1
|
Brzezicka E, Kozieradzka-Kiszkurno M. Haustorial processes during the female gametophyte formation in Rosularia pallida (Schott & Kotschy) Stapf (Crassulaceae). PLANT REPRODUCTION 2025; 38:11. [PMID: 40186787 DOI: 10.1007/s00497-025-00521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/09/2025] [Indexed: 04/07/2025]
Abstract
KEY MESSAGE Ultrastructural and cytochemical analyses of the megaspore, embryo sac, and synergid haustoria reveal their roles in nutrition, contributing to the successful development of the megagametophyte in R. pallida. In this paper, we present the first cytochemical and ultrastructural analysis of the megaspores, embryo sac, and synergid haustoria in Rosularia pallida (Schott & Kotschy) Stapf (Crassulaceae) are presented. The haustoria in the ovule of R. pallida primarily function to provide nutrition during megasporogenesis and megagametogenesis. Cytochemical staining reveals a significant increase in the accumulation of insoluble polysaccharides, lipids, and proteins within the megaspores and embryo sac. This increase occurs alongside the progressive degradation of nucellar cells and the growth of haustoria towards the integuments. The direction of haustorial growth within sporophyte tissues and the distribution of nutrients within the ovule complement each other, collectively contributing to efficient nutrition for the developing female gametophyte. Callose is present in the walls of both the megaspores and their haustoria. The functional megaspore (FM) haustorium is the only one that extends beyond the nucellus into the integuments during megasporogenesis. The disappearance of callose in the micropylar portion of the FM haustorium enables apoplasmic transport, particularly in this region. These findings suggest that the FM haustorium supports the development of a specific megaspore in the tetrad, indirectly influencing FM selection through nutrient provision. Furthermore, the removal of callose on the chalazal side of the tetrad likely facilitates the development of the embryo sac from the chalazal megaspore. Ultrastructural analyses of the megaspore, embryo sac, and synergid haustoria reveal the presence of transfer-wall ingrowths. No plasmodesmata were detected in the haustorial walls. Additionally, ultrastructural observations of the synergids indicate that their haustorium significantly elongates toward the micropyle and becomes metabolically active.
Collapse
Affiliation(s)
- Emilia Brzezicka
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Małgorzata Kozieradzka-Kiszkurno
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
2
|
Yu TY, Wang P, Lv Y, Wang B, Zhao MR, Dong XW. Auxin Orchestrates Germ Cell Specification in Arabidopsis. Int J Mol Sci 2025; 26:3257. [PMID: 40244090 PMCID: PMC11989617 DOI: 10.3390/ijms26073257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The initiation and specification of germline cells are crucial for plant reproduction and the continuity of species. In Arabidopsis thaliana, auxin plays a vital role in guiding the transition of somatic cells into germline fate, orchestrating the specification of both male archesporial cells and female megaspore mother cells. This process is regulated through interaction with the transcription factor Sporocyteless/Nozzle, which forms a feedback mechanism that modulates germ cell specialization. Auxin biosynthesis, polar transport, and signal transduction pathways collectively ensure the accurate determination of germ cell fate. Furthermore, the coordination of auxin signaling with epigenetic regulation and miRNA-mediated control fine-tunes the differentiation between germline and somatic cells. This review discusses the mechanisms underlying auxin-guided germ cell specification. It proposes future research directions, including studies on PIN-FORMED-mediated polar transport, the role of the YUCCA family in auxin biosynthesis, and the involvement of the Transport Inhibitors Response 1/Auxn Signaling F-Box-Auxin Response Factor (TIR1/AFB-ARF) signaling pathway in germ cell fate determination. These insights will enhance our understanding of plant reproductive biology and provide new strategies for crop breeding.
Collapse
Affiliation(s)
- Tian-Ying Yu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | | | | | | | | | - Xin-Wei Dong
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
3
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Ren X, Zhang X, Qi X, Zhang T, Wang H, Twell D, Gong Y, Fu Y, Wang B, Kong H, Xu B. The BNB-GLID module regulates germline fate determination in Marchantia polymorpha. THE PLANT CELL 2024; 36:3824-3837. [PMID: 39041486 PMCID: PMC11371191 DOI: 10.1093/plcell/koae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Germline fate determination is a critical event in sexual reproduction. Unlike animals, plants specify the germline by reprogramming somatic cells at the late stages of their development. However, the genetic basis of germline fate determination and how it evolved during the land plant evolution are still poorly understood. Here, we report that the plant homeodomain finger protein GERMLINE IDENTITY DETERMINANT (GLID) is a key regulator of the germline specification in liverwort, Marchantia polymorpha. Loss of the MpGLID function causes failure of germline initiation, leading to the absence of sperm and egg cells. Remarkably, the overexpression of MpGLID in M. polymorpha induces the ectopic formation of cells with male germline cell features exclusively in male thalli. We further show that MpBONOBO (BNB), with an evolutionarily conserved function, can induce the formation of male germ cell-like cells through the activation of MpGLID by directly binding to its promoter. The Arabidopsis (Arabidopsis thaliana) MpGLID ortholog, MALE STERILITY1 (AtMS1), fails to replace the germline specification function of MpGLID in M. polymorpha, demonstrating that a derived function of MpGLID orthologs has been restricted to tapetum development in flowering plants. Collectively, our findings suggest the presence of the BNB-GLID module in complex ancestral land plants that has been retained in bryophytes, but rewired in flowering plants for male germline fate determination.
Collapse
Affiliation(s)
- Xiaolong Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaotong Qi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijie Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Yu Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baichen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
5
|
Yu Y, Zhu R, Xu H, Enugutti B, Schneitz K, Wang X, Li J. Twin Embryos in Arabidopsis thaliana KATANIN 1 Mutants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1824. [PMID: 38999664 PMCID: PMC11244573 DOI: 10.3390/plants13131824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Regulation of microtubule dynamics is crucial during key developmental transitions such as gametogenesis, fertilization, embryogenesis, and seed formation, where cells undergo rapid changes in shape and function. In plants, katanin plays an essential role in microtubule dynamics. This study investigates two seed developmental mutants in Arabidopsis thaliana, named elk5-1D (erecta-like 5, ELK5) and loo1 (lollipop 1), which are characterized by round seeds, dwarfism, and fertility defects. Notably, elk5-1D exhibits a dominant inheritance pattern, whereas loo1 is recessive. Through positional cloning, we identified both mutants as new alleles of the KATANIN 1 (KTN1) gene, which encodes a microtubule-severing enzyme critical for cell division and morphology. Mutations in KTN1 disrupt embryo cell division and lead to the emergence of a twin embryo phenotype. Our findings underscore the essential role of KTN1 in fertility and early embryonic development, potentially influencing the fate of reproductive cells.
Collapse
Affiliation(s)
- Youfeng Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rui Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Xu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Balaji Enugutti
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Xuanpeng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jing Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Liu Q, Han D, Cheng D, Chen J, Tian S, Wang J, Liu M, Yuan L. AtRKD5 inhibits the parthenogenic potential mediated by AtBBM. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1517-1531. [PMID: 38818961 DOI: 10.1111/jipb.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Parthenogenesis, the development of unfertilized egg cells into embryos, is a key component of apomixis. AtBBM (BABY BOOM), a crucial regulator of embryogenesis in Arabidopsis, possesses the capacity to shift nutritional growth toward reproductive growth. However, the mechanisms underlying AtBBM-induced parthenogenesis remain largely unexplored in dicot plants. Our findings revealed that in order to uphold the order of sexual reproduction, the embryo-specific promoter activity of AtBBM as well as repressors that inhibit its expression in egg cells combine to limiting its ability to induce parthenogenesis. Notably, AtRKD5, a RWP-RK domain-containing (RKD) transcription factor, binds to the 3' end of AtBBM and is identified as one of the inhibitory factors for AtBBM expression in the egg cell. In the atrkd5 mutant, we successfully achieved enhanced ectopic expression of AtBBM in egg cells, resulting in the generation of haploid offspring via parthenogenesis at a rate of 0.28%. Furthermore, by introducing chimeric Arabidopsis and rice BBM genes into the egg cell, we achieved a significant 4.6-fold enhancement in haploid induction through the atdmp8/9 mutant. These findings lay a strong foundation for further exploration of the BBM-mediated parthenogenesis mechanism and the improvement of haploid breeding efficiency mediated by the dmp8/9 mutant.
Collapse
Affiliation(s)
- Qiyan Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Dongfen Han
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Denghu Cheng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jinfan Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Shujuan Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jiafa Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Man Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
7
|
Song Y, Chang Z, Feng Y, Wang T, Liu L. Whole-genome landscape of histone H3K4me3 modification during sperm cell lineage development in tomato. BMC PLANT BIOLOGY 2024; 24:610. [PMID: 38926660 PMCID: PMC11210149 DOI: 10.1186/s12870-024-05318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND During male gametogenesis of flowering plants, sperm cell lineage (microspores, generative cells, and sperm cells) differentiated from somatic cells and acquired different cell fates. Trimethylation of histone H3 on lysine 4 (H3K4me3) epigenetically contributes to this process, however, it remained unclear how H3K4me3 influences the gene expression in each cell type. Here, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) to obtain a genome-wide landscape of H3K4me3 during sperm cell lineage development in tomato (Solanum lycopersicum). RESULTS We show that H3K4me3 peaks were mainly enriched in the promoter regions, and intergenic H3K4me3 peaks expanded as sperm cell lineage differentiated from somatic cells. H3K4me3 was generally positively associated with transcript abundance and served as a better indicator of gene expression in somatic and vegetative cells, compared to sperm cell lineage. H3K4me3 was mutually exclusive with DNA methylation at 3' proximal of the transcription start sites. The microspore maintained the H3K4me3 features of somatic cells, while generative cells and sperm cells shared an almost identical H3K4me3 pattern which differed from that of the vegetative cell. After microspore division, significant loss of H3K4me3 in genes related to brassinosteroid and cytokinin signaling was observed in generative cells and vegetative cells, respectively. CONCLUSIONS Our results suggest the asymmetric division of the microspore significantly reshapes the genome-wide distribution of H3K4me3. Selective loss of H3K4me3 in genes related to hormone signaling may contribute to functional differentiation of sperm cell lineage. This work provides new resource data for the epigenetic studies of gametogenesis in plants.
Collapse
Affiliation(s)
- Yunyun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhikai Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
8
|
Wang X, Liu X, Song K, Du L. An insight into the roles of ubiquitin-specific proteases in plants: development and growth, morphogenesis, and stress response. FRONTIERS IN PLANT SCIENCE 2024; 15:1396634. [PMID: 38993940 PMCID: PMC11236618 DOI: 10.3389/fpls.2024.1396634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
Ubiquitination is a highly conserved and dynamic post-translational modification in which protein substrates are modified by ubiquitin to influence their activity, localization, or stability. Deubiquitination enzymes (DUBs) counter ubiquitin signaling by removing ubiquitin from the substrates. Ubiquitin-specific proteases (UBPs), the largest subfamily of DUBs, are conserved in plants, serving diverse functions across various cellular processes, although members within the same group often exhibit functional redundancy. Here, we briefly review recent advances in understanding the biological roles of UBPs, particularly the molecular mechanism by which UBPs regulate plant development and growth, morphogenesis, and stress response, which sheds light on the mechanistic roles of deubiquitination in plants.
Collapse
Affiliation(s)
- Xiuwen Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kaixuan Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Tovar-Aguilar A, Grimanelli D, Acosta-García G, Vielle-Calzada JP, Badillo-Corona JA, Durán-Figueroa N. The miRNA822 loaded by ARGONAUTE9 modulates the monosporic female gametogenesis in Arabidopsis thaliana. PLANT REPRODUCTION 2024; 37:243-258. [PMID: 38019279 DOI: 10.1007/s00497-023-00487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
KEY MESSAGE The miR822 together with of AGO9 protein, modulates monosporic development in Arabidopsis thaliana through the regulation of target genes encoding Cysteine/Histidine-Rich C1 domain proteins, revealing a new role of miRNAs in the control of megaspore formation in flowering plants. In the ovule of flowering plants, the establishment of the haploid generation occurs when a somatic cell differentiates into a megaspore mother cell (MMC) and initiates meiosis. As most flowering plants, Arabidopsis thaliana (Arabidopsis) undergoes a monosporic type of gametogenesis as three meiotically derived cells degenerate, and a single one-the functional megaspore (FM), divides mitotically to form the female gametophyte. The genetic basis and molecular mechanisms that control monosporic gametophyte development remain largely unknown. Here, we show that Arabidopsis plants carrying loss-of-function mutations in the miR822, give rise to extranumerary surviving megaspores that acquire a FM identity and divides without giving rise to differentiated female gametophytes. The overexpression of three miR822 putative target genes encoding cysteine/histidine-rich C1 (DC1) domain proteins, At5g02350, At5g02330 and At2g13900 results in defects equivalent to those found in mutant mir822 plants. The three miR822 targets genes are overexpressed in ago9 mutant ovules, suggesting that miR822 acts through an AGO9-dependent pathway to negatively regulate DC1 domain proteins and restricts the survival of meiotically derived cells to a single megaspore. Our results identify a mechanism mediated by the AGO9-miR822 complex that modulates monosporic female gametogenesis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Andrea Tovar-Aguilar
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Mexico City, Mexico
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement, Plant Genome and Development Laboratory, UMR5096, 34394, Montpellier, France
| | - Gerardo Acosta-García
- Departamento de Bioquímica, Instituto Tecnológico de Celaya, Celaya, Guanajuato, Mexico
| | - Jean-Philippe Vielle-Calzada
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | | | - Noé Durán-Figueroa
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Mexico City, Mexico.
| |
Collapse
|
10
|
Özpolat BD. Annelids as models of germ cell and gonad regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:126-143. [PMID: 38078561 PMCID: PMC11060932 DOI: 10.1002/jez.b.23233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
Germ cells (reproductive cells and their progenitors) give rise to the next generation in sexually reproducing organisms. The loss or removal of germ cells often leads to sterility in established research organisms such as the fruit fly, nematodes, frog, and mouse. The failure to regenerate germ cells in these organisms reinforced the dogma of germline-soma barrier in which germ cells are set-aside during embryogenesis and cannot be replaced by somatic cells. However, in stark contrast, many animals including segmented worms (annelids), hydrozoans, planaria, sea stars, sea urchins, and tunicates can regenerate germ cells. Here I review germ cell and gonad regeneration in annelids, a rich history of research that dates back to the early 20th century in this highly regenerative group. Examples include annelids from across the annelid phylogeny, across developmental stages, and reproductive strategies. Adult annelids regenerate germ cells as a part of regeneration, grafting, and asexual reproduction. Annelids can also recover germ cells after ablation of germ cell progenitors in the embryos. I present a framework to investigate cellular sources of germ cell regeneration in annelids, and discuss the literature that supports different possibilities within this framework, where germ-soma separation may or may not be preserved. With contemporary genetic-lineage tracing and bioinformatics tools, and several genetically enabled annelid models, we are at the brink of answering the big questions that puzzled many for over more than a century.
Collapse
Affiliation(s)
- B Duygu Özpolat
- Department of Biology, Washington University in St. Louis, St. Louis, United States, United States
| |
Collapse
|
11
|
Kajiwara T, Miyazaki M, Yamaoka S, Yoshitake Y, Yasui Y, Nishihama R, Kohchi T. Transcription of the Antisense Long Non-Coding RNA, SUPPRESSOR OF FEMINIZATION, Represses Expression of the Female-Promoting Gene FEMALE GAMETOPHYTE MYB in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:338-349. [PMID: 38174428 PMCID: PMC11020262 DOI: 10.1093/pcp/pcad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Sexual differentiation is a fundamental process in the life cycles of land plants, ensuring successful sexual reproduction and thereby contributing to species diversity and survival. In the dioicous liverwort Marchantia polymorpha, this process is governed by an autosomal sex-differentiation locus comprising FEMALE GAMETOPHYTE MYB (FGMYB), a female-promoting gene, and SUPPRESSOR OF FEMINIZATION (SUF), an antisense strand-encoded long non-coding RNA (lncRNA). SUF is specifically transcribed in male plants and suppresses the expression of FGMYB, leading to male differentiation. However, the molecular mechanisms underlying this process remain elusive. Here, we show that SUF acts through its transcription to suppress FGMYB expression. Transgene complementation analysis using CRISPR/Cas9D10A-based large-deletion mutants identified a genomic region sufficient for the sex differentiation switch function in the FGMYB-SUF locus. Inserting a transcriptional terminator sequence into the SUF-transcribed region resulted in the loss of SUF function and allowed expression of FGMYB in genetically male plants, leading to conversion of the sex phenotype from male to female. Partial deletions of SUF had no obvious impact on its function. Replacement of the FGMYB sequence with that of an unrelated gene did not affect the ability of SUF transcription to suppress sense-strand expression. Taken together, our findings suggest that the process of SUF transcription, rather than the resulting transcripts, is required for controlling sex differentiation in M. polymorpha.
Collapse
Affiliation(s)
- Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Motoki Miyazaki
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yoshihiro Yoshitake
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yukiko Yasui
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
12
|
Binmöller L, Volkert C, Kiefer C, Zühl L, Slawinska MW, Loreth A, Nauerth BH, Ibberson D, Martinez R, Mandakova TM, Zipper R, Schmidt A. Differential expression and evolutionary diversification of RNA helicases in Boechera sexual and apomictic reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2451-2469. [PMID: 38263359 DOI: 10.1093/jxb/erae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
In higher plants, sexual reproduction is characterized by meiosis of the first cells of the germlines, and double fertilization of the egg and central cell after gametogenesis. In contrast, in apomicts of the genus Boechera, meiosis is omitted or altered and only the central cell requires fertilization, while the embryo forms parthenogenetically from the egg cell. To deepen the understanding of the transcriptional basis underlying these differences, we applied RNA-seq to compare expression in reproductive tissues of different Boechera accessions. This confirmed previous evidence of an enrichment of RNA helicases in plant germlines. Furthermore, few RNA helicases were differentially expressed in female reproductive ovule tissues harboring mature gametophytes from apomictic and sexual accessions. For some of these genes, we further found evidence for a complex recent evolutionary history. This included a homolog of Arabidopsis thaliana FASCIATED STEM4 (FAS4). In contrast to AtFAS4, which is a single-copy gene, FAS4 is represented by three homologs in Boechera, suggesting a potential for subfunctionalization to modulate reproductive development. To gain first insights into functional roles of FAS4, we studied Arabidopsis lines carrying mutant alleles. This identified the crucial importance of AtFAS4 for reproduction, as we observed developmental defects and arrest during male and female gametogenesis.
Collapse
Affiliation(s)
- Laura Binmöller
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Christopher Volkert
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Christiane Kiefer
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Luise Zühl
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Magdalena W Slawinska
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Anna Loreth
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Berit H Nauerth
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany
| | - Rafael Martinez
- Centre for Organismal Studies Heidelberg, Department of Developmental Biology, Heidelberg University, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany
| | - Terezie M Mandakova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Reinhard Zipper
- Institute of Biology, Plant Evolutionary Biology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany
| | - Anja Schmidt
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
- Institute of Biology, Plant Evolutionary Biology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany
| |
Collapse
|
13
|
Yoro E, Sakakibara K. Sexual reproduction: Is the genetic pathway for female germ cell specification conserved in land plants? Curr Biol 2024; 34:R241-R244. [PMID: 38531316 DOI: 10.1016/j.cub.2024.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Land plants share several core factors responsible for female gametophyte development, despite their differing structures and developmental programs. New work providing molecular dissection of reproductive phases in non-angiosperm plants is a powerful tool for elucidating the underlying genetic network.
Collapse
Affiliation(s)
- Emiko Yoro
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan.
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan
| |
Collapse
|
14
|
Long X, Yang W, Lv Y, Zhong X, Chen L, Li Q, Lv Z, Li Y, Cai Y, Yang H. The Histone Variant H3.3 Is Required for Plant Growth and Fertility in Arabidopsis. Int J Mol Sci 2024; 25:2549. [PMID: 38473796 DOI: 10.3390/ijms25052549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Histones are the core components of the eukaryote chromosome, and have been implicated in transcriptional gene regulation. There are three major isoforms of histone H3 in Arabidopsis. Studies have shown that the H3.3 variant is pivotal in modulating nucleosome structure and gene transcription. However, the function of H3.3 during development remains to be further investigated in plants. In this study, we disrupted all three H3.3 genes in Arabidopsis. Two triple mutants, h3.3cr-4 and h3.3cr-5, were created by the CRISPR/Cas9 system. The mutant plants displayed smaller rosettes and decreased fertility. The stunted growth of h3.3cr-4 may result from reduced expression of cell cycle regulators. The shorter stamen filaments, but not the fertile ability of the gametophytes, resulted in reduced fertility of h3.3cr-4. The transcriptome analysis suggested that the reduced filament elongation of h3.3cr-4 was probably caused by the ectopic expression of several JASMONATE-ZIM DOMAIN (JAZ) genes, which are the key repressors of the signaling pathway of the phytohormone jasmonic acid (JA). These observations suggest that the histone variant H3.3 promotes plant growth, including rosette growth and filament elongation.
Collapse
Affiliation(s)
- Xiaogang Long
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wandong Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanfang Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoming Zhong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lin Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qingzhu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaopeng Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yajun Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Liu J, Ke M, Sun Y, Niu S, Zhang W, Li Y. Epigenetic regulation and epigenetic memory resetting during plant rejuvenation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:733-745. [PMID: 37930766 DOI: 10.1093/jxb/erad435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Reversal of plant developmental status from the mature to the juvenile phase, thus leading to the restoration of the developmental potential, is referred to as plant rejuvenation. It involves multilayer regulation, including resetting gene expression patterns, chromatin remodeling, and histone modifications, eventually resulting in the restoration of juvenile characteristics. Although plants can be successfully rejuvenated using some forestry practices to restore juvenile morphology, physiology, and reproductive capabilities, studies on the epigenetic mechanisms underlying this process are in the nascent stage. This review provides an overview of the plant rejuvenation process and discusses the key epigenetic mechanisms involved in DNA methylation, histone modification, and chromatin remodeling in the process of rejuvenation, as well as the roles of small RNAs in this process. Additionally, we present new inquiries regarding the epigenetic regulation of plant rejuvenation, aiming to advance our understanding of rejuvenation in sexually and asexually propagated plants. Overall, we highlight the importance of epigenetic mechanisms in the regulation of plant rejuvenation, providing valuable insights into the complexity of this process.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Meng Ke
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
16
|
Hoffmann G, Incarbone M. A resilient bunch: stem cell antiviral immunity in plants. THE NEW PHYTOLOGIST 2024; 241:1415-1420. [PMID: 38058221 DOI: 10.1111/nph.19456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
Stem cells are vital for plant development and reproduction. The stem cells within shoot apical meristems are known to possess exceptionally effective antiviral defenses against pathogenic viruses which preclude their infection, yet how this is achieved remains poorly understood and scarcely investigated. In this Tansley Insight, we connect very recent experimental results with previous work to summarize the known molecular mechanisms determining stem cell antiviral immunity. More broadly, we attempt to define the viral features triggering immunity and the global consequences of virus infection in these essential cells. This brief article will highlight how these phenomena are fascinating, complex and often crucial for virus-host interactions, while emphasizing the potential for discovery in their investigation.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Max Planck Institute of Molecular Plant Physiology (MPIMP), 1 Am Mühlenberg Strasse, 14476, Potsdam, Germany
| | - Marco Incarbone
- Max Planck Institute of Molecular Plant Physiology (MPIMP), 1 Am Mühlenberg Strasse, 14476, Potsdam, Germany
| |
Collapse
|
17
|
Siena LA, Michaud C, Selles B, Vega JM, Pessino SC, Ingouff M, Ortiz JPA, Leblanc O. TRIMETHYLGUANOSINE SYNTHASE1 mutations decanalize female germline development in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:597-612. [PMID: 37548040 DOI: 10.1111/nph.19179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Here, we report the characterization of a plant RNA methyltransferase, orthologous to yeast trimethylguanosine synthase1 (Tgs1p) and whose downregulation was associated with apomixis in Paspalum grasses. Using phylogenetic analyses and yeast complementation, we determined that land plant genomes all encode a conserved, specific TGS1 protein. Next, we studied the role of TGS1 in female reproduction using reporter lines and loss-of-function mutants in Arabidopsis thaliana. pAtTGS1:AtTGS1 reporters showed a dynamic expression pattern. They were highly active in the placenta and ovule primordia at emergence but, subsequently, showed weak signals in the nucellus. Although expressed throughout gametophyte development, activity became restricted to the female gamete and was also detected after fertilization during embryogenesis. TGS1 depletion altered the specification of the precursor cells that give rise to the female gametophytic generation and to the sporophyte, resulting in the formation of a functional aposporous-like lineage. Our results indicate that TGS1 participates in the mechanisms restricting cell fate acquisition to a single cell at critical transitions throughout the female reproductive lineage and, thus, expand our current knowledge of the mechanisms governing female reproductive fate in plants.
Collapse
Affiliation(s)
- Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | | | - Benjamin Selles
- DIADE, Univ Montpellier, IRD, CIRAD, 34394, Montpellier, France
| | - Juan Manuel Vega
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Mathieu Ingouff
- DIADE, Univ Montpellier, IRD, CIRAD, 34394, Montpellier, France
| | - Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Olivier Leblanc
- DIADE, Univ Montpellier, IRD, CIRAD, 34394, Montpellier, France
| |
Collapse
|
18
|
Finseth F. Female meiotic drive in plants: mechanisms and dynamics. Curr Opin Genet Dev 2023; 82:102101. [PMID: 37633231 DOI: 10.1016/j.gde.2023.102101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 08/28/2023]
Abstract
Female meiosis is fundamentally asymmetric, creating an arena for genetic elements to compete for inclusion in the egg to maximize their transmission. Centromeres, as mediators of chromosomal segregation, are prime candidates to evolve via 'female meiotic drive'. According to the centromere-drive model, the asymmetry of female meiosis ignites a coevolutionary arms race between selfish centromeres and kinetochore proteins, the by-product of which is accelerated sequence divergence. Here, I describe and compare plant models that have been instrumental in uncovering the mechanistic basis of female meiotic drive (maize) and the dynamics of active selfish centromeres in nature (monkeyflowers). Then, I speculate on the mechanistic basis of drive in monkeyflowers, discuss how centromere strength influences chromosomal segregation in plants, and describe new insights into the evolution of plant centromeres.
Collapse
Affiliation(s)
- Findley Finseth
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA.
| |
Collapse
|
19
|
Zhai X, Bai J, Xu W, Yang X, Jia Z, Xia W, Wu X, Liang Q, Li B, Jia N. The molecular chaperone mtHSC70-1 interacts with DjA30 to regulate female gametophyte development and fertility in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1677-1698. [PMID: 37294615 DOI: 10.1111/tpj.16347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Arabidopsis mitochondria-targeted heat shock protein 70 (mtHSC70-1) plays important roles in the establishment of cytochrome c oxidase-dependent respiration and redox homeostasis during the vegetative growth of plants. Here, we report that knocking out the mtHSC70-1 gene led to a decrease in plant fertility; the fertility defect of the mutant was completely rescued by introducing the mtHSC70-1 gene. mtHSC70-1 mutants also showed defects in female gametophyte (FG) development, including delayed mitosis, abnormal nuclear position, and ectopic gene expression in the embryo sacs. In addition, we found that an Arabidopsis mitochondrial J-protein gene (DjA30) mutant, j30+/- , had defects in FG development and fertility similar to those of mtHSC70-1 mutant. mtHSC70-1 and DjA30 had similar expression patterns in FGs and interacted in vivo, suggesting that these two proteins might cooperate during female gametogenesis. Further, respiratory chain complex IV activity in mtHSC70-1 and DjA30 mutant embryo sacs was markedly downregulated; this led to the accumulation of mitochondrial reactive oxygen species (ROS). Scavenging excess ROS by introducing Mn-superoxide dismutase 1 or catalase 1 gene into the mtHSC70-1 mutant rescued FG development and fertility. Altogether, our results suggest that mtHSC70-1 and DjA30 are essential for the maintenance of ROS homeostasis in the embryo sacs and provide direct evidence for the roles of ROS homeostasis in embryo sac maturation and nuclear patterning, which might determine the fate of gametic and accessory cells.
Collapse
Affiliation(s)
- Xiaoting Zhai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, 075000, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenyan Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiujuan Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zichao Jia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenxuan Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqing Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qi Liang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ning Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
20
|
Cui Y, Hisanaga T, Kajiwara T, Yamaoka S, Kohchi T, Goh T, Nakajima K. Three-Dimensional Morphological Analysis Revealed the Cell Patterning Bases for the Sexual Dimorphism Development in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2023; 64:866-879. [PMID: 37225421 DOI: 10.1093/pcp/pcad048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
In land plants, sexual dimorphism can develop in both diploid sporophytes and haploid gametophytes. While developmental processes of sexual dimorphism have been extensively studied in the sporophytic reproductive organs of model flowering plants such as stamens and carpels of Arabidopsis thaliana, those occurring in gametophyte generation are less well characterized due to the lack of amenable model systems. In this study, we performed three-dimensional morphological analyses of gametophytic sexual branch differentiation in the liverwort Marchantia polymorpha, using high-depth confocal imaging and a computational cell segmentation technique. Our analysis revealed that the specification of germline precursors initiates in a very early stage of sexual branch development, where incipient branch primordia are barely recognizable in the apical notch region. Moreover, spatial distribution patterns of germline precursors differ between males and females from the initial stage of primordium development in a manner dependent on the master sexual differentiation regulator MpFGMYB. At later stages, distribution patterns of germline precursors predict the sex-specific gametangia arrangement and receptacle morphologies seen in mature sexual branches. Taken together, our data suggest a tightly coupled progression of germline segregation and sexual dimorphism development in M. polymorpha.
Collapse
Affiliation(s)
- Yihui Cui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Tetsuya Hisanaga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502 Japan
| | - Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| |
Collapse
|
21
|
Ouedraogo I, Lartaud M, Baroux C, Mosca G, Delgado L, Leblanc O, Verdeil JL, Conéjéro G, Autran D. 3D cellular morphometrics of ovule primordium development in Zea mays reveal differential division and growth dynamics specifying megaspore mother cell singleness. FRONTIERS IN PLANT SCIENCE 2023; 14:1174171. [PMID: 37251753 PMCID: PMC10213557 DOI: 10.3389/fpls.2023.1174171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023]
Abstract
Introduction Differentiation of spore mother cells marks the somatic-to-reproductive transition in higher plants. Spore mother cells are critical for fitness because they differentiate into gametes, leading to fertilization and seed formation. The female spore mother cell is called the megaspore mother cell (MMC) and is specified in the ovule primordium. The number of MMCs varies by species and genetic background, but in most cases, only a single mature MMC enters meiosis to form the embryo sac. Multiple candidate MMC precursor cells have been identified in both rice and Arabidopsis, so variability in MMC number is likely due to conserved early morphogenetic events. In Arabidopsis, the restriction of a single MMC per ovule, or MMC singleness, is determined by ovule geometry. To look for potential conservation of MMC ontogeny and specification mechanisms, we undertook a morphogenetic description of ovule primordium growth at cellular resolution in the model crop maize. Methods We generated a collection of 48 three-dimensional (3D) ovule primordium images for five developmental stages, annotated for 11 cell types. Quantitative analysis of ovule and cell morphological descriptors allowed the reconstruction of a plausible developmental trajectory of the MMC and its neighbors. Results The MMC is specified within a niche of enlarged, homogenous L2 cells, forming a pool of candidate archesporial (MMC progenitor) cells. A prevalent periclinal division of the uppermost central archesporial cell formed the apical MMC and the underlying cell, a presumptive stack cell. The MMC stopped dividing and expanded, acquiring an anisotropic, trapezoidal shape. By contrast, periclinal divisions continued in L2 neighbor cells, resulting in a single central MMC. Discussion We propose a model where anisotropic ovule growth in maize drives L2 divisions and MMC elongation, coupling ovule geometry with MMC fate.
Collapse
Affiliation(s)
- Inès Ouedraogo
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Marc Lartaud
- AGAP, University of Montpellier, CIRAD, INRAE, Institut SupAgro, Montpellier, France
| | - Célia Baroux
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Gabriella Mosca
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | - Oliver Leblanc
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Jean-Luc Verdeil
- AGAP, University of Montpellier, CIRAD, INRAE, Institut SupAgro, Montpellier, France
| | - Geneviève Conéjéro
- IPSIM, University of Montpellier, CNRS, INRAE, Institut SupAgro, Montpellier, France
| | - Daphné Autran
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| |
Collapse
|
22
|
Nishio H, Kudoh H. Distinct responses to autumn and spring temperatures by the key flowering-time regulator FLOWERING LOCUS C. Curr Opin Genet Dev 2023; 78:102016. [PMID: 36549195 DOI: 10.1016/j.gde.2022.102016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Despite the similarity in temperature regimes between late autumn and early spring, plants exhibit distinct developmental responses that result in distinct morphologies, that is, overwintering and reproductive forms. In Arabidopsis, the control of autumn-spring distinction involves the transcriptional regulation of the floral repressor FLOWERING LOCUS C (FLC). The memory of winter cold is registered as epigenetic silencing of FLC. Recent studies on A. thaliana FLC revealed detailed and additional mechanisms of silencing in response to autumn and winter cold. Studies on perennial Arabidopsis FLC revealed that its expression responds to spring warmth and is robustly upregulated, ignoring cold. These new studies provide mechanistic insights into the distinct regulation of FLC under autumn and spring temperature regimes.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan; Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan.
| |
Collapse
|
23
|
He S, Feng X. DNA methylation dynamics during germline development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2240-2251. [PMID: 36478632 PMCID: PMC10108260 DOI: 10.1111/jipb.13422] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
DNA methylation plays essential homeostatic functions in eukaryotic genomes. In animals, DNA methylation is also developmentally regulated and, in turn, regulates development. In the past two decades, huge research effort has endorsed the understanding that DNA methylation plays a similar role in plant development, especially during sexual reproduction. The power of whole-genome sequencing and cell isolation techniques, as well as bioinformatics tools, have enabled recent studies to reveal dynamic changes in DNA methylation during germline development. Furthermore, the combination of these technological advances with genetics, developmental biology and cell biology tools has revealed functional methylation reprogramming events that control gene and transposon activities in flowering plant germlines. In this review, we discuss the major advances in our knowledge of DNA methylation dynamics during male and female germline development in flowering plants.
Collapse
Affiliation(s)
- Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Xiaoqi Feng
- John Innes Centre, Colney LaneNorwichNR4 7UHUK
| |
Collapse
|
24
|
Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis. Nat Commun 2022; 13:6960. [PMID: 36379956 PMCID: PMC9666636 DOI: 10.1038/s41467-022-34723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Germline determination is essential for species survival and evolution in multicellular organisms. In most flowering plants, formation of the female germline is initiated with specification of one megaspore mother cell (MMC) in each ovule; however, the molecular mechanism underlying this key event remains unclear. Here we report that spatially restricted auxin signaling promotes MMC fate in Arabidopsis. Our results show that the microRNA160 (miR160) targeted gene ARF17 (AUXIN RESPONSE FACTOR17) is required for promoting MMC specification by genetically interacting with the SPL/NZZ (SPOROCYTELESS/NOZZLE) gene. Alterations of auxin signaling cause formation of supernumerary MMCs in an ARF17- and SPL/NZZ-dependent manner. Furthermore, miR160 and ARF17 are indispensable for attaining a normal auxin maximum at the ovule apex via modulating the expression domain of PIN1 (PIN-FORMED1) auxin transporter. Our findings elucidate the mechanism by which auxin signaling promotes the acquisition of female germline cell fate in plants.
Collapse
|
25
|
Janas AB, Marciniuk J, Szeląg Z, Musiał K. New facts about callose events in the young ovules of some sexual and apomictic species of the Asteraceae family. PROTOPLASMA 2022; 259:1553-1565. [PMID: 35304670 DOI: 10.1007/s00709-022-01755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Callose (β-1,3-glucan) is one of the cell wall polymers that plays an important role in many biological processes in plants, including reproductive development. In angiosperms, timely deposition and degradation of callose during sporogenesis accompanies the transition of cells from somatic to generative identity. However, knowledge on the regulation of callose biosynthesis at specific sites of the megasporocyte wall remains limited and the data on its distribution are not conclusive. Establishing the callose deposition pattern in a large number of species can contribute to full understanding of its function in reproductive development. Previous studies focused on callose events in sexual species and only a few concerned apomicts. The main goal of our research was to establish and compare the pattern of callose deposition during early sexual and diplosporous processes in the ovules of some Hieracium, Pilosella and Taraxacum (Asteraceae) species; aniline blue staining technique was used for this purpose. Our findings indicate that callose deposition accompanies both meiotic and diplosporous development of the megaspore mother cell. This suggests that it has similar regulatory functions in intercellular communication regardless of the mode of reproduction. Interestingly, callose deposition followed a different pattern in the studied sexual and diplosporous species compared to most angiosperms as it usually began at the micropylar pole of the megasporocyte. Here, it was only in sexually reproducing H. transylvanicum that callose first appeared at the chalazal pole of the megasporocyte. The present paper additionally discusses the occurrence of aposporous initial cells with callose-rich walls in the ovules of diploid species.
Collapse
Affiliation(s)
- Agnieszka B Janas
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland.
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Cracow, Poland.
| | - Jolanta Marciniuk
- Faculty of Exact and Natural Science, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110, Siedlce, Poland
| | - Zbigniew Szeląg
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Cracow, Poland
| | - Krystyna Musiał
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland
| |
Collapse
|
26
|
Nguyen V, Gutzat R. Epigenetic regulation in the shoot apical meristem. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102267. [PMID: 35985107 DOI: 10.1016/j.pbi.2022.102267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic mechanisms form the basis of cellular memory, developmental decisions, and the cellular immune system that defends against transposons and viruses. Organs develop from the shoot apical meristem (SAM) to shape the plant's areal phenotype, and stem cells in the SAM serve as a functional germline. While many details on the regulation of stem cell pool size, organ initiation, and patterning at the meristem periphery are known, we know surprisingly little about the molecular characteristics of SAM cells, including their epigenome and how it changes during development. Here, we summarize information on epigenetic regulation of selected genes necessary for stem cell maintenance. As recent evidence suggests that SAM stem cells might be a hotspot of transposon activation, we discuss this aspect of epigenetic control in the meristem and speculate on mechanisms that maintain the flexibility of SAM stem cells in response to developmental or environmental cues.
Collapse
Affiliation(s)
- Vu Nguyen
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, 1030, Austria.
| |
Collapse
|
27
|
Siena LA, Azzaro CA, Podio M, Stein J, Leblanc O, Pessino SC, Ortiz JPA. The Auxin-Response Repressor IAA30 Is Down-Regulated in Reproductive Tissues of Apomictic Paspalum notatum. PLANTS 2022; 11:plants11111472. [PMID: 35684245 PMCID: PMC9182604 DOI: 10.3390/plants11111472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
The capacity for apomixis in Paspalum notatum is controlled by a single-dominant genomic region, which shows strong synteny to a portion of rice chromosome 12 long arm. The locus LOC_Os12g40890, encoding the Auxin/Indole-3-Acetic Acid (Aux/IAA) family member OsIAA30, is located in this rice genomic segment. The objectives of this work were to identify transcripts coding for Aux/IAA proteins expressed in reproductive tissues of P. notatum, detect the OsIAA30 putative ortholog and analyze its temporal and spatial expression pattern in reproductive organs of sexual and apomictic plants. Thirty-three transcripts coding for AUX/IAA proteins were identified. Predicted protein alignment and phylogenetic analysis detected a highly similar sequence to OsIAA30 (named as PnIAA30) present in both sexual and apomictic samples. The expression assays of PnIAA30 showed a significant down-regulation in apomictic spikelets compared to sexual ones at the stages of anthesis and post-anthesis, representation levels negatively correlated with apospory expressivity and different localizations in sexual and apomictic ovules. Several PnIAA30 predicted interactors also appeared differentially regulated in the sexual and apomictic floral transcriptomes. Our results showed that an auxin-response repressor similar to OsIAA30 is down-regulated in apomictic spikelets of P. notatum and suggests a contrasting regulation of auxin signaling during sexual and asexual seed formation.
Collapse
Affiliation(s)
- Lorena Adelina Siena
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Celeste Antonela Azzaro
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Maricel Podio
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Juliana Stein
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Olivier Leblanc
- DIADE, Université de Montpellier, IRD, CIRAD, 34394 Montpellier, France;
| | - Silvina Claudia Pessino
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Juan Pablo Amelio Ortiz
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
- Correspondence: ; Tel.: +54-341-4970080/85 (ext. 1180)
| |
Collapse
|
28
|
Lora J, Garcia-Lor A, Aleza P. Pollen Development and Viability in Diploid and Doubled Diploid Citrus Species. FRONTIERS IN PLANT SCIENCE 2022; 13:862813. [PMID: 35557738 PMCID: PMC9090487 DOI: 10.3389/fpls.2022.862813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 06/15/2023]
Abstract
Seedlessness is one of the most important agronomic traits in mandarins on the fresh fruit market. Creation of triploid plants is an important breeding strategy for development of new commercial varieties of seedless citrus. To this end, one strategy is to perform sexual hybridizations, with tetraploid genotypes as male parents. However, while seed development has been widely studied in citrus, knowledge of key steps such as microsporogenesis and microgametogenesis, is scarce, especially in polyploids. Therefore, we performed a study on the effect of ploidy level on pollen development by including diploid and tetraploid (double diploid) genotypes with different degrees of pollen performance. A comprehensive study on the pollen ontogeny of diploid and doubled diploid "Sanguinelli" blood orange and "Clemenules" clementine was performed, with focus on pollen grain germination in vitro and in planta, morphology of mature pollen grains by scanning electron microscopy (SEM), cytochemical characterization of carbohydrates by periodic acid-Shiff staining, and specific cell wall components revealed by immunolocalization. During microsporogenesis, the main difference between diploid and doubled diploid genotypes was cell area, which was larger in doubled diploid genotypes. However, after increase in size and vacuolization of microspores, but before mitosis I, doubled diploid "Clemenules" clementine showed drastic differences in shape, cell area, and starch hydrolysis, which resulted in shrinkage of pollen grains. The loss of fertility in doubled diploid "Clemenules" clementine is mainly due to lack of carbohydrate accumulation in pollen during microgametogenesis, especially starch content, which led to pollen grain abortion. All these changes make the pollen of this genotype unviable and very difficult to use as a male parent in sexual hybridization with the objective of recovering large progenies of triploid hybrids.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM la Mayora-UMA-CSIC), Málaga, Spain
| | - Andres Garcia-Lor
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| |
Collapse
|
29
|
Cui Y, Lu X, Gou X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. PLANT COMMUNICATIONS 2022; 3:100273. [PMID: 35059634 PMCID: PMC8760141 DOI: 10.1016/j.xplc.2021.100273] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 05/30/2023]
Abstract
Reproduction is a crucial process in the life span of flowering plants, and directly affects human basic requirements in agriculture, such as grain yield and quality. Typical receptor-like protein kinases (RLKs) are a large family of membrane proteins sensing extracellular signals to regulate plant growth, development, and stress responses. In Arabidopsis thaliana and other plant species, RLK-mediated signaling pathways play essential roles in regulating the reproductive process by sensing different ligand signals. Molecular understanding of the reproductive process is vital from the perspective of controlling male and female fertility. Here, we summarize the roles of RLKs during plant reproduction at the genetic and molecular levels, including RLK-mediated floral organ development, ovule and anther development, and embryogenesis. In addition, the possible molecular regulatory patterns of those RLKs with unrevealed mechanisms during reproductive development are discussed. We also point out the thought-provoking questions raised by the research on these plant RLKs during reproduction for future investigation.
Collapse
|
30
|
Stein RE, Nauerth BH, Binmöller L, Zühl L, Loreth A, Reinert M, Ibberson D, Schmidt A. RH17 restricts reproductive fate and represses autonomous seed coat development in sexual Arabidopsis. Development 2021; 148:272091. [PMID: 34495331 DOI: 10.1242/dev.198739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Plant sexual and asexual reproduction through seeds (apomixis) is tightly controlled by complex gene regulatory programs, which are not yet fully understood. Recent findings suggest that RNA helicases are required for plant germline development. This resembles their crucial roles in animals, where they are involved in controlling gene activity and the maintenance of genome integrity. Here, we identified previously unknown roles of Arabidopsis RH17 during reproductive development. Interestingly, RH17 is involved in repression of reproductive fate and of elements of seed development in the absence of fertilization. In lines carrying a mutant rh17 allele, development of supernumerary reproductive cell lineages in the female flower tissues (ovules) was observed, occasionally leading to formation of two embryos per seed. Furthermore, seed coat, and putatively also endosperm development, frequently initiated autonomously. Such induction of several features phenocopying distinct elements of apomixis by a single mutation is unusual and suggests that RH17 acts in regulatory control of plant reproductive development. Furthermore, an in-depth understanding of its action might be of use for agricultural applications.
Collapse
Affiliation(s)
- Ron Eric Stein
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Berit Helge Nauerth
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Laura Binmöller
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Luise Zühl
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Anna Loreth
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Maximilian Reinert
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany
| | - Anja Schmidt
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| |
Collapse
|
31
|
Abstract
More than a century ago, August Weissman defined a distinction between the germline (responsible for propagating heritable information from generation to generation) and the perishable soma. A central motivation for this distinction was to argue against the inheritance of acquired characters, as the germline was partly defined by its protection from external conditions. However, recent decades have seen an explosion of studies documenting the intergenerational and transgenerational effects of environmental conditions, forcing a re-evaluation of how external signals are sensed by, or communicated to, the germline epigenome. Here, motivated by the centrality of small RNAs in paradigms of epigenetic inheritance, we review across species the myriad examples of intercellular RNA trafficking from nurse cells or somatic tissues to developing gametes.
Collapse
|
32
|
Vegetative Reproduction Is More Advantageous Than Sexual Reproduction in a Canopy-Forming Clonal Macroalga under Ocean Warming Accompanied by Oligotrophication and Intensive Herbivory. PLANTS 2021; 10:plants10081522. [PMID: 34451567 PMCID: PMC8400385 DOI: 10.3390/plants10081522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
Ocean warming and the associated changes in fish herbivory have caused polarward distributional shifts in the majority of canopy-forming macroalgae that are dominant in temperate Japan, but have little effect on the alga Sargassum fusiforme. The regeneration ability of new shoots from holdfasts in this species may be advantageous in highly grazed environments. However, little is known about the factors regulating this in Sargassum species. Moreover, holdfast tolerance to high-temperature and nutrient-poor conditions during summer has rarely been evaluated. In the present study, S. fusiforme holdfast responses to the combined effects of temperature and nutrient availability were compared to those of sexually reproduced propagules. The combined effects of holdfast fragmentation and irradiance on regeneration were also evaluated. Propagule growth rate values changed from positive to negative under the combination of elevated temperature (20 °C–30 °C) and reduced nutrient availability, whereas holdfasts exhibited a positive growth rate even at 32 °C in nutrient-poor conditions. The regeneration rate increased with holdfast fragmentation (1 mm segments), but was unaffected by decreased irradiance. These results suggest that S. fusiforme holdfasts have a higher tolerance to high-temperature and nutrient-poor conditions during summer than propagules, and regenerate new shoots even if 1-mm segments remain in shaded refuges for fish herbivory avoidance.
Collapse
|
33
|
Volokhina I, Gusev Y, Moiseeva Y, Gutorova O, Fadeev V, Chumakov M. Gene Expression in Parthenogenic Maize Proembryos. PLANTS (BASEL, SWITZERLAND) 2021; 10:964. [PMID: 34066123 PMCID: PMC8151209 DOI: 10.3390/plants10050964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Angiosperm plants reproduce both sexually and asexually (by apomixis). In apomictic plants, the embryo and endosperm develop without fertilization. Modern maize seems to have a broken apomixis-triggering mechanism, which still works in Tripsacum and in Tripsacum-maize hybrids. For the first time, maize lines characterized by pronounced and inheritable high-frequency maternal parthenogenesis were generated 40 years ago, but there are no data on gene expression in parthenogenic maize proembryos. Here we examined for the first time gene expression in parthenogenic proembryos isolated from unpollinated embryo sacs (ESs) of a parthenogenic maize line (AT-4). The DNA-methylation genes (dmt103, dmt105) and the genes coding for the chromatin-modifying enzymes (chr106, hdt104, hon101) were expressed much higher in parthenogenic proembryos than in unpollinated ESs. The expression of the fertilization-independent endosperm (fie1) genes was found for the first time in parthenogenic proembryos and unpollinated ESs. In parthenogenic proembryos, the Zm_fie2 gene was expressed up to two times higher than it was expressed in unpollinated ESs.
Collapse
Affiliation(s)
- Irina Volokhina
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (I.V.); (Y.G.); (Y.M.); (V.F.)
| | - Yury Gusev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (I.V.); (Y.G.); (Y.M.); (V.F.)
| | - Yelizaveta Moiseeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (I.V.); (Y.G.); (Y.M.); (V.F.)
| | - Olga Gutorova
- Genetics Department, Saratov State University, 83 Ulitsa Astrakhanskaya, 410012 Saratov, Russia;
| | - Vladimir Fadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (I.V.); (Y.G.); (Y.M.); (V.F.)
| | - Mikhail Chumakov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (I.V.); (Y.G.); (Y.M.); (V.F.)
| |
Collapse
|
34
|
Hernandez-Lagana E, Mosca G, Mendocilla-Sato E, Pires N, Frey A, Giraldo-Fonseca A, Michaud C, Grossniklaus U, Hamant O, Godin C, Boudaoud A, Grimanelli D, Autran D, Baroux C. Organ geometry channels reproductive cell fate in the Arabidopsis ovule primordium. eLife 2021; 10:e66031. [PMID: 33960300 PMCID: PMC8219382 DOI: 10.7554/elife.66031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
In multicellular organisms, sexual reproduction requires the separation of the germline from the soma. In flowering plants, the female germline precursor differentiates as a single spore mother cell (SMC) as the ovule primordium forms. Here, we explored how organ growth contributes to SMC differentiation. We generated 92 annotated 3D images at cellular resolution in Arabidopsis. We identified the spatio-temporal pattern of cell division that acts in a domain-specific manner as the primordium forms. Tissue growth models uncovered plausible morphogenetic principles involving a spatially confined growth signal, differential mechanical properties, and cell growth anisotropy. Our analysis revealed that SMC characteristics first arise in more than one cell but SMC fate becomes progressively restricted to a single cell during organ growth. Altered primordium geometry coincided with a delay in the fate restriction process in katanin mutants. Altogether, our study suggests that tissue geometry channels reproductive cell fate in the Arabidopsis ovule primordium.
Collapse
Affiliation(s)
| | - Gabriella Mosca
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Ethel Mendocilla-Sato
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Nuno Pires
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Anja Frey
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Alejandro Giraldo-Fonseca
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | | | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIALyonFrance
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIALyonFrance
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIALyonFrance
| | | | - Daphné Autran
- DIADE, University of Montpellier, CIRAD, IRDMontpellierFrance
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIALyonFrance
| | - Célia Baroux
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| |
Collapse
|
35
|
Kordyum E, Hasenstein KH. Plant biology for space exploration - Building on the past, preparing for the future. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:1-7. [PMID: 33888282 DOI: 10.1016/j.lssr.2021.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
A review of past insights of space experiments with plants outlines basic space and gravity effects as well as gene expression. Efforts to grow plants in space gradually incorporated basic question on plant productivity, stress response and cultivation. The prospect of extended space missions as well as colonization of the Moon and Mars require better understanding and therefore research efforts on biomass productivity, substrate and water relations, atmospheric composition, pressure and temperature and substrate and volume (growth space) requirements. The essential combination of using plants not only for food production but also for regeneration of waste, and recycling of carbon and oxygen production requires integration of complex biological and engineering aspects. We combine a historical account of plant space research with considerations for future research on plant cultivation, selection, and productivity based on space-related environmental conditions.
Collapse
Affiliation(s)
- Elizabeth Kordyum
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kiev, Ukraine, United States
| | - Karl H Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA, 70504-3602, United States.
| |
Collapse
|
36
|
Costantini L, Moreno-Sanz P, Nwafor CC, Lorenzi S, Marrano A, Cristofolini F, Gottardini E, Raimondi S, Ruffa P, Gribaudo I, Schneider A, Grando MS. Somatic variants for seed and fruit set in grapevine. BMC PLANT BIOLOGY 2021; 21:135. [PMID: 33711928 PMCID: PMC7955655 DOI: 10.1186/s12870-021-02865-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Grapevine reproductive development has direct implications on yield. It also impacts on berry and wine quality by affecting traits like seedlessness, berry and bunch size, cluster compactness and berry skin to pulp ratio. Seasonal fluctuations in yield, fruit composition and wine attributes, which are largely driven by climatic factors, are major challenges for worldwide table grape and wine industry. Accordingly, a better understanding of reproductive processes such as gamete development, fertilization, seed and fruit set is of paramount relevance for managing yield and quality. With the aim of providing new insights into this field, we searched for clones with contrasting seed content in two germplasm collections. RESULTS We identified eight variant pairs that seemingly differ only in seed-related characteristics while showing identical genotype when tested with the GrapeReSeq_Illumina_20K_SNP_chip and several microsatellites. We performed multi-year observations on seed and fruit set deriving from different pollination treatments, with special emphasis on the pair composed by Sangiovese and its seedless variant locally named Corinto Nero. The pollen of Corinto Nero failed to germinate in vitro and gave poor berry set when used to pollinate other varieties. Most berries from both open- and cross-pollinated Corinto Nero inflorescences did not contain seeds. The genetic analysis of seedlings derived from occasional Corinto Nero normal seeds revealed that the few Corinto Nero functional gametes are mostly unreduced. Moreover, three genotypes, including Sangiovese and Corinto Nero, were unexpectedly found to develop fruits without pollen contribution and occasionally showed normal-like seeds. Five missense single nucleotide polymorphisms were identified between Corinto Nero and Sangiovese from transcriptomic data. CONCLUSIONS Our observations allowed us to attribute a seedlessness type to some variants for which it was not documented in the literature. Interestingly, the VvAGL11 mutation responsible for Sultanina stenospermocarpy was also discovered in a seedless mutant of Gouais Blanc. We suggest that Corinto Nero parthenocarpy is driven by pollen and/or embryo sac defects, and both events likely arise from meiotic anomalies. The single nucleotide polymorphisms identified between Sangiovese and Corinto Nero are suitable for testing as traceability markers for propagated material and as functional candidates for the seedless phenotype.
Collapse
Affiliation(s)
- Laura Costantini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Paula Moreno-Sanz
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Chinedu Charles Nwafor
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Silvia Lorenzi
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Annarita Marrano
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Fabiana Cristofolini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Elena Gottardini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Stefano Raimondi
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Paola Ruffa
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Anna Schneider
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Maria Stella Grando
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010, San Michele all'Adige, Italy
| |
Collapse
|
37
|
Liu L, Wang T. Male gametophyte development in flowering plants: A story of quarantine and sacrifice. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153365. [PMID: 33548696 DOI: 10.1016/j.jplph.2021.153365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 05/19/2023]
Abstract
Over 160 years ago, scientists made the first microscopic observations of angiosperm pollen. Unlike in animals, male meiosis in angiosperms produces a haploid microspore that undergoes one asymmetric division to form a vegetative cell and a generative cell. These two cells have distinct fates: the vegetative cell exits the cell cycle and elongates to form a tip-growing pollen tube; the generative cell divides once more in the pollen grain or within the growing pollen tube to form a pair of sperm cells. The concept that male germ cells are less active than the vegetative cell came from biochemical analyses and pollen structure anatomy early in the last century and is supported by the pollen transcriptome data of the last decade. However, the mechanism of how and when the transcriptional repression in male germ cells occurs is still not fully understood. In this review, we provide a brief account of the cytological and metabolic differentiation between the vegetative cell and male germ cells, with emphasis on the role of temporary callose walls, dynamic nuclear pore density, transcription repression, and histone variants. We further discuss the intercellular movement of small interfering RNA (siRNA) derived from transposable elements (TEs) and reexamine the function of TE expression in male germ cells.
Collapse
Affiliation(s)
- Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
38
|
Vijayan A, Tofanelli R, Strauss S, Cerrone L, Wolny A, Strohmeier J, Kreshuk A, Hamprecht FA, Smith RS, Schneitz K. A digital 3D reference atlas reveals cellular growth patterns shaping the Arabidopsis ovule. eLife 2021; 10:e63262. [PMID: 33404501 PMCID: PMC7787667 DOI: 10.7554/elife.63262] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/19/2020] [Indexed: 12/23/2022] Open
Abstract
A fundamental question in biology is how morphogenesis integrates the multitude of processes that act at different scales, ranging from the molecular control of gene expression to cellular coordination in a tissue. Using machine-learning-based digital image analysis, we generated a three-dimensional atlas of ovule development in Arabidopsis thaliana, enabling the quantitative spatio-temporal analysis of cellular and gene expression patterns with cell and tissue resolution. We discovered novel morphological manifestations of ovule polarity, a new mode of cell layer formation, and previously unrecognized subepidermal cell populations that initiate ovule curvature. The data suggest an irregular cellular build-up of WUSCHEL expression in the primordium and new functions for INNER NO OUTER in restricting nucellar cell proliferation and the organization of the interior chalaza. Our work demonstrates the analytical power of a three-dimensional digital representation when studying the morphogenesis of an organ of complex architecture that eventually consists of 1900 cells.
Collapse
Affiliation(s)
- Athul Vijayan
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| | - Rachele Tofanelli
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding ResearchCologneGermany
| | - Lorenzo Cerrone
- Heidelberg Collaboratory for Image Processing, Dept. of Physics and Astronomy, Heidelberg UniversityHeidelbergGermany
| | - Adrian Wolny
- Heidelberg Collaboratory for Image Processing, Dept. of Physics and Astronomy, Heidelberg UniversityHeidelbergGermany
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Joanna Strohmeier
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| | - Anna Kreshuk
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Fred A Hamprecht
- Heidelberg Collaboratory for Image Processing, Dept. of Physics and Astronomy, Heidelberg UniversityHeidelbergGermany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding ResearchCologneGermany
| | - Kay Schneitz
- Plant Developmental Biology, School of Life Sciences, Technical University of MunichFreisingGermany
| |
Collapse
|
39
|
Saleme MDLS, Andrade IR, Eloy NB. The Role of Anaphase-Promoting Complex/Cyclosome (APC/C) in Plant Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:642934. [PMID: 33719322 PMCID: PMC7943633 DOI: 10.3389/fpls.2021.642934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 05/06/2023]
Abstract
Most eukaryotic species propagate through sexual reproduction that requires male and female gametes. In flowering plants, it starts through a single round of DNA replication (S phase) and two consecutive chromosome segregation (meiosis I and II). Subsequently, haploid mitotic divisions occur, which results in a male gametophyte (pollen grain) and a female gametophyte (embryo sac) formation. In order to obtain viable gametophytes, accurate chromosome segregation is crucial to ensure ploidy stability. A precise gametogenesis progression is tightly regulated in plants and is controlled by multiple mechanisms to guarantee a correct evolution through meiotic cell division and sexual differentiation. In the past years, research in the field has shown an important role of the conserved E3-ubiquitin ligase complex, Anaphase-Promoting Complex/Cyclosome (APC/C), in this process. The APC/C is a multi-subunit complex that targets proteins for degradation via proteasome 26S. The functional characterization of APC/C subunits in Arabidopsis, which is one of the main E3 ubiquitin ligase that controls cell cycle, has revealed that all subunits investigated so far are essential for gametophytic development and/or embryogenesis.
Collapse
|
40
|
Barke BH, Karbstein K, Daubert M, Hörandl E. The relation of meiotic behaviour to hybridity, polyploidy and apomixis in the Ranunculus auricomus complex (Ranunculaceae). BMC PLANT BIOLOGY 2020; 20:523. [PMID: 33203395 PMCID: PMC7672892 DOI: 10.1186/s12870-020-02654-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/20/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Hybridization and polyploidization are powerful evolutionary factors that are associated with manifold developmental changes in plants such as irregular progression of meiosis and sporogenesis. The emergence of apomixis, which is asexual reproduction via seeds, is supposed to be connected to these factors and was often regarded as an escape from hybrid sterility. However, the functional trigger of apomixis is still unclear. Recently formed di- and polyploid Ranunculus hybrids, as well as their parental species were analysed for their modes of mega- and microsporogenesis by microscopy. Chromosomal configurations during male meiosis were screened for abnormalities. Meiotic and developmental abnormalities were documented qualitatively and collected quantitatively for statistical evaluations. RESULTS Allopolyploids showed significantly higher frequencies of erroneous microsporogenesis than homoploid hybrid plants. Among diploids, F2 hybrids had significantly more disturbed meiosis than F1 hybrids and parental plants. Chromosomal aberrations included laggard chromosomes, chromatin bridges and disoriented spindle activities. Failure of megasporogenesis appeared to be much more frequent in than of microsporogenesis is correlated to apomixis onset. CONCLUSIONS Results suggest diverging selective pressures on female and male sporogenesis, with only minor effects of hybridity on microsporogenesis, but fatal effects on the course of megasporogenesis. Hence, pollen development continues without major alterations, while selection will favour apomixis as alternative to the female meiotic pathway. Relation of investigated errors of megasporogenesis with the observed occurrence of apospory in Ranunculus hybrids identifies disturbed female meiosis as potential elicitor of apomixis in order to rescue these plants from hybrid sterility. Male meiotic disturbance appears to be stronger in neopolyploids than in homoploid hybrids, while disturbances of megasporogenesis were not ploidy-dependent.
Collapse
Affiliation(s)
- Birthe H Barke
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany.
| | - Kevin Karbstein
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany
| | - Mareike Daubert
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany
- Present Address: Carl von Ossietzky University, Institute of Biology and Environmental Sciences, Carl von Ossietzky Straße 9-11, D-26129, Oldenburg, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany
| |
Collapse
|
41
|
Hernandez-Lagana E, Autran D. H3.1 Eviction Marks Female Germline Precursors in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1322. [PMID: 33036297 PMCID: PMC7600056 DOI: 10.3390/plants9101322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022]
Abstract
In flowering plants, germline precursors are differentiated from somatic cells. The female germline precursor of Arabidopsis thaliana is located in the internal (nucellar) tissue of the ovule, and is known as the Megaspore Mother Cell (MMC). MMC differentiation in Arabidopsis occurs when a cell in the subepidermal layer of the nucellar apex enters the meiotic program. Increasing evidence has demonstrated that MMC specification is a plastic process where the number and developmental outcome of MMCs are variable. During its differentiation, the MMC displays specific chromatin hallmarks that distinguish it from other cells within the primordium. To date, these signatures have been only analyzed at developmental stages where the MMC is morphologically conspicuous, and their role in reproductive fate acquisition remains to be elucidated. Here, we show that the histone 3 variant H3.1 HISTONE THREE RELATED 13 (HTR13) can be evicted in multiple subepidermal cells of the nucellus, but that H3.1 eviction persists only in the MMC. This pattern is established very early in ovule development and is reminiscent of the specific eviction of H3.1 that marks cell cycle exit in other somatic cell types, such as the root quiescent center (QC) of Arabidopsis. Our findings suggest that cell cycle progression in the subepidermal region of the ovule apex is modified very early in development and is associated with plasticity of reproductive fate acquisition.
Collapse
Affiliation(s)
| | - Daphné Autran
- DIADE, IRD, CIRAD, University of Montpellier, 911 avenue Agropolis, 34000 Montpellier, France;
| |
Collapse
|
42
|
Scheben A, Hojsgaard D. Can We Use Gene-Editing to Induce Apomixis in Sexual Plants? Genes (Basel) 2020; 11:E781. [PMID: 32664641 PMCID: PMC7397034 DOI: 10.3390/genes11070781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Apomixis, the asexual formation of seeds, is a potentially valuable agricultural trait. Inducing apomixis in sexual crop plants would, for example, allow breeders to fix heterosis in hybrid seeds and rapidly generate doubled haploid crop lines. Molecular models explain the emergence of functional apomixis, i.e., apomeiosis + parthenogenesis + endosperm development, as resulting from a combination of genetic or epigenetic changes that coordinate altered molecular and developmental steps to form clonal seeds. Apomixis-like features and synthetic clonal seeds have been induced with limited success in the sexual plants rice and maize by using gene editing to mutate genes related to meiosis and fertility or via egg-cell specific expression of embryogenesis genes. Inducing functional apomixis and increasing the penetrance of apomictic seed production will be important for commercial deployment of the trait. Optimizing the induction of apomixis with gene editing strategies that use known targets as well as identifying alternative targets will be possible by better understanding natural genetic variation in apomictic species. With the growing availability of genomic data and precise gene editing tools, we are making substantial progress towards engineering apomictic crops.
Collapse
Affiliation(s)
- Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
| | - Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, 37073 Goettingen, Germany
| |
Collapse
|
43
|
Dalziel AC, Tirbhowan S, Drapeau HF, Power C, Jonah LS, Gbotsyo YA, Dion‐Côté A. Using asexual vertebrates to study genome evolution and animal physiology: Banded ( Fundulus diaphanus) x Common Killifish ( F. heteroclitus) hybrid lineages as a model system. Evol Appl 2020; 13:1214-1239. [PMID: 32684956 PMCID: PMC7359844 DOI: 10.1111/eva.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Wild, asexual, vertebrate hybrids have many characteristics that make them good model systems for studying how genomes evolve and epigenetic modifications influence animal physiology. In particular, the formation of asexual hybrid lineages is a form of reproductive incompatibility, but we know little about the genetic and genomic mechanisms by which this mode of reproductive isolation proceeds in animals. Asexual lineages also provide researchers with the ability to produce genetically identical individuals, enabling the study of autonomous epigenetic modifications without the confounds of genetic variation. Here, we briefly review the cellular and molecular mechanisms leading to asexual reproduction in vertebrates and the known genetic and epigenetic consequences of the loss of sex. We then specifically discuss what is known about asexual lineages of Fundulus diaphanus x F. heteroclitus to highlight gaps in our knowledge of the biology of these clones. Our preliminary studies of F. diaphanus and F. heteroclitus karyotypes from Porter's Lake (Nova Scotia, Canada) agree with data from other populations, suggesting a conserved interspecific chromosomal arrangement. In addition, genetic analyses suggest that: (a) the same major clonal lineage (Clone A) of F. diaphanus x F. heteroclitus has remained dominant over the past decade, (b) some minor clones have also persisted, (c) new clones may have recently formed, and iv) wild clones still mainly descend from F. diaphanus ♀ x F. heteroclitus ♂ crosses (96% in 2017-2018). These data suggest that clone formation may be a relatively rare, but continuous process, and there are persistent environmental or genetic factors causing a bias in cross direction. We end by describing our current research on the genomic causes and consequences of a transition to asexuality and the potential physiological consequences of epigenetic variation.
Collapse
Affiliation(s)
| | - Svetlana Tirbhowan
- Department of BiologySaint Mary's UniversityHalifaxNSCanada
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | - Claude Power
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | | | | |
Collapse
|
44
|
Bidabadi SS, Jain SM. Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration. PLANTS (BASEL, SWITZERLAND) 2020; 9:E702. [PMID: 32492786 PMCID: PMC7356144 DOI: 10.3390/plants9060702] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Plants generally have the highest regenerative ability because they show a high degree of developmental plasticity. Although the basic principles of plant regeneration date back many years, understanding the cellular, molecular, and physiological mechanisms based on these principles is currently in progress. In addition to the significant effects of some factors such as medium components, phytohormones, explant type, and light on the regeneration ability of an explant, recent reports evidence the involvement of molecular signals in organogenesis and embryogenesis responses to explant wounding, induced plant cell death, and phytohormones interaction. However, some cellular behaviors such as the occurrence of somaclonal variations and abnormalities during the in vitro plant regeneration process may be associated with adverse effects on the efficacy of plant regeneration. A review of past studies suggests that, in some cases, regeneration in plants involves the reprogramming of distinct somatic cells, while in others, it is induced by the activation of relatively undifferentiated cells in somatic tissues. However, this review covers the most important factors involved in the process of plant regeneration and discusses the mechanisms by which plants monitor this process.
Collapse
Affiliation(s)
- Siamak Shirani Bidabadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - S. Mohan Jain
- Department of Agricultural Sciences, University of Helsinki, PL-27 Helsinki, Finland
| |
Collapse
|
45
|
Transposon Reactivation in the Germline May Be Useful for Both Transposons and Their Host Genomes. Cells 2020; 9:cells9051172. [PMID: 32397241 PMCID: PMC7290860 DOI: 10.3390/cells9051172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
Transposable elements (TEs) are long-term residents of eukaryotic genomes that make up a large portion of these genomes. They can be considered as perfectly fine members of genomes replicating with resident genes and being transmitted vertically to the next generation. However, unlike regular genes, TEs have the ability to send new copies to new sites. As such, they have been considered as parasitic members ensuring their own replication. In another view, TEs may also be considered as symbiotic sequences providing shared benefits after mutualistic interactions with their host genome. In this review, we recall the relationship between TEs and their host genome and discuss why transient relaxation of TE silencing within specific developmental windows may be useful for both.
Collapse
|
46
|
Kiefer M, Nauerth BH, Volkert C, Ibberson D, Loreth A, Schmidt A. Gene Function Rather than Reproductive Mode Drives the Evolution of RNA Helicases in Sexual and Apomictic Boechera. Genome Biol Evol 2020; 12:656-673. [PMID: 32302391 PMCID: PMC7250504 DOI: 10.1093/gbe/evaa078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
In higher plants, sexual and asexual reproductions through seeds (apomixis) have evolved as alternative strategies. Evolutionary advantages leading to coexistence of both reproductive modes are currently not well understood. It is expected that accumulation of deleterious mutations leads to a rapid elimination of apomictic lineages from populations. In this line, apomixis originated repeatedly, likely from deregulation of the sexual pathway, leading to alterations in the development of reproductive lineages (germlines) in apomicts as compared with sexual plants. This potentially involves mutations in genes controlling reproduction. Increasing evidence suggests that RNA helicases are crucial regulators of germline development. To gain insights into the evolution of 58 members of this diverse gene family in sexual and apomictic plants, we applied target enrichment combined with next-generation sequencing to identify allelic variants from 24 accessions of the genus Boechera, comprising sexual, facultative, and obligate apomicts. Interestingly, allelic variants from apomicts did not show consistently increased mutation frequency. Either sequences were highly conserved in any accession, or allelic variants preferentially harbored mutations in evolutionary less conserved C- and N-terminal domains, or presented high mutation load independent of the reproductive mode. Only for a few genes allelic variants harboring deleterious mutations were only identified in apomicts. To test if high sequence conservation correlates with roles in fundamental cellular or developmental processes, we analyzed Arabidopsis thaliana mutant lines in VASA-LIKE (VASL), and identified pleiotropic defects during ovule and reproductive development. This indicates that also in apomicts mechanisms of selection are in place based on gene function.
Collapse
Affiliation(s)
- Markus Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Berit H Nauerth
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Christopher Volkert
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Anna Loreth
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Anja Schmidt
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
47
|
Hojsgaard D. Apomixis Technology: Separating the Wheat from the Chaff. Genes (Basel) 2020; 11:E411. [PMID: 32290084 PMCID: PMC7231277 DOI: 10.3390/genes11040411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Projections indicate that current plant breeding approaches will be unable to incorporate the global crop yields needed to deliver global food security. Apomixis is a disruptive innovation by which a plant produces clonal seeds capturing heterosis and gene combinations of elite phenotypes. Introducing apomixis into hybrid cultivars is a game-changing development in the current plant breeding paradigm that will accelerate the generation of high-yield cultivars. However, apomixis is a developmentally complex and genetically multifaceted trait. The central problem behind current constraints to apomixis breeding is that the genomic configuration and molecular mechanism that initiate apomixis and guide the formation of a clonal seed are still unknown. Today, not a single explanation about the origin of apomixis offer full empirical coverage, and synthesizing apomixis by manipulating individual genes has failed or produced little success. Overall evidence suggests apomixis arise from a still unknown single event molecular mechanism with multigenic effects. Disentangling the genomic basis and complex genetics behind the emergence of apomixis in plants will require the use of novel experimental approaches benefiting from Next Generation Sequencing technologies and targeting not only reproductive genes, but also the epigenetic and genomic configurations associated with reproductive phenotypes in homoploid sexual and apomictic carriers. A comprehensive picture of most regulatory changes guiding apomixis emergence will be central for successfully installing apomixis into the target species by exploiting genetic modification techniques.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, D-37073-1 Göttingen, Germany
| |
Collapse
|
48
|
Leng X, Ivanov M, Kindgren P, Malik I, Thieffry A, Brodersen P, Sandelin A, Kaplan CD, Marquardt S. Organismal benefits of transcription speed control at gene boundaries. EMBO Rep 2020; 21:e49315. [PMID: 32103605 PMCID: PMC7132196 DOI: 10.15252/embr.201949315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase II (RNAPII) transcription is crucial for gene expression. RNAPII density peaks at gene boundaries, associating these key regions for gene expression control with limited RNAPII movement. The connections between RNAPII transcription speed and gene regulation in multicellular organisms are poorly understood. Here, we directly modulate RNAPII transcription speed by point mutations in the second largest subunit of RNAPII in Arabidopsis thaliana. A RNAPII mutation predicted to decelerate transcription is inviable, while accelerating RNAPII transcription confers phenotypes resembling auto-immunity. Nascent transcription profiling revealed that RNAPII complexes with accelerated transcription clear stalling sites at both gene ends, resulting in read-through transcription. The accelerated transcription mutant NRPB2-Y732F exhibits increased association with 5' splice site (5'SS) intermediates and enhanced splicing efficiency. Our findings highlight potential advantages of RNAPII stalling through local reduction in transcription speed to optimize gene expression for the development of multicellular organisms.
Collapse
Affiliation(s)
- Xueyuan Leng
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| | - Maxim Ivanov
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| | - Peter Kindgren
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| | - Indranil Malik
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
- Present address:
Department of NeurologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Axel Thieffry
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Peter Brodersen
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Albin Sandelin
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Craig D Kaplan
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| | - Sebastian Marquardt
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
49
|
Controlling Apomixis: Shared Features and Distinct Characteristics of Gene Regulation. Genes (Basel) 2020; 11:genes11030329. [PMID: 32245021 PMCID: PMC7140868 DOI: 10.3390/genes11030329] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
In higher plants, sexual and asexual reproduction through seeds (apomixis) have evolved as alternative strategies. As apomixis leads to the formation of clonal offspring, its great potential for agricultural applications has long been recognized. However, the genetic basis and the molecular control underlying apomixis and its evolutionary origin are to date not fully understood. Both in sexual and apomictic plants, reproduction is tightly controlled by versatile mechanisms regulating gene expression, translation, and protein abundance and activity. Increasing evidence suggests that interrelated pathways including epigenetic regulation, cell-cycle control, hormonal pathways, and signal transduction processes are relevant for apomixis. Additional molecular mechanisms are being identified that involve the activity of DNA- and RNA-binding proteins, such as RNA helicases which are increasingly recognized as important regulators of reproduction. Together with other factors including non-coding RNAs, their association with ribosomes is likely to be relevant for the formation and specification of the apomictic reproductive lineage. Subsequent seed formation appears to involve an interplay of transcriptional activation and repression of developmental programs by epigenetic regulatory mechanisms. In this review, insights into the genetic basis and molecular control of apomixis are presented, also taking into account potential relations to environmental stress, and considering aspects of evolution.
Collapse
|
50
|
A Silent Exonic Mutation in a Rice Integrin-α FG-GAP Repeat-Containing Gene Causes Male-Sterility by Affecting mRNA Splicing. Int J Mol Sci 2020; 21:ijms21062018. [PMID: 32188023 PMCID: PMC7139555 DOI: 10.3390/ijms21062018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Pollen development plays crucial roles in the life cycle of higher plants. Here we characterized a rice mutant with complete male-sterile phenotype, pollen-less 1 (pl1). pl1 exhibited smaller anthers with arrested pollen development, absent Ubisch bodies, necrosis-like tapetal hypertrophy, and smooth anther cuticular surface. Molecular mapping revealed a synonymous mutation in the fourth exon of PL1 co-segregated with the mutant phenotype. This mutation disrupts the exon-intron splice junction in PL1, generating aberrant mRNA species and truncated proteins. PL1 is highly expressed in the tapetal cells of developing anther, and its protein is co-localized with plasma membrane (PM) and endoplasmic reticulum (ER) signal. PL1 encodes an integrin-α FG-GAP repeat-containing protein, which has seven β-sheets and putative Ca2+-binding motifs and is broadly conserved in terrestrial plants. Our findings therefore provide insights into both the role of integrin-α FG-GAP repeat-containing protein in rice male fertility and the influence of exonic mutation on intronic splice donor site selection.
Collapse
|