1
|
He X, Tang R, Lou J, Wang R. Pseudo-trajectory inference for identifying essential regulations and molecules in cell fate decisions. J Biol Phys 2024; 51:2. [PMID: 39541052 PMCID: PMC11564433 DOI: 10.1007/s10867-024-09665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Cell fate decision is crucial in biological development and plays fundamental roles in normal development and functional maintenance of organisms. By identifying key regulatory interactions and molecules involved in these fate decisions, we can shed light on the intricate mechanisms underlying the cell fates. This understanding ultimately reveals the fundamental principles driving biological development and the origins of various diseases. In this study, we present an overarching framework which integrates pseudo-trajectory inference and differential analysis to determine critical regulatory interactions and molecules during cell fate transitions. To demonstrate feasibility and reliability of the approach, we employ the differentiation networks of hepatobiliary system and embryonic stem cells as representative model systems. By applying pseudo-trajectory inference to biological data, we aim to identify critical regulatory interactions and molecules during the cell fate transition processes. Consistent with experimental observations, the approach can allow us to infer dynamical cell fate decision processes and gain insights into the underlying mechanisms which govern cell state decisions.
Collapse
Affiliation(s)
- Xinyu He
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruoyu Tang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Jie Lou
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Gu S, Huang X, Luo S, Liu Y, Khoong Y, Liang H, Tu L, Xu R, Yang E, Zhao Y, Yao M, Zan T. Targeting the nuclear long noncoding transcript LSP1P5 abrogates extracellular matrix deposition by trans-upregulating CEBPA in keloids. Mol Ther 2024; 32:1984-1999. [PMID: 38553852 PMCID: PMC11184311 DOI: 10.1016/j.ymthe.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/07/2024] [Accepted: 03/26/2024] [Indexed: 06/09/2024] Open
Abstract
Keloids are characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix (ECM) and are a major global health care burden among cutaneous diseases. However, the function of long noncoding RNA (lncRNA)-mediated ECM remodeling during the pathogenesis of keloids is still unclear. Herein, we identified a long noncoding transcript, namely, lymphocyte-specific protein 1 pseudogene 5 (LSP1P5), that modulates ECM component deposition in keloids. First, high-throughput transcriptome analysis showed that LSP1P5 was selectively upregulated in keloids and correlated with more severe disease in a clinical keloid cohort. Therapeutically, the attenuation of LSP1P5 significantly decreased the expression of ECM markers (COL1, COL3, and FN1) both in vitro and in vivo. Intriguingly, an antifibrotic gene, CCAAT enhancer binding protein alpha (CEBPA), is a functional downstream candidate of LSP1P5. Mechanistically, LSP1P5 represses CEBPA expression by hijacking Suppressor of Zeste 12 to the promoter of CEBPA, thereby enhancing the polycomb repressive complex 2-mediated H3K27me3 and changing the chromosomal opening status of CEBPA. Taken together, these findings indicate that targeting LSP1P5 abrogates fibrosis in keloids through epigenetic regulation of CEBPA, revealing a novel antifibrotic therapeutic strategy that bridges our current understanding of lncRNA regulation, histone modification and ECM remodeling in keloids.
Collapse
Affiliation(s)
- Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Shenying Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Liying Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Ruoqing Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - En Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| |
Collapse
|
3
|
Wu B, Shentu X, Nan H, Guo P, Hao S, Xu J, Shangguan S, Cui L, Cen J, Deng Q, Wu Y, Liu C, Song Y, Lin X, Wang Z, Yuan Y, Ma W, Li R, Li Y, Qian Q, Du W, Lai T, Yang T, Liu C, Ma X, Chen A, Xu X, Lai Y, Liu L, Esteban MA, Hui L. A spatiotemporal atlas of cholestatic injury and repair in mice. Nat Genet 2024; 56:938-952. [PMID: 38627596 DOI: 10.1038/s41588-024-01687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/09/2024] [Indexed: 05/09/2024]
Abstract
Cholestatic liver injuries, characterized by regional damage around the bile ductular region, lack curative therapies and cause considerable mortality. Here we generated a high-definition spatiotemporal atlas of gene expression during cholestatic injury and repair in mice by integrating spatial enhanced resolution omics sequencing and single-cell transcriptomics. Spatiotemporal analyses revealed a key role of cholangiocyte-driven signaling correlating with the periportal damage-repair response. Cholangiocytes express genes related to recruitment and differentiation of lipid-associated macrophages, which generate feedback signals enhancing ductular reaction. Moreover, cholangiocytes express high TGFβ in association with the conversion of liver progenitor-like cells into cholangiocytes during injury and the dampened proliferation of periportal hepatocytes during recovery. Notably, Atoh8 restricts hepatocyte proliferation during 3,5-diethoxycarbonyl-1,4-dihydro-collidin damage and is quickly downregulated after injury withdrawal, allowing hepatocytes to respond to growth signals. Our findings lay a keystone for in-depth studies of cellular dynamics and molecular mechanisms of cholestatic injuries, which may further develop into therapies for cholangiopathies.
Collapse
Affiliation(s)
- Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Shentu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haitao Nan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Shijie Hao
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangshan Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Shuncheng Shangguan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Lei Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuting Deng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yan Wu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chang Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yumo Song
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Xiumei Lin
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | | | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Wen Ma
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ronghai Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tingting Lai
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ao Chen
- BGI Research, Shenzhen, China
| | - Xun Xu
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Yiwei Lai
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Longqi Liu
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- China National GeneBank, BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
4
|
Liu S, Wang J, Chen S, Han Z, Wu H, Chen H, Duan Y. C/EBPβ Coupled with E2F2 Promoted the Proliferation of hESC-Derived Hepatocytes through Direct Binding to the Promoter Regions of Cell-Cycle-Related Genes. Cells 2023; 12:cells12030497. [PMID: 36766839 PMCID: PMC9914899 DOI: 10.3390/cells12030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human embryonic stem cells (hESCs) hold the potential to solve the problem of the shortage of functional hepatocytes in clinical applications and drug development. However, a large number of usable hepatocytes derived from hESCs cannot be effectively obtained due to the limited proliferation capacity. In this study, we found that enhancement of liver transcription factor C/EBPβ during hepatic differentiation could not only significantly promote the expression of hepatic genes, such as albumin, alpha fetoprotein, and alpha-1 antitrypsin, but also dramatically reinforce proliferation-related phenotypes, including increasing the expression of proliferative genes, such as CDC25C, CDC45L, and PCNA, and the activation of cell cycle and DNA replication pathways. In addition, the analysis of CUT&Tag sequencing further revealed that C/EBPβ is directly bound to the promoter region of proliferating genes to promote cell proliferation; this interaction between C/EBPβ and DNA sequences of the promoters was verified by luciferase assay. On the contrary, the knockdown of C/EBPβ could significantly inhibit the expression of the aforementioned proliferative genes. RNA transcriptome analysis and GSEA enrichment indicated that the E2F family was enriched, and the expression of E2F2 was changed with the overexpression or knockdown of C/EBPβ. Moreover, the results of CUT&Tag sequencing showed that C/EBPβ also directly bound the promoter of E2F2, regulating E2F2 expression. Interestingly, Co-IP analysis exhibited a direct binding between C/EBPβ and E2F2 proteins, and this interaction between these two proteins was also verified in the LO2 cell line, a hepatic progenitor cell line. Thus, our results demonstrated that C/EBPβ first initiated E2F2 expression and then coupled with E2F2 to regulate the expression of proliferative genes in hepatocytes during the differentiation of hESCs. Therefore, our findings open a new avenue to provide an in vitro efficient approach to generate proliferative hepatocytes to potentially meet the demands for use in cell-based therapeutics as well as for pharmaceutical and toxicological studies.
Collapse
Affiliation(s)
- Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Sen Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Zonglin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Correspondence: (H.C.); (Y.D.)
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Correspondence: (H.C.); (Y.D.)
| |
Collapse
|
5
|
Tu J, Zhang H, Yang T, Liu Y, Kibreab S, Zhang Y, Gao L, Moses RE, O'Malley BW, Xiao J, Li X. Aging-associated REGγ proteasome decline predisposes to tauopathy. J Biol Chem 2022; 298:102571. [PMID: 36209822 PMCID: PMC9647549 DOI: 10.1016/j.jbc.2022.102571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022] Open
Abstract
The REGγ-20S proteasome is an ubiquitin- and ATP-independent degradation system, targeting selective substrates, possibly helping to regulate aging. The studies we report here demonstrate that aging-associated REGγ decline predisposes to decreasing tau turnover, as in a tauopathy. The REGγ proteasome promotes degradation of human and mouse tau, notably phosphorylated tau and toxic tau oligomers that shuttle between the cytoplasm and nuclei. REGγ-mediated proteasomal degradation of tau was validated in 3- to 12-month-old REGγ KO mice, REGγ KO;PS19 mice, and PS19 mice with forebrain conditional neuron-specific overexpression of REGγ (REGγ OE) and behavioral abnormalities. Coupled with tau accumulation, we found with REGγ-deficiency, neuron loss, dendrite reduction, tau filament accumulation, and microglial activation are much more prominent in the REGγ KO;PS19 than the PS19 model. Moreover, we observed that the degenerative neuronal lesions and aberrant behaviors were alleviated in REGγ OE;PS19 mice. Memory and other behavior analysis substantiate the role of REGγ in prevention of tauopathy-like symptoms. In addition, we investigated the potential mechanism underlying aging-related REGγ decline. This study provides valuable insights into the novel regulatory mechanisms and potential therapeutic targets for tau-related neurodegenerative diseases.
Collapse
|
6
|
Dynamics of hepatocyte-cholangiocyte cell-fate decisions during liver development and regeneration. iScience 2022; 25:104955. [PMID: 36060070 PMCID: PMC9437857 DOI: 10.1016/j.isci.2022.104955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/17/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The immense regenerative potential of the liver is attributed to the ability of its two key cell types – hepatocytes and cholangiocytes – to trans-differentiate to one another either directly or through intermediate progenitor states. However, the dynamic features of decision-making between these cell-fates during liver development and regeneration remains elusive. Here, we identify a core gene regulatory network comprising c/EBPα, TGFBR2, and SOX9 which is multistable in nature, enabling three distinct cell states – hepatocytes, cholangiocytes, and liver progenitor cells (hepatoblasts/oval cells) – and stochastic switching among them. Predicted expression signature for these three states are validated through multiple bulk and single-cell transcriptomic datasets collected across developmental stages and injury-induced liver repair. This network can also explain the experimentally observed spatial organization of phenotypes in liver parenchyma and predict strategies for efficient cellular reprogramming. Our analysis elucidates how the emergent dynamics of underlying regulatory networks drive diverse cell-fate decisions in liver development and regeneration. Identified minimal regulatory network to model liver development and regeneration Changes in phenotypic landscapes by in-silico perturbations of regulatory networks Ability to explain physiological spatial patterning of liver cell types Decoded strategies for efficient reprogramming among liver cell phenotypes
Collapse
|
7
|
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional coactivator that activates transcriptional enhanced associate domain transcription factors upon inactivation of the Hippo signaling pathway, to regulate biological processes like proliferation, survival, and differentiation. YAP1 is most prominently expressed in biliary epithelial cells (BECs) in normal adult livers and during development. In the current review, we will discuss the multiple roles of YAP1 in the development and morphogenesis of bile ducts inside and outside the liver, as well as in orchestrating the cholangiocyte repair response to biliary injury. We will review how biliary repair can occur through the process of hepatocyte-to-BEC transdifferentiation and how YAP1 is pertinent to this process. We will also discuss the liver's capacity for metabolic reprogramming as an adaptive mechanism in extreme cholestasis, such as when intrahepatic bile ducts are absent due to YAP1 loss from hepatic progenitors. Finally, we will discuss the roles of YAP1 in the context of pediatric pathologies afflicting bile ducts, such as Alagille syndrome and biliary atresia. In conclusion, we will comprehensively discuss the spatiotemporal roles of YAP1 in biliary development and repair after biliary injury while describing key interactions with other well-known developmental pathways.
Collapse
Affiliation(s)
- Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine
| | - Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Pasqua M, Di Gesù R, Chinnici CM, Conaldi PG, Francipane MG. Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. Int J Mol Sci 2021; 22:8227. [PMID: 34360991 PMCID: PMC8348238 DOI: 10.3390/ijms22158227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility to reproduce key tissue functions in vitro from induced pluripotent stem cells (iPSCs) is offering an incredible opportunity to gain better insight into biological mechanisms underlying development and disease, and a tool for the rapid screening of drug candidates. This review attempts to summarize recent strategies for specification of iPSCs towards hepatobiliary lineages -hepatocytes and cholangiocytes-and their use as platforms for disease modeling and drug testing. The application of different tissue-engineering methods to promote accurate and reliable readouts is discussed. Space is given to open questions, including to what extent these novel systems can be informative. Potential pathways for improvement are finally suggested.
Collapse
Affiliation(s)
- Mattia Pasqua
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Roberto Di Gesù
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- Dipartimento della Ricerca, IRCCS ISMETT, 90127 Palermo, Italy;
| | | | - Maria Giovanna Francipane
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
9
|
TGF-β-induced α-SMA expression is mediated by C/EBPβ acetylation in human alveolar epithelial cells. Mol Med 2021; 27:22. [PMID: 33663392 PMCID: PMC7934236 DOI: 10.1186/s10020-021-00283-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although the morbidity and mortality rates associated with idiopathic pulmonary fibrosis (IPF) are high, there is still lack of powerful and precise therapeutic options for IPF. OBJECT Through in vitro model, this study sought to determine whether binding of acetylated CCAAT/enhancer binding protein β (C/EBPβ) to alpha-smooth muscle actin (α-SMA) promoter could affect the activity of the latter as well as assess if it is essential for epithelial-to-mesenchymal transition (EMT) and extracellular matrix deposition in IPF. METHODS The expression of EMT and C/EBPβ in A549 cells treated with transforming growth factor-beta (TGF-β) as pulmonary fibrotic model was detected by western blotting and qPCR. Collagen-I expression using ELISA was performed. The luciferase activity was used to examine the activity of C/EBPβ. Knockdown of C/EBPβ was performed by siRNA. We also investigated the effect of deacetylation of C/EBPβ on EMT using sirtuin 1 (SIRT1). The binding ability of C/EBPβ with α-SMA promoter was affirmed via chromatin immunoprecipitation (ChIP) and electrophoresis mobility shift assay (EMSA). The relationship between α-SMA and acetylated C/EBPβ was determined with co-immunoprecipitation (Co-IP). SiRNA-mediated knockdown of C/EBPβ in A549 cells attenuated TGF-β1-induced myofibroblast differentiation and ECM deposition. The extent of association between acetylated C/EBPβ and α-SMA promoter was dynamically monitored. RESULTS It was confirmed that deacetylation of C/EBPβ in A549 cells successfully ameliorated TGF-β1-induced EMT, as shown by reduction in α-SMA expression and excessive collagen-I accumulation. CONCLUSION The EMT and fibrotic effect of TGF-β1 is dependent on acetylated C/EBPβ-mediated regulation of α-SMA gene activity. Thus, C/EBPβ acetylation may play a central role in pulmonary fibrosis.
Collapse
|
10
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
ELAV Proteins Bind and Stabilize C/EBP mRNA in the Induction of Long-Term Memory in Aplysia. J Neurosci 2020; 41:947-959. [PMID: 33298536 DOI: 10.1523/jneurosci.2284-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
Long-term memory (LTM) formation is a critical survival process by which an animal retains information about prior experiences to guide future behavior. In the experimentally advantageous marine mollusk Aplysia, LTM for sensitization can be induced by the presentation of two aversive shocks to the animal's tail. Each of these training trials recruits distinct growth factor signaling systems that promote LTM formation. Specifically, whereas intact TrkB signaling during Trial 1 promotes an initial and transient increase of the immediate early gene apc/ebp mRNA, a prolonged increase in apc/ebp gene expression required for LTM formation requires the addition of TGFβ signaling during Trial 2. Here we explored the molecular mechanisms by which Trial 2 achieves the essential prolonged gene expression of apc/ebp We find that this prolonged gene expression is not dependent on de novo transcription, but that apc/ebp mRNA synthesized by Trial 1 is post-transcriptionally stabilized by interacting with the RNA-binding protein ApELAV. This interaction is promoted by p38 MAPK activation initiated by TGFβ. We further demonstrate that blocking the interaction of ApELAV with its target mRNA during Trial 2 blocks both the prolonged increase in apc/ebp gene expression and the behavioral induction of LTM. Collectively, our findings elucidate both when and how ELAV proteins are recruited for the stabilization of mRNA in LTM formation. Stabilization of a transiently expressed immediate early gene mRNA by a repeated training trial may therefore serve as a "filter" for learning, permitting only specific events to cause lasting transcriptional changes and behavioral LTM.SIGNIFICANCE STATEMENT: In the present paper, we significantly extend the general field of molecular processing in long-term memory (LTM) by describing a novel form of pretranslational processing required for LTM, which relies on the stabilization of a newly synthesized mRNA by a class of RNA binding proteins (ELAVs). There are now compelling data showing that important processing can occur after transcription of a gene, but before translation of the message into protein. Although the potential importance of ELAV proteins in LTM formation has previously been reported, the specific actions of ELAV proteins during LTM formation remained to be understood. Our new findings thus complement and extend this literature by demonstrating when and how this post-transcriptional gene regulation is mediated in the induction of LTM.
Collapse
|
12
|
Yasen A, Li W, Maimaitinijiati Y, Aini A, Ran B, Wang H, Tuxun T, Shao Y, Aji T, Wen H. Direct effects of transforming growth factor-β1 signaling on the differentiation fate of fetal hepatic progenitor cells. Regen Med 2020; 15:1719-1733. [PMID: 32772793 DOI: 10.2217/rme-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate direct roles of TGF-β1 signaling in the differentiation process of fetal hepatic progenitor cells (HPCs). Materials & methods: Exogenous TGF-β1 and SB431542 were added into fetal HPCs. Then, SB431542 was intraperitoneally injected into pregnant mice for 8 days. Results: Fetal HPCs treated with TGF-β1 differentiated into cholangiocytes. However, hepatocyte marker was highly expressed after inhibiting TGF-β1 signaling. In vivo, hematopoietic cells were gradually replaced with liver cells and TGF-β1 expression was evidently decreased as fetal liver developed. Inhibition of TGF-β1 signaling caused increase of ALB+ cells, but CK19 expression was more obvious in control mice livers. Conclusion: TGF-β1 signaling may play decisive roles in fetal HPCs differentiation into functional hepatocytes or cholangiocytes.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China.,Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Wending Li
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China
| | | | - Abudusalamu Aini
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China
| | - Bo Ran
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Hui Wang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Tuerhongjiang Tuxun
- Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Yingmei Shao
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Tuerganaili Aji
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Hao Wen
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China.,State Key Laboratory of Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, 393 Xin Yi Road, Urumqi 830011, PR China
| |
Collapse
|
13
|
Lezmi G, Vibhushan S, Bevilaqua C, Crapart N, Cagnard N, Khen-Dunlop N, Boyle-Freyssaut C, Hadchouel A, Delacourt C. Congenital cystic adenomatoid malformations of the lung: an epithelial transcriptomic approach. Respir Res 2020; 21:43. [PMID: 32019538 PMCID: PMC7001206 DOI: 10.1186/s12931-020-1306-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background The pathophysiology of congenital cystic adenomatoid malformations (CCAM) of the lung remains poorly understood. Aim This study aimed to identify more precisely the molecular mechanisms limited to a compartment of lung tissue, through a transcriptomic analysis of the epithelium of macrocystic forms. Methods Tissue fragments displaying CCAM were obtained during planned surgical resections. Epithelial mRNA was obtained from cystic and normal areas after laser capture microdissection (LCM). Transcriptomic analyses were performed and the results were confirmed by RT-PCR and immunohistochemistry in independent samples. Results After controlling for RNA quality, we analysed the transcriptomes of six cystic areas and five control areas. In total, 393 transcripts were differentially expressed in the epithelium, between CCAM and control areas. The most highly redundant genes involved in biological functions and signalling pathways differentially expressed between CCAM and control epithelium included TGFB2, TGFBR1, and MAP 2 K1. These genes were considered particularly relevant as they have been implicated in branching morphogenesis. RT-qPCR analysis confirmed in independent samples that TGFBR1 was more strongly expressed in CCAM than in control tissues (p < 0.03). Immunohistochemistry analysis showed TGFBR1 (p = 0.0007) and TGFB2 (p < 0.02) levels to be significantly higher in the epithelium of CCAM than in that of control tissues. Conclusions This compartmentalised transcriptomic analysis of the epithelium of macrocystic lung malformations identified a dysregulation of TGFB signalling at the mRNA and protein levels, suggesting a possible role of this pathway in CCAM pathogenesis. Trial registration ClinicalTrials.gov Identifier: NCT01732185.
Collapse
Affiliation(s)
- Guillaume Lezmi
- Service de Pneumologie et d'Allergologie Pédiatriques, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75743 Cedex 15, Paris, France.,INSERM, U955, Institut Mondor de Recherche Biomedicale (IMRB), Equipe 4, 94000, Créteil, France.,Paris Descartes University, Paris, France
| | - Shamila Vibhushan
- INSERM, U955, Institut Mondor de Recherche Biomedicale (IMRB), Equipe 4, 94000, Créteil, France
| | - Claudia Bevilaqua
- Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Nicolas Crapart
- Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Nicolas Cagnard
- Inserm UMR1163, Imagine Institute, Genomics Core Facility, Paris, France
| | - Naziha Khen-Dunlop
- Paris Descartes University, Paris, France.,Service de Chirurgie Pédiatrique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75743 Cedex 15, Paris, France
| | | | - Alice Hadchouel
- Service de Pneumologie et d'Allergologie Pédiatriques, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75743 Cedex 15, Paris, France.,INSERM, U955, Institut Mondor de Recherche Biomedicale (IMRB), Equipe 4, 94000, Créteil, France.,Paris Descartes University, Paris, France
| | - Christophe Delacourt
- Service de Pneumologie et d'Allergologie Pédiatriques, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75743 Cedex 15, Paris, France. .,INSERM, U955, Institut Mondor de Recherche Biomedicale (IMRB), Equipe 4, 94000, Créteil, France. .,Paris Descartes University, Paris, France.
| |
Collapse
|
14
|
Kiso A, Toba Y, Tsutsumi S, Deguchi S, Igai K, Koshino S, Tanaka Y, Takayama K, Mizuguchi H. Tolloid-Like 1 Negatively Regulates Hepatic Differentiation of Human Induced Pluripotent Stem Cells Through Transforming Growth Factor Beta Signaling. Hepatol Commun 2020; 4:255-267. [PMID: 32025609 PMCID: PMC6996343 DOI: 10.1002/hep4.1466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Single nucleotide polymorphisms in Tolloid-like 1 (TLL1) and the expression of TLL1 are known to be closely related to hepatocarcinogenesis after hepatitis C virus elimination or liver fibrosis in patients with nonalcoholic fatty liver disease. TLL1 is a type of matrix metalloprotease and has two isoforms in humans, with the short isoform showing higher activity. However, the functional role of TLL1 in human liver development is unknown. Here, we attempted to elucidate the function of human TLL1 using hepatocyte-like cells generated from human pluripotent stem cells. First, we generated TLL1-knockout human induced pluripotent stem (iPS) cells and found that hepatic differentiation was promoted by TLL1 knockout. Next, we explored TLL1-secreting cells using a model of liver development and identified that kinase insert domain receptor (FLK1)-positive cells (mesodermal cells) highly express TLL1. Finally, to elucidate the mechanism by which TLL1 knockout promotes hepatic differentiation, the expression profiles of transforming growth factor beta (TGFβ), a main target gene of TLL1, and its related genes were analyzed in hepatic differentiation. Both the amount of active TGFβ and the expression of TGFβ target genes were decreased by TLL1 knockout. It is known that TGFβ negatively regulates hepatic differentiation. Conclusion: TLL1 appears to negatively regulate hepatic differentiation of human iPS cells by up-regulating TGFβ signaling. Our findings will provide new insight into the function of TLL1 in human liver development.
Collapse
Affiliation(s)
- Ayumi Kiso
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Yukiko Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Laboratory of Hepatocyte RegulationNational Institutes of Biomedical Innovation, Health, and NutritionOsakaJapan
| | - Susumu Tsutsumi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Sayaka Deguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Keisuke Igai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Saki Koshino
- Laboratory of Hepatocyte RegulationNational Institutes of Biomedical Innovation, Health, and NutritionOsakaJapan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Yasuhito Tanaka
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Laboratory of Hepatocyte RegulationNational Institutes of Biomedical Innovation, Health, and NutritionOsakaJapan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencySaitamaJapan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Laboratory of Hepatocyte RegulationNational Institutes of Biomedical Innovation, Health, and NutritionOsakaJapan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Global Center for Medical Engineering and InformaticsOsaka UniversityOsakaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research InitiativesOsaka UniversityOsakaJapan
| |
Collapse
|
15
|
Targeted regulation of fibroblast state by CRISPR-mediated CEBPA expression. Respir Res 2019; 20:281. [PMID: 31829168 PMCID: PMC6907247 DOI: 10.1186/s12931-019-1253-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Background Fibroblasts regulate tissue homeostasis and the balance between tissue repair and fibrosis. CCAAT/enhancer-binding protein alpha (CEBPA) is a key transcription factor that regulates adipogenesis. CEBPA has been shown to be essential for lung maturation, and deficiency of CEBPA expression leads to abnormal lung architecture. However, its specific role in lung fibroblast regulation and fibrosis has not yet been elucidated. Methods Lung fibroblast CEBPA expression, pro-fibrotic and lipofibroblast gene expression were assessed by qRT-PCR. CEBPA gain and loss of function experiments were carried out to evaluate the role of CEBPA in human lung fibroblast activation with and without TGF-β1 treatment. Adipogenesis assay was used to measure the adiopogenic potential of lung fibroblasts. Finally, CRISPR activation system was used to enhance endogenous CEBPA expression. Results We found that CEBPA gene expression is significantly decreased in IPF-derived fibroblasts compared to normal lung fibroblasts. CEBPA knockdown in normal human lung fibroblasts enhanced fibroblast pro-fibrotic activation and ECM production. CEBPA over-expression by transient transfection in IPF-derived fibroblasts significantly reduced pro-fibrotic gene expression, ECM deposition and αSMA expression and promoted the formation of lipid droplets measured by Oil Red O staining and increased lipofibroblast gene expression. Inhibition of the histone methyl transferase G9a enhanced CEBPA expression, and the anti-fibrotic effects of G9a inhibition were partially mediated by CEBPA expression. Finally, targeted CRISPR-mediated activation of CEBPA resulted in fibroblasts switching from fibrogenic to lipofibroblast states. Conclusions CEBPA expression is reduced in human IPF fibroblasts and its deficiency reduces adipogenic potential and promotes fibrogenic activation. CEBPA expression can be rescued via an inhibitor of epigenetic repression or by targeted CRISPR activation, leading to reduced fibrogenic activation.
Collapse
|
16
|
Pan T, Chen Y, Zhuang Y, Yang F, Xu Y, Tao J, You K, Wang N, Wu Y, Lin X, Wu F, Liu Y, Li Y, Wang G, Li YX. Synergistic modulation of signaling pathways to expand and maintain the bipotency of human hepatoblasts. Stem Cell Res Ther 2019; 10:364. [PMID: 31791391 PMCID: PMC6888929 DOI: 10.1186/s13287-019-1463-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/24/2019] [Accepted: 10/21/2019] [Indexed: 12/29/2022] Open
Abstract
Background The limited proliferative ability of hepatocytes is a major limitation to meet their demand for cell-based therapy, bio-artificial liver device, and drug tests. One strategy is to amplify cells at the hepatoblast (HB) stage. However, expansion of HBs with their bipotency preserved is challenging. Most HB expansion methods hardly maintain the bipotency and also lack functional confirmation. Methods On the basis of analyzing and manipulating related signaling pathways during HB (derived from human induced pluripotent stem cells, iPSCs) differentiation and proliferation, we established a specific chemically defined cocktails to synergistically regulate the related signaling pathways that optimize the balance of HB proliferation ability and stemness maintenance, to expand the HBs and investigate their capacity for injured liver repopulation in immune-deficient mice. Results We found that the proliferative ability progressively declines during HB differentiation process. Small molecule activation of Wnt or inhibition of TGF-β pathways promoted HB proliferation but diminished their bipotency, whereas activation of hedgehog (HH) signaling stimulated proliferation and sustained HB phenotypes. A cocktail synergistically regulating the BMP/WNT/TGF-β/HH pathways created a fine balance for expansion and maintenance of the bipotency of HBs. After purification, colony formation, and expansion for 20 passages, HBs retained their RNA profile integrity, normal karyotype, and ability to differentiate into mature hepatocytes and cholangiocytes. Moreover, upon transplantation into liver injured mice, the expanded HBs could engraft and differentiate into mature human hepatocytes and repopulate liver tissue with restoring hepatocyte mass. Conclusion Our data contribute to the understanding of some signaling pathways for human HB proliferation in vitro. Simultaneous BMP/HGF induction, activation of Wnt and HH, and inhibition of TGF-β pathways created a reliable method for long-term stable large-scale expansion of HBs to obtain mature hepatocytes that may have substantial clinical applications. Graphical abstract ![]()
Collapse
Affiliation(s)
- Tingcai Pan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fan Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yingying Xu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiawang Tao
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kai You
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ning Wang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuhang Wu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianhua Lin
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feima Wu
- The Second Affiliated Hospital, Guangzhou Medical College, Guangzhou, 510260, China
| | - Yanli Liu
- The Second Affiliated Hospital, Guangzhou Medical College, Guangzhou, 510260, China
| | - Yingrui Li
- iCarbonX(Shenzhen) Company Limited, Shenzhen, 518000, China
| | - Guodong Wang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yin-Xiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Science, Beijing, 100049, China. .,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
17
|
Tian Y, Li G, Shen J, Tao Z, Chen L, Zeng T, Lu L. Molecular cloning, characterisation, and expression patterns of pigeon CCAAT/enhancer binding protein-α and -β genes. Br Poult Sci 2019; 60:347-356. [PMID: 31064204 DOI: 10.1080/00071668.2019.1614530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. CCAAT/enhancer binding proteins (C/EBPs), as a family of transcription factors, consists of six functionally and structurally related proteins which share a conserved basic leucine zipper (bZIP) DNA-binding domain. The aim of this study was to clone the full-length coding sequences (CDS) of C/EBP-α and -β genes, and determine the abundance of these two genes in various tissues of white king pigeon (C. livia). 2. The complete cDNA sequences of C/EBP-α and -β genes were cloned from pigeons by using PCR combined with rapid amplification of cDNA ends (RACE). The sequences were bioinformatically analysed, and the tissue distribution determined by quantitative real-time RT-PCR (qRT-PCR). 3. The results showed that the full-length cDNA sequences of pigeon C/EBP-α and -β genes were 2,807bp and 1,778bp, respectively. The open reading frames of C/EBP-α (978 bp) and -β (987bp) encoded 325 amino acids and 328 amino acids, respectively. The pigeon C/EBP-α and C/EBP-β proteins were predicted to have a conserved basic leucine zipper (bZIP) domain, which is a common structure feature of the C/EBP family. Multiple sequence alignments indicated that pigeon C/EBP-α and -β shared more than 90% amino-acid identity with their corresponding homologues in other avian species. Phylogenetic analysis revealed that these two proteins were highly conserved across different species and evolutionary processes. QRT-PCR results indicated that the pigeon C/EBP-α and -β mRNA transcripts were expressed in all investigated organs. The mRNA expression levels of pigeon C/EBP-α in descending order, were in spleen, heart, liver, lung, kidney and muscle. The pigeon C/EBP-β gene had the most abundant expression in lung, followed by the kidney, with minimal expression detected in muscle. 4. This study investigated the full-length cDNA sequences, genetic characteristics and tissue distribution of pigeon C/EBP-α and -β genes and found that they may have functions in various tissues of pigeon. This provides a foundation for further study for regulatory mechanisms of these two genes in birds.
Collapse
Affiliation(s)
- Y Tian
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - G Li
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - J Shen
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China
| | - Z Tao
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China
| | - L Chen
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China
| | - T Zeng
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - L Lu
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| |
Collapse
|
18
|
Takayama K. [Pharmaceutical Research on Liver Diseases Using iPS Cell and Genome Editing Technologies]. YAKUGAKU ZASSHI 2019; 139:1219-1225. [PMID: 31582604 DOI: 10.1248/yakushi.19-00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The liver is a major organ responsible for maintaining the body's homeostasis and xenobiotic metabolism. Liver transplantation is essential for the alleviation of many severe liver diseases. However, there are many patients who cannot receive liver transplants because of donor shortage. Therefore development of effective therapeutic drugs that can replace the need for liver transplantation is desired. To this end, model cells that faithfully reproduce hepatic functions are essential. It is expected that human induced pluripotent stem cell (iPS)-derived hepatocyte-like cells, which faithfully reproduce hepatic functions, would be a valuable tool for drug discovery. Hepatic differentiation from human iPS cells has been performed using growth factors, but the hepatic differentiation efficiency was quite low and liver functions of human iPS cell-derived hepatocyte-like cells were lower than those of primary human hepatocytes. Therefore we tried to improve the hepatic differentiation technology using gene transfer, genome editing, three-dimensional culture, and extracellular matrix technologies. As a result, the purity of human iPS cell-derived hepatocyte-like cells was improved into 90% or more, and the liver functions of human iPS cell-derived hepatocyte-like cells were improved to a level comparable to primary human hepatocytes. In this article, we introduce the research results we have acquired over the last decade.
Collapse
Affiliation(s)
- Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition.,PRESTO, Japan Science and Technology Agency
| |
Collapse
|
19
|
Lemaigre FP. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:1-22. [PMID: 31299162 DOI: 10.1146/annurev-pathmechdis-012418-013013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The involvement of the biliary tract in the pathophysiology of liver diseases and the increased attention paid to bile ducts in the bioconstruction of liver tissue for regenerative therapy have fueled intense research into the fundamental mechanisms of biliary development. Here, I review the molecular, cellular and tissular mechanisms driving differentiation and morphogenesis of the intrahepatic and extrahepatic bile ducts. This review focuses on the dynamics of the transcriptional and signaling modules that promote biliary development in human and mouse liver and discusses studies in which the use of zebrafish uncovered unexplored processes in mammalian biliary development. The review concludes by providing a framework for interpreting the mechanisms that may help us understand the origin of congenital biliary diseases.
Collapse
Affiliation(s)
- Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
20
|
Abstract
The essential liver exocrine and endocrine functions require a precise spatial arrangement of the hepatic lobule consisting of the central vein, portal vein, hepatic artery, intrahepatic bile duct system, and hepatocyte zonation. This allows blood to be carried through the liver parenchyma sampled by all hepatocytes and bile produced by the hepatocytes to be carried out of the liver through the intrahepatic bile duct system composed of cholangiocytes. The molecular orchestration of multiple signaling pathways and epigenetic factors is required to set up lineage restriction of the bipotential hepatoblast progenitor into the hepatocyte and cholangiocyte cell lineages, and to further refine cell fate heterogeneity within each cell lineage reflected in the functional heterogeneity of hepatocytes and cholangiocytes. In addition to the complex molecular regulation, there is a complicated morphogenetic choreography observed in building the refined hepatic epithelial architecture. Given the multifaceted molecular and cellular regulation, it is not surprising that impairment of any of these processes can result in acute and chronic hepatobiliary diseases. To enlighten the development of potential molecular and cellular targets for therapeutic options, an understanding of how the intricate hepatic molecular and cellular interactions are regulated is imperative. Here, we review the signaling pathways and epigenetic factors regulating hepatic cell lineages, fates, and epithelial architecture.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Makiko Iwafuchi-Doi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
21
|
Chaudhari P, Tian L, Kim A, Zhu Q, Anders R, Schwarz KB, Sharkis S, Ye Z, Jang YY. Transient c-Src Suppression During Endodermal Commitment of Human Induced Pluripotent Stem Cells Results in Abnormal Profibrotic Cholangiocyte-Like Cells. Stem Cells 2018; 37:306-317. [PMID: 30471152 DOI: 10.1002/stem.2950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/05/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Directed differentiation of human induced pluripotent stem cells (iPSCs) toward hepatobiliary lineages has been increasingly used as models of human liver development/diseases. As protein kinases are important components of signaling pathways regulating cell fate changes, we sought to define the key molecular mediators regulating human liver development using inhibitors targeting tyrosine kinases during hepatic differentiation of human iPSCs. A library of tyrosine kinase inhibitors was used for initial screening during the multistage differentiation of human iPSCs to hepatic lineage. Among the 80 kinase inhibitors tested, only Src inhibitors suppressed endoderm formation while none had significant effect on later stages of hepatic differentiation. Transient inhibition of c-Src during endodermal induction of human iPSCs reduced endodermal commitment and expression of endodermal markers, including SOX17 and FOXA2, in a dose-dependent manner. Interestingly, the transiently treated cells later developed into profibrogenic cholangiocyte-like cells expressing both cholangiocyte markers, such as CK7 and CK19, and fibrosis markers, including Collagen1 and smooth muscle actin. Further analysis of these cells revealed colocalized expression of collagen and yes-associated protein (YAP; a marker associated with bile duct proliferation/fibrosis) and an increased production of interleukin-6 and tumor necrosis factor-α. Moreover, treatment with verteporfin, a YAP inhibitor, significantly reduced expression of fibrosis markers. In summary, these results suggest that c-Src has a critical role in cell fate determination during endodermal commitment of human iPSCs, and its alteration in early liver development in human may lead to increased production of abnormal YAP expressing profibrogenic proinflammatory cholangiocytes, similar to those seen in livers of patients with biliary fibrosis. Stem Cells 2019;37:306-317.
Collapse
Affiliation(s)
- Pooja Chaudhari
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen B Schwarz
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saul Sharkis
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaohui Ye
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yoon-Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Demarez C, Gérard C, Cordi S, Poncy A, Achouri Y, Dauguet N, Rosa DA, Gunning PT, Manfroid I, Lemaigre FP. MicroRNA-337-3p controls hepatobiliary gene expression and transcriptional dynamics during hepatic cell differentiation. Hepatology 2018; 67:313-327. [PMID: 28833283 DOI: 10.1002/hep.29475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Transcriptional networks control the differentiation of the hepatocyte and cholangiocyte lineages from embryonic liver progenitor cells and their subsequent maturation to the adult phenotype. However, how relative levels of hepatocyte and cholangiocyte gene expression are determined during differentiation remains poorly understood. Here, we identify microRNA (miR)-337-3p as a regulator of liver development. miR-337-3p stimulates expression of cholangiocyte genes and represses hepatocyte genes in undifferentiated progenitor cells in vitro and in embryonic mouse livers. Beyond the stage of lineage segregation, miR-337-3p controls the transcriptional network dynamics of developing hepatocytes and balances both cholangiocyte populations that constitute the ductal plate. miR-337-3p requires Notch and transforming growth factor-β signaling and exerts a biphasic control on the hepatocyte transcription factor hepatocyte nuclear factor 4α by modulating its activation and repression. With the help of an experimentally validated mathematical model, we show that this biphasic control results from an incoherent feedforward loop between miR-337-3p and hepatocyte nuclear factor 4α. CONCLUSION Our results identify miR-337-3p as a regulator of liver development and highlight how tight quantitative control of hepatic cell differentiation is exerted through specific gene regulatory network motifs. (Hepatology 2018;67:313-327).
Collapse
Affiliation(s)
- Céline Demarez
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Claude Gérard
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Sabine Cordi
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Alexis Poncy
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Younes Achouri
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium.,Université catholique de Louvain, Transgenic Core Facility, Brussels, Belgium
| | - Nicolas Dauguet
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - David A Rosa
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | | |
Collapse
|
23
|
Fukuda T, Takayama K, Hirata M, Liu YJ, Yanagihara K, Suga M, Mizuguchi H, Furue MK. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions. Exp Cell Res 2017; 352:333-345. [PMID: 28215634 DOI: 10.1016/j.yexcr.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells.
Collapse
Affiliation(s)
- Takayuki Fukuda
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; K-CONNEX, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhi Hirata
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yu-Jung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; iPS Cell-based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
24
|
Gérard C, Tys J, Lemaigre FP. Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin Cell Dev Biol 2016; 66:43-50. [PMID: 27979774 DOI: 10.1016/j.semcdb.2016.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022]
Abstract
Liver development proceeds by sequential steps during which gene regulatory networks (GRNs) determine differentiation and maturation of hepatic cells. Characterizing the architecture and dynamics of these networks is essential for understanding how cell fate decisions are made during development, and for recapitulating these processes during in vitro production of liver cells for toxicology studies, disease modelling and regenerative therapy. Here we review the GRNs that control key steps of liver development and lead to differentiation of hepatocytes and cholangiocytes in mammals. We focus on GRNs determining cell fate decisions and analyse subcircuitry motifs that may confer specific dynamic properties to the networks. Finally, we put our analysis in the perspective of recent attempts to directly reprogram cells to hepatocytes by forced expression of transcription factors.
Collapse
Affiliation(s)
- Claude Gérard
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Janne Tys
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Frédéric P Lemaigre
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
25
|
Kuttippurathu L, Patra B, Cook D, Hoek JB, Vadigepalli R. Pattern analysis uncovers a chronic ethanol-induced disruption of the switch-like dynamics of C/EBP-β and C/EBP-α genome-wide binding during liver regeneration. Physiol Genomics 2016; 49:11-26. [PMID: 27815535 DOI: 10.1152/physiolgenomics.00097.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 09/23/2016] [Accepted: 10/26/2016] [Indexed: 01/19/2023] Open
Abstract
Chronic ethanol intake impairs liver regeneration through a system-wide alteration in the regulatory networks driving the response to injury. Our study focused on the initial phase of response to 2/3rd partial hepatectomy (PHx) to investigate how adaptation to chronic ethanol intake affects the genome-wide binding profiles of the transcription factors C/EBP-β and C/EBP-α. These factors participate in complementary and often opposing functions for maintaining cellular differentiation, regulating metabolism, and governing cell growth during liver regeneration. We analyzed ChIP-seq data with a comparative pattern count (COMPACT) analysis, which exhaustively enumerates temporal patterns of discretized binding profiles to identify dominant as well as subtle patterns that may not be apparent from conventional clustering analyses. We found that adaptation to chronic ethanol intake significantly alters the genome-wide binding profile of C/EBP-β and C/EBP-α before and following PHx. A subset of these ethanol-induced changes include C/EBP-β binding to promoters of genes involved in the profibrogenic transforming growth factor-β pathway, and both C/EBP-β and C/EBP-α binding to promoters of genes involved in the cell cycle, apoptosis, homeostasis, and metabolic processes. The shift in C/EBP binding loci, coupled with an ethanol-induced increase in C/EBP-β binding at 6 h post-resection, indicates that ethanol adaptation may change both the amount and nature of C/EBP binding postresection. Taken together, our results suggest that chronic ethanol consumption leads to a spatially and temporally reorganized activity at many genomic loci, resulting in a shift in the dynamic balance and coordination of cellular processes underlying regenerative response.
Collapse
Affiliation(s)
- Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Biswanath Patra
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Daniel Cook
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware; and
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; .,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Tanimizu N, Mitaka T. Morphogenesis of liver epithelial cells. Hepatol Res 2016; 46:964-76. [PMID: 26785307 DOI: 10.1111/hepr.12654] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
The mammalian liver is a physiologically important organ performing various types of metabolism, producing serum proteins, detoxifying bilirubin and ammonia, and protecting the body from infection. Those physiological functions are achieved with the 3D tissue architecture of liver epithelial cells. The liver contains two types of epithelial cells, namely, hepatocytes and cholangiocytes. They split from hepatoblasts (embryonic liver stem cells) in mid-gestation and differentiate into structurally and functionally mature cells. Analyses of mutant mice showing abnormal liver organogenesis have identified genes involved in liver development. In vitro culture systems have been used to examine the mechanism in which each molecule or signaling pathway regulates the morphogenesis and functional differentiation of hepatocytes and cholangiocytes. In addition, liver epithelial cells as well as mesenchymal, sinusoidal endothelial and hematopoietic cells can be purified from developing livers, which enables us to perform genome-wide screening to identify novel genes regulating epithelial morphogenesis in the liver. By combining these in vivo and in vitro systems, the liver could be a unique and suitable model for revealing a principle, governing epithelial morphogenesis. In this review, we summarize recent progress in the understanding of the development of liver epithelial tissue structures.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
27
|
Takayama K. [Establishment of a Method of Hepatocyte Differentiation from Human Pluripotent Stem Cells for Innovative Drug Development]. YAKUGAKU ZASSHI 2016; 135:1141-6. [PMID: 26423870 DOI: 10.1248/yakushi.15-00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte-like cells differentiated from human pluripotent stem cells (such as human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells) are expected to be utilized in drug screening. However, the hepatocyte differentiation efficiency and hepatic functions of hepatocyte-like cells were not sufficient to perform ES/iPS cell-based drug discovery. Therefore, we decided to improve the method of hepatocyte differentiation from human ES/iPS cells. To enhance this hepatocyte differentiation efficiency, hepatocyte-related transcription factors, such as forkhead box protein A2 (FOXA2) and hepatocyte nuclear factor 1 alpha (HNF1α), were overexpressed during the hepatocyte differentiation process. In addition, to enhance the functions of hepatocyte-like cells, these cells were cultured in three dimensional (3D) conditions using a Nanopillar plate. By FOXA2 and HNF1α overexpression, human ES/iPS cells could efficiently (more than 80%) differentiate into albumin-positive hepatocyte-like cells. Various hepatic functions, including albumin secretion and drug metabolism capacities, of the hepatocyte-like cells were significantly enhanced by performing 3D cell culture. These results suggest that the method of hepatocyte differentiation could be improved by using gene transfer and 3D cell culture technologies. We believe that these new hepatocyte-like cells would be useful tools in drug development.
Collapse
Affiliation(s)
- Kazuo Takayama
- iPS Cell-based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
28
|
LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development. Nat Commun 2016; 7:11961. [PMID: 27358050 PMCID: PMC4931324 DOI: 10.1038/ncomms11961] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/13/2016] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway regulates the self-renewal and differentiation of various adult stem cells, but its role in cell fate determination and differentiation during liver development remains unclear. Here we report that the Hippo pathway controls liver cell lineage specification and proliferation separately from Notch signalling, using mice and primary hepatoblasts with liver-specific knockout of Lats1 and Lats2 kinase, the direct upstream regulators of YAP and TAZ. During and after liver development, the activation of YAP/TAZ induced by loss of Lats1/2 forces hepatoblasts or hepatocytes to commit to the biliary epithelial cell (BEC) lineage. It increases BEC and fibroblast proliferation by up-regulating TGFβ signalling, but suppresses hepatoblast to hepatocyte differentiation by repressing Hnf4α expression. Notably, oncogenic YAP/TAZ activation in hepatocytes induces massive p53-dependent cell senescence/death. Together, our results reveal that YAP/TAZ activity levels govern liver cell differentiation and proliferation in a context-dependent manner. The Hippo pathway regulates the differentiation of stem and progenitor cells, but it is unclear how it acts in liver development. Here, the authors knockout Hippo pathway components Lats1 and 2 in the liver, causing suppression of hepatocyte differentiation but promoting biliary cell differentiation.
Collapse
|
29
|
Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A 2015; 113:E71-80. [PMID: 26699479 DOI: 10.1073/pnas.1517188113] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mps One Binder Kinase Activator (MOB)1A/1B are core components of the Hippo pathway that coactivate large tumor suppressor homolog (LATS) kinases. Mob1a/1b double deficiency in mouse liver (LMob1DKO) results in hyperplasia of oval cells and immature cholangiocytes accompanied by inflammatory cell infiltration and fibrosis. More than half of mutant mice die within 3 wk of birth. All survivors eventually develop liver cancers, particularly combined hepatocellular and cholangiocarcinomas (cHC-CCs) and intrahepatic cholangiocellular carcinomas (ICCs), and die by age 60 wk. Because this phenotype is the most severe among mutant mice lacking a Hippo signaling component, MOB1A/1B constitute the critical hub of Hippo signaling in mammalian liver. LMob1DKO liver cells show hyperproliferation, increased cell saturation density, hepatocyte dedifferentiation, enhanced epithelial-mesenchymal transition and cell migration, and elevated transforming growth factor beta(TGF-β)2/3 production. These changes are strongly dependent on Yes-Associated Protein-1 (Yap1) and partially dependent on PDZ-binding motif (Taz) and Tgfbr2, but independent of connective tissue growth factor (Ctgf). In human liver cancers, YAP1 activation is frequent in cHC-CCs and ICCs and correlates with SMAD family member 2 activation. Drug screening revealed that antiparasitic macrocyclic lactones inhibit YAP1 activation in vitro and in vivo. Targeting YAP1/TAZ with these drugs in combination with inhibition of the TGF-β pathway may be effective treatment for cHC-CCs and ICCs.
Collapse
|
30
|
Nakamori D, Takayama K, Nagamoto Y, Mitani S, Sakurai F, Tachibana M, Mizuguchi H. Hepatic maturation of human iPS cell-derived hepatocyte-like cells by ATF5, c/EBPα, and PROX1 transduction. Biochem Biophys Res Commun 2015; 469:424-9. [PMID: 26679606 DOI: 10.1016/j.bbrc.2015.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022]
Abstract
Hepatocyte-like cells differentiated from human iPS cells (human iPS-HLCs) are expected to be utilized in drug development and research. However, recent hepatic characterization of human iPS-HLCs showed that these cells resemble fetal hepatocytes rather than adult hepatocytes. Therefore, in this study, we aimed to develop a method to enhance the hepatic function of human iPS-HLCs. Because the gene expression levels of the hepatic transcription factors (activating transcription factor 5 (ATF5), CCAAT/enhancer-binding protein alpha (c/EBPα), and prospero homeobox protein 1 (PROX1)) in adult liver were significantly higher than those in human iPS-HLCs and fetal liver, we expected that the hepatic functions of human iPS-HLCs could be enhanced by adenovirus (Ad) vector-mediated ATF5, c/EBPα, and PROX1 transduction. The gene expression levels of cytochrome P450 (CYP) 2C9, 2E1, alpha-1 antitrypsin, transthyretin, Na+/taurocholate cotransporting polypeptide, and uridine diphosphate glucuronosyl transferase 1A1 and protein expression levels of CYP2C9 and CYP2E1 were upregulated by ATF5, c/EBPα, and PROX1 transduction. These results suggest that the hepatic functions of the human iPS-HLCs could be enhanced by ATF5, c/EBPα, and PROX1 transduction. Our findings would be useful for the hepatic maturation of human iPS-HLCs.
Collapse
Affiliation(s)
- Daiki Nakamori
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto 606-8302, Japan; Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Yasuhito Nagamoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Seiji Mitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Project, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; iPS Cell-based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
31
|
Berasain C, Avila MA. Regulation of hepatocyte identity and quiescence. Cell Mol Life Sci 2015; 72:3831-51. [PMID: 26089250 PMCID: PMC11114060 DOI: 10.1007/s00018-015-1970-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/23/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Abstract
The liver is a highly differentiated organ with a central role in metabolism, detoxification and systemic homeostasis. To perform its multiple tasks, liver parenchymal cells, the hepatocytes, express a large complement of enabling genes defining their complex phenotype. This phenotype is progressively acquired during fetal development and needs to be maintained in adulthood to guarantee the individual's survival. Upon injury or loss of functional mass, the liver displays an extraordinary regenerative response, mainly based on the proliferation of hepatocytes which otherwise are long-lived quiescent cells. Increasing observations suggest that loss of hepatocellular differentiation and quiescence underlie liver malfunction in chronic liver disease and pave the way for hepatocellular carcinoma development. Here, we briefly review the essential mechanisms leading to the acquisition of liver maturity. We also identify the key molecular factors involved in the preservation of hepatocellular homeostasis and finally discuss potential strategies to preserve liver identity and function.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| |
Collapse
|
32
|
Tasnim F, Phan D, Toh YC, Yu H. Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules. Biomaterials 2015; 70:115-25. [PMID: 26310107 DOI: 10.1016/j.biomaterials.2015.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/01/2015] [Indexed: 12/20/2022]
Abstract
Significant efforts have been invested into the differentiation of stem cells into functional hepatocyte-like cells that can be used for cell therapy, disease modeling and drug screening. Most of these efforts have been concentrated on the use of growth factors to recapitulate developmental signals under in vitro conditions. Using small molecules instead of growth factors would provide an attractive alternative since small molecules are cell-permeable and cheaper than growth factors. We have developed a protocol for the differentiation of human embryonic stem cells into hepatocyte-like cells using a predominantly small molecule-based approach (SM-Hep). This 3 step differentiation strategy involves the use of optimized concentrations of LY294002 and bromo-indirubin-3'-oxime (BIO) for the generation of definitive endoderm; sodium butyrate and dimethyl sulfoxide (DMSO) for the generation of hepatoblasts and SB431542 for differentiation into hepatocyte-like cells. Activin A is the only growth factor required in this protocol. Our results showed that SM-Hep were morphologically and functionally similar or better compared to the hepatocytes derived from the growth-factor induced differentiation (GF-Hep) in terms of expression of hepatic markers, urea and albumin production and cytochrome P450 (CYP1A2 and CYP3A4) activities. Cell viability assays following treatment with paradigm hepatotoxicants Acetaminophen, Chlorpromazine, Diclofenac, Digoxin, Quinidine and Troglitazone showed that their sensitivity to these drugs was similar to human primary hepatocytes (PHHs). Using SM-Hep would result in 67% and 81% cost reduction compared to GF-Hep and PHHs respectively. Therefore, SM-Hep can serve as a robust and cost effective replacement for PHHs for drug screening and development.
Collapse
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Derek Phan
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Yi-Chin Toh
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, MD9-03-03, 2 Medical Drive, Singapore 117597, Singapore; NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117576, Singapore; Mechanobiology Institute, T-Labs, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore; Singapore-MIT Alliance for Research and Technology, 3 Science Drive 2, S16-05-08, Singapore 117543, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S, Li B, Grompe M, Keller G, Kamath BM, Ghanekar A. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol 2015; 33:853-61. [PMID: 26167630 DOI: 10.1038/nbt.3294] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/19/2015] [Indexed: 12/28/2022]
Abstract
Although bile duct disorders are well-recognized causes of liver disease, the molecular and cellular events leading to biliary dysfunction are poorly understood. To enable modeling and drug discovery for biliary disease, we describe a protocol that achieves efficient differentiation of biliary epithelial cells (cholangiocytes) from human pluripotent stem cells (hPSCs) through delivery of developmentally relevant cues, including NOTCH signaling. Using three-dimensional culture, the protocol yields cystic and/or ductal structures that express mature biliary markers, including apical sodium-dependent bile acid transporter, secretin receptor, cilia and cystic fibrosis transmembrane conductance regulator (CFTR). We demonstrate that hPSC-derived cholangiocytes possess epithelial functions, including rhodamine efflux and CFTR-mediated fluid secretion. Furthermore, we show that functionally impaired hPSC-derived cholangiocytes from cystic fibrosis patients are rescued by CFTR correctors. These findings demonstrate that mature cholangiocytes can be differentiated from hPSCs and used for studies of biliary development and disease.
Collapse
Affiliation(s)
- Mina Ogawa
- 1] McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada. [2] Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shinichiro Ogawa
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Christine E Bear
- Program in Molecular Structure &Function, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Saumel Ahmadi
- Program in Molecular Structure &Function, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Stephanie Chin
- Program in Molecular Structure &Function, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Bin Li
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, USA
| | - Markus Grompe
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, USA
| | - Gordon Keller
- 1] McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada. [2] Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. [3] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Binita M Kamath
- 1] Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada. [2] Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Anand Ghanekar
- 1] Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada. [2] Division of General Surgery, University Health Network, Toronto, Ontario, Canada. [3] Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol 2015; 404:136-48. [PMID: 26033091 DOI: 10.1016/j.ydbio.2015.05.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/22/2015] [Accepted: 05/15/2015] [Indexed: 01/08/2023]
Abstract
In developing liver, cholangiocytes derive from the hepatoblasts and organize to form the bile ducts. Earlier work has shown that the SRY-related High Mobility Group box transcription factor 9 (SOX9) is transiently required for bile duct development, raising the question of the potential involvement of other SOX family members in biliary morphogenesis. Here we identify SOX4 as a new regulator of cholangiocyte development. Liver-specific inactivation of SOX4, combined or not with inactivation of SOX9, affects cholangiocyte differentiation, apico-basal polarity and bile duct formation. Both factors cooperate to control the expression of mediators of the Transforming Growth Factor-β, Notch, and Hippo-Yap signaling pathways, which are required for normal development of the bile ducts. In addition, SOX4 and SOX9 control formation of primary cilia, which are known signaling regulators. The two factors also stimulate secretion of laminin α5, an extracellular matrix component promoting bile duct maturation. We conclude that SOX4 is a new regulator of liver development and that it exerts a pleiotropic control on bile duct development in cooperation with SOX9.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Pluripotent stem cells, such as embryonic stem cells and inducible pluripotent stem (iPS) cells, have high proliferative multipotency for differentiation into mature functional cells that are useful for treatment and basic research on several diseases. Cholangiocytes are differentiated from fetal hepatic progenitor cells (hepatoblasts) and are important for transport of bile acids that are synthesized by mature hepatocytes in the liver. However, the molecular mechanisms of development and function of human cholangiocytes remain unknown. This review mentions the potential of human cholangiocytic culture from pluripotent stem cells to contribute to the analyses of the human bile duct system and diseases. RECENT FINDINGS Recent studies found that human hepatic cholangiocytic cells can be differentiated from human embryonic stem and iPS cells in a suitable culture condition. Cholangiocytic cysts have epithelial cell polarity formed in a three-dimensional cell culture system using extracellular matrices. SUMMARY Disease pathogenesis was elucidated in vitro using differentiated cells from disease-related iPS cells. Using genome-editing enzymes, iPS cells with disease-specific gene mutations can be easily and rapidly established. These disease-related iPS cells and cholangiocytic culture system may be useful for analyses and drug screening of human bile duct diseases.
Collapse
|
36
|
From Human-Induced Pluripotent Stem Cells to Liver Disease Modeling: A Focus on Dyslipidemia. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0067-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Michalopolous G. Terminating hepatocyte proliferation during liver regeneration: the roles of two members of the same family (CCAAT-enhancer-binding protein alpha and beta) with opposing actions. Hepatology 2015; 61:32-4. [PMID: 25066527 DOI: 10.1002/hep.27329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- George Michalopolous
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
38
|
Dianat N, Dubois-Pot-Schneider H, Steichen C, Desterke C, Leclerc P, Raveux A, Combettes L, Weber A, Corlu A, Dubart-Kupperschmitt A. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 2014; 60:700-14. [PMID: 24715669 PMCID: PMC4315871 DOI: 10.1002/hep.27165] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Cholangiocytes are biliary epithelial cells, which, like hepatocytes, originate from hepatoblasts during embryonic development. In this study we investigated the potential of human embryonic stem cells (hESCs) to differentiate into cholangiocytes and we report a new approach, which drives differentiation of hESCs toward the cholangiocytic lineage using feeder-free and defined culture conditions. After differentiation into hepatic progenitors, hESCs were differentiated further into cholangiocytes using growth hormone, epidermal growth factor, interleukin-6, and then sodium taurocholate. These conditions also allowed us to generate cholangiocytes from HepaRG-derived hepatoblasts. hESC- and HepaRG-derived cholangiocyte-like cells expressed markers of cholangiocytes including cytokeratin 7 and osteopontin, and the transcription factors SOX9 and hepatocyte nuclear factor 6. The cells also displayed specific proteins important for cholangiocyte functions including cystic fibrosis transmembrane conductance regulator, secretin receptor, and nuclear receptors. They formed primary cilia and also responded to hormonal stimulation by increase of intracellular Ca(2+) . We demonstrated by integrative genomics that the expression of genes, which signed hESC- or HepaRG-cholangiocytes, separates hepatocytic lineage from cholangiocyte lineage. When grown in a 3D matrix, cholangiocytes developed epithelial/apicobasal polarity and formed functional cysts and biliary ducts. In addition, we showed that cholangiocyte-like cells could also be generated from human induced pluripotent stem cells, demonstrating the efficacy of our approach with stem/progenitor cells of diverse origins. CONCLUSION We have developed a robust and efficient method for differentiating pluripotent stem cells into cholangiocyte-like cells, which display structural and functional similarities to bile duct cells in normal liver. These cells will be useful for the in vitro study of the molecular mechanisms of bile duct development and have important potential for therapeutic strategies, including bioengineered liver approaches.
Collapse
Affiliation(s)
- Noushin Dianat
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,IFR 93, Bicêtre HospitalKremlin-Bicêtre, France,DHU Hepatinov, Paul Brousse HospitalVillejuif, France
| | | | - Clara Steichen
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,IFR 93, Bicêtre HospitalKremlin-Bicêtre, France,DHU Hepatinov, Paul Brousse HospitalVillejuif, France
| | - Christophe Desterke
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,DHU Hepatinov, Paul Brousse HospitalVillejuif, France
| | | | - Aurélien Raveux
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,IFR 93, Bicêtre HospitalKremlin-Bicêtre, France
| | - Laurent Combettes
- DHU Hepatinov, Paul Brousse HospitalVillejuif, France,INSERM UMR-S 757UPS-Orsay, Orsay, France
| | - Anne Weber
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,IFR 93, Bicêtre HospitalKremlin-Bicêtre, France,DHU Hepatinov, Paul Brousse HospitalVillejuif, France
| | - Anne Corlu
- INSERM, UMR-S 991, Pontchaillou HospitalRennes, France,University of Rennes 1Rennes, France,
Address reprint requests to: Anne Corlu, Ph.D., INSERM, UMR-S 991, Pontchaillou Hospital, Rennes F-35033, France. E-mail: ; or Anne Dubart-Kupperschmitt, M.D., INSERM, U972, Paul Brousse Hospital, Villejuif, F-94807, France. ; fax: +33 (0)1 47 26 03 19, +33 (0)2 99 54 01 37
| | - Anne Dubart-Kupperschmitt
- INSERM, U972, Paul Brousse HospitalVillejuif, France,Université Paris Sud, UMR-S 972Villejuif, France,IFR 93, Bicêtre HospitalKremlin-Bicêtre, France,DHU Hepatinov, Paul Brousse HospitalVillejuif, France
| |
Collapse
|
39
|
Miura Y, Hagiwara N, Radisky DC, Hirai Y. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells. Exp Cell Res 2014; 327:146-55. [PMID: 24881817 DOI: 10.1016/j.yexcr.2014.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/03/2014] [Accepted: 05/21/2014] [Indexed: 12/22/2022]
Abstract
Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential.
Collapse
Affiliation(s)
- Yuka Miura
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan
| | - Natsumi Hagiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32225 USA
| | - Yohei Hirai
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan.
| |
Collapse
|
40
|
HHEX promotes hepatic-lineage specification through the negative regulation of eomesodermin. PLoS One 2014; 9:e90791. [PMID: 24651531 PMCID: PMC3961246 DOI: 10.1371/journal.pone.0090791] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 02/05/2014] [Indexed: 01/21/2023] Open
Abstract
Human embryonic stem cells (hESCs) could provide a major window into human developmental biology, because the differentiation methods from hESCs mimic human embryogenesis. We previously reported that the overexpression of hematopoietically expressed homeobox (HHEX) in the hESC-derived definitive endoderm (DE) cells markedly promotes hepatic specification. However, it remains unclear how HHEX functions in this process. To reveal the molecular mechanisms of hepatic specification by HHEX, we tried to identify the genes directly targeted by HHEX. We found that HHEX knockdown considerably enhanced the expression level of eomesodermin (EOMES). In addition, HHEX bound to the HHEX response element located in the first intron of EOMES. Loss-of-function assays of EOMES showed that the gene expression levels of hepatoblast markers were significantly upregulated, suggesting that EOMES has a negative role in hepatic specification from the DE cells. Furthermore, EOMES exerts its effects downstream of HHEX in hepatic specification from the DE cells. In conclusion, the present results suggest that HHEX promotes hepatic specification by repressing EOMES expression.
Collapse
|