1
|
Chou TC, You L, Beerens C, Feller KJ, Storteboom J, Chien MP. Instant processing of large-scale image data with FACT, a real-time cell segmentation and tracking algorithm. CELL REPORTS METHODS 2023; 3:100636. [PMID: 37963463 PMCID: PMC10694492 DOI: 10.1016/j.crmeth.2023.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Quantifying cellular characteristics from a large heterogeneous population is essential to identify rare, disease-driving cells. A recent development in the combination of high-throughput screening microscopy with single-cell profiling provides an unprecedented opportunity to decipher disease-driving phenotypes. Accurately and instantly processing large amounts of image data, however, remains a technical challenge when an analysis output is required minutes after data acquisition. Here, we present fast and accurate real-time cell tracking (FACT). FACT can segment ∼20,000 cells in an average of 2.5 s (1.9-93.5 times faster than the state of the art). It can export quantifiable features minutes after data acquisition (independent of the number of acquired image frames) with an average of 90%-96% precision. We apply FACT to identify directionally migrating glioblastoma cells with 96% precision and irregular cell lineages from a 24 h movie with an average F1 score of 0.91.
Collapse
Affiliation(s)
- Ting-Chun Chou
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands; Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Li You
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands; Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Cecile Beerens
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands; Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Kate J Feller
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands; Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Jelle Storteboom
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands; Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Miao-Ping Chien
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands; Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
2
|
Merle T, Theis S, Kamgoué A, Martin E, Sarron F, Gay G, Farge E, Suzanne M. DISSECT is a tool to segment and explore cell and tissue mechanics in highly deformed 3D epithelia. Dev Cell 2023; 58:2181-2193.e4. [PMID: 37586367 DOI: 10.1016/j.devcel.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Understanding morphogenesis strongly relies on the characterization of tissue topology and mechanical properties deduced from imaging data. The development of new imaging techniques offers the possibility to go beyond the analysis of mostly flat surfaces and image and analyze complex tissue organization in depth. An important bottleneck in this field is the need to analyze imaging datasets and extract quantifications not only of cell and tissue morphology but also of the cytoskeletal network's organization in an automatized way. Here, we describe a method, called DISSECT, for DisPerSE (Discrete Persistent Structure Extractor)-based Segmentation and Exploration of Cells and Tissues, that offers the opportunity to extract automatically, in strongly deformed epithelia, a precise characterization of the spatial organization of a given cytoskeletal network combined with morphological quantifications in highly remodeled three-dimensional (3D) epithelial tissues. We believe that this method, applied here to Drosophila tissues, will be of general interest in the expanding field of morphogenesis and tissue biomechanics.
Collapse
Affiliation(s)
- Tatiana Merle
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Sophie Theis
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alain Kamgoué
- Image Processing Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Martin
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Florian Sarron
- IRAP, Institut de Recherche en Astrophysique et Planétologie, CNRS, 14 avenue E. Belin, 31400, Toulouse, France; Université de Toulouse, CNES, UPS-OMP, 14 avenue E. Belin, 31400 Toulouse, France
| | - Guillaume Gay
- Aix Marseille Université, Mutli-Engineering Platform, CENTURI, Marseille, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic Development group, Institut Curie, PSL Research University, CNRS, UMR168, Inserm, Marie Curie UnivParis 06, Institut Curie, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
3
|
Mao Y, Pichaud F. For Special Issue: Tissue size and shape. Semin Cell Dev Biol 2022; 130:1-2. [PMID: 35659474 DOI: 10.1016/j.semcdb.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Franck Pichaud
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
4
|
Guan G, Zhao Z, Tang C. Delineating the mechanisms and design principles of Caenorhabditis elegans embryogenesis using in toto high-resolution imaging data and computational modeling. Comput Struct Biotechnol J 2022; 20:5500-5515. [PMID: 36284714 PMCID: PMC9562942 DOI: 10.1016/j.csbj.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
The nematode (roundworm) Caenorhabditis elegans is one of the most popular animal models for the study of developmental biology, as its invariant development and transparent body enable in toto cellular-resolution fluorescence microscopy imaging of developmental processes at 1-min intervals. This has led to the development of various computational tools for the systematic and automated analysis of imaging data to delineate the molecular and cellular processes throughout the embryogenesis of C. elegans, such as those associated with cell lineage, cell migration, cell morphology, and gene activity. In this review, we first introduce C. elegans embryogenesis and the development of techniques for tracking cell lineage and reconstructing cell morphology during this process. We then contrast the developmental modes of C. elegans and the customized technologies used for studying them with the ones of other animal models, highlighting its advantage for studying embryogenesis with exceptional spatial and temporal resolution. This is followed by an examination of the physical models that have been devised-based on accurate determinations of developmental processes afforded by analyses of imaging data-to interpret the early embryonic development of C. elegans from subcellular to intercellular levels of multiple cells, which focus on two key processes: cell polarization and morphogenesis. We subsequently discuss how quantitative data-based theoretical modeling has improved our understanding of the mechanisms of C. elegans embryogenesis. We conclude by summarizing the challenges associated with the acquisition of C. elegans embryogenesis data, the construction of algorithms to analyze them, and the theoretical interpretation.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking–Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Wen FL, Kwan CW, Wang YC, Shibata T. Autonomous epithelial folding induced by an intracellular mechano-polarity feedback loop. PLoS Comput Biol 2021; 17:e1009614. [PMID: 34871312 PMCID: PMC8675927 DOI: 10.1371/journal.pcbi.1009614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/16/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Epithelial tissues form folded structures during embryonic development and organogenesis. Whereas substantial efforts have been devoted to identifying mechanical and biochemical mechanisms that induce folding, whether and how their interplay synergistically shapes epithelial folds remains poorly understood. Here we propose a mechano-biochemical model for dorsal fold formation in the early Drosophila embryo, an epithelial folding event induced by shifts of cell polarity. Based on experimentally observed apical domain homeostasis, we couple cell mechanics to polarity and find that mechanical changes following the initial polarity shifts alter cell geometry, which in turn influences the reaction-diffusion of polarity proteins, thus forming a feedback loop between cell mechanics and polarity. This model can induce spontaneous fold formation in silico, recapitulate polarity and shape changes observed in vivo, and confer robustness to tissue shape change against small fluctuations in mechanics and polarity. These findings reveal emergent properties of a developing epithelium under control of intracellular mechano-polarity coupling.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (F-LW); (Y-CW); (TS)
| | - Chun Wai Kwan
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yu-Chiun Wang
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- * E-mail: (F-LW); (Y-CW); (TS)
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- * E-mail: (F-LW); (Y-CW); (TS)
| |
Collapse
|
6
|
Mendonca T, Jones AA, Pozo JM, Baxendale S, Whitfield TT, Frangi AF. Origami: Single-cell 3D shape dynamics oriented along the apico-basal axis of folding epithelia from fluorescence microscopy data. PLoS Comput Biol 2021; 17:e1009063. [PMID: 34723957 PMCID: PMC8584784 DOI: 10.1371/journal.pcbi.1009063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/11/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
A common feature of morphogenesis is the formation of three-dimensional structures from the folding of two-dimensional epithelial sheets, aided by cell shape changes at the cellular-level. Changes in cell shape must be studied in the context of cell-polarised biomechanical processes within the epithelial sheet. In epithelia with highly curved surfaces, finding single-cell alignment along a biological axis can be difficult to automate in silico. We present 'Origami', a MATLAB-based image analysis pipeline to compute direction-variant cell shape features along the epithelial apico-basal axis. Our automated method accurately computed direction vectors denoting the apico-basal axis in regions with opposing curvature in synthetic epithelia and fluorescence images of zebrafish embryos. As proof of concept, we identified different cell shape signatures in the developing zebrafish inner ear, where the epithelium deforms in opposite orientations to form different structures. Origami is designed to be user-friendly and is generally applicable to fluorescence images of curved epithelia.
Collapse
Affiliation(s)
- Tania Mendonca
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (TM); (AFF)
| | - Ana A. Jones
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Jose M. Pozo
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Sarah Baxendale
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Tanya T. Whitfield
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Alejandro F. Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine, University of Leeds, Leeds, United Kingdom
- Medical Imaging Research Center (MIRC), University Hospital Gasthuisberg, Cardiovascular Sciences and Electrical Engineering Departments, KU Leuven, Belgium
- * E-mail: (TM); (AFF)
| |
Collapse
|
7
|
Wolf S, Wan Y, McDole K. Current approaches to fate mapping and lineage tracing using image data. Development 2021; 148:dev198994. [PMID: 34498046 DOI: 10.1242/dev.198994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Visualizing, tracking and reconstructing cell lineages in developing embryos has been an ongoing effort for well over a century. Recent advances in light microscopy, labelling strategies and computational methods to analyse complex image datasets have enabled detailed investigations into the fates of cells. Combined with powerful new advances in genomics and single-cell transcriptomics, the field of developmental biology is able to describe the formation of the embryo like never before. In this Review, we discuss some of the different strategies and applications to lineage tracing in live-imaging data and outline software methodologies that can be applied to various cell-tracking challenges.
Collapse
Affiliation(s)
- Steffen Wolf
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Yinan Wan
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
8
|
Abstract
Embryonic development is highly complex and dynamic, requiring the coordination of numerous molecular and cellular events at precise times and places. Advances in imaging technology have made it possible to follow developmental processes at cellular, tissue, and organ levels over time as they take place in the intact embryo. Parallel innovations of in vivo probes permit imaging to report on molecular, physiological, and anatomical events of embryogenesis, but the resulting multidimensional data sets pose significant challenges for extracting knowledge. In this review, we discuss recent and emerging advances in imaging technologies, in vivo labeling, and data processing that offer the greatest potential for jointly deciphering the intricate cellular dynamics and the underlying molecular mechanisms. Our discussion of the emerging area of “image-omics” highlights both the challenges of data analysis and the promise of more fully embracing computation and data science for rapidly advancing our understanding of biology.
Collapse
Affiliation(s)
- Francesco Cutrale
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
- Translational Imaging Center, University of Southern California, Los Angeles, California 90089, USA
| | - Scott E. Fraser
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
- Translational Imaging Center, University of Southern California, Los Angeles, California 90089, USA
- Division of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Le A. Trinh
- Translational Imaging Center, University of Southern California, Los Angeles, California 90089, USA
- Division of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
9
|
Yang R, Li E, Kwon YJ, Mani M, Beitel GJ. QuBiT: a quantitative tool for analyzing epithelial tubes reveals unexpected patterns of organization in the Drosophila trachea. Development 2019; 146:dev.172759. [PMID: 30967427 DOI: 10.1242/dev.172759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/03/2019] [Indexed: 01/26/2023]
Abstract
Biological tubes are essential for animal survival, and their functions are dependent on tube shape. Analyzing the contributions of cell shape and organization to the morphogenesis of small tubes has been hampered by the limitations of existing programs in quantifying cell geometry on highly curved tubular surfaces and calculating tube-specific parameters. We therefore developed QuBiT (Quantitative Tool for Biological Tubes) and used it to analyze morphogenesis of the embryonic Drosophila trachea (airway). In the main tube, we find previously unknown anterior-to-posterior (A-P) gradients of cell apical orientation and aspect ratio, and periodicity in the organization of apical cell surfaces. Inferred cell intercalation during development dampens an A-P gradient of the number of cells per cross-section of the tube, but does not change the patterns of cell connectivity. Computationally 'unrolling' the apical surface of wild-type trachea and the hindgut reveals previously unrecognized spatial patterns of the apical marker Uninflatable and a non-redundant role for the Na+/K+ ATPase in apical marker organization. These unexpected findings demonstrate the importance of a computational tool for analyzing small diameter biological tubes.
Collapse
Affiliation(s)
- Ran Yang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Eric Li
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Yong-Jae Kwon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Madhav Mani
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.,Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.,NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Greg J Beitel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
10
|
Automated FRET quantification shows distinct subcellular ERK activation kinetics in response to graded EGFR signaling in
Drosophila. Genes Cells 2019; 24:297-306. [DOI: 10.1111/gtc.12679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
|
11
|
Koyama H, Shi D, Fujimori T. Biophysics in oviduct: Planar cell polarity, cilia, epithelial fold and tube morphogenesis, egg dynamics. Biophys Physicobiol 2019; 16:89-107. [PMID: 30923666 PMCID: PMC6435019 DOI: 10.2142/biophysico.16.0_89] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Organs and tissues in multi-cellular organisms exhibit various morphologies. Tubular organs have multi-scale morphological features which are closely related to their functions. Here we discuss morphogenesis and the mechanical functions of the vertebrate oviduct in the female reproductive tract, also known as the fallopian tube. The oviduct functions to convey eggs from the ovary to the uterus. In the luminal side of the oviduct, the epithelium forms multiple folds (or ridges) well-aligned along the longitudinal direction of the tube. In the epithelial cells, cilia are formed orienting toward the downstream of the oviduct. The cilia and the folds are supposed to be involved in egg transportation. Planar cell polarity (PCP) is developed in the epithelium, and the disruption of the Celsr1 gene, a PCP related-gene, causes randomization of both cilia and fold orientations, discontinuity of the tube, inefficient egg transportation, and infertility. In this review article, we briefly introduce various biophysical and biomechanical issues in the oviduct, including physical mechanisms of formation of PCP and organized cilia orientation, epithelial cell shape regulation, fold pattern formation generated by mechanical buckling, tubulogenesis, and egg transportation regulated by fluid flow. We also mention about possible roles of the oviducts in egg shape formation and embryogenesis, sinuous patterns of tubes, and fold and tube patterns observed in other tubular organs such as the gut, airways, etc.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
12
|
Sharp TA, Merkel M, Manning ML, Liu AJ. Inferring statistical properties of 3D cell geometry from 2D slices. PLoS One 2019; 14:e0209892. [PMID: 30707703 PMCID: PMC6358273 DOI: 10.1371/journal.pone.0209892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/13/2018] [Indexed: 02/01/2023] Open
Abstract
Although cell shape can reflect the mechanical and biochemical properties of the cell and its environment, quantification of 3D cell shapes within 3D tissues remains difficult, typically requiring digital reconstruction from a stack of 2D images. We investigate a simple alternative technique to extract information about the 3D shapes of cells in a tissue; this technique connects the ensemble of 3D shapes in the tissue with the distribution of 2D shapes observed in independent 2D slices. Using cell vertex model geometries, we find that the distribution of 2D shapes allows clear determination of the mean value of a 3D shape index. We analyze the errors that may arise in practice in the estimation of the mean 3D shape index from 2D imagery and find that typically only a few dozen cells in 2D imagery are required to reduce uncertainty below 2%. Even though we developed the method for isotropic animal tissues, we demonstrate it on an anisotropic plant tissue. This framework could also be naturally extended to estimate additional 3D geometric features and quantify their uncertainty in other materials.
Collapse
Affiliation(s)
- Tristan A. Sharp
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Matthias Merkel
- Physics Department, Syracuse University, Syracuse, NY, United States of America
| | - M. Lisa Manning
- Physics Department, Syracuse University, Syracuse, NY, United States of America
- Syracuse Biomaterials Institute, Syracuse, NY, United States of America
| | - Andrea J. Liu
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
13
|
Mathematical Modeling of Tissue Folding and Asymmetric Tissue Flow during Epithelial Morphogenesis. Symmetry (Basel) 2019. [DOI: 10.3390/sym11010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies have revealed that intrinsic, individual cell behavior can provide the driving force for deforming a two-dimensional cell sheet to a three-dimensional tissue without the need for external regulatory elements. However, whether intrinsic, individual cell behavior could actually generate the force to induce tissue deformation was unclear, because there was no experimental method with which to verify it in vivo. In such cases, mathematical modeling can be effective for verifying whether a locally generated force can propagate through an entire tissue and induce deformation. Moreover, the mathematical model sometimes provides potential mechanistic insight beyond the information obtained from biological experimental results. Here, we present two examples of modeling tissue morphogenesis driven by cell deformation or cell interaction. In the first example, a mathematical study on tissue-autonomous folding based on a two-dimensional vertex model revealed that active modulations of cell mechanics along the basal–lateral surface, in addition to the apical side, can induce tissue-fold formation. In the second example, by applying a two-dimensional vertex model in an apical plane, a novel mechanism of tissue flow caused by asymmetric cell interactions was discovered, which explained the mechanics behind the collective cellular movement observed during epithelial morphogenesis.
Collapse
|
14
|
Krueger D, Tardivo P, Nguyen C, De Renzis S. Downregulation of basal myosin-II is required for cell shape changes and tissue invagination. EMBO J 2018; 37:embj.2018100170. [PMID: 30442834 PMCID: PMC6276876 DOI: 10.15252/embj.2018100170] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 11/29/2022] Open
Abstract
Tissue invagination drives embryo remodeling and assembly of internal organs during animal development. While the role of actomyosin‐mediated apical constriction in initiating inward folding is well established, computational models suggest relaxation of the basal surface as an additional requirement. However, the lack of genetic mutations interfering specifically with basal relaxation has made it difficult to test its requirement during invagination so far. Here we use optogenetics to quantitatively control myosin‐II levels at the basal surface of invaginating cells during Drosophila gastrulation. We show that while basal myosin‐II is lost progressively during ventral furrow formation, optogenetics allows the maintenance of pre‐invagination levels over time. Quantitative imaging demonstrates that optogenetic activation prior to tissue bending slows down cell elongation and blocks invagination. Activation after cell elongation and tissue bending has initiated inhibits cell shortening and folding of the furrow into a tube‐like structure. Collectively, these data demonstrate the requirement of myosin‐II polarization and basal relaxation throughout the entire invagination process.
Collapse
Affiliation(s)
- Daniel Krueger
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pietro Tardivo
- European Molecular Biology Laboratory, Heidelberg, Germany.,IMP, Vienna, Austria
| | - Congtin Nguyen
- European Molecular Biology Laboratory, Heidelberg, Germany.,Northeastern University, Boston, MA, USA
| | | |
Collapse
|
15
|
Campinho P, Lamperti P, Boselli F, Vermot J. Three-dimensional microscopy and image analysis methodology for mapping and quantification of nuclear positions in tissues with approximate cylindrical geometry. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170332. [PMID: 30249780 PMCID: PMC6158202 DOI: 10.1098/rstb.2017.0332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
Organogenesis involves extensive and dynamic changes of tissue shape during development. It is associated with complex morphogenetic events that require enormous tissue plasticity and generate a large variety of transient three-dimensional geometries that are achieved by global tissue responses. Nevertheless, such global responses are driven by tight spatio-temporal regulation of the behaviours of individual cells composing these tissues. Therefore, the development of image analysis tools that allow for extraction of quantitative data concerning individual cell behaviours is central to study tissue morphogenesis. There are many image analysis tools available that permit extraction of cell parameters. Unfortunately, the majority are developed for tissues with relatively simple geometries such as flat epithelia. Problems arise when the tissue of interest assumes a more complex three-dimensional geometry. Here, we use the endothelium of the developing zebrafish dorsal aorta as an example of a tissue with cylindrical geometry and describe the image analysis routines developed to extract quantitative data on individual cells in such tissues, as well as the image acquisition and sample preparation methodology.This article is part of the Theo Murphy meeting issue 'Mechanics of development'.
Collapse
Affiliation(s)
- Pedro Campinho
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Paola Lamperti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Francesco Boselli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
16
|
Sun Z, Toyama Y. Three-dimensional forces beyond actomyosin contraction: lessons from fly epithelial deformation. Curr Opin Genet Dev 2018; 51:96-102. [PMID: 30216753 DOI: 10.1016/j.gde.2018.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Epithelium undergoes complex deformations during morphogenesis. Many of these deformations rely on the remodelling of apical cell junctions by actomyosin-based contractile force and this has been a major research interest for many years. Recent studies have shown that cells can use additional mechanisms that are not directly driven by actomyosin contractility to alter cell shape and movement, in three-dimensional (3D) space and time. In this review, we focus on a number of these mechanisms, including basolateral cellular protrusion, lateral shift of cell polarity, cytoplasmic flow, regulation of cell volume, and force transmission between cell-cell adhesion and cell-extracellular matrix adhesion, and describe how they underlie Drosophila epithelia deformations.
Collapse
Affiliation(s)
- Zijun Sun
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
17
|
Yevick HG, Martin AC. Quantitative analysis of cell shape and the cytoskeleton in developmental biology. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e333. [PMID: 30168893 DOI: 10.1002/wdev.333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/10/2018] [Accepted: 07/25/2018] [Indexed: 11/08/2022]
Abstract
Computational approaches that enable quantification of microscopy data have revolutionized the field of developmental biology. Due to its inherent complexity, elucidating mechanisms of development requires sophisticated analysis of the structure, shape, and kinetics of cellular processes. This need has prompted the creation of numerous techniques to visualize, quantify, and merge microscopy data. These approaches have defined the order and structure of developmental events, thus, providing insight into the mechanisms that drive them. This review describes current computational approaches that are being used to answer developmental questions related to morphogenesis and describe how these approaches have impacted the field. Our intent is not to comprehensively review techniques, but to highlight examples of how different approaches have impacted our understanding of development. Specifically, we focus on methods to quantify cell shape and cytoskeleton structure and dynamics in developing tissues. Finally, we speculate on where the future of computational analysis in developmental biology might be headed. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes Early Embryonic Development > Gastrulation and Neurulation Early Embryonic Development > Development to the Basic Body Plan.
Collapse
Affiliation(s)
- Hannah G Yevick
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
18
|
Koyama H, Fujimori T. Biomechanics of epithelial fold pattern formation in the mouse female reproductive tract. Curr Opin Genet Dev 2018; 51:59-66. [DOI: 10.1016/j.gde.2018.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/07/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
|
19
|
Gómez-Gálvez P, Vicente-Munuera P, Tagua A, Forja C, Castro AM, Letrán M, Valencia-Expósito A, Grima C, Bermúdez-Gallardo M, Serrano-Pérez-Higueras Ó, Cavodeassi F, Sotillos S, Martín-Bermudo MD, Márquez A, Buceta J, Escudero LM. Scutoids are a geometrical solution to three-dimensional packing of epithelia. Nat Commun 2018; 9:2960. [PMID: 30054479 PMCID: PMC6063940 DOI: 10.1038/s41467-018-05376-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/11/2018] [Indexed: 02/08/2023] Open
Abstract
As animals develop, tissue bending contributes to shape the organs into complex three-dimensional structures. However, the architecture and packing of curved epithelia remains largely unknown. Here we show by means of mathematical modelling that cells in bent epithelia can undergo intercalations along the apico-basal axis. This phenomenon forces cells to have different neighbours in their basal and apical surfaces. As a consequence, epithelial cells adopt a novel shape that we term "scutoid". The detailed analysis of diverse tissues confirms that generation of apico-basal intercalations between cells is a common feature during morphogenesis. Using biophysical arguments, we propose that scutoids make possible the minimization of the tissue energy and stabilize three-dimensional packing. Hence, we conclude that scutoids are one of nature's solutions to achieve epithelial bending. Our findings pave the way to understand the three-dimensional organization of epithelial organs.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Pablo Vicente-Munuera
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Antonio Tagua
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Cristina Forja
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Ana M Castro
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Marta Letrán
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | | | - Clara Grima
- Departamento de Matemática Aplicada I, Universidad de Sevilla, 41012, Seville, Spain
| | - Marina Bermúdez-Gallardo
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Óscar Serrano-Pérez-Higueras
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Florencia Cavodeassi
- Centro de Biología Molecular Severo Ochoa and CIBER de Enfermedades Raras. C/ Nicolás Cabrera 1, 28049, Madrid, Spain
- St. George's, University of London, Cranmer Terrace, SW17 0RE, London, UK
| | - Sol Sotillos
- CABD, CSIC/JA/UPO, Campus Universidad Pablo de Olavide, 41013, Seville, Spain
| | | | - Alberto Márquez
- Departamento de Matemática Aplicada I, Universidad de Sevilla, 41012, Seville, Spain
| | - Javier Buceta
- Bioengineering Department, Lehigh University, Bethlehem, PA, 18018, USA.
- Chemical and Biomolecular Engineering Department, Lehigh University, Bethlehem, PA, 18018, USA.
| | - Luis M Escudero
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.
| |
Collapse
|
20
|
Schott B, Traub M, Schlagenhauf C, Takamiya M, Antritter T, Bartschat A, Löffler K, Blessing D, Otte JC, Kobitski AY, Nienhaus GU, Strähle U, Mikut R, Stegmaier J. EmbryoMiner: A new framework for interactive knowledge discovery in large-scale cell tracking data of developing embryos. PLoS Comput Biol 2018; 14:e1006128. [PMID: 29672531 PMCID: PMC5929571 DOI: 10.1371/journal.pcbi.1006128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/01/2018] [Accepted: 04/08/2018] [Indexed: 01/13/2023] Open
Abstract
State-of-the-art light-sheet and confocal microscopes allow recording of entire embryos in 3D and over time (3D+t) for many hours. Fluorescently labeled structures can be segmented and tracked automatically in these terabyte-scale 3D+t images, resulting in thousands of cell migration trajectories that provide detailed insights to large-scale tissue reorganization at the cellular level. Here we present EmbryoMiner, a new interactive open-source framework suitable for in-depth analyses and comparisons of entire embryos, including an extensive set of trajectory features. Starting at the whole-embryo level, the framework can be used to iteratively focus on a region of interest within the embryo, to investigate and test specific trajectory-based hypotheses and to extract quantitative features from the isolated trajectories. Thus, the new framework provides a valuable new way to quantitatively compare corresponding anatomical regions in different embryos that were manually selected based on biological prior knowledge. As a proof of concept, we analyzed 3D+t light-sheet microscopy images of zebrafish embryos, showcasing potential user applications that can be performed using the new framework.
Collapse
Affiliation(s)
- Benjamin Schott
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail: (BS); (JS)
| | - Manuel Traub
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Cornelia Schlagenhauf
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Thomas Antritter
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andreas Bartschat
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Katharina Löffler
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Denis Blessing
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jens C. Otte
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andrei Y. Kobitski
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - G. Ulrich Nienhaus
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
- * E-mail: (BS); (JS)
| |
Collapse
|
21
|
Dufour AC, Jonker AH, Olivo-Marin JC. Deciphering tissue morphodynamics using bioimage informatics. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0512. [PMID: 28348249 DOI: 10.1098/rstb.2015.0512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 11/12/2022] Open
Abstract
In recent years developmental biology has greatly benefited from the latest advances in fluorescence microscopy techniques. Consequently, quantitative and automated analysis of this data is becoming a vital first step in the quest for novel insights into the various aspects of development. Here we present an introductory overview of the various image analysis methods proposed for developmental biology images, with particular attention to openly available software packages. These tools, as well as others to come, are rapidly paving the way towards standardized and reproducible bioimaging studies at the whole-tissue level. Reflecting on these achievements, we discuss the remaining challenges and the future endeavours lying ahead in the post-image analysis era.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- Alexandre C Dufour
- Institut Pasteur, Bioimage Analysis Unit, 25-28 rue du Docteur Roux, Paris, France .,CNRS, UMR 3691, 25-28 rue du Docteur Roux, Paris, France
| | | | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Bioimage Analysis Unit, 25-28 rue du Docteur Roux, Paris, France .,CNRS, UMR 3691, 25-28 rue du Docteur Roux, Paris, France
| |
Collapse
|
22
|
Stegmaier J, Mikut R. Fuzzy-based propagation of prior knowledge to improve large-scale image analysis pipelines. PLoS One 2017; 12:e0187535. [PMID: 29095927 PMCID: PMC5667823 DOI: 10.1371/journal.pone.0187535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022] Open
Abstract
Many automatically analyzable scientific questions are well-posed and a variety of information about expected outcomes is available a priori. Although often neglected, this prior knowledge can be systematically exploited to make automated analysis operations sensitive to a desired phenomenon or to evaluate extracted content with respect to this prior knowledge. For instance, the performance of processing operators can be greatly enhanced by a more focused detection strategy and by direct information about the ambiguity inherent in the extracted data. We present a new concept that increases the result quality awareness of image analysis operators by estimating and distributing the degree of uncertainty involved in their output based on prior knowledge. This allows the use of simple processing operators that are suitable for analyzing large-scale spatiotemporal (3D+t) microscopy images without compromising result quality. On the foundation of fuzzy set theory, we transform available prior knowledge into a mathematical representation and extensively use it to enhance the result quality of various processing operators. These concepts are illustrated on a typical bioimage analysis pipeline comprised of seed point detection, segmentation, multiview fusion and tracking. The functionality of the proposed approach is further validated on a comprehensive simulated 3D+t benchmark data set that mimics embryonic development and on large-scale light-sheet microscopy data of a zebrafish embryo. The general concept introduced in this contribution represents a new approach to efficiently exploit prior knowledge to improve the result quality of image analysis pipelines. The generality of the concept makes it applicable to practically any field with processing strategies that are arranged as linear pipelines. The automated analysis of terabyte-scale microscopy data will especially benefit from sophisticated and efficient algorithms that enable a quantitative and fast readout.
Collapse
Affiliation(s)
- Johannes Stegmaier
- Institute for Applied Computer Science, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- * E-mail:
| | - Ralf Mikut
- Institute for Applied Computer Science, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
23
|
Chanet S, Sharan R, Khan Z, Martin AC. Myosin 2-Induced Mitotic Rounding Enables Columnar Epithelial Cells to Interpret Cortical Spindle Positioning Cues. Curr Biol 2017; 27:3350-3358.e3. [DOI: 10.1016/j.cub.2017.09.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 01/27/2023]
|
24
|
Guirao B, Bellaïche Y. Biomechanics of cell rearrangements in Drosophila. Curr Opin Cell Biol 2017; 48:113-124. [DOI: 10.1016/j.ceb.2017.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/05/2017] [Accepted: 06/24/2017] [Indexed: 10/19/2022]
|
25
|
Merkel M, Manning ML. Using cell deformation and motion to predict forces and collective behavior in morphogenesis. Semin Cell Dev Biol 2017; 67:161-169. [PMID: 27496334 PMCID: PMC5290285 DOI: 10.1016/j.semcdb.2016.07.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/05/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022]
Abstract
In multi-cellular organisms, morphogenesis translates processes at the cellular scale into tissue deformation at the scale of organs and organisms. To understand how biochemical signaling regulates tissue form and function, we must understand the mechanical forces that shape cells and tissues. Recent progress in developing mechanical models for tissues has led to quantitative predictions for how cell shape changes and polarized cell motility generate forces and collective behavior on the tissue scale. In particular, much insight has been gained by thinking about biological tissues as physical materials composed of cells. Here we review these advances and discuss how they might help shape future experiments in developmental biology.
Collapse
Affiliation(s)
- Matthias Merkel
- Department of Physics, Syracuse University, Syracuse, NY 13244, United States
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
26
|
Azuma Y, Onami S. Biologically constrained optimization based cell membrane segmentation in C. elegans embryos. BMC Bioinformatics 2017. [PMID: 28629355 PMCID: PMC5477254 DOI: 10.1186/s12859-017-1717-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent advances in bioimaging and automated analysis methods have enabled the large-scale systematic analysis of cellular dynamics during the embryonic development of Caenorhabditis elegans. Most of these analyses have focused on cell lineage tracing rather than cell shape dynamics. Cell shape analysis requires cell membrane segmentation, which is challenging because of insufficient resolution and image quality. This problem is currently solved by complicated segmentation methods requiring laborious and time consuming parameter adjustments. RESULTS Our new framework BCOMS (Biologically Constrained Optimization based cell Membrane Segmentation) automates the extraction of the cell shape of C. elegans embryos. Both the segmentation and evaluation processes are automated. To automate the evaluation, we solve an optimization problem under biological constraints. The performance of BCOMS was validated against a manually created ground truth of the 24-cell stage embryo. The average deviation of 25 cell shape features was 5.6%. The deviation was mainly caused by membranes parallel to the focal planes, which either contact the surfaces of adjacent cells or make no contact with other cells. Because segmentation of these membranes was difficult even by manual inspection, the automated segmentation was sufficiently accurate for cell shape analysis. As the number of manually created ground truths is necessarily limited, we compared the segmentation results between two adjacent time points. Across all cells and all cell cycles, the average deviation of the 25 cell shape features was 4.3%, smaller than that between the automated segmentation result and ground truth. CONCLUSIONS BCOMS automated the accurate extraction of cell shapes in developing C. elegans embryos. By replacing image processing parameters with easily adjustable biological constraints, BCOMS provides a user-friendly framework. The framework is also applicable to other model organisms. Creating the biological constraints is a critical step requiring collaboration between an experimentalist and a software developer.
Collapse
Affiliation(s)
- Yusuke Azuma
- Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
27
|
Farrell DL, Weitz O, Magnasco MO, Zallen JA. SEGGA: a toolset for rapid automated analysis of epithelial cell polarity and dynamics. Development 2017; 144:1725-1734. [PMID: 28465336 PMCID: PMC5450846 DOI: 10.1242/dev.146837] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023]
Abstract
Epithelial remodeling determines the structure of many organs in the body through changes in cell shape, polarity and behavior and is a major area of study in developmental biology. Accurate and high-throughput methods are necessary to systematically analyze epithelial organization and dynamics at single-cell resolution. We developed SEGGA, an easy-to-use software for automated image segmentation, cell tracking and quantitative analysis of cell shape, polarity and behavior in epithelial tissues. SEGGA is free, open source, and provides a full suite of tools that allow users with no prior computational expertise to independently perform all steps of automated image segmentation, semi-automated user-guided error correction, and data analysis. Here we use SEGGA to analyze changes in cell shape, cell interactions and planar polarity during convergent extension in the Drosophila embryo. These studies demonstrate that planar polarity is rapidly established in a spatiotemporally regulated pattern that is dynamically remodeled in response to changes in cell orientation. These findings reveal an unexpected plasticity that maintains coordinated planar polarity in actively moving populations through the continual realignment of cell polarity with the tissue axes.
Collapse
Affiliation(s)
- Dene L Farrell
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Ori Weitz
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Marcelo O Magnasco
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
28
|
ESC-Track: A computer workflow for 4-D segmentation, tracking, lineage tracing and dynamic context analysis of ESCs. Biotechniques 2017; 62:215-222. [DOI: 10.2144/000114545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/20/2017] [Indexed: 11/23/2022] Open
Abstract
Embryonic stem cells (ESCs) can be established as permanent cell lines, and their potential to differentiate into adult tissues has led to widespread use for studying the mechanisms and dynamics of stem cell differentiation and exploring strategies for tissue repair. Imaging live ESCs during development is now feasible due to advances in optical imaging and engineering of genetically encoded fluorescent reporters; however, a major limitation is the low spatio-temporal resolution of long-term 3-D imaging required for generational and neighboring reconstructions. Here, we present the ESC-Track (ESC-T) workflow, which includes an automated cell and nuclear segmentation and tracking tool for 4-D (3-D + time) confocal image data sets as well as a manual editing tool for visual inspection and error correction. ESC-T automatically identifies cell divisions and membrane contacts for lineage tree and neighborhood reconstruction and computes quantitative features from individual cell entities, enabling analysis of fluorescence signal dynamics and tracking of cell morphology and motion. We use ESC-T to examine Myc intensity fluctuations in the context of mouse ESC (mESC) lineage and neighborhood relationships. ESC-T is a powerful tool for evaluation of the genealogical and microenvironmental cues that maintain ESC fitness.
Collapse
|
29
|
Saarela U, Akram SU, Desgrange A, Rak-Raszewska A, Shan J, Cereghini S, Ronkainen VP, Heikkilä J, Skovorodkin I, Vainio SJ. Novel fixed z-direction (FiZD) kidney primordia and an organoid culture system for time-lapse confocal imaging. Development 2017; 144:1113-1117. [PMID: 28219945 PMCID: PMC5358112 DOI: 10.1242/dev.142950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/07/2017] [Indexed: 01/29/2023]
Abstract
Tissue, organ and organoid cultures provide suitable models for developmental studies, but our understanding of how the organs are assembled at the single-cell level still remains unclear. We describe here a novel fixed z-direction (FiZD) culture setup that permits high-resolution confocal imaging of organoids and embryonic tissues. In a FiZD culture a permeable membrane compresses the tissues onto a glass coverslip and the spacers adjust the thickness, enabling the tissue to grow for up to 12 days. Thus, the kidney rudiment and the organoids can adjust to the limited z-directional space and yet advance the process of kidney morphogenesis, enabling long-term time-lapse and high-resolution confocal imaging. As the data quality achieved was sufficient for computer-assisted cell segmentation and analysis, the method can be used for studying morphogenesis ex vivo at the level of the single constituent cells of a complex mammalian organogenesis model system. Summary: Time-lapse confocal imaging of organoids and embryonic tissues through fixed z-direction culture allows long-term single-cell resolution live imaging of tissue growth and morphogenesis.
Collapse
Affiliation(s)
- Ulla Saarela
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland.,Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Saad Ullah Akram
- Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Center for Machine Vision Research, Department of Computer Science and Engineering, University of Oulu, 90014 Oulu, Finland
| | - Audrey Desgrange
- Sorbonne Universités, UPMC Univ Paris 06, IBPS - UMR7622 Developmental Biology, Paris F-75005, France.,Institut de Biologie Paris-Seine (IBPS) - CNRS UMR7622 Developmental Biology, F-75005 Paris, France
| | - Aleksandra Rak-Raszewska
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland.,Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Jingdong Shan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland.,Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Silvia Cereghini
- Sorbonne Universités, UPMC Univ Paris 06, IBPS - UMR7622 Developmental Biology, Paris F-75005, France.,Institut de Biologie Paris-Seine (IBPS) - CNRS UMR7622 Developmental Biology, F-75005 Paris, France
| | | | - Janne Heikkilä
- Center for Machine Vision Research, Department of Computer Science and Engineering, University of Oulu, 90014 Oulu, Finland
| | - Ilya Skovorodkin
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland .,Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland .,Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, 90220 Oulu, Finland.,Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| |
Collapse
|
30
|
|
31
|
Zou RS, Tomasi C. Deformable Graph Model for Tracking Epithelial Cell Sheets in Fluorescence Microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1625-1635. [PMID: 26829784 DOI: 10.1109/tmi.2016.2521653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose a novel method for tracking cells that are connected through a visible network of membrane junctions. Tissues of this form are common in epithelial cell sheets and resemble planar graphs where each face corresponds to a cell. We leverage this structure and develop a method to track the entire tissue as a deformable graph. This coupled model in which vertices inform the optimal placement of edges and vice versa captures global relationships between tissue components and leads to accurate and robust cell tracking. We compare the performance of our method with that of four reference tracking algorithms on four data sets that present unique tracking challenges. Our method exhibits consistently superior performance in tracking all cells accurately over all image frames, and is robust over a wide range of image intensity and cell shape profiles. This may be an important tool for characterizing tissues of this type especially in the field of developmental biology where automated cell analysis can help elucidate the mechanisms behind controlled cell-shape changes.
Collapse
|
32
|
Stegmaier J, Amat F, Lemon WC, McDole K, Wan Y, Teodoro G, Mikut R, Keller PJ. Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos. Dev Cell 2016; 36:225-40. [PMID: 26812020 DOI: 10.1016/j.devcel.2015.12.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/28/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022]
Abstract
We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55-330 times faster and 2-5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS.
Collapse
Affiliation(s)
- Johannes Stegmaier
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA; Karlsruhe Institute of Technology, Institute for Applied Computer Science, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Fernando Amat
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - William C Lemon
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Katie McDole
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Yinan Wan
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - George Teodoro
- Department of Computer Science, University of Brasilia, Campus Darcy Ribeiro, Brasília, CEP 70910-900, Brazil
| | - Ralf Mikut
- Karlsruhe Institute of Technology, Institute for Applied Computer Science, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Philipp J Keller
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
33
|
Murisic N, Hakim V, Kevrekidis IG, Shvartsman SY, Audoly B. From discrete to continuum models of three-dimensional deformations in epithelial sheets. Biophys J 2016; 109:154-63. [PMID: 26153712 DOI: 10.1016/j.bpj.2015.05.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/13/2015] [Accepted: 05/13/2015] [Indexed: 11/28/2022] Open
Abstract
Epithelial tissue, in which cells adhere tightly to each other and to the underlying substrate, is one of the four major tissue types in adult organisms. In embryos, epithelial sheets serve as versatile substrates during the formation of developing organs. Some aspects of epithelial morphogenesis can be adequately described using vertex models, in which the two-dimensional arrangement of epithelial cells is approximated by a polygonal lattice with an energy that has contributions reflecting the properties of individual cells and their interactions. Previous studies with such models have largely focused on dynamics confined to two spatial dimensions and analyzed them numerically. We show how these models can be extended to account for three-dimensional deformations and studied analytically. Starting from the extended model, we derive a continuum plate description of cell sheets, in which the effective tissue properties, such as bending rigidity, are related explicitly to the parameters of the vertex model. To derive the continuum plate model, we duly take into account a microscopic shift between the two sublattices of the hexagonal network, which has been ignored in previous work. As an application of the continuum model, we analyze tissue buckling by a line tension applied along a circular contour, a simplified set-up relevant to several situations in the developmental contexts. The buckling thresholds predicted by the continuum description are in good agreement with the results of stability calculations based on the vertex model. Our results establish a direct connection between discrete and continuum descriptions of cell sheets and can be used to probe a wide range of morphogenetic processes in epithelial tissues.
Collapse
Affiliation(s)
- Nebojsa Murisic
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Vincent Hakim
- CNRS & Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France
| | - Ioannis G Kevrekidis
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Basile Audoly
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190 Institut Jean Le Rond d'Alembert, Paris, France.
| |
Collapse
|
34
|
Levario TJ, Lim B, Shvartsman SY, Lu H. Microfluidics for High-Throughput Quantitative Studies of Early Development. Annu Rev Biomed Eng 2016; 18:285-309. [PMID: 26928208 DOI: 10.1146/annurev-bioeng-100515-013926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Developmental biology has traditionally relied on qualitative analyses; recently, however, as in other fields of biology, researchers have become increasingly interested in acquiring quantitative knowledge about embryogenesis. Advances in fluorescence microscopy are enabling high-content imaging in live specimens. At the same time, microfluidics and automation technologies are increasing experimental throughput for studies of multicellular models of development. Furthermore, computer vision methods for processing and analyzing bioimage data are now leading the way toward quantitative biology. Here, we review advances in the areas of fluorescence microscopy, microfluidics, and data analysis that are instrumental to performing high-content, high-throughput studies in biology and specifically in development. We discuss a case study of how these techniques have allowed quantitative analysis and modeling of pattern formation in the Drosophila embryo.
Collapse
Affiliation(s)
- Thomas J Levario
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| | - Bomyi Lim
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544;
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544;
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| |
Collapse
|
35
|
Heller D, Hoppe A, Restrepo S, Gatti L, Tournier AL, Tapon N, Basler K, Mao Y. EpiTools: An Open-Source Image Analysis Toolkit for Quantifying Epithelial Growth Dynamics. Dev Cell 2016; 36:103-116. [PMID: 26766446 PMCID: PMC4712040 DOI: 10.1016/j.devcel.2015.12.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/10/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022]
Abstract
Epithelia grow and undergo extensive rearrangements to achieve their final size and shape. Imaging the dynamics of tissue growth and morphogenesis is now possible with advances in time-lapse microscopy, but a true understanding of their complexities is limited by automated image analysis tools to extract quantitative data. To overcome such limitations, we have designed a new open-source image analysis toolkit called EpiTools. It provides user-friendly graphical user interfaces for accurately segmenting and tracking the contours of cell membrane signals obtained from 4D confocal imaging. It is designed for a broad audience, especially biologists with no computer-science background. Quantitative data extraction is integrated into a larger bioimaging platform, Icy, to increase the visibility and usability of our tools. We demonstrate the usefulness of EpiTools by analyzing Drosophila wing imaginal disc growth, revealing previously overlooked properties of this dynamic tissue, such as the patterns of cellular rearrangements.
Collapse
Affiliation(s)
- Davide Heller
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; SIB Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, 1015 Lausanne, Switzerland
| | - Andreas Hoppe
- Digital Imaging Research Centre, Faculty of Science, Engineering and Computing, Kingston University, Kingston-upon-Thames KT1 2EE, UK
| | - Simon Restrepo
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lorenzo Gatti
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Institute of Applied Simulations, Zürich University of Applied Sciences, Einsiedlerstrasse 31a, 8820 Wädenswil, Switzerland; SIB Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, 1015 Lausanne, Switzerland
| | - Alexander L Tournier
- Apoptosis and Proliferation Control Laboratory, Lincoln's Inn Fields Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, Lincoln's Inn Fields Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
36
|
Kappe CP, Schütz L, Gunther S, Hufnagel L, Lemke S, Leitte H. Reconstruction and Visualization of Coordinated 3D Cell Migration Based on Optical Flow. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:995-1004. [PMID: 26529743 DOI: 10.1109/tvcg.2015.2467291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can record video data for every cell during animal development in 3D+t, analyzing these videos remains a major challenge: reconstruction of comprehensive cell tracks turned out to be very demanding especially with decreasing data quality and increasing cell densities. In this paper, we present an analysis pipeline for coordinated cellular motions in developing embryos based on the optical flow of a series of 3D images. We use numerical integration to reconstruct cellular long-term motions in the optical flow of the video, we take care of data validation, and we derive a LIC-based, dense flow visualization for the resulting pathlines. This approach allows us to handle low video quality such as noisy data or poorly separated cells, and it allows the biologists to get a comprehensive understanding of their data by capturing dynamic growth processes in stills. We validate our methods using three videos of growing fruit fly embryos.
Collapse
|
37
|
Gorfinkiel N. From actomyosin oscillations to tissue-level deformations. Dev Dyn 2015; 245:268-75. [DOI: 10.1002/dvdy.24363] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022] Open
|
38
|
Guirao B, Rigaud SU, Bosveld F, Bailles A, López-Gay J, Ishihara S, Sugimura K, Graner F, Bellaïche Y. Unified quantitative characterization of epithelial tissue development. eLife 2015; 4. [PMID: 26653285 PMCID: PMC4811803 DOI: 10.7554/elife.08519] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI:http://dx.doi.org/10.7554/eLife.08519.001 In animals, the final size and shape of each tissue is determined by the precise control of when, where and how much individual cells grow, divide, move and die. An important challenge in biology is to understand how the behaviors of each individual cell can act together to generate a large and reproducible change at the scale of entire tissues and organs. Here, Guirao et al. have developed a new approach to provide maps that reveal how much each cell process contributes to the development of tissues. A caterpillar becoming a butterfly is a famous example of insect ‘metamorphosis’. The fruit fly offers another example of such tissue development: within five days, a rice grain-like maggot morphs into an adult fly with long antennae, legs and wings. Guirao et al. used a microscope to observe cells over a period of several hours during the metamorphosis of the adult fruit fly wings and thorax (the region between the neck and abdomen). In both regions, Guirao et al. showed that all the cell processes participate in the formation of the adult tissue. Cell division, cell death, and changes in cell size affect the size of the tissue, while cell division, cell rearrangements, and changes in cell shape alter the shape of the tissue. The relative contributions of these cell processes varied a lot in both space and time. Further experiments then used mutant flies with defects in cell division to analyse the impact of cell division on the other cell processes and the eventual shape of the tissue. Finally, Guirao et al. showed that there are unexpected interactions between the patterns of tissue growth, cell division and the mechanical forces in the tissue. These findings provide a new approach to uncover how animals from different species can have such a variety of shapes and sizes, even though they each start life as a single cell. Ultimately, this may also aid efforts to understand how certain diseases affect the development of tissues. DOI:http://dx.doi.org/10.7554/eLife.08519.002
Collapse
Affiliation(s)
- Boris Guirao
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Stéphane U Rigaud
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Floris Bosveld
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Anaïs Bailles
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Jesús López-Gay
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Shuji Ishihara
- Department of Physics, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Kaoru Sugimura
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo, Japan
| | - François Graner
- Laboratoire Matière et Systèmes Complexes (CNRS UMR7057), Université Paris-Diderot, Paris, France
| | - Yohanns Bellaïche
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| |
Collapse
|
39
|
Lye CM, Blanchard GB, Naylor HW, Muresan L, Huisken J, Adams RJ, Sanson B. Mechanical Coupling between Endoderm Invagination and Axis Extension in Drosophila. PLoS Biol 2015; 13:e1002292. [PMID: 26544693 PMCID: PMC4636290 DOI: 10.1371/journal.pbio.1002292] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
How genetic programs generate cell-intrinsic forces to shape embryos is actively studied, but less so how tissue-scale physical forces impact morphogenesis. Here we address the role of the latter during axis extension, using Drosophila germband extension (GBE) as a model. We found previously that cells elongate in the anteroposterior (AP) axis in the extending germband, suggesting that an extrinsic tensile force contributed to body axis extension. Here we further characterized the AP cell elongation patterns during GBE, by tracking cells and quantifying their apical cell deformation over time. AP cell elongation forms a gradient culminating at the posterior of the embryo, consistent with an AP-oriented tensile force propagating from there. To identify the morphogenetic movements that could be the source of this extrinsic force, we mapped gastrulation movements temporally using light sheet microscopy to image whole Drosophila embryos. We found that both mesoderm and endoderm invaginations are synchronous with the onset of GBE. The AP cell elongation gradient remains when mesoderm invagination is blocked but is abolished in the absence of endoderm invagination. This suggested that endoderm invagination is the source of the tensile force. We next looked for evidence of this force in a simplified system without polarized cell intercalation, in acellular embryos. Using Particle Image Velocimetry, we identify posteriorwards Myosin II flows towards the presumptive posterior endoderm, which still undergoes apical constriction in acellular embryos as in wildtype. We probed this posterior region using laser ablation and showed that tension is increased in the AP orientation, compared to dorsoventral orientation or to either orientations more anteriorly in the embryo. We propose that apical constriction leading to endoderm invagination is the source of the extrinsic force contributing to germband extension. This highlights the importance of physical interactions between tissues during morphogenesis.
Collapse
Affiliation(s)
- Claire M. Lye
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Guy B. Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Huw W. Naylor
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Richard J. Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Driscoll MK, Danuser G. Quantifying Modes of 3D Cell Migration. Trends Cell Biol 2015; 25:749-759. [PMID: 26603943 DOI: 10.1016/j.tcb.2015.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/31/2022]
Abstract
Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates.
Collapse
|
41
|
Cilla R, Mechery V, Hernandez de Madrid B, Del Signore S, Dotu I, Hatini V. Segmentation and tracking of adherens junctions in 3D for the analysis of epithelial tissue morphogenesis. PLoS Comput Biol 2015; 11:e1004124. [PMID: 25884654 PMCID: PMC4401792 DOI: 10.1371/journal.pcbi.1004124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/12/2015] [Indexed: 11/18/2022] Open
Abstract
Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT) Epithelia are the most common tissue type in multicellular organisms. Understanding processes that make them acquire their final shape has implications to pathologies such as cancer progression and birth defects such as spina bifida. During development, epithelial tissues are remodeled by mechanical forces applied at the Adherens Junctions (AJs). The AJs form a belt-like structure below the apical surface that functions to both mechanically link epithelial cells and enable cells to remodel their shape and contacts with their neighbors. In order to study epithelial morphogenesis in a quantitative and systematic way, it is necessary to measure the changes in the shape of the AJs over time. To this end we have built a complete computational pipeline to process image volumes generated by laser scanning confocal microscopy of epithelial tissues where the AJs have been marked with AJ proteins tagged with GFP. The system transforms input voxel intensity values into a symbolic description of the cells in the tissue, their connectivity and their temporal evolution, including the discovery of mitosis and apoptosis. As a proof of concept, we employed the data generated by our system to study aspects of morphogenesis of the Drosophila notum.
Collapse
Affiliation(s)
- Rodrigo Cilla
- Department of Developmental, Molecular & Chemical Biology. Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (RC); (VH)
| | - Vinodh Mechery
- Department of Developmental, Molecular & Chemical Biology. Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Beatriz Hernandez de Madrid
- Department of Developmental, Molecular & Chemical Biology. Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Steven Del Signore
- Department of Developmental, Molecular & Chemical Biology. Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ivan Dotu
- Department of Biology, Boston College, Boston, Massachusetts, United States of America
| | - Victor Hatini
- Department of Developmental, Molecular & Chemical Biology. Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (RC); (VH)
| |
Collapse
|
42
|
Carneiro K, de Brito JM, Rossi MID. Development by three-dimensional approaches and four-dimensional imaging: to the knowledge frontier and beyond. ACTA ACUST UNITED AC 2015; 105:1-8. [PMID: 25789860 DOI: 10.1002/bdrc.21089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many advances have been taken on elucidating embryonic development and tissue homeostasis and repair by the use of experimental strategies that preserve the three-dimensional (3D) organization and allow quantitative analysis of images over time (four-dimensional). Ranging from the understanding about the relationship between blastomeres and the events that take place during gastrulation by the use of time-lapse imaging through 3D cultures that mimic organogenesis, the advances in this area are of critical value. The studies on embryonic development without disrupting the original architecture and the development of 3D organoid cultures pave a new avenue for unprecedented experimental advances that will positively impact the emergence of new treatments applying regenerative principles for both tissue repair and organ transplant.
Collapse
Affiliation(s)
- Katia Carneiro
- Biomedical Institute of Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|