1
|
Liu X, Xi H, Dai M, Li X, Xue W, Chen G, Yan J, Xu S, Ou G, Luo S, Tang Y, Wei P, Wang J. CRISPR-based shuttle cloning of 1,397 human genes into UAS vectors. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40285452 DOI: 10.3724/abbs.2025050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025] Open
Affiliation(s)
- Xuelian Liu
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Hanqing Xi
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Miao Dai
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Xiaoxue Li
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
- Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Wen Xue
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Guang Chen
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Jialong Yan
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Si Xu
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Guifang Ou
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Si Luo
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yonghong Tang
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Ping Wei
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jiwu Wang
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| |
Collapse
|
2
|
Ogienko AA, Andreyeva EN, Yarinich LA, Pindyurin AV, Battulina NV, Omelina ES. Expression Pattern of the AB1-Gal4 Driver in Drosophila Third-Instar Larvae. Int J Mol Sci 2025; 26:3923. [PMID: 40362166 PMCID: PMC12071433 DOI: 10.3390/ijms26093923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Drosophila has provided a highly attractive model system for studying various tissue- and stage-specific processes as well as their pathologies, including a range of human diseases. The existence of a large number of diverse Gal4 drivers to precisely control the expression patterns of UAS transgenes simplifies such studies. However, the choice of driver is always critical, as its possible ectopic expression in non-target cells and tissues can directly impact the results. Therefore, it is very important to thoroughly characterize both the molecular nature and expression pattern of each Gal4 driver line. Here, we aim to fill such gaps regarding the AB1-Gal4 driver, which is typically used to express UAS transgenes in larval salivary glands. In this fly line, the P{GawB} enhancer trap construct encoding the Gal4 protein resides within overlapping evolutionary conserved spastin (spas) and Mitochondrial Rho (Miro) genes. Both these genes are expressed in a number of tissues, including the central nervous system (CNS), and their human orthologs are associated with neurodegenerative diseases. Consistently, we demonstrate that, in third-instar larvae, the expression pattern of AB1-Gal4 is also not restricted to salivary glands. We detect its activity in a subset of Elav-positive neurons in the CNS, including motor neurons, as well as in specific photoreceptor cells in eye discs.
Collapse
Affiliation(s)
| | | | | | | | | | - Evgeniya S. Omelina
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB SB RAS), 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Huang Y, Xiang Z, Xiang Y, Pan H, He M, Guo Z, Kanca O, Liu C, Zhang Z, Zhan H, Wang Y, Bai QR, Bellen HJ, Wang H, Bian S, Mao X. Biallelic MED16 variants disrupt neural development and lead to an intellectual disability syndrome. J Genet Genomics 2025:S1673-8527(25)00113-4. [PMID: 40254158 DOI: 10.1016/j.jgg.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Mediator Complex Subunit 16 (MED16, MIM: 604062) is a member of the Mediator complex which controls many aspects of transcriptional activity in all eukaryotes. Here, we report two individuals from a non-consanguineous family with biallelic variants in MED16 identified by exome sequencing. The affected individuals present with global developmental delay, intellectual disability, and dysmorphisms. To assess the pathogenicity of the variants, functional studies were performed in Drosophila and patient-derived cells. The fly ortholog med16 is expressed in neurons and some glia of the developing central nervous system (CNS). Loss of med16 leads to a reduction in eclosion and lifespan, as well as impaired synaptic transmission. In neurons differentiated from the patient-derived induced pluripotent stem cells (iPSCs), the neurite outgrowth is impaired and rescued by expression of exogenous MED16. The patient-associated variants behave as loss-of-function (LoF) alleles in flies and iPSCs. Additionally, the transcription of genes related to neuronal maturation and function is preferentially altered in patient cells relative to differentiated H9 controls. In summary, our findings support that MED16 is important for appropriate development and function, and that biallelic MED16 variants cause a neurodevelopmental disease.
Collapse
Affiliation(s)
- Yan Huang
- Department of Medical Genetics & Pediatric Research Institute, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, (Hunan Children's Hospital), Changsha, Hunan 410007, China
| | - Zhenglong Xiang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yaqin Xiang
- Department of Medical Genetics, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, (Hunan Children's Hospital), Changsha, Hunan 410007, China
| | - Hu Pan
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Changsha, Hunan 410008, China
| | - Mei He
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Changsha, Hunan 410008, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Chen Liu
- Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, China
| | - Zhao Zhang
- Department of Medical Genetics & Pediatric Research Institute, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, (Hunan Children's Hospital), Changsha, Hunan 410007, China
| | - Huaizhe Zhan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yuan Wang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065 Shanghai, China
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Hua Wang
- Department of Medical Genetics, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, (Hunan Children's Hospital), Changsha, Hunan 410007, China
| | - Shan Bian
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Changsha, Hunan 410008, China; China Regional Research Center, International Center for Genetic Engineering and Biotechnology, Taizhou, Jiangsu 225316,China.
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Changsha, Hunan 410008, China; Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China.
| |
Collapse
|
4
|
Fischer Z, Nauman C, Shayestehpour S, Pence L, Bouyain S, Yao X, Dobens LL. The Drosophila pseudokinase Tribbles translocates to the fat body membrane in response to fasting to modulate insulin sensitivity. Development 2025; 152:dev204493. [PMID: 40292740 PMCID: PMC12070071 DOI: 10.1242/dev.204493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 04/30/2025]
Abstract
The Drosophila pseudokinase Tribbles (Trbl) shares conserved functions with human TRIB3 to bind and inhibit Akt phosphorylation-activation by the Insulin Receptor (InR) to reduce insulin responses; consistent with this, increased levels of human TRIB3 are linked to type 2 diabetes. Here, we show that in fat body cells of well-fed Drosophila larvae, Trbl expression is low and predominantly in the nucleus while fasting or genetic reduction of insulin signaling resulted in increased Trbl expression and Trbl protein translocation to the plasma membrane. An E/G mutation in the Trbl pseudokinase kinase activation loop dominantly interfered with Trbl function leading to increased Akt activity, increased stability of Trbl substrates, including Trbl itself, and aberrant redistribution of Trbl multimers to the membrane. Several strategies designed to increase Akt activity were sufficient to translocate Trbl to the membrane, consistent with the notion that subcellular trafficking of Trbl to the fat body cell membrane acts a rheostat to reduce the strength of Akt-mediated insulin responses, counter to the InR, which has been shown to redistribute away from the membrane to modulate insulin signaling.
Collapse
Affiliation(s)
- Zachary Fischer
- Division of Biology and Biomedical Engineering, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Christopher Nauman
- Division of Biology and Biomedical Engineering, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Shima Shayestehpour
- Division of Biology and Biomedical Engineering, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Laramie Pence
- Division of Biology and Biomedical Engineering, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Samuel Bouyain
- Division of Biology and Biomedical Engineering, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Xiaolan Yao
- Division of Biology and Biomedical Engineering, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Leonard L. Dobens
- Division of Biology and Biomedical Engineering, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
5
|
Bereshneh AH, Andrews JC, Eberl DF, Bademci G, Borja NA, Bivona S, Chung WK, Yamamoto S, Wangler MF, McKee S, Tekin M, Bellen HJ, Kanca O. De novo variants in CDKL1 and CDKL2 are associated with neurodevelopmental symptoms. Am J Hum Genet 2025; 112:846-862. [PMID: 40088891 DOI: 10.1016/j.ajhg.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025] Open
Abstract
The CDKL (cyclin-dependent kinase-like) family consists of five members in humans, CDKL1-5, that encode serine-threonine kinases. The only member that has been associated with a Mendelian disorder is CDKL5, and variants in CDKL5 cause developmental and epileptic encephalopathy type 2 (DEE2). Here, we study four de novo variants in CDKL2 identified in five individuals, including three unrelated probands and monozygotic twins. These individuals present with overlapping symptoms, including global developmental delay, intellectual disability, childhood-onset epilepsy, dyspraxia, and speech deficits. We also identified two individuals with de novo missense variants in CDKL1 in the published Deciphering Developmental Disorders (DDD) and GeneDx cohorts with developmental disorders. Drosophila has a single ortholog of CDKL1-5, CG7236 (Cdkl). Cdkl is expressed in sensory neurons that project to specific regions of the brain that control sensory inputs. Cdkl loss causes semi-lethality, climbing defects, heat-induced seizures, hearing loss, and reduced lifespan. These phenotypes can be rescued by expression of the human reference CDKL1, CDKL2, or CDKL5, showing that the functions of these genes are conserved. In contrast, the CDKL1 and CDKL2 variants do not fully rescue the observed phenotypes, and overexpression of the variant proteins leads to phenotypes that are similar to Cdkl loss. Co-expression of CDKL1 or CDKL2 variants with CDKL1, CDKL2, or CDKL5 references in the mutant background suppresses the rescue ability of the reference genes. Our results suggest that the variants act as dominant negative alleles and are causative of neurological symptoms in these individuals.
Collapse
Affiliation(s)
- Ali H Bereshneh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Nicholas A Borja
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Stephanie Bivona
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
6
|
Brutscher F, Germani F, Hausmann G, Jutz L, Basler K. Activation of the Drosophila innate immune system accelerates growth in cooperation with oncogenic Ras. PLoS Biol 2025; 23:e3003068. [PMID: 40294154 PMCID: PMC12036928 DOI: 10.1371/journal.pbio.3003068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 02/13/2025] [Indexed: 04/30/2025] Open
Abstract
Innate immunity in Drosophila acts as an organismal surveillance system for external stimuli or cellular fitness and triggers context-specific responses to fight infections and maintain tissue homeostasis. However, uncontrolled activation of innate immune pathways can be detrimental. In mammals, innate immune signaling is often overactivated in malignant cells and contributes to tumor progression. Drosophila tumor models have been instrumental in the discovery of interactions between pathways that promote tumorigenesis, but little is known about whether and how the Toll innate immune pathway interacts with oncogenes. Here we use a Drosophila epithelial in vivo model to investigate the interplay between Toll signaling and oncogenic Ras. In the absence of oncogenic Ras (RasV12), Toll signaling suppresses differentiation and induces apoptosis. In contrast, in the context of RasV12, cells are protected from cell death and Dorsal promotes cell survival and proliferation to drive hyperplasia. Taken together, we show that the tissue-protective functions of innate immune activity can be hijacked by pre-malignant cells to induce tumorous overgrowth.
Collapse
Affiliation(s)
- Fabienne Brutscher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Federico Germani
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lena Jutz
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Aceves-Ewing NM, Lanza DG, Marcogliese PC, Lu D, Hsu CW, Gonzalez M, Christiansen AE, Rasmussen TL, Ho AJ, Gaspero A, Seavitt J, Dickinson ME, Yuan B, Shayota BJ, Pachter S, Hu X, Day-Salvatore DL, Mackay L, Kanca O, Wangler MF, Potocki L, Rosenfeld JA, Lewis RA, Chao HT, Lee B, Lee S, Yamamoto S, Bellen HJ, Burrage LC, Heaney JD. Uncovering Phenotypic Expansion in AXIN2-Related Disorders through Precision Animal Modeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.05.24318524. [PMID: 39677486 PMCID: PMC11643287 DOI: 10.1101/2024.12.05.24318524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Heterozygous pathogenic variants in AXIN2 are associated with oligodontia-colorectal cancer syndrome (ODCRCS), a disorder characterized by oligodontia, colorectal cancer, and in some cases, sparse hair and eyebrows. We have identified four individuals with one of two de novo , heterozygous variants (NM_004655.4:c.196G>A, p.(Glu66Lys) and c.199G>A, p.(Gly67Arg)) in AXIN2 whose presentations expand the phenotype of AXIN2-related disorders. In addition to ODCRCS features, these individuals have global developmental delay, microcephaly, and limb, ophthalmologic, and renal abnormalities. Structural modeling of these variants suggests that they disrupt AXIN2 binding to tankyrase, which regulates AXIN2 levels through PARsylation and subsequent proteasomal degradation. To test whether these variants produce a phenotype in vivo , we utilized an innovative prime editing N1 screen to phenotype heterozygous (p.E66K) mouse embryos, which were perinatal lethal with short palate and skeletal abnormalities, contrary to published viable Axin2 null mouse models. Modeling of the p.E66K variant in the Drosophila wing revealed gain-of-function activity compared to reference AXIN2. However, the variant showed loss-of-function activity in the fly eye compared to reference AXIN2, suggesting that the mechanism by which p.E66K affects AXIN2 function is cell context-dependent. Together, our studies in humans, mice, and flies demonstrate that specific variants in the tankyrase-binding domain of AXIN2 are pathogenic, leading to phenotypic expansion with context-dependent effects on AXIN2 function and WNT signaling. Moreover, the modeling strategies used to demonstrate variant pathogenicity may be beneficial for the resolution of other de novo heterozygous variants of uncertain significance associated with congenital anomalies in humans.
Collapse
|
8
|
Kentro JA, Singh G, Pham TM, Currie J, Khullar S, Medeiros AT, Tsiarli M, Larschan E, O’Connor-Giles KM. Conserved transcription factors coordinate synaptic gene expression through repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.30.621128. [PMID: 39553973 PMCID: PMC11565943 DOI: 10.1101/2024.10.30.621128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chemical synapses are the primary sites of communication in the nervous system. Synapse formation is a complex process involving hundreds of proteins that must be expressed in two cells at the same time. We find that synaptic genes are broadly and specifically coordinated at the level of transcription across developing nervous systems. How this spatiotemporal coordination is achieved remains an open question. Through genomic and functional studies in Drosophila, we demonstrate corresponding coordination of chromatin accessibility and identify chromatin regulators DEAF1 and CLAMP as broad repressors of synaptic gene expression outside windows of peak synaptogenesis. Disruption of either factor temporally dysregulates synaptic gene expression across neuronal subtypes, leading to excess synapse formation. We further find that DEAF1, which is linked to syndromic intellectual disability, is both necessary and sufficient to constrain synapse formation. Our findings reveal the critical importance of broad temporally coordinated repression of synaptic gene expression in regulating neuronal connectivity and identify two key repressors.
Collapse
Affiliation(s)
- James A. Kentro
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Gunjan Singh
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Tuan M. Pham
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Justin Currie
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Maria Tsiarli
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Webster CP, Hall B, Crossley OM, Dauletalina D, King M, Lin YH, Castelli LM, Yang ZL, Coldicott I, Kyrgiou-Balli E, Higginbottom A, Ferraiuolo L, De Vos KJ, Hautbergue GM, Shaw PJ, West RJ, Azzouz M. RuvBL1/2 reduce toxic dipeptide repeat protein burden in multiple models of C9orf72-ALS/FTD. Life Sci Alliance 2025; 8:e202402757. [PMID: 39638345 PMCID: PMC11629685 DOI: 10.26508/lsa.202402757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
A G4C2 hexanucleotide repeat expansion in C9orf72 is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Bidirectional transcription and subsequent repeat-associated non-AUG (RAN) translation of sense and antisense transcripts leads to the formation of five dipeptide repeat (DPR) proteins. These DPRs are toxic in a wide range of cell and animal models. Therefore, decreasing RAN-DPRs may be of therapeutic benefit in the context of C9ALS/FTD. In this study, we found that C9ALS/FTD patients have reduced expression of the AAA+ family members RuvBL1 and RuvBL2, which have both been implicated in aggregate clearance. We report that overexpression of RuvBL1, but to a greater extent RuvBL2, reduced C9orf72-associated DPRs in a range of in vitro systems including cell lines, primary neurons from the C9-500 transgenic mouse model, and patient-derived iPSC motor neurons. In vivo, we further demonstrated that RuvBL2 overexpression and consequent DPR reduction in our Drosophila model was sufficient to rescue a number of DPR-related motor phenotypes. Thus, modulating RuvBL levels to reduce DPRs may be of therapeutic potential in C9ALS/FTD.
Collapse
Affiliation(s)
- Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Bradley Hall
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Olivia M Crossley
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Dana Dauletalina
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Marianne King
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Zih-Liang Yang
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ergita Kyrgiou-Balli
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ryan Jh West
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Gene Therapy Innovation and Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Gill S, Mandigo TR, Elmali AD, Leger BS, Yang B, Tran S, Laosuntisuk K, Lane JM, Bannister D, Aonbangkhen C, Ormerod KG, Mahama B, Schuch KN, Elya C, Akhund-Zade J, Math SR, LoRocco NC, Seo S, Maher M, Kanca O, Bebek N, Karadeniz D, Senel GB, Courage C, Lehesjoki AE, Winkelman JW, Bellen HJ, de Bivort B, Hart AC, Littleton JT, Baykan B, Doherty CJ, Melkani GC, Prober DA, Woo CM, Saxena R, Schreiber SL, Walker JA. A conserved role for ALG10/ALG10B and the N -glycosylation pathway in the sleep-epilepsy axis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.11.24318624. [PMID: 39711723 PMCID: PMC11661338 DOI: 10.1101/2024.12.11.24318624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Congenital disorders of glycosylation (CDG) comprise a class of inborn errors of metabolism resulting from pathogenic variants in genes coding for enzymes involved in the asparagine-linked glycosylation of proteins. Unexpectedly to date, no CDG has been described for ALG10 , encoding the alpha-1,2-glucosyltransferase catalyzing the final step of lipid-linked oligosaccharide biosynthesis. Genome-wide association studies (GWAS) of human traits in the UK Biobank revealed significant SNP associations with short sleep duration, reduced napping frequency, later sleep timing and evening diurnal preference as well as cardiac traits at a genomic locus containing a pair of paralogous enzymes ALG10 and ALG10B . Modeling Alg10 loss in Drosophila, we identify an essential role for the N -glycosylation pathway in maintaining appropriate neuronal firing activity, healthy sleep, preventing seizures, and cardiovascular homeostasis. We further confirm the broader relevance of neurological findings associated with Alg10 from humans and flies using zebrafish and nematodes and demonstrate conserved biochemical roles for N -glycosylation in Arabidopsis . We report a human subject homozygous for variants in both ALG10 and ALG10B arising from a consanguineous marriage, with epilepsy, brain atrophy, and sleep abnormalities as predicted by the fly phenotype. Quantitative glycoproteomic analysis in our Drosophila model identifies potential key molecular targets for neurological symptoms of CDGs.
Collapse
|
11
|
Nakato D, Yasue Y, Matsubara K, Suzuki H, Kosaki R, Takenouchi T, Yamada M, Miya F, Takano-Shimizu T, Kosaki K. De novo variants in UPF1 associated with intellectual disabilities: Human genetic and functional evidences using Drosophila model. Eur J Med Genet 2024; 72:104983. [PMID: 39571789 DOI: 10.1016/j.ejmg.2024.104983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Nonsense-mediated mRNA decay represents a biologic clearing system against aberrant mRNAs harboring nonsense and frameshift mutations and depends on three factors, UPF1, UPF2, and UPF3 (UPF3A, UPF3B). While germline pathogenic variants of UPF3B and UPF2 are known to be associated with neurodevelopmental disorders, germline variants in UPF1 have not been reported, until date, as being associated with any human disorders. Herein, we report two unrelated patients with de novo UPF1 variants. Patient 1 was a 5-year-old girl with intellectual disabilities, frontal bossing, hypertelorism, high frontal hairline, and thin upper lip. Patient 2 was a 2-year-old female child with intellectual disabilities and similar features. Trio exome analysis revealed a de novo heterozygous variant in UPF1 in both the patients (Patient 1: NM_002911.4): c.949_951del, p.(Asp317del); Patient 2: c.1984G>A, p.(Asp662Asn)). We conducted experiments using Drosophila models to evaluate the functional relevance of these UPF1 variants. Enforced expression of the wild-type Upf1 allele under the control of the pan-neuronal nSyb-GAL4 driver caused mortality, mostly at the pupal stage, but still yielded adult flies. By contrast, expression of the Asp294del (Asp317del in humans) variant caused embryonic or early larval lethality and that of the Asp643Asn (Asp662Asn in humans) caused third instar larval lethality; neither produced pupa nor adult fly. Thus, the developmental defects caused by the variants, especially Asp294del, were more severe than those caused by the wild-type allele. These observations suggest that both variants are deleterious mutations. In conclusion, germline variants in UPF1 are associated with intellectual disabilities in humans.
Collapse
Affiliation(s)
- Daisuke Nakato
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Yuri Yasue
- KYOTO Drosophila Stock Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Kohei Matsubara
- KYOTO Drosophila Stock Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | | | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
12
|
Tsumaki K, Bertens CJF, Nakayama M, Kato S, Jonao Y, Kuribayashi A, Sato K, Ishiyama S, Asakawa M, Aihara R, Yoshioka Y, Homma H, Tanaka H, Fujita K, Okazawa H, Sone M. Loss of function of VCP/TER94 causes neurodegeneration. Dis Model Mech 2024; 17:dmm050359. [PMID: 39629589 PMCID: PMC11698056 DOI: 10.1242/dmm.050359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Variants in several genes are linked to human frontotemporal lobar degeneration (FTLD) associated with TDP43- and/or ubiquitin-positive inclusions. However, it is not yet clear whether the underlying mechanism is a gain-of-function or a loss-of-function one. To answer this question, we used Drosophila expressing double-stranded RNA against the FTLD-associated gene TER94 (an ortholog of VCP/p97) and found that the knockdown (KD) of this gene caused premature lethality, reduction in brain volume and alterations in the morphology of mushroom bodies. The changes caused by TER94 KD were rescued by wild-type TER94 but not by the human disease-linked A229E mutant, indicating that this mutant causes loss of function. Alterations were also observed in pupal brains and were partially rescued by co-expression of Mcm2, which is involved in control of the cell cycle, suggesting that dysregulation of neuronal proliferation caused the phenotypes. TER94 KD also caused the disappearance of TBPH (an ortholog of TDP43/TARDBP) from nuclei. These data from Drosophila genetics suggest that VCP-linked FTLD is caused by loss-of-function of VCP.
Collapse
Affiliation(s)
- Kohei Tsumaki
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Christian J. F. Bertens
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6202AZ Maastricht, The Netherlands
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Minoru Nakayama
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Saya Kato
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Yuki Jonao
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Ayu Kuribayashi
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Konosuke Sato
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Shota Ishiyama
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Momoko Asakawa
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Riko Aihara
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
- Department of Neuropathology, Institute of Science Tokyo, Tokyo 113-8510, Japan
| |
Collapse
|
13
|
Scanlan JL, Robin C. Genetic characterization of candidate ecdysteroid kinases in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae204. [PMID: 39208453 DOI: 10.1093/g3journal/jkae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024]
Abstract
Ecdysteroids are major hormones in insects and control molting, growth, reproduction, physiology, and behavior. The biosynthesis of ecdysteroids such as 20-hydroxyecdysone (20E) from dietary sterols is well characterized, but ecdysteroid catabolism is poorly understood. Ecdysteroid kinases (EcKs) mediate the reversible phosphorylation of ecdysteroids, which has been implicated in ecdysteroid recycling during embryogenesis and reproduction in various insects. However, to date, only 2 EcK-encoding genes have been identified, in the silkworm Bombyx mori and the mosquito Anopheles gambiae. Previously, we identified 2 ecdysteroid kinase-like (EcKL) genes-Wallflower (Wall) and Pinkman (pkm)-in the model fruit fly Drosophila melanogaster that are orthologs of the ecdysteroid 22-kinase gene BmEc22K. Here, using gene knockdown, knockout, and misexpression, we explore Wall and pkm's possible functions and genetically test the hypothesis that they encode EcKs. Wall and pkm null mutants are viable and fertile, suggesting that they are not essential for development or reproduction, whereas phenotypes arising from RNAi and somatic CRISPR appear to derive from off-target effects or other artifacts. However, misexpression of Wall results in dramatic phenotypes, including developmental arrest, and defects in trachea, cuticle, and pigmentation. Wall misexpression fails to phenocopy irreversible ecdysteroid catabolism through misexpression of Cyp18a1, suggesting that Wall does not directly inactivate 20E. Additionally, Wall misexpression phenotypes are not attenuated in Cyp18a1 mutants, strongly suggesting that Wall is not an ecdysteroid 26-kinase. We hypothesize that the substrate of Wall in this misexpression experiment and possibly generally is an unknown, atypical ecdysteroid that plays essential roles in Drosophila development, and may highlight aspects of insect endocrinology that are as-yet uncharacterized. We also provide preliminary evidence that CG5644 encodes an ecdysteroid 22-kinase conserved across Diptera.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
Wan J, Thurm AR, Allen SJ, Ludwig CH, Patel AN, Bintu L. High-throughput development and characterization of new functional nanobodies for gene regulation and epigenetic control in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621523. [PMID: 39554150 PMCID: PMC11566033 DOI: 10.1101/2024.11.01.621523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Controlling gene expression and chromatin state via the recruitment of transcriptional effector proteins to specific genetic loci has advanced the potential of mammalian synthetic biology, but is still hindered by the challenge of delivering large chromatin regulators. Here, we develop a new method for generating small nanobodies against human chromatin regulators that can repress or activate gene expression. We start with a large and diverse nanobody library and perform enrichment against chromatin regulatory complexes using yeast display, followed by high-throughput pooled selection for transcriptional control when recruited to a reporter in human cells. This workflow allows us to efficiently select tens of functional nanobodies that can act as transcriptional repressors or activators in human cells.
Collapse
Affiliation(s)
- Jun Wan
- Department of Bioengineering, Stanford University, Stanford, CA, 94305
- Present address: Pharma Technical Development, Genentech, South San Francisco, CA, 94080
| | - Abby R. Thurm
- Program in Biophysics, Stanford University School of Medicine, Stanford, CA, 94305
| | - Sage J. Allen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305
| | - Connor H. Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA, 94305
| | - Aayan N. Patel
- Department of Bioengineering, Stanford University, Stanford, CA, 94305
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305
| |
Collapse
|
15
|
Sterling-Lentsch G, Halfon MS. Identification of a novel downstream single-minded midline regulatory element in Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001317. [PMID: 39502425 PMCID: PMC11536050 DOI: 10.17912/micropub.biology.001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Development of the Drosophila melanogaster central nervous system midline depends on the gene single-minded ( sim ). Although sim regulation has been studied extensively, the fact that an enhancer mediating late embryonic sim transcription has not been identified suggests that additional regulatory sequences remain unknown. We tested several evolutionarily conserved sequences in the sim downstream region and isolated sim_3pB , whose midline activity in a reporter gene assay begins later than previously characterized sim enhancers. Its activity shares several key similarities with the Aedes aegypti sim _ 5P3 enhancer, though is sufficiently different to warrant further investigation into how sim_3pB functions in its native context.
Collapse
Affiliation(s)
- Geyenna Sterling-Lentsch
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, United States
| |
Collapse
|
16
|
Zhang X, Avellaneda J, Spletter ML, Lemke SB, Mangeol P, Habermann BH, Schnorrer F. Mechanoresponsive regulation of myogenesis by the force-sensing transcriptional regulator Tono. Curr Biol 2024; 34:4143-4159.e6. [PMID: 39163855 DOI: 10.1016/j.cub.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/26/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.
Collapse
Affiliation(s)
- Xu Zhang
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; School of Life Science and Engineering, Foshan University, Foshan 52800, Guangdong, China
| | - Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Maria L Spletter
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; Department of Physiological Chemistry, Biomedical Center, Ludwig Maximilians University of Munich, Großhaderner Strasse, Martinsried, 82152 Munich, Germany; Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rockhill Road, Kansas City, MO 64110, USA
| | - Sandra B Lemke
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany.
| |
Collapse
|
17
|
Takenaka R, Simmerman SM, Schmidt CA, Albanese EH, Rieder LE, Malik HS. The Drosophila maternal-effect gene abnormal oocyte ( ao) does not repress histone gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613536. [PMID: 39345629 PMCID: PMC11429765 DOI: 10.1101/2024.09.17.613536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The abnormal oocyte (ao) gene of Drosophila melanogaster is a maternal-effect lethal gene previously identified as encoding a transcriptional regulator of core histones. However, background genetic mutations in existing ao mutant strains could compromise their utility in manipulating histone levels. To distinguish the true ao phenotype from background effects, we created two new ao reagents: a CRISPR/Cas9-mediated knockout of the ao allele for genetic and molecular analyses and an epitope-tagged ao allele for cytological experiments. Using these reagents, we confirm previous findings that ao exhibits maternal-effect lethality, which can be rescued by either a decrease in the histone gene copy number or by Y chromosome heterochromatin. We also confirm that the Ao protein localizes to the histone locus bodies in ovaries. Our data also suggest that ao genetically interacts with the histone genes and heterochromatin, as previously suggested. However, contrary to prior findings, we find that ao does not repress core histone transcript levels. Thus, the molecular basis for ao-associated maternal-effect lethality remains unknown.
Collapse
Affiliation(s)
- Risa Takenaka
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle WA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle WA 98109
| | | | - Casey A. Schmidt
- Department of Biology, Emory University, Atlanta GA 30322
- Biology Department, Lafayette College, Easton PA 18042
| | | | | | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle WA 98109
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle WA 98109
| |
Collapse
|
18
|
Deo A, Ghosh R, Ahire S, Marathe S, Majumdar A, Bose T. Two novel DnaJ chaperone proteins CG5001 and P58IPK regulate the pathogenicity of Huntington's disease related aggregates. Sci Rep 2024; 14:20867. [PMID: 39242711 PMCID: PMC11379882 DOI: 10.1038/s41598-024-71065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease caused due to aggregation of Huntingtin (HTT) protein. This study involves the cloning of 40 DnaJ chaperones from Drosophila, and overexpressing them in yeasts and fly models of HD. Accordingly, DnaJ chaperones were catalogued as enhancers or suppressors based on their growth phenotypes and aggregation properties. 2 of the chaperones that came up as targets were CG5001 and P58IPK. Protein aggregation and slow growth phenotype was rescued in yeasts, S2 cells, and Drosophila transgenic lines of HTT103Q with these overexpressed chaperones. Since DnaJ chaperones have protein sequence similarity across species, they can be used as possible tools to combat the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ankita Deo
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Rishita Ghosh
- Indian Institute of Science and Educational Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Snehal Ahire
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sayali Marathe
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Amitabha Majumdar
- National Centre for Cell Sciences, Inside Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India.
| | - Tania Bose
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
19
|
Monastirioti M, Koltsaki I, Pitsidianaki I, Skafida E, Batsiotos N, Delidakis C. Notch-Dependent Expression of the Drosophila Hey Gene Is Supported by a Pair of Enhancers with Overlapping Activities. Genes (Basel) 2024; 15:1071. [PMID: 39202431 PMCID: PMC11353301 DOI: 10.3390/genes15081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Drosophila Hey is a basic helix-loop-helix-orange (bHLH-O) protein with an important role in the establishment of distinct identities of postmitotic cells. We have previously identified Hey as a transcriptional target and effector of Notch signalling during the asymmetric division of neuronal progenitors, generating neurons of two types, and we have shown that Notch-dependent expression of Hey also marks a subpopulation of the newborn enteroendocrine (EE) cells in the midgut primordium of the embryo. Here, we investigate the transcriptional regulation of Hey in neuronal and intestinal tissues. We isolated two genomic regions upstream of the promoter (HeyUP) and in the second intron (HeyIN2) of the Hey gene, based on the presence of binding motifs for Su(H), the transcription factor that mediates Notch activity. We found that both regions can direct the overlapping expression patterns of reporter transgenes recapitulating endogenous Hey expression. Moreover, we showed that while HeyIN2 represents a Notch-dependent enhancer, HeyUP confers both Notch-dependent and independent transcriptional regulation. We induced mutations that removed the Su(H) binding motifs in either region and then studied the enhancer functionality in the respective Hey mutant lines. Our results provide direct evidence that although both enhancers support Notch-dependent regulation of the Hey gene, their role is redundant, as a Hey loss-of-function lethal phenotype is observed only after deletion of all their Su(H) binding motifs by CRISPR/Cas9.
Collapse
Affiliation(s)
- Maria Monastirioti
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
| | - Ioanna Koltsaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ioanna Pitsidianaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Department of Cell and Developmental Biology, University College London (UCL), London WC1E 6BT, UK
| | - Emilia Skafida
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Foundation Saint Lucia, Rome and School of Medicine and Surgery, University of Milano-Bicocca (UniMiB), 20900 Monza, Italy
| | - Nikolaos Batsiotos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Evotec SE, 22419 Hamburg, Germany
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
20
|
Joshi JN, Changela N, Mahal L, Jang J, Defosse T, Wang LI, Das A, Shapiro JG, McKim K. Meiosis-specific functions of kinetochore protein SPC105R required for chromosome segregation in Drosophila oocytes. Mol Biol Cell 2024; 35:ar105. [PMID: 38865189 PMCID: PMC11321039 DOI: 10.1091/mbc.e24-02-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and coorientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that the SPC105R C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for lateral microtubule attachments and biorientation of homologues, which are critical for accurate chromosome segregation in meiosis I.
Collapse
Affiliation(s)
- Jay N. Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lia Mahal
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Janet Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Tyler Defosse
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lin-Ing Wang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Arunika Das
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Joanatta G. Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Kim McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
21
|
Ehrhardt B, Angstmann H, Höschler B, Kovacevic D, Hammer B, Roeder T, Rabe KF, Wagner C, Uliczka K, Krauss-Etschmann S. Airway specific deregulation of asthma-related serpins impairs tracheal architecture and oxygenation in D. melanogaster. Sci Rep 2024; 14:16567. [PMID: 39019933 PMCID: PMC11255251 DOI: 10.1038/s41598-024-66752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
Serine proteases are important regulators of airway epithelial homeostasis. Altered serum or cellular levels of two serpins, Scca1 and Spink5, have been described for airway diseases but their function beyond antiproteolytic activity is insufficiently understood. To close this gap, we generated fly lines with overexpression or knockdown for each gene in the airways. Overexpression of both fly homologues of Scca1 and Spink5 induced the growth of additional airway branches, with more variable results for the respective knockdowns. Dysregulation of Scca1 resulted in a general delay in fruit fly development, with increases in larval and pupal mortality following overexpression of this gene. In addition, the morphological changes in the airways were concomitant with lower tolerance to hypoxia. In conclusion, the observed structural changes of the airways evidently had a strong impact on the airway function in our model as they manifested in a lower physical fitness of the animals. We assume that this is due to insufficient tissue oxygenation. Future work will be directed at the identification of key molecular regulators following the airway-specific dysregulation of Scca1 and Spink5 expression.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Hanna Angstmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Beate Höschler
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Draginja Kovacevic
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Barbara Hammer
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Klaus F Rabe
- Department of Pneumology, LungenClinic, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Kiel, Germany
| | - Christina Wagner
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Karin Uliczka
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany.
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
22
|
Isaacson JR, Berg MD, Jagiello J, Yeung W, Charles B, Villén J, Brandl CJ, Moehring AJ. Mistranslating tRNA variants have anticodon- and sex-specific impacts on Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598535. [PMID: 38915589 PMCID: PMC11195196 DOI: 10.1101/2024.06.11.598535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNASer variants on fly development, lifespan, and behaviour. We established two mistranslating fly lines, one with a tRNASer variant that misincorporates serine at valine codons (V→S) and the other that misincorporates serine at threonine codons (T→S). While both mistranslating tRNAs increased development time and developmental lethality, the severity of the impacts differed depending on amino acid substitution and sex. The V→S variant extended embryonic, larval, and pupal development whereas the T→S only extended larval and pupal development. Females, but not males, containing either mistranslating tRNA presented with significantly more anatomical deformities than controls. Mistranslating females also experienced extended lifespan whereas mistranslating male lifespan was unaffected. In addition, mistranslating flies from both sexes showed improved locomotion as they aged, suggesting delayed neurodegeneration. Therefore, although mistranslation causes detrimental effects, we demonstrate that mistranslation also has positive effects on complex traits such as lifespan and locomotion. This has important implications for human health given the prevalence of tRNA variants in humans.
Collapse
Affiliation(s)
| | - Matthew D. Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | - Jessica Jagiello
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - William Yeung
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Brendan Charles
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | | | | |
Collapse
|
23
|
Lymer S, Patel K, Lennon J, Blau J. Circadian clock neurons use activity-regulated gene expression for structural plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595887. [PMID: 38826237 PMCID: PMC11142243 DOI: 10.1101/2024.05.25.595887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Drosophila s-LNv circadian pacemaker neurons show dramatic structural plasticity, with their projections expanded at dawn and then retracted by dusk. This predictable plasticity makes s-LNvs ideal to study molecular mechanisms of plasticity. Although s-LNv plasticity is controlled by their molecular clock, changing s-LNv excitability also regulates plasticity. Here, we tested the idea that s-LNvs use activity-regulated genes to control plasticity. We found that inducing expression of either of the activity-regulated transcription factors Hr38 or Sr (orthologs of mammalian Nr4a1 and Egr1) is sufficient to rapidly expand s-LNv projections. Conversely, transiently knocking down expression of either Hr38 or sr blocks expansion of s-LNv projections at dawn. We show that Hr38 rapidly induces transcription of sif, which encodes a Rac1 GEF required for s-LNv plasticity rhythms. We conclude that the s-LNv molecular clock controls s-LNv excitability, which couples to an activity-regulated gene expression program to control s-LNv plasticity.
Collapse
|
24
|
Zhu Y, Cho K, Lacin H, Zhu Y, DiPaola JT, Wilson BA, Patti GJ, Skeath JB. Loss of dihydroceramide desaturase drives neurodegeneration by disrupting endoplasmic reticulum and lipid droplet homeostasis in glial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573836. [PMID: 38260379 PMCID: PMC10802327 DOI: 10.1101/2024.01.01.573836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dihydroceramide desaturases convert dihydroceramides to ceramides, the precursors of all complex sphingolipids. Reduction of DEGS1 dihydroceramide desaturase function causes pediatric neurodegenerative disorder hypomyelinating leukodystrophy-18 (HLD-18). We discovered that infertile crescent (ifc), the Drosophila DEGS1 homolog, is expressed primarily in glial cells to promote CNS development by guarding against neurodegeneration. Loss of ifc causes massive dihydroceramide accumulation and severe morphological defects in cortex glia, including endoplasmic reticulum (ER) expansion, failure of neuronal ensheathment, and lipid droplet depletion. RNAi knockdown of the upstream ceramide synthase schlank in glia of ifc mutants rescues ER expansion, suggesting dihydroceramide accumulation in the ER drives this phenotype. RNAi knockdown of ifc in glia but not neurons drives neuronal cell death, suggesting that ifc function in glia promotes neuronal survival. Our work identifies glia as the primary site of disease progression in HLD-18 and may inform on juvenile forms of ALS, which also feature elevated dihydroceramide levels.
Collapse
Affiliation(s)
- Yuqing Zhu
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Haluk Lacin
- Division of Biological and Biomedical Systems, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Yi Zhu
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Jose T DiPaola
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Beth A Wilson
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - James B Skeath
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
25
|
Lewis SA, Forstrom J, Tavani J, Schafer R, Tiede Z, Padilla-Lopez SR, Kruer MC. eIF2α phosphorylation evokes dystonia-like movements with D2-receptor and cholinergic origin and abnormal neuronal connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594240. [PMID: 38798458 PMCID: PMC11118466 DOI: 10.1101/2024.05.14.594240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dystonia is the 3rd most common movement disorder. Dystonia is acquired through either injury or genetic mutations, with poorly understood molecular and cellular mechanisms. Eukaryotic initiation factor alpha (eIF2α) controls cell state including neuronal plasticity via protein translation control and expression of ATF4. Dysregulated eIF2α phosphorylation (eIF2α-P) occurs in dystonia patients and models including DYT1, but the consequences are unknown. We increased/decreased eIF2α-P and tested motor control and neuronal properties in a Drosophila model. Bidirectionally altering eIF2α-P produced dystonia-like abnormal posturing and dyskinetic movements in flies. These movements were also observed with expression of the DYT1 risk allele. We identified cholinergic and D2-receptor neuroanatomical origins of these dyskinetic movements caused by genetic manipulations to dystonia molecular candidates eIF2α-P, ATF4, or DYT1, with evidence for decreased cholinergic release. In vivo, increased and decreased eIF2α-P increase synaptic connectivity at the NMJ with increased terminal size and bouton synaptic release sites. Long-term treatment of elevated eIF2α-P with ISRIB restored adult longevity, but not performance in a motor assay. Disrupted eIF2α-P signaling may alter neuronal connectivity, change synaptic release, and drive motor circuit changes in dystonia.
Collapse
Affiliation(s)
- Sara A Lewis
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jacob Forstrom
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jennifer Tavani
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Robert Schafer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Zach Tiede
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Sergio R Padilla-Lopez
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Programs in Neuroscience, Molecular & Cellular Biology, and Biomedical Informatics, Arizona State University, Tempe, AZ USA
| |
Collapse
|
26
|
Liao JZ, Chung HL, Shih C, Wong KKL, Dutta D, Nil Z, Burns CG, Kanca O, Park YJ, Zuo Z, Marcogliese PC, Sew K, Bellen HJ, Verheyen EM. Cdk8/CDK19 promotes mitochondrial fission through Drp1 phosphorylation and can phenotypically suppress pink1 deficiency in Drosophila. Nat Commun 2024; 15:3326. [PMID: 38637532 PMCID: PMC11026413 DOI: 10.1038/s41467-024-47623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Cdk8 in Drosophila is the orthologue of vertebrate CDK8 and CDK19. These proteins have been shown to modulate transcriptional control by RNA polymerase II. We found that neuronal loss of Cdk8 severely reduces fly lifespan and causes bang sensitivity. Remarkably, these defects can be rescued by expression of human CDK19, found in the cytoplasm of neurons, suggesting a non-nuclear function of CDK19/Cdk8. Here we show that Cdk8 plays a critical role in the cytoplasm, with its loss causing elongated mitochondria in both muscles and neurons. We find that endogenous GFP-tagged Cdk8 can be found in both the cytoplasm and nucleus. We show that Cdk8 promotes the phosphorylation of Drp1 at S616, a protein required for mitochondrial fission. Interestingly, Pink1, a mitochondrial kinase implicated in Parkinson's disease, also phosphorylates Drp1 at the same residue. Indeed, overexpression of Cdk8 significantly suppresses the phenotypes observed in flies with low levels of Pink1, including elevated levels of ROS, mitochondrial dysmorphology, and behavioral defects. In summary, we propose that Pink1 and Cdk8 perform similar functions to promote Drp1-mediated fission.
Collapse
Affiliation(s)
- Jenny Zhe Liao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
- Center for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
| | - Hyung-Lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Claire Shih
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
- Center for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
| | - Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zelha Nil
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Catherine Grace Burns
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Paul C Marcogliese
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, R3E0J9, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, R3E3P4, MB, Canada
| | - Katherine Sew
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
- Center for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, V5A1S6, BC, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A1S6, BC, Canada.
- Center for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, V5A1S6, BC, Canada.
| |
Collapse
|
27
|
Desai M, Hemant, Deo A, Naik J, Dhamale P, Kshirsagar A, Bose T, Majumdar A. Mrj is a chaperone of the Hsp40 family that regulates Orb2 oligomerization and long-term memory in Drosophila. PLoS Biol 2024; 22:e3002585. [PMID: 38648719 PMCID: PMC11034981 DOI: 10.1371/journal.pbio.3002585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.
Collapse
Affiliation(s)
- Meghal Desai
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Hemant
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Ankita Deo
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Jagyanseni Naik
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Prathamesh Dhamale
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Avinash Kshirsagar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Tania Bose
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| |
Collapse
|
28
|
Schember I, Reid W, Sterling-Lentsch G, Halfon MS. Conserved and novel enhancers in the Aedes aegypti single-minded locus recapitulate embryonic ventral midline gene expression. PLoS Genet 2024; 20:e1010891. [PMID: 38683842 PMCID: PMC11081499 DOI: 10.1371/journal.pgen.1010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Transcriptional cis-regulatory modules, e.g., enhancers, control the time and location of metazoan gene expression. While changes in enhancers can provide a powerful force for evolution, there is also significant deep conservation of enhancers for developmentally important genes, with function and sequence characteristics maintained over hundreds of millions of years of divergence. Not well understood, however, is how the overall regulatory composition of a locus evolves, with important outstanding questions such as how many enhancers are conserved vs. novel, and to what extent are the locations of conserved enhancers within a locus maintained? We begin here to address these questions with a comparison of the respective single-minded (sim) loci in the two dipteran species Drosophila melanogaster (fruit fly) and Aedes aegypti (mosquito). sim encodes a highly conserved transcription factor that mediates development of the arthropod embryonic ventral midline. We identify two enhancers in the A. aegypti sim locus and demonstrate that they function equivalently in both transgenic flies and transgenic mosquitoes. One A. aegypti enhancer is highly similar to known Drosophila counterparts in its activity, location, and autoregulatory capability. The other differs from any known Drosophila sim enhancers with a novel location, failure to autoregulate, and regulation of expression in a unique subset of midline cells. Our results suggest that the conserved pattern of sim expression in the two species is the result of both conserved and novel regulatory sequences. Further examination of this locus will help to illuminate how the overall regulatory landscape of a conserved developmental gene evolves.
Collapse
Affiliation(s)
- Isabella Schember
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - William Reid
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Geyenna Sterling-Lentsch
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York, United States of America
| |
Collapse
|
29
|
Deichsel S, Gahr BM, Mastel H, Preiss A, Nagel AC. Numerous Serine/Threonine Kinases Affect Blood Cell Homeostasis in Drosophila melanogaster. Cells 2024; 13:576. [PMID: 38607015 PMCID: PMC11011202 DOI: 10.3390/cells13070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Blood cells in Drosophila serve primarily innate immune responses. Various stressors influence blood cell homeostasis regarding both numbers and the proportion of blood cell types. The principle molecular mechanisms governing hematopoiesis are conserved amongst species and involve major signaling pathways like Notch, Toll, JNK, JAK/Stat or RTK. Albeit signaling pathways generally rely on the activity of protein kinases, their specific contribution to hematopoiesis remains understudied. Here, we assess the role of Serine/Threonine kinases with the potential to phosphorylate the transcription factor Su(H) in crystal cell homeostasis. Su(H) is central to Notch signal transduction, and its inhibition by phosphorylation impedes crystal cell formation. Overall, nearly twenty percent of all Drosophila Serine/Threonine kinases were studied in two assays, global and hemocyte-specific overexpression and downregulation, respectively. Unexpectedly, the majority of kinases influenced crystal cell numbers, albeit only a few were related to hematopoiesis so far. Four kinases appeared essential for crystal cell formation, whereas most kinases restrained crystal cell development. This group comprises all kinase classes, indicative of the complex regulatory network underlying blood cell homeostasis. The rather indiscriminative response we observed opens the possibility that blood cells measure their overall phospho-status as a proxy for stress-signals, and activate an adaptive immune response accordingly.
Collapse
Affiliation(s)
- Sebastian Deichsel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Bernd M. Gahr
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Helena Mastel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anette Preiss
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anja C. Nagel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
30
|
Balasubramanian D, Borges Pinto P, Grasso A, Vincent S, Tarayre H, Lajoignie D, Ghavi-Helm Y. Enhancer-promoter interactions can form independently of genomic distance and be functional across TAD boundaries. Nucleic Acids Res 2024; 52:1702-1719. [PMID: 38084924 PMCID: PMC10899756 DOI: 10.1093/nar/gkad1183] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 02/29/2024] Open
Abstract
Topologically Associating Domains (TADs) have been suggested to facilitate and constrain enhancer-promoter interactions. However, the role of TAD boundaries in effectively restricting these interactions remains unclear. Here, we show that a significant proportion of enhancer-promoter interactions are established across TAD boundaries in Drosophila embryos, but that developmental genes are strikingly enriched in intra- but not inter-TAD interactions. We pursued this observation using the twist locus, a master regulator of mesoderm development, and systematically relocated one of its enhancers to various genomic locations. While this developmental gene can establish inter-TAD interactions with its enhancer, the functionality of these interactions remains limited, highlighting the existence of topological constraints. Furthermore, contrary to intra-TAD interactions, the formation of inter-TAD enhancer-promoter interactions is not solely driven by genomic distance, with distal interactions sometimes favored over proximal ones. These observations suggest that other general mechanisms must exist to establish and maintain specific enhancer-promoter interactions across large distances.
Collapse
Affiliation(s)
- Deevitha Balasubramanian
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
- Indian Institute of Science Education and Research (IISER) Tirupati; Tirupati 517507 Andhra Pradesh, India
| | - Pedro Borges Pinto
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Alexia Grasso
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Séverine Vincent
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Hélène Tarayre
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Damien Lajoignie
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| |
Collapse
|
31
|
Stinchfield MJ, Weasner BP, Weasner BM, Zhitomersky D, Kumar JP, O’Connor MB, Newfeld SJ. Fourth Chromosome Resource Project: a comprehensive resource for genetic analysis in Drosophila that includes humanized stocks. Genetics 2024; 226:iyad201. [PMID: 37981656 PMCID: PMC10847715 DOI: 10.1093/genetics/iyad201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
The fourth chromosome is the final frontier for genetic analysis in Drosophila. Small, heterochromatic, and devoid of recombination the fourth has long been ignored. Nevertheless, its long arm contains 79 protein-coding genes. The Fourth Chromosome Resource Project (FCRP) has a goal of facilitating the investigation of genes on this neglected chromosome. The project has 446 stocks publicly available at the Bloomington and Kyoto stock centers with phenotypic data curated by the FlyBase and FlyPush resources. Four of the five stock sets are nearly complete: (1) UAS.fly cDNAs, (2) UAS.human homolog cDNAs, (3) gene trap mutants and protein traps, and (4) stocks promoting meiotic and mitotic recombination on the fourth. Ongoing is mutagenesis of each fourth gene on a new FRT-bearing chromosome for marked single-cell clones. Beyond flies, FCRP facilitates the creation and analysis of humanized fly stocks. These provide opportunities to apply Drosophila genetics to the analysis of human gene interaction and function. In addition, the FCRP provides investigators with confidence through stock validation and an incentive via phenotyping to tackle genes on the fourth that have never been studied. Taken together, FCRP stocks will facilitate all manner of genetic and molecular studies. The resource is readily available to researchers to enhance our understanding of metazoan biology, including conserved molecular mechanisms underlying health and disease.
Collapse
Affiliation(s)
| | | | - Bonnie M Weasner
- Department Biology, Indiana University, Bloomington, IN 47405, USA
| | - David Zhitomersky
- Department Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin P Kumar
- Department Biology, Indiana University, Bloomington, IN 47405, USA
| | - Michael B O’Connor
- Department Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stuart J Newfeld
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
32
|
Christen M, Gregor A, Gutierrez-Quintana R, Bongers J, Rupp A, Penderis J, Shelton GD, Jagannathan V, Zweier C, Leeb T. NDUFS7 variant in dogs with Leigh syndrome and its functional validation in a Drosophila melanogaster model. Sci Rep 2024; 14:2975. [PMID: 38316835 PMCID: PMC10844639 DOI: 10.1038/s41598-024-53314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Two Jack-Russell Terrier × Chihuahua mixed-breed littermates with Leigh syndrome were investigated. The dogs presented with progressive ataxia, dystonia, and increased lactate levels. Brain MRI showed characteristic bilateral symmetrical T2 hyperintense lesions, histologically representing encephalomalacia. Muscle histopathology revealed accumulation of mitochondria. Whole genome sequencing identified a missense variant in a gene associated with human Leigh syndrome, NDUFS7:c.535G > A or p.(Val179Met). The genotypes at the variant co-segregated with the phenotype in the investigated litter as expected for a monogenic autosomal recessive mode of inheritance. We investigated the functional consequences of the missense variant in a Drosophila melanogaster model by expressing recombinant wildtype or mutant canine NDUFS7 in a ubiquitous knockdown model of the fly ortholog ND-20. Neither of the investigated overexpression lines completely rescued the lethality upon knockdown of the endogenous ND-20. However, a partial rescue was found upon overexpression of wildtype NDUFS7, where pupal lethality was moved to later developmental stages, which was not seen upon canine mutant overexpression, thus providing additional evidence for the pathogenicity of the identified variant. Our results show the potential of the fruit fly as a model for canine disease allele validation and establish NDUFS7:p.(Val179Met) as causative variant for the investigated canine Leigh syndrome.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anne Gregor
- Department of Human Genetics, Inselspital, University of Bern, Bern, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Rodrigo Gutierrez-Quintana
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jos Bongers
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Angie Rupp
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, University of Bern, Bern, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
33
|
Link N, Harnish JM, Hull B, Gibson S, Dietze M, Mgbike UE, Medina-Balcazar S, Shah PS, Yamamoto S. A Zika virus protein expression screen in Drosophila to investigate targeted host pathways during development. Dis Model Mech 2024; 17:dmm050297. [PMID: 38214058 PMCID: PMC10924231 DOI: 10.1242/dmm.050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
In the past decade, Zika virus (ZIKV) emerged as a global public health concern. Although adult infections are typically mild, maternal infection can lead to adverse fetal outcomes. Understanding how ZIKV proteins disrupt development can provide insights into the molecular mechanisms of disease caused by this virus, which includes microcephaly. In this study, we generated a toolkit to ectopically express ZIKV proteins in vivo in Drosophila melanogaster in a tissue-specific manner using the GAL4/UAS system. We used this toolkit to identify phenotypes and potential host pathways targeted by the virus. Our work identified that expression of most ZIKV proteins caused scorable phenotypes, such as overall lethality, gross morphological defects, reduced brain size and neuronal function defects. We further used this system to identify strain-dependent phenotypes that may have contributed to the increased pathogenesis associated with the outbreak of ZIKV in the Americas in 2015. Our work demonstrates the use of Drosophila as an efficient in vivo model to rapidly decipher how pathogens cause disease and lays the groundwork for further molecular study of ZIKV pathogenesis in flies.
Collapse
Affiliation(s)
- Nichole Link
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84112, USA
- Howard Hughes Medical Institute, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - J. Michael Harnish
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Brooke Hull
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Postbaccalaureate Research Education Program (PREP), Houston, TX, 77030, USA
| | - Shelley Gibson
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Miranda Dietze
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Silvia Medina-Balcazar
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Priya S. Shah
- Department of Chemical Engineering, Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Postbaccalaureate Research Education Program (PREP), Houston, TX, 77030, USA
- Department of Neuroscience, BCM, Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA
| |
Collapse
|
34
|
Liu X, Li X, Wang Z. The spatiotemporal pattern of glypican coordinates primordial germ cell differentiation with ovary development. iScience 2024; 27:108710. [PMID: 38205252 PMCID: PMC10776983 DOI: 10.1016/j.isci.2023.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/18/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
The establishment, proliferation, and differentiation of stem cells are coordinated with organ development and regulated by the signals in the microenvironment. Prior to gonad formation, how primordial germ cells (PGC) differentiate spatiotemporally to coordinate with gonadogenesis is unclear. In adult ovary, drosophila extracellular glypican Dally in germline stem cell (GSC) niche promotes BMP signaling to inhibit germline differentiation. Here we investigated the relation between the fate of PGC and the spatiotemporal pattern of glypican during ovary development. We found that Dally in ovarian soma assisted BMP signaling to prevent PGC from precocious differentiation. Dally's presence raises the "hurdle" for ecdysone peaks to eventually remove the transcription factor Kr and de-repress pro-differentiation factor, temporally postponing PGC differentiation until GSC niche establishment. The spatiotemporal glypican in somatic matrix assists PGC to integrate the ovarian local BMP and organismal steroid signals that coordinate PGC's program with organ/body development to maximize reproductive potential.
Collapse
Affiliation(s)
- Xian Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- The University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zhaohui Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- The University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
35
|
Ma M, Zheng Y, Lu S, Pan X, Worley KC, Burrage LC, Blieden LS, Allworth A, Chen WL, Merla G, Mandriani B, Rosenfeld JA, Li-Kroeger D, Dutta D, Yamamoto S, Wangler MF, Glass IA, Strohbehn S, Blue E, Prontera P, Lalani SR, Bellen HJ. De novo variants in PLCG1 are associated with hearing impairment, ocular pathology, and cardiac defects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.23300523. [PMID: 38260438 PMCID: PMC10802640 DOI: 10.1101/2024.01.08.23300523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Phospholipase C isozymes (PLCs) hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, important signaling molecules involved in many cellular processes. PLCG1 encodes the PLCγ1 isozyme that is broadly expressed. Hyperactive somatic mutations of PLCG1 are observed in multiple cancers, but only one germline variant has been reported. Here we describe three unrelated individuals with de novo heterozygous missense variants in PLCG1 (p.Asp1019Gly, p.His380Arg, and p.Asp1165Gly) who exhibit variable phenotypes including hearing loss, ocular pathology and cardiac septal defects. To model these variants in vivo, we generated the analogous variants in the Drosophila ortholog, small wing (sl). We created a null allele slT2A and assessed the expression pattern. sl is broadly expressed, including in wing discs, eye discs, and a subset of neurons and glia. Loss of sl causes wing size reductions, ectopic wing veins and supernumerary photoreceptors. We document that mutant flies exhibit a reduced lifespan and age-dependent locomotor defects. Expressing wild-type sl in slT2A mutant rescues the loss-of-function phenotypes whereas expressing the variants causes lethality. Ubiquitous overexpression of the variants also reduces viability, suggesting that the variants are toxic. Ectopic expression of an established hyperactive PLCG1 variant (p.Asp1165His) in the wing pouch causes severe wing phenotypes, resembling those observed with overexpression of the p.Asp1019Gly or p.Asp1165Gly variants, further arguing that these two are gain-of-function variants. However, the wing phenotypes associated with p.His380Arg overexpression are mild. Our data suggest that the PLCG1 de novo heterozygous missense variants are pathogenic and contribute to the features observed in the probands.
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Yiming Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Current affiliation: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kim C. Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren S. Blieden
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aimee Allworth
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wei-Liang Chen
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Current affiliation: Children’s National Medical Center and George Washington University, Washington DC 20010, USA
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia 71013, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Barbara Mandriani
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Li-Kroeger
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | | | - Ian A. Glass
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
| | - Sam Strohbehn
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elizabeth Blue
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Paolo Prontera
- Medical Genetics Unit, Hospital of Perugia, Perugia 06129, Italy
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
36
|
Pan X, Alvarez AN, Ma M, Lu S, Crawford MW, Briere LC, Kanca O, Yamamoto S, Sweetser DA, Wilson JL, Napier RJ, Pruneda JN, Bellen HJ. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. eLife 2023; 12:RP89891. [PMID: 38079206 PMCID: PMC10712953 DOI: 10.7554/elife.89891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and endoplasmic reticulum stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least 12 different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remain to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Albert N Alvarez
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Michael W Crawford
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for ChildrenBostonUnited States
| | - Jenny L Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science UniversityPortlandUnited States
| | - Ruth J Napier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
- VA Portland Health Care SystemPortlandUnited States
- Division of Arthritis & Rheumatic Diseases, Oregon Health & Science UniversityPortlandUnited States
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
37
|
Bosch JA, Keith N, Escobedo F, Fisher WW, LaGraff JT, Rabasco J, Wan KH, Weiszmann R, Hu Y, Kondo S, Brown JB, Perrimon N, Celniker SE. Molecular and functional characterization of the Drosophila melanogaster conserved smORFome. Cell Rep 2023; 42:113311. [PMID: 37889754 PMCID: PMC10843857 DOI: 10.1016/j.celrep.2023.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Short polypeptides encoded by small open reading frames (smORFs) are ubiquitously found in eukaryotic genomes and are important regulators of physiology, development, and mitochondrial processes. Here, we focus on a subset of 298 smORFs that are evolutionarily conserved between Drosophila melanogaster and humans. Many of these smORFs are conserved broadly in the bilaterian lineage, and ∼182 are conserved in plants. We observe remarkably heterogeneous spatial and temporal expression patterns of smORF transcripts-indicating wide-spread tissue-specific and stage-specific mitochondrial architectures. In addition, an analysis of annotated functional domains reveals a predicted enrichment of smORF polypeptides localizing to mitochondria. We conduct an embryonic ribosome profiling experiment and find support for translation of 137 of these smORFs during embryogenesis. We further embark on functional characterization using CRISPR knockout/activation, RNAi knockdown, and cDNA overexpression, revealing diverse phenotypes. This study underscores the importance of identifying smORF function in disease and phenotypic diversity.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Keith
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Felipe Escobedo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William W Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Thai LaGraff
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jorden Rabasco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth H Wan
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard Weiszmann
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - James B Brown
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Steinmetz EL, Noh S, Klöppel C, Fuhr MF, Bach N, Raffael ME, Hildebrandt K, Wittling F, Jann D, Walldorf U. Generation of Mutants from the 57B Region of Drosophila melanogaster. Genes (Basel) 2023; 14:2047. [PMID: 38002990 PMCID: PMC10671637 DOI: 10.3390/genes14112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The 57B region of Drosophila melanogaster includes a cluster of the three homeobox genes orthopedia (otp), Drosophila Retinal homeobox (DRx), and homeobrain (hbn). In an attempt to isolate mutants for these genes, we performed an EMS mutagenesis and isolated lethal mutants from the 57B region, among them mutants for otp, DRx, and hbn. With the help of two newly generated deletions from the 57B region, we mapped additional mutants to specific chromosomal intervals and identified several of these mutants from the 57B region molecularly. In addition, we generated mutants for CG15651 and RIC-3 by gene targeting and mutants for the genes CG9344, CG15649, CG15650, and ND-B14.7 using the CRISPR/Cas9 system. We determined the lethality period during development for most isolated mutants. In total, we analysed alleles from nine different genes from the 57B region of Drosophila, which could now be used to further explore the functions of the corresponding genes in the future.
Collapse
Affiliation(s)
- Eva Louise Steinmetz
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Zoology & Physiology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building B2.1, D-66123 Saarbrücken, Germany
| | - Sandra Noh
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Christine Klöppel
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Martin F. Fuhr
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Nicole Bach
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Mona Evelyn Raffael
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Kirsten Hildebrandt
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Fabienne Wittling
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, D-66123 Saarbrücken, Germany
| | - Doris Jann
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Medical Biochemistry & Molecular Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 45.2, D-66421 Homburg, Germany
| | - Uwe Walldorf
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| |
Collapse
|
39
|
Nil Z, Deshwar AR, Huang Y, Barish S, Zhang X, Choufani S, Le Quesne Stabej P, Hayes I, Yap P, Haldeman-Englert C, Wilson C, Prescott T, Tveten K, Vøllo A, Haynes D, Wheeler PG, Zon J, Cytrynbaum C, Jobling R, Blyth M, Banka S, Afenjar A, Mignot C, Robin-Renaldo F, Keren B, Kanca O, Mao X, Wegner DJ, Sisco K, Shinawi M, Wangler MF, Weksberg R, Yamamoto S, Costain G, Bellen HJ. Rare de novo gain-of-function missense variants in DOT1L are associated with developmental delay and congenital anomalies. Am J Hum Genet 2023; 110:1919-1937. [PMID: 37827158 PMCID: PMC10645550 DOI: 10.1016/j.ajhg.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.
Collapse
Affiliation(s)
- Zelha Nil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ashish R Deshwar
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Polona Le Quesne Stabej
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Ian Hayes
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | - Patrick Yap
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | | | - Carolyn Wilson
- Mission Fullerton Genetics Center, Asheville, NC 28803, USA
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Arve Vøllo
- Department of Pediatrics, Hospital of Østfold, 1714 Grålum, Norway
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA; Clinical Genetics Service, Guy's Hospital, Guy's and St Thomas' NHS Trust, London, England, UK
| | - Patricia G Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA
| | - Jessica Zon
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rebekah Jobling
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Moira Blyth
- North of Scotland Regional Genetics Service, Clinical Genetics Centre, Ashgrove House, Foresterhill, Aberdeen, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9WL Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, M13 9WL Manchester, UK
| | - Alexandra Afenjar
- Service de génétique, CRMR des malformations et maladies congénitales du cervelet et CRMR déficience intellectuelle, hôpital Trousseau, AP-HP, Paris, France
| | - Cyril Mignot
- Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière and Hôpital Trousseau, Paris, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | | | - Boris Keren
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, 75013 Paris, France
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China; Clinical Research Center for Placental Medicine in Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen Sisco
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Zhao Z, Brooks D, Guo Y, Geisbrecht ER. Identification of CryAB as a target of NUAK kinase activity in Drosophila muscle tissue. Genetics 2023; 225:iyad167. [PMID: 37713608 PMCID: PMC10627272 DOI: 10.1093/genetics/iyad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
Phosphorylation reactions performed by protein kinases are one of the most studied post-translational modifications within cells. Much is understood about conserved residues within protein kinase domains that perform catalysis of the phosphotransfer reaction, yet the identity of the target substrates and downstream biological effects vary widely among cells, tissues, and organisms. Here, we characterize key residues essential for NUAK kinase activity in Drosophila melanogaster myogenesis and homeostasis. Creation of a NUAK kinase-dead mutation using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 results in lethality at the embryo to larval transition, while loss of NUAK catalytic function later in development produces aggregation of the chaperone protein αB-crystallin/CryAB in muscle tissue. Yeast 2-hybrid assays demonstrate a physical interaction between NUAK and CryAB. We further show that a phospho-mimetic version of NUAK promotes the phosphorylation of CryAB and this post-translational modification occurs at 2 previously unidentified phosphosites that are conserved in the primary sequence of human CryAB. Mutation of these serine residues in D. melanogaster NUAK abolishes CryAB phosphorylation, thus, proving their necessity at the biochemical level. These studies together highlight the importance of kinase activity regulation and provide a platform to further explore muscle tissue proteostasis.
Collapse
Affiliation(s)
- Ziwei Zhao
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - Yungui Guo
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| |
Collapse
|
41
|
Pan X, Alvarez AN, Ma M, Lu S, Crawford MW, Briere LC, Kanca O, Yamamoto S, Sweetser DA, Wilson JL, Napier RJ, Pruneda JN, Bellen HJ. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.17.23292782. [PMID: 37502976 PMCID: PMC10371176 DOI: 10.1101/2023.07.17.23292782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and ER stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least twelve different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remains to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Albert N. Alvarez
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael W. Crawford
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lauren C. Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A. Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Jenny L. Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruth J. Napier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
- VA Portland Health Care System, Portland, OR 97239, USA
- Division of Arthritis & Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
42
|
Yarikipati P, Jonusaite S, Pleinis JM, Dominicci Cotto C, Sanchez-Hernandez D, Morrison DE, Goyal S, Schellinger J, Pénalva C, Curtiss J, Rodan AR, Jenny A. Unanticipated domain requirements for Drosophila Wnk kinase in vivo. PLoS Genet 2023; 19:e1010975. [PMID: 37819975 PMCID: PMC10593226 DOI: 10.1371/journal.pgen.1010975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 10/23/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
WNK (With no Lysine [K]) kinases have critical roles in the maintenance of ion homeostasis and the regulation of cell volume. Their overactivation leads to pseudohypoaldosteronism type II (Gordon syndrome) characterized by hyperkalemia and high blood pressure. More recently, WNK family members have been shown to be required for the development of the nervous system in mice, zebrafish, and flies, and the cardiovascular system of mice and fish. Furthermore, human WNK2 and Drosophila Wnk modulate canonical Wnt signaling. In addition to a well-conserved kinase domain, animal WNKs have a large, poorly conserved C-terminal domain whose function has been largely mysterious. In most but not all cases, WNKs bind and activate downstream kinases OSR1/SPAK, which in turn regulate the activity of various ion transporters and channels. Here, we show that Drosophila Wnk regulates Wnt signaling and cell size during the development of the wing in a manner dependent on Fray, the fly homolog of OSR1/SPAK. We show that the only canonical RF(X)V/I motif of Wnk, thought to be essential for WNK interactions with OSR1/SPAK, is required to interact with Fray in vitro. However, this motif is unexpectedly dispensable for Fray-dependent Wnk functions in vivo during fly development and fluid secretion in the Malpighian (renal) tubules. In contrast, a structure function analysis of Wnk revealed that the less-conserved C-terminus of Wnk, that recently has been shown to promote phase transitions in cell culture, is required for viability in vivo. Our data thus provide novel insights into unexpected in vivo roles of specific WNK domains.
Collapse
Affiliation(s)
- Prathibha Yarikipati
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States of America
| | - Sima Jonusaite
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - John M. Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Carihann Dominicci Cotto
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States of America
| | - David Sanchez-Hernandez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States of America
| | - Daryl E. Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Suhani Goyal
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Jeffrey Schellinger
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Clothilde Pénalva
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Jennifer Curtiss
- Department of Cell & Developmental Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Aylin R. Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, United States of America
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
| |
Collapse
|
43
|
Xu D, Vincent A, González-Gutiérrez A, Aleyakpo B, Anoar S, Giblin A, Atilano ML, Adams M, Shen D, Thoeng A, Tsintzas E, Maeland M, Isaacs AM, Sierralta J, Niccoli T. A monocarboxylate transporter rescues frontotemporal dementia and Alzheimer's disease models. PLoS Genet 2023; 19:e1010893. [PMID: 37733679 PMCID: PMC10513295 DOI: 10.1371/journal.pgen.1010893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/29/2023] [Indexed: 09/23/2023] Open
Abstract
Brains are highly metabolically active organs, consuming 20% of a person's energy at resting state. A decline in glucose metabolism is a common feature across a number of neurodegenerative diseases. Another common feature is the progressive accumulation of insoluble protein deposits, it's unclear if the two are linked. Glucose metabolism in the brain is highly coupled between neurons and glia, with glucose taken up by glia and metabolised to lactate, which is then shuttled via transporters to neurons, where it is converted back to pyruvate and fed into the TCA cycle for ATP production. Monocarboxylates are also involved in signalling, and play broad ranging roles in brain homeostasis and metabolic reprogramming. However, the role of monocarboxylates in dementia has not been tested. Here, we find that increasing pyruvate import in Drosophila neurons by over-expression of the transporter bumpel, leads to a rescue of lifespan and behavioural phenotypes in fly models of both frontotemporal dementia and Alzheimer's disease. The rescue is linked to a clearance of late stage autolysosomes, leading to degradation of toxic peptides associated with disease. We propose upregulation of pyruvate import into neurons as potentially a broad-scope therapeutic approach to increase neuronal autophagy, which could be beneficial for multiple dementias.
Collapse
Affiliation(s)
- Dongwei Xu
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Alec Vincent
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Andrés González-Gutiérrez
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Benjamin Aleyakpo
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Ashling Giblin
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
- UK Dementia Research Institute at UCL, Cruciform Building, London, United Kingdom
| | - Magda L. Atilano
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
- UK Dementia Research Institute at UCL, Cruciform Building, London, United Kingdom
| | - Mirjam Adams
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Dunxin Shen
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Annora Thoeng
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Elli Tsintzas
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Marie Maeland
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Adrian M. Isaacs
- UK Dementia Research Institute at UCL, Cruciform Building, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jimena Sierralta
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
44
|
Guichard A, Lu S, Kanca O, Bressan D, Huang Y, Ma M, Sanz Juste S, Andrews JC, Jay KL, Sneider M, Schwartz R, Huang MC, Bei D, Pan H, Ma L, Lin WW, Auradkar A, Bhagwat P, Park S, Wan KH, Ohsako T, Takano-Shimizu T, Celniker SE, Wangler MF, Yamamoto S, Bellen HJ, Bier E. A comprehensive Drosophila resource to identify key functional interactions between SARS-CoV-2 factors and host proteins. Cell Rep 2023; 42:112842. [PMID: 37480566 PMCID: PMC10962759 DOI: 10.1016/j.celrep.2023.112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023] Open
Abstract
Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins. We demonstrate the utility of the DCR to functionally assess SARS-CoV-2 genes and candidate human binding partners. We show that NSP8 engages in strong genetic interactions with several human candidates, most prominently with the ATE1 arginyltransferase to induce actin arginylation and cytoskeletal disorganization, and that two ATE1 inhibitors can reverse NSP8 phenotypes. The DCR enables parallel global-scale functional analysis of SARS-CoV-2 components in a prime genetic model system.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daniel Bressan
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sara Sanz Juste
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Department of Epigenetics & Molecular Carcinogenesis at MD Anderson, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy L Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Marketta Sneider
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Mei-Chu Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Danqing Bei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Liwen Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Pranjali Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Soo Park
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kenneth H Wan
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Takashi Ohsako
- Advanced Technology Center, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Toshiyuki Takano-Shimizu
- Kyoto Drosophila Stock Center and Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto 616-8354, Japan
| | - Susan E Celniker
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Tata Institute for Genetics and Society - UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
45
|
Maddison DC, Malik B, Amadio L, Bis-Brewer DM, Züchner S, Peters OM, Smith GA. COPI-regulated mitochondria-ER contact site formation maintains axonal integrity. Cell Rep 2023; 42:112883. [PMID: 37498742 PMCID: PMC10840514 DOI: 10.1016/j.celrep.2023.112883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Coat protein complex I (COPI) is best known for its role in Golgi-endoplasmic reticulum (ER) trafficking, responsible for the retrograde transport of ER-resident proteins. The ER is crucial to neuronal function, regulating Ca2+ homeostasis and the distribution and function of other organelles such as endosomes, peroxisomes, and mitochondria via functional contact sites. Here we demonstrate that disruption of COPI results in mitochondrial dysfunction in Drosophila axons and human cells. The ER network is also disrupted, and the neurons undergo rapid degeneration. We demonstrate that mitochondria-ER contact sites (MERCS) are decreased in COPI-deficient axons, leading to Ca2+ dysregulation, heightened mitophagy, and a decrease in respiratory capacity. Reintroducing MERCS is sufficient to rescue not only mitochondrial distribution and Ca2+ uptake but also ER morphology, dramatically delaying neurodegeneration. This work demonstrates an important role for COPI-mediated trafficking in MERC formation, which is an essential process for maintaining axonal integrity.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Bilal Malik
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leonardo Amadio
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Dana M Bis-Brewer
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Owen M Peters
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Gaynor A Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK.
| |
Collapse
|
46
|
Doyle DA, Burian FN, Aharoni B, Klinder AJ, Menzel MM, Nifras GCC, Shabazz-Henry AL, Palma BU, Hidalgo GA, Sottolano CJ, Ortega BM, Niepielko MG. Germ Granule Evolution Provides Mechanistic Insight into Drosophila Germline Development. Mol Biol Evol 2023; 40:msad174. [PMID: 37527522 PMCID: PMC10414811 DOI: 10.1093/molbev/msad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
The copackaging of mRNAs into biomolecular condensates called germ granules is a conserved strategy to posttranscriptionally regulate germline mRNAs. In Drosophila melanogaster, mRNAs accumulate in germ granules by forming homotypic clusters, aggregates containing multiple transcripts from the same gene. Nucleated by Oskar (Osk), homotypic clusters are generated through a stochastic seeding and self-recruitment process that requires the 3' untranslated region (UTR) of germ granule mRNAs. Interestingly, the 3' UTR belonging to germ granule mRNAs, such as nanos (nos), have considerable sequence variations among Drosophila species and we hypothesized that this diversity influences homotypic clustering. To test our hypothesis, we investigated the homotypic clustering of nos and polar granule component (pgc) in four Drosophila species and concluded that clustering is a conserved process used to enrich germ granule mRNAs. However, we discovered germ granule phenotypes that included significant changes in the abundance of transcripts present in species' homotypic clusters, which also reflected diversity in the number of coalesced primordial germ cells within their embryonic gonads. By integrating biological data with computational modeling, we found that multiple mechanisms underlie naturally occurring germ granule diversity, including changes in nos, pgc, osk levels and/or homotypic clustering efficacy. Furthermore, we demonstrated how the nos 3' UTR from different species influences nos clustering, causing granules to have ∼70% less nos and increasing the presence of defective primordial germ cells. Our results highlight the impact that evolution has on germ granules, which should provide broader insight into processes that modify compositions and activities of other classes of biomolecular condensate.
Collapse
Affiliation(s)
- Dominique A Doyle
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Florencia N Burian
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Benjamin Aharoni
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Annabelle J Klinder
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Melissa M Menzel
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | | | | | - Bianca Ulrich Palma
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Gisselle A Hidalgo
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Christopher J Sottolano
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, USA
| | - Bianca M Ortega
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Matthew G Niepielko
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
- Department of Biological Sciences, Kean University, Union, NJ, USA
| |
Collapse
|
47
|
Oikawa I, Kondo S, Hashimoto K, Yoshida A, Hamajima M, Tanimoto H, Furukubo-Tokunaga K, Honjo K. A descending inhibitory mechanism of nociception mediated by an evolutionarily conserved neuropeptide system in Drosophila. eLife 2023; 12:RP85760. [PMID: 37310871 DOI: 10.7554/elife.85760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Nociception is a neural process that animals have developed to avoid potentially tissue-damaging stimuli. While nociception is triggered in the peripheral nervous system, its modulation by the central nervous system is a critical process in mammals, whose dysfunction has been extensively implicated in chronic pain pathogenesis. The peripheral mechanisms of nociception are largely conserved across the animal kingdom. However, it is unclear whether the brain-mediated modulation is also conserved in non-mammalian species. Here, we show that Drosophila has a descending inhibitory mechanism of nociception from the brain, mediated by the neuropeptide Drosulfakinin (DSK), a homolog of cholecystokinin (CCK) that plays an important role in the descending control of nociception in mammals. We found that mutants lacking dsk or its receptors are hypersensitive to noxious heat. Through a combination of genetic, behavioral, histological, and Ca2+ imaging analyses, we subsequently revealed neurons involved in DSK-mediated nociceptive regulation at a single-cell resolution and identified a DSKergic descending neuronal pathway that inhibits nociception. This study provides the first evidence for a descending modulatory mechanism of nociception from the brain in a non-mammalian species that is mediated by the evolutionarily conserved CCK system, raising the possibility that the descending inhibition is an ancient mechanism to regulate nociception.
Collapse
Affiliation(s)
- Izumi Oikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Kao Hashimoto
- College of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akiho Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Megumi Hamajima
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Ken Honjo
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
48
|
Prozzillo Y, Fattorini G, Ferreri D, Leo M, Dimitri P, Messina G. Knockdown of DOM/Tip60 Complex Subunits Impairs Male Meiosis of Drosophila melanogaster. Cells 2023; 12:1348. [PMID: 37408183 DOI: 10.3390/cells12101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 07/07/2023] Open
Abstract
ATP-dependent chromatin remodeling complexes are involved in nucleosome sliding and eviction and/or the incorporation of histone variants into chromatin to facilitate several cellular and biological processes, including DNA transcription, replication and repair. The DOM/TIP60 chromatin remodeling complex of Drosophila melanogaster contains 18 subunits, including the DOMINO (DOM), an ATPase that catalyzes the exchange of the canonical H2A with its variant (H2A.V), and TIP60, a lysine-acetyltransferase that acetylates H4, H2A and H2A.V histones. In recent decades, experimental evidence has shown that ATP-dependent chromatin remodeling factors, in addition to their role in chromatin organization, have a functional relevance in cell division. In particular, emerging studies suggested the direct roles of ATP-dependent chromatin remodeling complex subunits in controlling mitosis and cytokinesis in both humans and D. melanogaster. However, little is known about their possible involvement during meiosis. The results of this work show that the knockdown of 12 of DOM/TIP60 complex subunits generates cell division defects that, in turn, cause total/partial sterility in Drosophila males, providing new insights into the functions of chromatin remodelers in cell division control during gametogenesis.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Gaia Fattorini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), Consiglio Nazionale delle Ricerche (CNR), Sapienza University of Rome, 00185 Rome, Italy
| | - Diego Ferreri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Manuela Leo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Patrizio Dimitri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanni Messina
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Fondazione Cenci-Bolognetti, 00161 Rome, Italy
- Department of Biotechnology and Biosciences, Milano-Bicocca University, 20126 Milan, Italy
| |
Collapse
|
49
|
Link N, Harnish JM, Hull B, Gibson S, Dietze M, Mgbike UE, Medina-Balcazar S, Shah PS, Yamamoto S. A Zika virus protein expression screen in Drosophila to investigate targeted host pathways during development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538736. [PMID: 37163061 PMCID: PMC10168400 DOI: 10.1101/2023.04.28.538736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the past decade, Zika virus (ZIKV) emerged as a global public health concern. While adult infections are typically mild, maternal infection can lead to adverse fetal outcomes. Understanding how ZIKV proteins disrupt development can provide insights into the molecular mechanisms of symptoms caused by this virus including microcephaly. In this study, we generated a toolkit to ectopically express Zika viral proteins in vivo in Drosophila melanogaster in a tissue-specific manner using the GAL4/UAS system. We use this toolkit to identify phenotypes and host pathways targeted by the virus. Our work identified that expression of most ZIKV proteins cause scorable phenotypes, such as overall lethality, gross morphological defects, reduced brain size, and neuronal function defects. We further use this system to identify strain-dependent phenotypes that may contribute to the increased pathogenesis associated with the more recent outbreak of ZIKV in the Americas. Our work demonstrates Drosophila's use as an efficient in vivo model to rapidly decipher how pathogens cause disease and lays the groundwork for further molecular study of ZIKV pathogenesis in flies.
Collapse
Affiliation(s)
- Nichole Link
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84112, USA
- Howard Hughes Medical Institute, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - J Michael Harnish
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Brooke Hull
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
- Postbaccalaureate Research Education Program (PREP), Houston, TX, 77030, USA
| | - Shelley Gibson
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Miranda Dietze
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Silvia Medina-Balcazar
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Priya S. Shah
- Department of Chemical Engineering, Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
- Postbaccalaureate Research Education Program (PREP), Houston, TX, 77030, USA
- Department of Neuroscience, BCM, Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA
| |
Collapse
|
50
|
Srivastava S, Shaked HM, Gable K, Gupta SD, Pan X, Somashekarappa N, Han G, Mohassel P, Gotkine M, Doney E, Goldenberg P, Tan QKG, Gong Y, Kleinstiver B, Wishart B, Cope H, Pires CB, Stutzman H, Spillmann RC, Sadjadi R, Elpeleg O, Lee CH, Bellen HJ, Edvardson S, Eichler F, Dunn TM, Dai H, Dhar SU, Emrick LT, Goldman AM, Hanchard NA, Jamal F, Karaviti L, Lalani SR, Lee BH, Lewis RA, Marom R, Moretti PM, Murdock DR, Nicholas SK, Orengo JP, Posey JE, Potocki L, Rosenfeld JA, Samson SL, Scott DA, Tran AA, Vogel TP, Wangler MF, Yamamoto S, Eng CM, Liu P, Ward PA, Behrens E, Deardorff M, Falk M, Hassey K, Sullivan K, Vanderver A, Goldstein DB, Cope H, McConkie-Rosell A, Schoch K, Shashi V, Smith EC, Spillmann RC, Sullivan JA, Tan QKG, Walley NM, Agrawal PB, Beggs AH, Berry GT, Briere LC, Cobban LA, Coggins M, Cooper CM, Fieg EL, High F, Holm IA, Korrick S, Krier JB, Lincoln SA, Loscalzo J, Maas RL, MacRae CA, Pallais JC, Rao DA, Rodan LH, Silverman EK, Stoler JM, Sweetser DA, Walker M, Walsh CA, Esteves C, Kelley EG, Kohane IS, LeBlanc K, McCray AT, Nagy A, Dasari S, et alSrivastava S, Shaked HM, Gable K, Gupta SD, Pan X, Somashekarappa N, Han G, Mohassel P, Gotkine M, Doney E, Goldenberg P, Tan QKG, Gong Y, Kleinstiver B, Wishart B, Cope H, Pires CB, Stutzman H, Spillmann RC, Sadjadi R, Elpeleg O, Lee CH, Bellen HJ, Edvardson S, Eichler F, Dunn TM, Dai H, Dhar SU, Emrick LT, Goldman AM, Hanchard NA, Jamal F, Karaviti L, Lalani SR, Lee BH, Lewis RA, Marom R, Moretti PM, Murdock DR, Nicholas SK, Orengo JP, Posey JE, Potocki L, Rosenfeld JA, Samson SL, Scott DA, Tran AA, Vogel TP, Wangler MF, Yamamoto S, Eng CM, Liu P, Ward PA, Behrens E, Deardorff M, Falk M, Hassey K, Sullivan K, Vanderver A, Goldstein DB, Cope H, McConkie-Rosell A, Schoch K, Shashi V, Smith EC, Spillmann RC, Sullivan JA, Tan QKG, Walley NM, Agrawal PB, Beggs AH, Berry GT, Briere LC, Cobban LA, Coggins M, Cooper CM, Fieg EL, High F, Holm IA, Korrick S, Krier JB, Lincoln SA, Loscalzo J, Maas RL, MacRae CA, Pallais JC, Rao DA, Rodan LH, Silverman EK, Stoler JM, Sweetser DA, Walker M, Walsh CA, Esteves C, Kelley EG, Kohane IS, LeBlanc K, McCray AT, Nagy A, Dasari S, Lanpher BC, Lanza IR, Morava E, Oglesbee D, Bademci G, Barbouth D, Bivona S, Carrasquillo O, Chang TCP, Forghani I, Grajewski A, Isasi R, Lam B, Levitt R, Liu XZ, McCauley J, Sacco R, Saporta M, Schaechter J, Tekin M, Telischi F, Thorson W, Zuchner S, Colley HA, Dayal JG, Eckstein DJ, Findley LC, Krasnewich DM, Mamounas LA, Manolio TA, Mulvihill JJ, LaMoure GL, Goldrich MP, Urv TK, Doss AL, Acosta MT, Bonnenmann C, D’Souza P, Draper DD, Ferreira C, Godfrey RA, Groden CA, Macnamara EF, Maduro VV, Markello TC, Nath A, Novacic D, Pusey BN, Toro C, Wahl CE, Baker E, Burke EA, Adams DR, Gahl WA, Malicdan MCV, Tifft CJ, Wolfe LA, Yang J, Power B, Gochuico B, Huryn L, Latham L, Davis J, Mosbrook-Davis D, Rossignol F, Solomon B, MacDowall J, Thurm A, Zein W, Yousef M, Adam M, Amendola L, Bamshad M, Beck A, Bennett J, Berg-Rood B, Blue E, Boyd B, Byers P, Chanprasert S, Cunningham M, Dipple K, Doherty D, Earl D, Glass I, Golden-Grant K, Hahn S, Hing A, Hisama FM, Horike-Pyne M, Jarvik GP, Jarvik J, Jayadev S, Lam C, Maravilla K, Mefford H, Merritt JL, Mirzaa G, Nickerson D, Raskind W, Rosenwasser N, Scott CR, Sun A, Sybert V, Wallace S, Wener M, Wenger T, Ashley EA, Bejerano G, Bernstein JA, Bonner D, Coakley TR, Fernandez L, Fisher PG, Fresard L, Hom J, Huang Y, Kohler JN, Kravets E, Majcherska MM, Martin BA, Marwaha S, McCormack CE, Raja AN, Reuter CM, Ruzhnikov M, Sampson JB, Smith KS, Sutton S, Tabor HK, Tucker BM, Wheeler MT, Zastrow DB, Zhao C, Byrd WE, Crouse AB, Might M, Nakano-Okuno M, Whitlock J, Brown G, Butte MJ, Dell’Angelica EC, Dorrani N, Douine ED, Fogel BL, Gutierrez I, Huang A, Krakow D, Lee H, Loo SK, Mak BC, Martin MG, Martínez-Agosto JA, McGee E, Nelson SF, Nieves-Rodriguez S, Palmer CGS, Papp JC, Parker NH, Renteria G, Signer RH, Sinsheimer JS, Wan J, Wang LK, Perry KW, Woods JD, Alvey J, Andrews A, Bale J, Bohnsack J, Botto L, Carey J, Pace L, Longo N, Marth G, Moretti P, Quinlan A, Velinder M, Viskochi D, Bayrak-Toydemir P, Mao R, Westerfield M, Bican A, Brokamp E, Duncan L, Hamid R, Kennedy J, Kozuira M, Newman JH, PhillipsIII JA, Rives L, Robertson AK, Solem E, Cogan JD, Cole FS, Hayes N, Kiley D, Sisco K, Wambach J, Wegner D, Baldridge D, Pak S, Schedl T, Shin J, Solnica-Krezel L, Sadjadi R, Elpeleg O, Lee CH, Bellen HJ, Edvardson S, Eichler F, Dunn TM. SPTSSA variants alter sphingolipid synthesis and cause a complex hereditary spastic paraplegia. Brain 2023; 146:1420-1435. [PMID: 36718090 PMCID: PMC10319774 DOI: 10.1093/brain/awac460] [Show More Authors] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are a diverse family of lipids with critical structural and signalling functions in the mammalian nervous system, where they are abundant in myelin membranes. Serine palmitoyltransferase, the enzyme that catalyses the rate-limiting reaction of sphingolipid synthesis, is composed of multiple subunits including an activating subunit, SPTSSA. Sphingolipids are both essential and cytotoxic and their synthesis must therefore be tightly regulated. Key to the homeostatic regulation are the ORMDL proteins that are bound to serine palmitoyltransferase and mediate feedback inhibition of enzymatic activity when sphingolipid levels become excessive. Exome sequencing identified potential disease-causing variants in SPTSSA in three children presenting with a complex form of hereditary spastic paraplegia. The effect of these variants on the catalytic activity and homeostatic regulation of serine palmitoyltransferase was investigated in human embryonic kidney cells, patient fibroblasts and Drosophila. Our results showed that two different pathogenic variants in SPTSSA caused a hereditary spastic paraplegia resulting in progressive motor disturbance with variable sensorineural hearing loss and language/cognitive dysfunction in three individuals. The variants in SPTSSA impaired the negative regulation of serine palmitoyltransferase by ORMDLs leading to excessive sphingolipid synthesis based on biochemical studies and in vivo studies in Drosophila. These findings support the pathogenicity of the SPTSSA variants and point to excessive sphingolipid synthesis due to impaired homeostatic regulation of serine palmitoyltransferase as responsible for defects in early brain development and function.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, BostonChildren's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hagar Mor Shaked
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Niranjanakumari Somashekarappa
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Marc Gotkine
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | - Paula Goldenberg
- Department of Pediatrics, Section on Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Queenie K G Tan
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian Wishart
- Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Heidi Cope
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Claudia Brito Pires
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hannah Stutzman
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah University Hospital, Mount Scopus, Jerusalem 91240, Israel
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children’s Research Hospital , Memphis, TN 38105 , USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX 77030 , USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital , Houston, TX 77030 , USA
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah University Hospital, Mount Scopus , Jerusalem 91240 , Israel
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences , Bethesda, MD 20814 , USA
| | | |
Collapse
|