients with AS. The biological role in vascular smooth muscle cells and the potential contribution of nonmuscle myosin IIB to pulmonary autograft dilation in a subset of AI patients after the Ross procedure remain to be determined.
Collapse
Affiliation(s)
- Alexander Emmott
- Research Center, Montréal Heart Institute and Université de Montréal, Montréal, Québec, Canada; Department of Chemical Engineering, McGill University, Montréal, Québec, Canada
| | - Vanessa Hertig
- Research Center, Montréal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Alexandre Bergeron
- Research Center, Montréal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Research Center, Montréal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Laurence Lefebvre
- Department of Cardiac Surgery, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Richard L Leask
- Research Center, Montréal Heart Institute and Université de Montréal, Montréal, Québec, Canada; Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
| | - Angelino Calderone
- Research Center, Montréal Heart Institute and Université de Montréal, Montréal, Québec, Canada; Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
| | - Ismail El-Hamamsy
- Research Center, Montréal Heart Institute and Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Surgery, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
20
|
Phuong TTT, An J, Park SH, Kim A, Choi HB, Kang TM. Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca 2+ signaling of differentiated C2C12 myotubes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:539-547. [PMID: 31680776 PMCID: PMC6819897 DOI: 10.4196/kjpp.2019.23.6.539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/05/2022]
Abstract
Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced [Ca2+]i transient and reduced sarcoplasmic reticulum (SR) Ca2+ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR Ca2+-ATPase subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises Ca2+ signaling by downregulating the expression of DHPR and SERCA proteins.
Collapse
Affiliation(s)
- Tam Thi Thanh Phuong
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jieun An
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Sun Hwa Park
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Ami Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hyun Bin Choi
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tong Mook Kang
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
21
|
Gan H, Xue W, Gao Y, Zhu G, Chan D, Cheah KSE, Huang J. KIF5B modulates central spindle organization in late-stage cytokinesis in chondrocytes. Cell Biosci 2019; 9:85. [PMID: 31636894 PMCID: PMC6794761 DOI: 10.1186/s13578-019-0344-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/23/2019] [Indexed: 01/23/2023] Open
Abstract
Background The growth plate is a special region of the cartilage that drives longitudinal growth of long bones. Proliferating chondrocytes in the growth plate, arranged in columns, divide perpendicular to the long axis of the growth plate then intercalate to re-align with parental columns. Which molecular partners maintain growth plate columnar structures and chondrocyte cytokinesis has not been fully revealed. It is reported that kinesin family member 3A (KIF3A), a subunit of kinesin-2, plays an important role in maintaining columnar organization in growth plates via controlling primary cilia formation and cell proliferation. Result Here we identify kinesin family member 5B (KIF5B), the heavy chain of kinesin-1, a ubiquitously expressed motor protein for anterograde intracellular transport along the microtubule network, as a key modulator of cytokinesis in chondrocytes via maintenance of central spindle organization. We show that KIF5B is concentrated in the central spindle during cytokinesis in both primary chondrocytes and chondrogenic ATDC5 cells. Conclusion The failure of cytokinesis in KIF5B null chondrocytes leads to incomplete cell rotation, disrupting proliferation and differentiation, and results in a disorganized growth plate.
Collapse
Affiliation(s)
- Huiyan Gan
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenqian Xue
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ya Gao
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China.,2Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Guixia Zhu
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Danny Chan
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kathryn S E Cheah
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jiandong Huang
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China.,3Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 People's Republic of China
| |
Collapse
|
22
|
Caporizzo MA, Chen CY, Prosser BL. Cardiac microtubules in health and heart disease. Exp Biol Med (Maywood) 2019; 244:1255-1272. [PMID: 31398994 DOI: 10.1177/1535370219868960] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes are large (∼40,000 µm3), rod-shaped muscle cells that provide the working force behind each heartbeat. These highly structured cells are packed with dense cytoskeletal networks that can be divided into two groups—the contractile (i.e. sarcomeric) cytoskeleton that consists of filamentous actin-myosin arrays organized into myofibrils, and the non-sarcomeric cytoskeleton, which is composed of β- and γ-actin, microtubules, and intermediate filaments. Together, microtubules and intermediate filaments form a cross-linked scaffold, and these networks are responsible for the delivery of intracellular cargo, the transmission of mechanical signals, the shaping of membrane systems, and the organization of myofibrils and organelles. Microtubules are extensively altered as part of both adaptive and pathological cardiac remodeling, which has diverse ramifications for the structure and function of the cardiomyocyte. In heart failure, the proliferation and post-translational modification of the microtubule network is linked to a number of maladaptive processes, including the mechanical impediment of cardiomyocyte contraction and relaxation. This raises the possibility that reversing microtubule alterations could improve cardiac performance, yet therapeutic efforts will strongly benefit from a deeper understanding of basic microtubule biology in the heart. The aim of this review is to summarize the known physiological roles of the cardiomyocyte microtubule network, the consequences of its pathological remodeling, and to highlight the open and intriguing questions regarding cardiac microtubules. Impact statement Advancements in cell biological and biophysical approaches and super-resolution imaging have greatly broadened our view of tubulin biology over the last decade. In the heart, microtubules and microtubule-based transport help to organize and maintain key structures within the cardiomyocyte, including the sarcomere, intercalated disc, protein clearance machinery and transverse-tubule and sarcoplasmic reticulum membranes. It has become increasingly clear that post translational regulation of microtubules is a key determinant of their sub-cellular functionality. Alterations in microtubule network density, stability, and post-translational modifications are hallmarks of pathological cardiac remodeling, and modified microtubules can directly impede cardiomyocyte contractile function in various forms of heart disease. This review summarizes the functional roles and multi-leveled regulation of the cardiac microtubule cytoskeleton and highlights how refined experimental techniques are shedding mechanistic clarity on the regionally specified roles of microtubules in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Lehmann SM, Leube RE, Schwarz N. Keratin 6a mutations lead to impaired mitochondrial quality control. Br J Dermatol 2019; 182:636-647. [PMID: 31004504 DOI: 10.1111/bjd.18014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Epidermal differentiation is a multilevel process in which keratinocytes need to lose their organelles, including their mitochondria, by autophagy. Disturbed autophagy leads to thickening of the epidermis as seen in pachyonychia congenita (PC), a rare skin disease caused by mutations in keratins 6, 16 and 17. OBJECTIVES To ask if mitophagy, the selective degradation of mitochondria by autophagy, is disturbed in PC and, if so, at which stage. METHODS Immortalized keratinocytes derived from patients with PC were used in fluorescence-based and biochemical assays to dissect the different steps of mitophagy. RESULTS PC keratinocytes accumulated old mitochondria and displayed disturbed clearance of mitochondria after mitochondrial uncoupling. However, early mitophagy steps and autophagosome formation were not affected. We observed that autolysosomes accumulate in PC and are not sufficiently recycled. CONCLUSIONS We propose an influence of keratins on autolysosomal degradation and recycling. What's already known about this topic? Terminal epidermal differentiation is a multistep process that includes the elimination of cellular components by autophagy. Autophagy-impaired keratinocytes have been shown to result in thickening of epidermal layers. Hyperkeratosis also occurs in pachyonychia congenita (PC), a rare skin disease caused by mutations in keratins 6, 16 and 17. What does this study add? Keratins contribute to mitochondrial quality control as well as maintenance of mitochondria-endoplasmic reticulum contact sites. Keratins influence autolysosomal maturation or reformation. What is the translational message? Overaged mitochondria and autolysosomes accumulate in PC. Mutations in keratin 6a lead to severely impaired mitophagy, which might contribute to PC pathogenesis.
Collapse
Affiliation(s)
- S M Lehmann
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - R E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - N Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
24
|
Moamer A, Hachim IY, Binothman N, Wang N, Lebrun JJ, Ali S. A role for kinesin-1 subunits KIF5B/KLC1 in regulating epithelial mesenchymal plasticity in breast tumorigenesis. EBioMedicine 2019; 45:92-107. [PMID: 31204277 PMCID: PMC6642081 DOI: 10.1016/j.ebiom.2019.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epithelial mesenchymal plasticity (EMP) is deemed vital in breast cancer progression, metastasis, stemness and resistance to therapy. Therefore, characterizing molecular mechanisms contributing to EMP are in need enabling the development of more advanced therapeutics against breast cancer. While kinesin superfamily proteins (KIFs) are well known for their role in intracellular cargo movement, our knowledge of their function in breast tumorigenesis is still limited. METHODS Various breast cancer cell lines representing different molecular subtypes were used to determine the role of kinesine-1 subunits KIF5B/KLC1 in regulation of EMP. FINDINGS In breast cancer, we show that kinesin family member 5B (KIF5B) and its partner protein kinesin light chain 1 (KLC1), subunits of kinesin-1, to play differential roles in regulating EMP and tumorigenesis. Indeed, we found KIF5B to be expressed in triple negative (TN)-basal-like/claudin low breast cancer subtype and to be an inducer of epithelial-mesenchymal transition (EMT), stemness, invasiveness, tumor formation and metastatic colonization. Whereas, we found KLC1 to be expressed in epithelial/luminal breast cancer subtypes and to be a suppressor of EMT, invasion, metastasis and stem cell markers expression as well as to be an inducer of epithelial/luminal phenotype. Interestingly, in TN-basal-like/claudin low cells we found a novel nuclear accumulation of KIF5B and its interaction with the EMT transcriptional regulator Snail1 independent of KLC1. In addition, TGF-β mediated pro-invasive activity was found to be dependent on KIF5B expression. In contrast, the epithelial differentiation factor and EMT suppressor prolactin (PRL) was found to repress KIF5B gene expression and KIF5B-Snail1 nuclear accumulation, but enhanced KLC1 gene expression and KIF5B-KLC1 interaction. INTERPRETATION Together, these results highlight a new paradigm for kinesin-1 function in breast tumorigenesis by regulating EMP programing and aggressiveness. FUND: This work was supported by the Canadian Institutes of Health Research (operating grants #233437 and 233438) granted to Suhad Ali.
Collapse
Affiliation(s)
- Alaa Moamer
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| | - Ibrahim Y Hachim
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| | - Najat Binothman
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| | - Ni Wang
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Canada.
| |
Collapse
|
25
|
Ubaida-Mohien C, Gonzalez-Freire M, Lyashkov A, Moaddel R, Chia CW, Simonsick EM, Sen R, Ferrucci L. Physical Activity Associated Proteomics of Skeletal Muscle: Being Physically Active in Daily Life May Protect Skeletal Muscle From Aging. Front Physiol 2019; 10:312. [PMID: 30971946 PMCID: PMC6443906 DOI: 10.3389/fphys.2019.00312] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
Muscle strength declines with aging and increasing physical activity is the only intervention known to attenuate this decline. In order to adequately investigate both preventive and therapeutic interventions against sarcopenia, a better understanding of the biological changes that are induced by physical activity in skeletal muscle is required. To determine the effect of physical activity on the skeletal muscle proteome, we utilized liquid-chromatography mass spectrometry to obtain quantitative proteomics data on human skeletal muscle biopsies from 60 well-characterized healthy individuals (20-87 years) who reported heterogeneous levels of physical activity (not active, active, moderately active, and highly active). Over 4,000 proteins were quantified, and higher self-reported physical activity was associated with substantial overrepresentation of proteins associated with mitochondria, TCA cycle, structural and contractile muscle, and genome maintenance. Conversely, proteins related to the spliceosome, transcription regulation, immune function, and apoptosis, DNA damage, and senescence were underrepresented with higher self-reported activity. These differences in observed protein expression were related to different levels of physical activity in daily life and not intense competitive exercise. In most instances, differences in protein levels were directly opposite to those reported in the literature observed with aging. These data suggest that being physically active in daily life has strong and biologically detectable beneficial effects on muscle.
Collapse
Affiliation(s)
- Ceereena Ubaida-Mohien
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Marta Gonzalez-Freire
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Alexey Lyashkov
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Ruin Moaddel
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Chee W Chia
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Ranjan Sen
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
26
|
Lin R, Duan Z, Sun H, Fung ML, Chen H, Wang J, Lau CF, Yang D, Liu Y, Ni Y, Wang Z, Cui J, Wu W, Yung WH, Chan YS, Lo ACY, Xia J, Shen J, Huang JD. Kinesin-1 Regulates Extrasynaptic Targeting of NMDARs and Neuronal Vulnerability Toward Excitotoxicity. iScience 2019; 13:82-97. [PMID: 30826728 PMCID: PMC6402234 DOI: 10.1016/j.isci.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor (NMDAR) is highly compartmentalized in neurons, and its dysfunction has been implicated in various neuropsychiatric and neurodegenerative disorders. Recent failure to exploit NMDAR antagonization as a potential therapeutic target has driven the need to identify molecular mechanisms that regulate NMDAR compartmentalization. Here, we report that the reduction of Kif5b, the heavy chain of kinesin-1, protected neurons against NMDA-induced excitotoxicity and ischemia-provoked neurodegeneration. Direct binding of kinesin-1 to the GluN2B cytoplasmic tails regulated the levels of NMDAR at extrasynaptic sites and the subsequent influx of calcium mediated by extrasynaptic NMDAR by regulating the insertion of NMDARs into neuronal surface. Transient increase of Kif5b restored the surface levels of NMDAR and the decreased neuronal susceptibility to NMDA-induced excitotoxicity. The expression of Kif5b was repressed in cerebral ischemia preconditioning. Our findings reveal that kinesin-1 regulates extrasynaptic NMDAR targeting and signaling, and the reduction of kinesin-1 could be exploited to defer neurodegeneration. Kif5b directly binds with GluN2B-containing NMDAR Kinesin-1 mediates extrasynaptic NMDAR targeting and function Reduction of kinesin-1 protects neurons against NMDAR-elicited excitotoxicity Reduction of kinesin-1 protects brain against ischemia-elicited neurodegeneration
Collapse
Affiliation(s)
- Raozhou Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zhigang Duan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Haitao Sun
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jing Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Fai Lau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Di Yang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yanxiang Ni
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ju Cui
- Beijing Institute of Geriatrics, Beijing Hospital, Ministry of Health, Beijing, China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jun Xia
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China; Shenzhen Institute of Advanced Technologies, Shenzhen, China.
| |
Collapse
|
27
|
A new role of anterograde motor Kif5b in facilitating large clathrin-coated vesicle mediated endocytosis via regulating clathrin uncoating. Cell Discov 2019; 4:65. [PMID: 30603101 PMCID: PMC6305376 DOI: 10.1038/s41421-018-0067-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 11/30/2022] Open
Abstract
Kif5b-driven anterograde transport and clathrin-mediated endocytosis (CME) are responsible for opposite intracellular trafficking, contributing to plasma membrane homeostasis. However, whether and how the two trafficking processes coordinate remain unclear. Here, we show that Kif5b directly interacts with clathrin heavy chain (CHC) at a region close to that for uncoating catalyst (Hsc70) and preferentially localizes on relatively large clathrin-coated vesicles (CCVs). Uncoating in vitro is decreased for CCVs from the cortex of kif5b conditional knockout (mutant) mouse and facilitated by adding Kif5b fragments containing CHC-binding site, while cell peripheral distribution of CHC or Hsc70 keeps unaffected by Kif5b depletion. Furthermore, cellular entry of vesicular stomatitis virus that internalizes into large CCV is inhibited by Kif5b depletion or introducing a dominant-negative Kif5b fragment. These findings showed a new role of Kif5b in regulating large CCV-mediated CME via affecting CCV uncoating, indicating Kif5b as a molecular knot connecting anterograde transport to CME.
Collapse
|
28
|
Roman W, Gomes ER. Nuclear positioning in skeletal muscle. Semin Cell Dev Biol 2018; 82:51-56. [DOI: 10.1016/j.semcdb.2017.11.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
|
29
|
Robert A, Tian P, Adam SA, Kittisopikul M, Jaqaman K, Goldman RD, Gelfand VI. Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport. FASEB J 2018; 33:388-399. [PMID: 29944446 PMCID: PMC6355078 DOI: 10.1096/fj.201800604r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Keratin intermediate filaments (IFs) are the major cytoskeletal component in epithelial cells. The dynamics of keratin IFs have been described to depend mostly on the actin cytoskeleton, but the rapid transport of fully polymerized keratin filaments has not been reported. In this work, we used a combination of photoconversion experiments and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 genome editing to study the role of microtubules and microtubule motors in keratin filament transport. We found that long keratin filaments, like other types of IFs, are transported along microtubules by kinesin-1. Our data revealed that keratin and vimentin are nonconventional kinesin-1 cargoes because their transport did not require kinesin light chains, which are a typical adapter for kinesin-dependent cargo transport. Furthermore, we found that the same domain of the kinesin heavy chain tail is involved in keratin and vimentin IF transport, strongly suggesting that multiple types of IFs move along microtubules using an identical mechanism.-Robert, A., Tian, P., Adam, S. A., Kittisopikul, M., Jaqaman, K., Goldman, R. D., Gelfand, V. I. Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peirun Tian
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mark Kittisopikul
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and.,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
30
|
Abstract
Mitochondria are the cell's power plant that must be in a proper functional state in order to produce the energy necessary for basic cellular functions, such as proliferation. Mitochondria are 'dynamic' in that they are constantly undergoing fission and fusion to remain in a functional state throughout the cell cycle, as well as during other vital processes such as energy supply, cellular respiration and programmed cell death. The mitochondrial fission/fusion machinery is involved in generating young mitochondria, while eliminating old, damaged and non-repairable ones. As a result, the organelles change in shape, size and number throughout the cell cycle. Such precise and accurate balance is maintained by the cytoskeletal transporting system via microtubules, which deliver the mitochondrion from one location to another. During the gap phases G1 and G2, mitochondria form an interconnected network, whereas in mitosis and S-phase fragmentation of the mitochondrial network will take place. However, such balance is lost during neoplastic transformation and autoimmune disorders. Several proteins, such as Drp1, Fis1, Kif-family proteins, Opa1, Bax and mitofusins change in activity and might link the mitochondrial fission/fusion events with processes such as alteration of mitochondrial membrane potential, apoptosis, necrosis, cell cycle arrest, and malignant growth. All this indicates how vital proper functioning of mitochondria is in maintaining cell integrity and preventing carcinogenesis.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada.
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
31
|
Abstract
Skeletal muscle cells are large syncytia, containing hundreds of nuclei positioned regularly along the length of the fiber. During development, nuclei are actively distributed throughout the myotube by the microtubule motor proteins, kinesin-1, and cytoplasmic dynein. Nuclear movement consists of translocation along the long axis of the cell concurrent with three-dimensional rotation of nuclei. In this chapter we describe methods for quantitatively assessing the speed of nuclear rotation in cultured myotubes using live-cell imaging techniques coupled with rigid body kinematic analyses. Additionally, we provide protocols for analyzing nuclear distribution in myotubes.
Collapse
|
32
|
Stroud MJ, Feng W, Zhang J, Veevers J, Fang X, Gerace L, Chen J. Nesprin 1α2 is essential for mouse postnatal viability and nuclear positioning in skeletal muscle. J Cell Biol 2017; 216:1915-1924. [PMID: 28533284 PMCID: PMC5496623 DOI: 10.1083/jcb.201612128] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/08/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
The position of the nucleus in a cell is controlled by interactions between the linker of nucleoskeleton and cytoskeleton (LINC) complex and the cytoskeleton. Defects in nuclear positioning and abnormal aggregation of nuclei occur in many muscle diseases and correlate with muscle dysfunction. Nesprin 1, which includes multiple isoforms, is an integral component of the LINC complex, critical for nuclear positioning and anchorage in skeletal muscle, and is thought to provide an essential link between nuclei and actin. However, previous studies have yet to identify which isoform is responsible. To elucidate this, we generated a series of nesprin 1 mutant mice. We showed that the actin-binding domains of nesprin 1 were dispensable, whereas nesprin 1α2, which lacks actin-binding domains, was crucial for postnatal viability, nuclear positioning, and skeletal muscle function. Furthermore, we revealed that kinesin 1 was displaced in fibers of nesprin 1α2-knockout mice, suggesting that this interaction may play an important role in positioning of myonuclei and functional skeletal muscle.
Collapse
Affiliation(s)
- Matthew J Stroud
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Wei Feng
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jianlin Zhang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jennifer Veevers
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Xi Fang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Larry Gerace
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA
| | - Ju Chen
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
33
|
Santos-Ledo A, Garcia-Macia M, Campbell PD, Gronska M, Marlow FL. Kinesin-1 promotes chondrocyte maintenance during skeletal morphogenesis. PLoS Genet 2017; 13:e1006918. [PMID: 28715414 PMCID: PMC5536392 DOI: 10.1371/journal.pgen.1006918] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/31/2017] [Accepted: 07/11/2017] [Indexed: 01/03/2023] Open
Abstract
During skeletal morphogenesis diverse mechanisms are used to support bone formation. This can be seen in the bones that require a cartilage template for their development. In mammals the cartilage template is removed, but in zebrafish the cartilage template persists and the bone mineralizes around the cartilage scaffold. Remodeling of unmineralized cartilage occurs via planar cell polarity (PCP) mediated cell rearrangements that contribute to lengthening of elements; however, the mechanisms that maintain the chondrocyte template that supports perichondral ossification remain unclear. We report double mutants disrupting two zebrafish kinesin-I genes (hereafter kif5Blof) that we generated using CRISPR/Cas9 mutagenesis. We show that zygotic Kif5Bs have a conserved function in maintaining muscle integrity, and are required for cartilage remodeling and maintenance during craniofacial morphogenesis by a PCP-distinct mechanism. Further, kif5Blof does not activate ER stress response genes, but instead disrupts lysosomal function, matrix secretion, and causes deregulated autophagic markers and eventual chondrocyte apoptosis. Ultrastructural and transplantation analysis reveal neighboring cells engulfing extruded kif5Blof chondrocytes. Initial cartilage specification is intact; however, during remodeling, kif5Blof chondrocytes die and the cartilage matrix devoid of hypertrophic chondrocytes remains and impedes normal ossification. Chimeric and mosaic analyses indicate that Kif5B functions cell-autonomously in secretion, nuclear position, cell elongation and maintenance of hypertrophic chondrocytes. Interestingly, large groups of wild-type cells can support elongation of neighboring mutant cells. Finally, mosaic expression of kif5Ba, but not kif5Aa in cartilage rescues the chondrocyte phenotype, further supporting a specific requirement for Kif5B. Cumulatively, we show essential Kif5B functions in promoting cartilage remodeling and chondrocyte maintenance during zebrafish craniofacial morphogenesis.
Collapse
Affiliation(s)
- Adrian Santos-Ledo
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Institute of Genetic Medicine. Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Marina Garcia-Macia
- Institute for Cellular and Molecular Biosciences. Newcastle University, Newcastle Upon Tyne, United Kingdom
- Institute of Cellular Medicine. Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Philip D Campbell
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Marta Gronska
- Department of Neuroscience. Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Florence L Marlow
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Cell Developmental and Regenerative Biology Department. Icahn School of Medicine at Mount Sinai. New York, New York, United States of America
| |
Collapse
|
34
|
Munoz I, Danelli L, Claver J, Goudin N, Kurowska M, Madera-Salcedo IK, Huang JD, Fischer A, González-Espinosa C, de Saint Basile G, Blank U, Ménasché G. Kinesin-1 controls mast cell degranulation and anaphylaxis through PI3K-dependent recruitment to the granular Slp3/Rab27b complex. J Cell Biol 2017; 215:203-216. [PMID: 27810912 PMCID: PMC5084650 DOI: 10.1083/jcb.201605073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
Activation of mast cells through IgE and antigen triggers the release of secretory granules that contain factors responsible for anaphylactic responses. Munoz et al. show that kinesin-1 regulates mast cell degranulation through PI3K-dependent formation of a kinesin-1/Slp3/Rab27b complex. Cross-linking of mast cell (MC) IgE receptors (FcεRI) triggers degranulation of secretory granules (SGs) and the release of many allergic and inflammatory mediators. Although degranulation depends crucially on microtubule dynamics, the molecular machinery that couples SGs to microtubule-dependent transport is poorly understood. In this study, we demonstrate that mice lacking Kif5b (the heavy chain of kinesin-1) in hematopoietic cells are less sensitive to IgE-mediated, passive, systemic anaphylaxis. After IgE-induced stimulation, bone marrow–derived MCs from Kif5b knockout mice exhibited a marked reduction in SG translocation toward the secretion site. In contrast, a lack of Kif5b did not affect cytokine secretion, early FcεRI-initiated signaling pathways, or microtubule reorganization upon FcεRI stimulation. We identified Slp3 as the critical effector linking kinesin-1 to Rab27b-associated SGs. Kinesin-1 recruitment to the Slp3/Rab27b effector complex was independent of microtubule reorganization but occurred only upon stimulation requiring phosphatidylinositol 3-kinase (PI3K) activity. Our findings demonstrate that PI3K-dependent formation of a kinesin-1/Slp3/Rab27b complex is critical for the microtubule-dependent movement of SGs required for MC degranulation.
Collapse
Affiliation(s)
- Isabelle Munoz
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Luca Danelli
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Julien Claver
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Nicolas Goudin
- Cell Imaging Facility, Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Mathieu Kurowska
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Iris Karina Madera-Salcedo
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Alain Fischer
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France.,Immunology and Pediatric Hematology Department, Necker Children's Hospital, Assistance Publique Hôpitaux de Paris, F-75015 Paris, France.,Collège de France, F-75005 Paris, France
| | | | - Geneviéve de Saint Basile
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Ulrich Blank
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Gaël Ménasché
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France .,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| |
Collapse
|
35
|
He S, Xue W, Duan Z, Sun Q, Li X, Gan H, Huang J, Qu JY. Multimodal nonlinear optical microscopy reveals critical role of kinesin-1 in cartilage development. BIOMEDICAL OPTICS EXPRESS 2017; 8:1771-1782. [PMID: 28663865 PMCID: PMC5480580 DOI: 10.1364/boe.8.001771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
We developed a multimodal nonlinear optical (NLO) microscope system by integrating stimulated Raman scattering (SRS), second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) imaging. The system was used to study the morphological and biochemical characteristics of tibial cartilage in a kinesin-1 (Kif5b) knockout mouse model. The detailed structure of fibrillar collagen in the extracellular matrix of cartilage was visualized by the forward and backward SHG signals, while high resolution imaging of chondrocytes was achieved by capturing endogenous TPEF and SRS signals of the cells. The results demonstrate that collagen fibrils in the superficial surface of the articular cartilage decreased significantly in the absence of Kif5b. The distorted morphology along with accumulated intracellular collagen was observed in the Kif5b-deficient chondrocytes, indicating the critical roles of kinesin-1 in the chondrocyte morphogenesis and collagen secretion. The study shows that multimodal NLO imaging method is an effective approach to investigate early development of cartilage.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- These authors contributed equally to this work
| | - Wenqian Xue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- These authors contributed equally to this work
| | - Zhigang Duan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Qiqi Sun
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuesong Li
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Huiyan Gan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
- Shenzhen Institute of Advanced Technologies, Shenzhen, Guangdong, China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
36
|
Cui J, Pang J, Lin YJ, Gong H, Wang ZH, Li YX, Li J, Wang Z, Jiang P, Dai DP, Li J, Cai JP, Huang JD, Zhang TM. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity. FASEB J 2017; 31:2533-2547. [PMID: 28242773 DOI: 10.1096/fj.201601103r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/07/2017] [Indexed: 12/23/2022]
Abstract
Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on an HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.
Collapse
Affiliation(s)
- Ju Cui
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jing Pang
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ya-Jun Lin
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Huan Gong
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zhen-He Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yun-Xuan Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Jin Li
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ping Jiang
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Da-Peng Dai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jian Li
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jian-Ping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China; .,Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong, China.,The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Tie-Mei Zhang
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China;
| |
Collapse
|
37
|
Iyer SR, Shah SB, Valencia AP, Schneider MF, Hernández-Ochoa EO, Stains JP, Blemker SS, Lovering RM. Altered nuclear dynamics in MDX myofibers. J Appl Physiol (1985) 2016; 122:470-481. [PMID: 27979987 DOI: 10.1152/japplphysiol.00857.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/17/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder in which the absence of dystrophin leads to progressive muscle degeneration and weakness. Although the genetic basis is known, the pathophysiology of dystrophic skeletal muscle remains unclear. We examined nuclear movement in wild-type (WT) and muscular dystrophy mouse model for DMD (MDX) (dystrophin-null) mouse myofibers. We also examined expression of proteins in the linkers of nucleoskeleton and cytoskeleton (LINC) complex, as well as nuclear transcriptional activity via histone H3 acetylation and polyadenylate-binding nuclear protein-1. Because movement of nuclei is not only LINC dependent but also microtubule dependent, we analyzed microtubule density and organization in WT and MDX myofibers, including the application of a unique 3D tool to assess microtubule core structure. Nuclei in MDX myofibers were more mobile than in WT myofibers for both distance traveled and velocity. MDX muscle shows reduced expression and labeling intensity of nesprin-1, a LINC protein that attaches the nucleus to the microtubule and actin cytoskeleton. MDX nuclei also showed altered transcriptional activity. Previous studies established that microtubule structure at the cortex is disrupted in MDX myofibers; our analyses extend these findings by showing that microtubule structure in the core is also disrupted. In addition, we studied malformed MDX myofibers to better understand the role of altered myofiber morphology vs. microtubule architecture in the underlying susceptibility to injury seen in dystrophic muscles. We incorporated morphological and microtubule architectural concepts into a simplified finite element mathematical model of myofiber mechanics, which suggests a greater contribution of myofiber morphology than microtubule structure to muscle biomechanical performance.NEW & NOTEWORTHY Microtubules provide the means for nuclear movement but show altered organization in the muscular dystrophy mouse model (MDX) (dystrophin-null) muscle. Here, MDX myofibers show increased nuclear movement, altered transcriptional activity, and altered linkers of nucleoskeleton and cytoskeleton complex expression compared with healthy myofibers. Microtubule architecture was incorporated in finite element modeling of passive stretch, revealing a role of fiber malformation, commonly found in MDX muscle. The results suggest that alterations in microtubule architecture in MDX muscle affect nuclear movement, which is essential for muscle function.
Collapse
Affiliation(s)
- Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California San Diego, La Jolla, California
| | - Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Silvia S Blemker
- Department of Biomedical Engineering and Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia; and
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; .,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Cadot B, Gache V, Gomes ER. Moving and positioning the nucleus in skeletal muscle - one step at a time. Nucleus 2016; 6:373-81. [PMID: 26338260 DOI: 10.1080/19491034.2015.1090073] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Nuclear movement and positioning within cells has become an area of great interest in the past few years due to the identification of different molecular mechanisms and functions in distinct organisms and contexts. One extreme example occurs during skeletal muscle development and regeneration. Skeletal muscles are composed of individual multinucleated myofibers with nuclei positioned at their periphery. Myofibers are formed by fusion of mononucleated myoblasts and during their development, successive nuclear movements and positioning events have been described. The position of the nuclei in myofibers is important for muscle function. Interestingly, during muscle regeneration and in some muscular diseases, nuclei are positioned in the center of the myofiber. In this review, we discuss the multiple mechanisms of nuclear positioning that occur during myofiber formation and regeneration. We also discuss the role of nuclear positioning for skeletal muscle function.
Collapse
Affiliation(s)
- Bruno Cadot
- a Center of Research in Myology; INSERM UPMC UMR974; CNRS FRE3617 ; Paris , France
| | - Vincent Gache
- b Ecole Normale Superieure de Lyon; CNRS UMR5239 ; Lyon , France
| | - Edgar R Gomes
- a Center of Research in Myology; INSERM UPMC UMR974; CNRS FRE3617 ; Paris , France.,c Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa ; Lisbon, Portugal
| |
Collapse
|
39
|
Cui J, Pang J, Lin YJ, Jiang P, Gong H, Wang Z, Li J, Cai JP, Huang JD, Zhang TM. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2016; 476:620-626. [DOI: 10.1016/j.bbrc.2016.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
|
40
|
Falcone S, Roman W, Hnia K, Gache V, Didier N, Lainé J, Auradé F, Marty I, Nishino I, Charlet-Berguerand N, Romero NB, Marazzi G, Sassoon D, Laporte J, Gomes ER. N-WASP is required for Amphiphysin-2/BIN1-dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy. EMBO Mol Med 2015; 6:1455-75. [PMID: 25262827 PMCID: PMC4237471 DOI: 10.15252/emmm.201404436] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations in amphiphysin-2/BIN1, dynamin 2, and myotubularin are associated with centronuclear myopathy (CNM), a muscle disorder characterized by myofibers with atypical central nuclear positioning and abnormal triads. Mis-splicing of amphiphysin-2/BIN1 is also associated with myotonic dystrophy that shares histopathological hallmarks with CNM. How amphiphysin-2 orchestrates nuclear positioning and triad organization and how CNM-associated mutations lead to muscle dysfunction remains elusive. We find that N-WASP interacts with amphiphysin-2 in myofibers and that this interaction and N-WASP distribution are disrupted by amphiphysin-2 CNM mutations. We establish that N-WASP functions downstream of amphiphysin-2 to drive peripheral nuclear positioning and triad organization during myofiber formation. Peripheral nuclear positioning requires microtubule/Map7/Kif5b-dependent distribution of nuclei along the myofiber and is driven by actin and nesprins. In adult myofibers, N-WASP and amphiphysin-2 are only involved in the maintenance of triad organization but not in the maintenance of peripheral nuclear positioning. Importantly, we confirmed that N-WASP distribution is disrupted in CNM and myotonic dystrophy patients. Our results support a role for N-WASP in amphiphysin-2-dependent nuclear positioning and triad organization and in CNM and myotonic dystrophy pathophysiology.
Collapse
Affiliation(s)
- Sestina Falcone
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - William Roman
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Karim Hnia
- IGBMC-CNRS, UMR 7104 INSERM U964, Illkirch, France
| | - Vincent Gache
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nathalie Didier
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Jeanne Lainé
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Frederic Auradé
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Isabelle Marty
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble, France
| | - Ichizo Nishino
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | - Giovanna Marazzi
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - David Sassoon
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | | | - Edgar R Gomes
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
41
|
Cui J, Li X, Duan Z, Xue W, Wang Z, Lu S, Lin R, Liu M, Zhu G, Huang JD. Analysis of Kif5b expression during mouse kidney development. PLoS One 2015; 10:e0126002. [PMID: 25885434 PMCID: PMC4401754 DOI: 10.1371/journal.pone.0126002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/27/2015] [Indexed: 01/05/2023] Open
Abstract
Recent studies showed that kidney-specific inactivation of Kif3a produces kidney cysts and renal failure, suggesting that kinesin-mediated intracellular transportation is important for the establishement and maintenance of renal epithelial cell polarity and normal nephron functions. Kif5b, one of the most conserved kinesin heavy chain, is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). In order to elucidate the role of Kif5b in kidney development and function, it is essential to establish its expression profile within the organ. Therefore, in this study, we examined the expression pattern of Kif5b in mouse kidney. Kidneys from embryonic (E) 12.5-, 16.5-dpc (days post coitus) mouse fetuses, from postnatal (P) day 0, 10, 20 pups and from adult mice were collected. The distribution of Kif5b was analyzed by immunostaining. The possible involvement of Kif5b in kidney development was investigated in conditional mutant mice by using a Cre-LoxP strategy. This study showed that the distribution of Kif5b displayed spatiotemporal changes during postnatal kidney development. In kidneys of new born mice, Kif5b was strongly expressed in all developing tubules and in the ureteric bud, but not in the glomerulus or in other early-developing structures, such as the cap mesenchyme, the comma-shaped body, and the S-shaped body. In kidneys of postnatal day 20 or of older mice, however, Kif5b was localized selectively in the basolateral domain of epithelial cells of the thick ascending loop of Henle, as well as of the distal convoluted tubule, with little expression being observed in the proximal tubule or in the collecting duct. Conditional knock-down of Kif5b in mouse kidney did not result in detectable morphological defects, but it did lead to a decrease in cell proliferation rate and also to a mislocalization of Na+/K+/-ATPase, indicating that although Kif5b is non-essential for kidney morphogenesis, it is important for nephron maturation.
Collapse
Affiliation(s)
- Ju Cui
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- * E-mail: (JC); (JDH)
| | - Xiuling Li
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhigang Duan
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenqian Xue
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zai Wang
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Song Lu
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Raozhou Lin
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mengfei Liu
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Guixia Zhu
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Dong Huang
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen, PR China
- * E-mail: (JC); (JDH)
| |
Collapse
|
42
|
Wilson MH, Holzbaur ELF. Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development 2015; 142:218-28. [PMID: 25516977 DOI: 10.1242/dev.114769] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During skeletal muscle development, nuclei move dynamically through myotubes in a microtubule-dependent manner, driven by the microtubule motor protein kinesin-1. Loss of kinesin-1 leads to improperly positioned nuclei in culture and in vivo. Two models have been proposed to explain how kinesin-1 functions to move nuclei in myotubes. In the cargo model, kinesin-1 acts directly from the surface of the nucleus, whereas in an alternative model, kinesin-1 moves nuclei indirectly by sliding anti-parallel microtubules. Here, we test the hypothesis that an ensemble of Kif5B motors acts from the nuclear envelope to distribute nuclei throughout the length of syncytial myotubes. First, using an inducible dimerization system, we show that controlled recruitment of truncated, constitutively active kinesin-1 motors to the nuclear envelope is sufficient to prevent the nuclear aggregation resulting from depletion of endogenous kinesin-1. Second, we identify a conserved kinesin light chain (KLC)-binding motif in the nuclear envelope proteins nesprin-1 and nesprin-2, and show that recruitment of the motor complex to the nucleus via this LEWD motif is essential for nuclear distribution. Together, our findings demonstrate that the nucleus is a kinesin-1 cargo in myotubes and that nesprins function as nuclear cargo adaptors. The importance of achieving and maintaining proper nuclear position is not restricted to muscle fibers, suggesting that the nesprin-dependent recruitment of kinesin-1 to the nuclear envelope through the interaction of a conserved LEWD motif with kinesin light chain might be a general mechanism for cell-type-specific nuclear positioning during development.
Collapse
Affiliation(s)
- Meredith H Wilson
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Yi P, Chew LL, Zhang Z, Ren H, Wang F, Cong X, Zheng L, Luo Y, Ouyang H, Low BC, Zhou YT. KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation. Mol Biol Cell 2014; 26:29-42. [PMID: 25378581 PMCID: PMC4279227 DOI: 10.1091/mbc.e14-03-0797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdo bridges scaffold proteins BNIP-2 and JLP to activate p38MAPK during myoblast differentiation. KIF5B is a novel interacting partner of BNIP-2 and promotes myogenic differentiation. KIF5B-dependent transport of BNIP-2 is essential for its promyogenic effects. The Cdo-p38MAPK (p38 mitogen-activated protein kinase) signaling pathway plays important roles in regulating skeletal myogenesis. During myogenic differentiation, the cell surface receptor Cdo bridges scaffold proteins BNIP-2 and JLP and activates p38MAPK, but the spatial-temporal regulation of this process is largely unknown. We here report that KIF5B, the heavy chain of kinesin-1 motor, is a novel interacting partner of BNIP-2. Coimmunoprecipitation and far-Western study revealed that BNIP-2 directly interacted with the motor and tail domains of KIF5B via its BCH domain. By using a range of organelle markers and live microscopy, we determined the endosomal localization of BNIP-2 and revealed the microtubule-dependent anterograde transport of BNIP-2 in C2C12 cells. The anterograde transport of BNIP-2 was disrupted by a dominant-negative mutant of KIF5B. In addition, knockdown of KIF5B causes aberrant aggregation of BNIP-2, confirming that KIF5B is critical for the anterograde transport of BNIP-2 in cells. Gain- and loss-of-function experiments further showed that KIF5B modulates p38MAPK activity and in turn promotes myogenic differentiation. Of importance, the KIF5B-dependent anterograde transport of BNIP-2 is critical for its promyogenic effects. Our data reveal a novel role of KIF5B in the spatial regulation of Cdo–BNIP-2–p38MAPK signaling and disclose a previously unappreciated linkage between the intracellular transporting system and myogenesis regulation.
Collapse
Affiliation(s)
- Peng Yi
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Li Chew
- Department of Biological Sciences and Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Ziwang Zhang
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hao Ren
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feiya Wang
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoxia Cong
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liling Zheng
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and
| | - Yan Luo
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and
| | - Hongwei Ouyang
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Boon Chuan Low
- Department of Biological Sciences and Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Yi Ting Zhou
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
44
|
Folker ES, Baylies MK. Nuclear positioning in muscle development and disease. Front Physiol 2013; 4:363. [PMID: 24376424 PMCID: PMC3859928 DOI: 10.3389/fphys.2013.00363] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/23/2013] [Indexed: 11/13/2022] Open
Abstract
Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals, myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, the nuclei are often clustered within the center of the muscle cell. Although this phenotype has been acknowledged for several decades, it is often ignored as a contributor to muscle weakness. Rather, these nuclei are taken only as a sign of muscle repair. Here we review the evidence that mispositioned myonuclei are not merely a symptom of muscle disease but also a cause. Additionally, we review the working models for how myonuclei move from two different perspectives: from that of the nuclei and from that of the cytoskeleton. We further compare and contrast these mechanisms with the mechanisms of nuclear movement in other cell types both to draw general themes for nuclear movement and to identify muscle-specific considerations. Finally, we focus on factors that can be linked to muscle disease and find that genes that regulate myonuclear movement and positioning have been linked to muscular dystrophy. Although the cause-effect relationship is largely speculative, recent data indicate that the position of nuclei should no longer be considered only a means to diagnose muscle disease.
Collapse
Affiliation(s)
- Eric S Folker
- Department of Biology, Boston College Chestnut Hill, MA, USA
| | - Mary K Baylies
- Department of Developmental Biology, Sloan-Kettering Institute New York, NY, USA
| |
Collapse
|
45
|
McDade JR, Michele DE. Membrane damage-induced vesicle-vesicle fusion of dysferlin-containing vesicles in muscle cells requires microtubules and kinesin. Hum Mol Genet 2013; 23:1677-86. [PMID: 24203699 DOI: 10.1093/hmg/ddt557] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mutations in the dysferlin gene resulting in dysferlin-deficiency lead to limb-girdle muscular dystrophy 2B and Myoshi myopathy in humans. Dysferlin has been proposed as a critical regulator of vesicle-mediated membrane resealing in muscle fibers, and localizes to muscle fiber wounds following sarcolemma damage. Studies in fibroblasts and urchin eggs suggest that trafficking and fusion of intracellular vesicles with the plasma membrane during resealing requires the intracellular cytoskeleton. However, the contribution of dysferlin-containing vesicles to resealing in muscle and the role of the cytoskeleton in regulating dysferlin-containing vesicle biology is unclear. Here, we use live-cell imaging to examine the behavior of dysferlin-containing vesicles following cellular wounding in muscle cells and examine the role of microtubules and kinesin in dysferlin-containing vesicle behavior following wounding. Our data indicate that dysferlin-containing vesicles move along microtubules via the kinesin motor KIF5B in muscle cells. Membrane wounding induces dysferlin-containing vesicle-vesicle fusion and the formation of extremely large cytoplasmic vesicles, and this response depends on both microtubules and functional KIF5B. In non-muscle cell types, lysosomes are critical mediators of membrane resealing, and our data indicate that dysferlin-containing vesicles are capable of fusing with lysosomes following wounding which may contribute to formation of large wound sealing vesicles in muscle cells. Overall, our data provide mechanistic evidence that microtubule-based transport of dysferlin-containing vesicles may be critical for resealing, and highlight a critical role for dysferlin-containing vesicle-vesicle and vesicle-organelle fusion in response to wounding in muscle cells.
Collapse
Affiliation(s)
- Joel R McDade
- Department of Molecular & Integrative Physiology, University of Michigan Ann Arbor, MI 48109, USA
| | | |
Collapse
|
46
|
Campbell PD, Marlow FL. Temporal and tissue specific gene expression patterns of the zebrafish kinesin-1 heavy chain family, kif5s, during development. Gene Expr Patterns 2013; 13:271-9. [PMID: 23684767 DOI: 10.1016/j.gep.2013.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 12/25/2022]
Abstract
Homo- and heterodimers of Kif5 proteins form the motor domain of Kinesin-1, a major plus-end directed microtubule motor. Kif5s have been implicated in the intracellular transport of organelles, vesicles, proteins, and RNAs in many cell types. There are three mammalian KIF5s. KIF5A and KIF5C proteins are strictly neural in mouse whereas, KIF5B is ubiquitously expressed. Mouse knockouts indicate crucial roles for KIF5 in development and human mutations in KIF5A lead to the neurodegenerative disease Hereditary Spastic Paraplegia. However, the developmental functions and the extent to which individual kif5 functions overlap have not been elucidated. Zebrafish possess five kif5 genes: kif5Aa, kif5Ab, kif5Ba, kif5Bb, and kif5C. Here we report their tissue specific expression patterns in embryonic and larval stages. Specifically, we find that kif5As are strictly zygotic and exhibit neural-specific expression. In contrast, kif5Bs exhibit strong maternal contribution and are ubiquitously expressed. Lastly, kif5C exhibits weak maternal expression followed by enrichment in neural populations. In addition, kif5s show distinct expression domains in the larval retina.
Collapse
Affiliation(s)
- Philip D Campbell
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | | |
Collapse
|
47
|
Wang Z, Xue W, Li X, Lin R, Cui J, Huang JD. Dissect Kif5b in nuclear positioning during myogenesis: the light chain binding domain and the autoinhibitory peptide are both indispensable. Biochem Biophys Res Commun 2013; 432:242-7. [PMID: 23402760 DOI: 10.1016/j.bbrc.2013.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 11/17/2022]
Abstract
The microtubule motor kinesin-1 is responsible for the nuclear positioning during myogenesis. Here we show that the coiled-coil stalk/tail domain containing the kinesin light chain (KLC) binding sites targets to the perinuclear region like endogenous Kif5b, while the globular tail domain cannot. To investigate which fragments of kinesin heavy chain (Kif5b) is responsible for the myonuclear positioning, we transfect Kif5b expression constructs into Kif5b deficient myoblasts and test their ability to rescue the myonuclear phenotype. We find that the KLC binding domain and the autoinhibitory peptide in the globular tail region are both indispensable for the nuclear membrane localization of Kif5b and the kinesin-1-mediated myonuclear positioning. These results suggest that while the KLC binding domain may directly targets Kif5b to the myonuclear membrane, the autoinhibitory peptide may play an indirect role in regulating the kinesin-1-mediated myonuclear positioning.
Collapse
Affiliation(s)
- Zai Wang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| | | | | | | | | | | |
Collapse
|