1
|
Usami Y, Jiang X, Dyment NA, Kokubun T. Limb Motility and Ambulation as Mechanical Cues in Postnatal Murine Tendon Development. Dev Biol 2025:S0012-1606(25)00143-5. [PMID: 40414450 DOI: 10.1016/j.ydbio.2025.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/08/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
The musculoskeletal system provides structural stability and coordination to enable movement. Tendons have the essential role of efficiently transmitting force generated from muscle contraction to bone for ambulation. In doing so, they resist high mechanical loads. Muscle contraction during embryonic development is required for continued tendon growth and differentiation. Defining the types and magnitudes of loads that act on tendons during the early postnatal periods is quite difficult. This study aimed to reveal whether limb motility and spontaneous physical behaviors in the postnatal phase work as mechanical cues for tendon development, leading to mechanobiological phenomena during postnatal phases in the murine model. Neonatal mice showed gradual limb motility, rollover function, and ambulation patterns during early postnatal phases. Tendons showed lengthening, decreasing the cell density and nuclear roundness concurrently. Scx and Tnmd gene expression showed a tendency to increase with time as well. This study presented a comprehensive time course of limb movement and ambulation with corresponding tendon growth during the postnatal phase. Our chronological analysis of the relationship between changing limb loading and tendon development provides a foundation for future work focused on mechanobiology in tendon development.
Collapse
Affiliation(s)
- Yuna Usami
- Graduate School of Health, Medicine, and Welfare, Saitama Prefectural University, Saitama, Japan
| | - Xi Jiang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Takanori Kokubun
- Graduate School of Health, Medicine, and Welfare, Saitama Prefectural University, Saitama, Japan; Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan.
| |
Collapse
|
2
|
Subramanian A, Nayak PK, Schilling TF. A Cold-Active Protease Tissue Dissociation Protocol for the Preservation of the Tendon Fibroblast Transcriptome. Bio Protoc 2025; 15:e5293. [PMID: 40364987 PMCID: PMC12067300 DOI: 10.21769/bioprotoc.5293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/15/2025] Open
Abstract
Traditional tissue dissociation methods for bulk- and single-cell sequencing use various protease and/or collagenase combinations at temperatures ranging from 28 to 37 °C, which cause transcriptional cell stress that may alter data interpretation. Such artifacts can be reduced by dissociating cells in cold-active proteases, but few studies have shown that this improves cell-type specific transcription, particularly in tissues hypersensitive to mechanical integrity and extracellular matrix (ECM) interactions. To address this, we have dissociated zebrafish tendons and ligaments in subtilisin A at 4 °C and compared the results with 37 °C collagenase dissociation using bulk RNA sequencing. We find that high-temperature collagenase dissociation causes general cell stress in tendon fibroblasts (tenocytes) as reported in previous studies with other cell types, but also that high temperature specifically downregulates hallmark genes involved in tenocyte specification and ECM production in vivo. Our results suggest that cold-protease dissociation reduces transcriptional artifacts and increases the robustness of RNA-sequencing datasets such that they better reflect native in vivo tissue microenvironments. Key features • Utilizing a cold-active protease derived from the Himalayan soil bacterium B. licheniformis for tissue dissociation preserves cell transcriptomes, increasing data quality of downstream sequencing experiments. • This method is reproducible and requires no extra equipment for tissue agitation. • Tenocytes isolated using this method show lower stress and better preserved native expression of key tenocyte markers and ECM genes than with traditional warm-dissociation methods. • This protocol is ideal for cell types that are particularly sensitive to microenvironment signals or are embedded in extracellular matrix.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Pavan K. Nayak
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
3
|
Grasa J, Urbiola A, Flandes-Iparraguirre M, Extramiana L, Ederra C, Ortiz-de-Solórzano C, Llombart R, Valentí A, Baquero E, Heras-Sádaba Á, Pons-Villanueva J, Calvo B, Pérez-Ruiz A. Modeling and fabrication of MEW-3D tubular scaffolds with tendon mechanical behavior for tenocyte differentiation. Acta Biomater 2025; 197:226-239. [PMID: 40089128 DOI: 10.1016/j.actbio.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Tendon injuries present substantial challenges in clinical settings, where traditional treatments often lead to suboptimal outcomes, including scar tissue formation, reduced strength, limited range of motion, and re-ruptures. These difficulties primarily arise from the complex hierarchical structure of tendons and their limited healing capacity. Tissue engineering offers promising solutions for tendon regeneration and muscle-to-bone reconnection, typically through the use of biodegradable scaffolds that mimic the extracellular matrix of tendons, thereby supporting cell growth and tissue formation. However, several obstacles must be addressed to develop tendon reconstruction strategies suitable for clinical application. In this study, we developed computational models to design and produce Melt Electrowriting (MEW)-3D tubular structures that replicate the mechanical properties of native mouse Achilles tendons, improving the guidance of tenocyte growth and differentiation. These models incorporated a new approach to consider the non-continuum nature of printed scaffolds formed by sets of fibers interacting with one another. Moreover, these structures facilitated cell confinement, expansion, and alignment, resulting in bundle-like formations with enhanced tensile properties. Importantly, tenocyte differentiation was achieved through a two-step cell culture protocol, which involved transitioning cells from high to low serum media. This approach effectively mitigated the phenotypic drift that often occurs with long-term cell cultures. Statement of Significance Tendon injuries are a common issue in healthcare, often leading to scar tissue, weaker tendons, limited mobility, and frequent re-injury. Tendon engineering aims to address these challenges by using biodegradable "scaffolds" that mimic the natural tendon environment, supporting cell growth and tissue repair. In this study, we developed computational models to design 3D tubular structures using a printing method called Melt Electrowriting (MEW). These structures replicate the mechanical properties of mouse Achilles tendons, guiding tendon cells to grow and differentiate effectively. By creating scaffolds from interwoven fibers, we closely replicated how natural tendon fibers interact, allowing cells to form strong, organized bundles. This approach may improve engineered tendon strength and durability, addressing key challenges in tendon reconstruction strategies.
Collapse
Affiliation(s)
- Jorge Grasa
- Aragón Institute of Engineering Research (i3A), Universidad de Zaragoza, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ainhoa Urbiola
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María Flandes-Iparraguirre
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Leire Extramiana
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Cristina Ederra
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Carlos Ortiz-de-Solórzano
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Rafael Llombart
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Orthopaedic Surgery and Traumatology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Andrés Valentí
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Orthopaedic Surgery and Traumatology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Enrique Baquero
- Institute for Biodiversity and Environment BIOMA, University of Navarra, 31008 Pamplona, Spain
| | - Ángel Heras-Sádaba
- Aragón Institute of Engineering Research (i3A), Universidad de Zaragoza, Spain
| | - Juan Pons-Villanueva
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Orthopaedic Surgery and Traumatology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Begoña Calvo
- Aragón Institute of Engineering Research (i3A), Universidad de Zaragoza, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ana Pérez-Ruiz
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Biomedical Sciences, School of Health Sciences, Universidad CEU Cardenal Herrera, Valencia, Spain.
| |
Collapse
|
4
|
Wang L, Ren Q, Chen S, Lou L, Hu X, Xing W, Suo J, Sun J, Greenblatt MB, Feng H, Zou W. Piezo1 balances the osteogenic-tenogenic plasticity of periosteal progenitor cells through the YAP pathway. Cell Rep 2025; 44:115630. [PMID: 40286268 DOI: 10.1016/j.celrep.2025.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/12/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
The extremity tendons and bones are derived from limb bud mesenchyme, which eventually becomes cells of different tissues. Despite their common origin, it was widely believed that tenocytes and skeletal cells are distinct lineages without interconversion. However, we found that periosteal skeletal progenitor cells could transform between osteogenic and tenogenic commitment. SCX can label the periosteal progenitor cell population. Loss of Piezo1 arrests the periosteal progenitor cells in a progenitor state. Piezo1 deficiency leads to upregulation of Scx expression due to the inhibited YAP nuclear localization. Loss of Piezo1 showed increased tenogenic marker genes and decreased osteogenic marker genes. The periosteal progenitor cells can regenerate the injured tendon more robustly when Piezo1 is absent. Taken together, our data reveal that periosteal SCX+ progenitor cells compromise the osteogenic ability and acquire the tenocyte-biased lineage commitment after loss of Piezo1, providing a strategy to modulate the periosteal progenitor cells for tissue regeneration.
Collapse
Affiliation(s)
- Lijun Wang
- Hainan Institute of Regenerative Orthopedics and Sports Medicine, Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan 570000, China; Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Qian Ren
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuqin Chen
- Hainan Institute of Regenerative Orthopedics and Sports Medicine, Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan 570000, China
| | - Lixiang Lou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuye Hu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenhui Xing
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Heng Feng
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiguo Zou
- Hainan Institute of Regenerative Orthopedics and Sports Medicine, Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan 570000, China; Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
5
|
Barkan E, Duran M, Lammers N, Tresenrider A, Jackson D, Lee H, Haagen B, Saunders L, Abitua P, Kimelman D, Trapnell C. Embryo-scale single-cell chemical transcriptomics reveals dependencies between cell types and signaling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646423. [PMID: 40235986 PMCID: PMC11996465 DOI: 10.1101/2025.04.03.646423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Organogenesis is a highly organized process that is conserved across vertebrates and is heavily dependent on intercellular signaling to achieve cell type identity. We lack a comprehensive understanding of how developing cell types in each organ and tissue depend on developmental signaling pathways. To address this gap in knowledge, we captured the molecular consequences of inhibiting each of the seven major developmental signaling pathways in zebrafish, using large-scale whole embryo single cell RNA-seq from over two million cells. This approach allowed us to detect signaling pathway regulation even in very rare cell types. By focusing on the development of the pectoral fin, we uncovered two new cell types (distal mesenchyme and tenocytes) and multiple novel signaling dependencies during pectoral fin development. This resource serves as a valuable tool for investigators seeking to rapidly assess the role of the major signaling pathways during the formation of their tissue of interest.
Collapse
|
6
|
Nayak PK, Subramanian A, Schilling TF. Transcriptome profiling of tendon fibroblasts at the onset of embryonic muscle contraction reveals novel force-responsive genes. eLife 2025; 14:e105802. [PMID: 40145570 PMCID: PMC12040314 DOI: 10.7554/elife.105802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.
Collapse
Affiliation(s)
- Pavan K Nayak
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| |
Collapse
|
7
|
Xu Z, Hou W, Zhang T, Chen R, Skutella T. Exploring molecular and cellular signaling pathways: Unraveling the pathogenesis of tendinopathy. J Orthop Translat 2025; 51:298-311. [PMID: 40201708 PMCID: PMC11978293 DOI: 10.1016/j.jot.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 04/10/2025] Open
Abstract
Despite the long healing duration of tendon injuries, the outcomes of repairs are frequently suboptimal, resulting in persistent pain and reduced functionality. Current clinical approaches to tendinopathy are primarily symptomatic, encompassing nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroid injections, physical therapies, surgical interventions, loading programs, and pain management. Yet, these treatments have protracted timelines and their efficacy remains uncertain. This uncertainty stems largely from an incomplete understanding of tendinopathy's pathogenesis. Unraveling the mechanisms behind tendinopathy is essential for devising novel therapeutic strategies. In this context, this review systematic reviewed more recent cellular and molecular literature in tendinopathy, in order to summarize the up-to-date advancements including the structure and composition of healthy tendons, the pathophysiological changes in tendinopathy, the molecular pathways implicated in various forms of the condition, and current effective treatment methods. This review not only aims to offer insights but also to inspire further investigation into the mechanisms and clinical management of tendinopathy. The translational potential of this article A deficient understanding of the molecular mechanisms hampers the advancement of therapeutic strategies and drug development. Consequently, an in-depth examination of these molecular mechanisms is essential for comprehending the etiology of tendinopathy and for devising effective clinical management strategies.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Wenjing Hou
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Tao Zhang
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Rui Chen
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Thomas Skutella
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Jenkins TL, Venkataraman S, Saleh A, Calve S, Pourdeyhimi B, Little D. Application of Tendon-Derived Matrix and Carbodiimide Crosslinking Matures the Engineered Tendon-Like Proteome on Meltblown Scaffolds. J Tissue Eng Regen Med 2025; 2025:2184723. [PMID: 40224957 PMCID: PMC11985250 DOI: 10.1155/term/2184723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/20/2025] [Indexed: 04/15/2025]
Abstract
Background: Tendon injuries are increasingly common and heal by fibrosis rather than scar-less regeneration. Tissue engineering seeks to improve repair using synthetic polymer scaffolds with biomimetic factors to enhance the regenerative potential. Methods: In this study, we compared three groups, namely, poly(lactic acid) (PLA) meltblown scaffolds, PLA meltblown scaffolds coated with tendon-derived matrix (TDM), and PLA meltblown scaffolds with carbodiimide crosslinked TDM (2.5:1:1 EDC:NHS:COOH ratio) (EDC-TDM) and determined their potential for engineered tendon development. We cultured human adipose stem cells (hASCs) for 28 days on meltblown scaffolds (n = 4-6/group) and measured tensile mechanical function, matrix synthesis, and matrix composition using biochemical assays and proteomics. Results: Coating PLA meltblown scaffolds with TDM improved yield stretch and stress at 28 days compared with PLA. Matrix synthesis rates for TDM or EDC-TDM were similar to PLA. Proteomic analysis revealed that hASCs produced a collagen-rich extracellular matrix, with many tendon-related matrix proteins. Coating scaffolds with TDM led to an increase in collagen type I whereas EDC-TDM scaffolds had an increase in glycoproteins and ECM regulators compared with other groups, consistent with increased maturity of the newly deposited matrix. Conclusions: TDM coating and crosslinking of meltblown scaffolds demonstrated matricellular benefits for the proteome of engineered tendon development but provided fewer clear benefits toward mechanical, biochemical, and rate of matrix accumulation than expected, and that previous work with electrospun scaffolds would suggest. However, electrospun scaffolds have different fiber structure and microarchitecture than meltblown, suggesting that further consideration of these differences and refinement of TDM application methods to meltblown scaffolds is required.
Collapse
Affiliation(s)
- Thomas Lee Jenkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Sadhana Venkataraman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Aya Saleh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Mechanical Engineering, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Behnam Pourdeyhimi
- The Nonwovens Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Dianne Little
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
9
|
Cao X, Li J, Zhai W, Zhou B, Lin H, Wang Y. Inhibiting Friction-Induced Exogenous Adhesion via Robust Lubricative Core-Shell Nanofibers for High-Quality Tendon Repair. Biomacromolecules 2025; 26:1350-1361. [PMID: 39827415 DOI: 10.1021/acs.biomac.4c01729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Friction is the trigger cause for excessive exogenous adhesion, leading to the poor self-repair of the tendon. To address this problem, we developed electrospun dual-functional nanofibers with surface robust superlubricated performance and bioactive agent delivery to regulate healing balance by reducing exogenous adhesion and promoting endogenous healing. Coaxial electrospinning and our previous developed in situ robust nanocoating growth techniques were employed to create the lubricative/repairable core-shell structured nanofibrous membrane (L/R-NM). The L/R-NM shell featured a robust coating of the zwitterionic PMPC polymer for strong hydration lubrication to resist exogenous healing. The core could achieve sustained platelet-rich plasma release to promote endogenous healing. Friction tests and cell experiments confirmed L/R-NM's prominent lubricating properties and antiadhesive performance in vitro. Rat tendon injury model evaluation indicated that L/R-NM effectively promotes high-quality tendon repair by inhibiting friction-induced exogenous adhesion and promoting endogenous healing. Therefore, we believe that L/R-NM will open a unique novel horizon for tendon repair.
Collapse
Affiliation(s)
- Xin Cao
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Jinghua Li
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Weijie Zhai
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Bowen Zhou
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Hao Lin
- Department of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
- Department of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Koohi-Hosseinabadi O, Shahriarirad R, Dehghanian A, Amini L, Barzegar S, Daneshparvar A, Alavi O, Khazraei SP, Hosseini S, Arabi Monfared A, Khorram R, Tanideh N, Ashkani-Esfahani S. In-vitro and in-vivo assessment of biocompatibility and efficacy of ostrich eggshell membrane combined with platelet-rich plasma in Achilles tendon regeneration. Sci Rep 2025; 15:841. [PMID: 39755875 PMCID: PMC11700202 DOI: 10.1038/s41598-025-85131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025] Open
Abstract
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role. Ostrich eggshell membrane (ESM), characterized by a strong preferential orientation of calcite crystals, forms a semipermeable polymer network with excellent mechanical properties compared to membranes from other bird species, emerging as a potential natural scaffold candidate. Coupled with platelet-rich plasma (PRP), known for its regenerative properties, ESM holds promise for improving tendon repair. This study aims to evaluate the biocompatibility and efficacy of an ESM-PRP scaffold in treating Achilles tendon ruptures, employing in vitro and in vivo assessments to gauge its potential in tendon regeneration in living organisms. Ostrich ESM was prepared from pathogen-free ostrich eggs, sterilized with UV radiation and prepared in desired dimensions before implantation (1.5 × 1 cm). High-resolution scanning electron microscopy (HRSEM) was utilized to visualize the sample morphology and fiber bonding. In vitro biocompatibility was assessed using the MTT assay and DAPI staining, while in vivo biocompatibility was evaluated in a rat model. For the in vivo Achilles tendinopathy assay, rats were divided into groups and subjected to AT rupture followed by treatment with ESM, PRP, or a combination. SEM was employed to evaluate tendon morphology, and real-time PCR was conducted to analyze gene expression levels. The in vivo assay indicated that the ESM scaffold was safe for an extended period of 8 weeks, showing no signs of inflammation based on histopathological analysis. In the Achilles tendon rupture model, combining ESM with PRP enhanced tendon healing after 14 weeks post-surgery. This finding was supported by histopathological, morphological, and mechanical evaluations of tendon tissues compared to normal tendons, untreated tendinopathy, and injured tendons treated with the ESM scaffold. Gene expression analysis revealed significantly increased expression of Col1a1, Col3a1, bFGF, Scleraxis (Scx), and tenomodulin in the ESM-PRP groups. The findings of our study demonstrate that the combination of Ostrich ESM with PRP significantly enhances AT repair and is a biocompatible scaffold for the application in living organisms.
Collapse
Affiliation(s)
- Omid Koohi-Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amireza Dehghanian
- Department of Pathology, School of Medicine, Shiraz University, Shiraz, Iran
| | - Laleh Amini
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sajjad Barzegar
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Afrooz Daneshparvar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Alavi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Ali Arabi Monfared
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, P. O. Box: 7134845794, Shiraz, Iran.
- Pharmacology Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Soheil Ashkani-Esfahani
- Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Foot and Ankle Division, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Chen T, Fernández-Espartero CH, Illand A, Tsai CT, Yang Y, Klapholz B, Jouchet P, Fabre M, Rossier O, Cui B, Lévêque-Fort S, Brown NH, Giannone G. Actin-driven nanotopography promotes stable integrin adhesion formation in developing tissue. Nat Commun 2024; 15:8691. [PMID: 39375335 PMCID: PMC11458790 DOI: 10.1038/s41467-024-52899-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Morphogenesis requires building stable macromolecular structures from highly dynamic proteins. Muscles are anchored by long-lasting integrin adhesions to resist contractile force. However, the mechanisms governing integrin diffusion, immobilization, and activation within developing tissues remain elusive. Here, we show that actin polymerization-driven membrane protrusions form nanotopographies that enable strong adhesion at Drosophila muscle attachment sites (MASs). Super-resolution microscopy reveals that integrins assemble adhesive belts around Arp2/3-dependent actin protrusions, forming invadosome-like structures with membrane nanotopographies. Single protein tracking shows that, during MAS development, integrins become immobile and confined within diffusion traps formed by the membrane nanotopographies. Actin filaments also display restricted motion and confinement, indicating strong mechanical connection with integrins. Using isolated muscle cells, we show that substrate nanotopography, rather than rigidity, drives adhesion maturation by regulating actin protrusion, integrin diffusion and immobilization. These results thus demonstrate that actin-polymerization-driven membrane protrusions are essential for the formation of strong integrin adhesions sites in the developing embryo, and highlight the important contribution of geometry to morphogenesis.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| | - Cecilia H Fernández-Espartero
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Sevilla, Spain
| | - Abigail Illand
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Ching-Ting Tsai
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Yang Yang
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Benjamin Klapholz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pierre Jouchet
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Mélanie Fabre
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Olivier Rossier
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Bianxiao Cui
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Sandrine Lévêque-Fort
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| |
Collapse
|
12
|
Niu F, Ma R, Zhao T, Fan H, Han J, Zhu N, Hu Y, Meng X, Wang Z. The Correlation of Dynamic Magnetic Resonance Imaging Evaluation With Histological, Biochemical, and Biomechanical Properties in Healing Progress After Achilles Tendon Injury: A Review. J Magn Reson Imaging 2024; 60:1243-1258. [PMID: 37991165 DOI: 10.1002/jmri.29142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
Achilles tendon injury is a common sports injury, and an in-depth understanding of its healing process is essential for improving rehabilitation strategies. As a non-invasive imaging technology with excellent anatomical and functional information extraction abilities, magnetic resonance imaging (MRI) has been widely used in the evaluation and monitoring of Achilles tendon injury. MRI scans at different stages of Achilles tendon healing can provide information about the structure of the Achilles tendon tissue, blood supply, composition, and metabolism. The change pattern on dynamic MRI evaluation is closely related to the specific stage of Achilles tendon healing and tissue characteristics. For example, the signal strength of dynamic enhanced MRI sequences can reflect blood supply to the Achilles tendon, whereas some quantitative MRI techniques can provide information on the recovery of water and collagen contents in the Achilles tendon. This article discusses the pathophysiological changes after Achilles tendon injury and summarizes the clinical and research status of the MRI techniques used for monitoring Achilles tendon healing. The feasibility of various MRI techniques for monitoring Achilles tendon healing and their correlation with histology, biochemistry, and biomechanics are reviewed, along with the challenges, limitations, and potential opportunities for their application. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Feige Niu
- The Department of Radiology, Tianjin Hospital, Tianjin, China
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rongxing Ma
- The Department of Radiology, Tianjin Hospital, Tianjin, China
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Tingting Zhao
- The Department of Radiology, Tianjin Hospital, Tianjin, China
- Graduate School, Tianjin University, Tianjin, China
| | - Hongxing Fan
- The Department of Radiology, Tianjin Hospital, Tianjin, China
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jun Han
- The Department of Radiology, Tianjin Hospital, Tianjin, China
- Graduate School, Tianjin University, Tianjin, China
| | - Nana Zhu
- The Department of Radiology, Tianjin Hospital, Tianjin, China
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yongcheng Hu
- The Department of Radiology, Tianjin Hospital, Tianjin, China
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Xianghong Meng
- The Department of Radiology, Tianjin Hospital, Tianjin, China
| | - Zhi Wang
- The Department of Radiology, Tianjin Hospital, Tianjin, China
- Graduate School, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
He W, Jiang C, Zhou P, Hu X, Gu X, Zhang S. Role of tendon-derived stem cells in tendon and ligament repair: focus on tissue engineer. Front Bioeng Biotechnol 2024; 12:1357696. [PMID: 39175617 PMCID: PMC11338810 DOI: 10.3389/fbioe.2024.1357696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
This review offered a comprehensive analysis of tendon and ligament injuries, emphasizing the crucial role of tendon-derived stem cells (TDSCs) in tissue engineering as a potential solution for these challenging medical conditions. Tendon and ligament injuries, prevalent among athletes, the elderly, and laborers, often result in long-term disability and reduced quality of life due to the poor intrinsic healing capacity of these avascular structures. The formation of biomechanically inferior scar tissue and a high rate of reinjury underscore the need for innovative approaches to enhance and guide the regenerative process. This review delved into the complexities of tendon and ligament structure and function, types of injuries and their impacts, and the limitations of the natural repair process. It particularly focused on the role of TDSCs within the context of tissue engineering. TDSCs, with their ability to differentiate into tenocytes, are explored in various applications, including biocompatible scaffolds for cell tracking, co-culture systems to optimize tendon-bone healing, and graft healing techniques. The review also addressed the challenges of immunoreactivity post-transplantation, the importance of pre-treating TDSCs, and the potential of hydrogels and decellularized matrices in supporting tendon regeneration. It concluded by highlighting the essential roles of mechanical and molecular stimuli in TDSC differentiation and the current challenges in the field, paving the way for future research directions.
Collapse
Affiliation(s)
- Wei He
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Chao Jiang
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ping Zhou
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Xujun Hu
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - XiaoPeng Gu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejiang, China
| | - SongOu Zhang
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejiang, China
| |
Collapse
|
14
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
15
|
Augustin G, Jeong JH, Kim M, Hur SS, Lee JH, Hwang Y. Stem Cell‐Based Therapies and Tissue Engineering Innovations for Tendinopathy: A Comprehensive Review of Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/06/2025]
Abstract
AbstractTendon diseases commonly lead to physical disability, exerting a profound impact on the routine of affected patients. These conditions respond poorly to existing treatments, presenting a substantial challenge for orthopedic scientists. Research into clinical translational therapy has yet to yield highly versatile interventions capable of effectively addressing tendon diseases, including tendinopathy. Stem cell‐based therapies have emerged as a promising avenue for modifying the biological milieu through the secretion of regenerative and immunomodulatory factors. The current review provides an overview of the intricate tendon microenvironment, encompassing various tendon stem progenitor cells within distinct tendon sublocations, gene regulation, and pathways pertinent to tendon development, and the pathology of tendon diseases. Subsequently, the advantages of stem cell‐based therapies are discussed that utilize distinct types of autologous and allogeneic stem cells for tendon regeneration at the translational level. Moreover, this review outlines the challenges, gaps, and future innovations to propose a consolidated stem cell‐based therapy to treat tendinopathy. Finally, regenerative soluble therapies, insoluble bio‐active therapies, along with insoluble bio‐active therapies, and implantable 3D scaffolds for tendon tissue engineering are discussed, thereby presenting a pathway toward enhanced tissue regeneration and engineering.
Collapse
Affiliation(s)
- George Augustin
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Biochemistry and Biophysics Oregon State University Corvallis OR 92331 USA
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Integrated Biomedical Science Soonchunhyang University Asan‐si, Chungnam‐Do 31538 Republic of Korea
| | - Min‐Kyu Kim
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
| | - Joon Ho Lee
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Integrated Biomedical Science Soonchunhyang University Asan‐si, Chungnam‐Do 31538 Republic of Korea
| |
Collapse
|
16
|
Josvai M, Polyak E, Kalluri M, Robertson S, Crone WC, Suzuki M. An engineered in vitro model of the human myotendinous junction. Acta Biomater 2024; 180:279-294. [PMID: 38604466 PMCID: PMC11088524 DOI: 10.1016/j.actbio.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
The myotendinous junction (MTJ) is a vulnerable region at the interface of skeletal muscle and tendon that forms an integrated mechanical unit. This study presents a technique for the spatially restrictive co-culture of human embryonic stem cell (hESC)-derived skeletal myocytes and primary tenocytes for two-dimensional modeling of the MTJ. Micropatterned lanes of extracellular matrix and a 2-well culture chamber define the initial regions of occupation. On day 1, both lines occupy less than 20 % of the initially vacant interstitial zone, referred to henceforth as the junction. Myocyte-tenocyte interdigitations are observed by day 7. Immunocytochemistry reveals enhanced organization and alignment of patterned myocyte and tenocyte features, as well as differential expression of multiple MTJ markers. On day 24, electrically stimulated junction myocytes demonstrate negative contractile strains, while positive tensile strains are exhibited by mechanically passive tenocytes at the junction. Unpatterned tenocytes distal to the junction experience significantly decreased strains in comparison to cells at the interface. Unpatterned myocytes have impaired organization and uncoordinated contractile behavior. These findings suggest that this platform is capable of inducing myocyte-tenocyte junction formation and mechanical coupling similar to the native MTJ, showing transduction of force across the cell-cell interface. STATEMENT OF SIGNIFICANCE: The myotendinous junction (MTJ) is an integrated structure that transduces force across the muscle-tendon boundary, making the region vulnerable to strain injury. Despite the clinical relevance, previous in vitro models of the MTJ lack the structure and mechanical accuracy of the native tissue and have difficulty transmitting force across the cell-cell interface. This study demonstrates an in vitro model of the MTJ, using spatially restrictive cues to inform human myocyte-tenocyte interactions and architecture. The model expressed MTJ markers and developed anisotropic myocyte-tenocyte integrations that resemble the native tissue and allow for force transduction from contracting myocytes to passive tenocyte regions. As such, this study presents a system capable of investigating development, injury, and pathology in the human MTJ.
Collapse
Affiliation(s)
- Mitchell Josvai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA
| | - Erzsebet Polyak
- Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA
| | - Meghana Kalluri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA
| | - Wendy C Crone
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA; Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Avenue, Madison, WI 53706, USA.
| | - Masatoshi Suzuki
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
17
|
Steltzer SS, Abraham AC, Killian ML. Interfacial Tissue Regeneration with Bone. Curr Osteoporos Rep 2024; 22:290-298. [PMID: 38358401 PMCID: PMC11060924 DOI: 10.1007/s11914-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE OF REVIEW Interfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing. RECENT FINDINGS Cues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment. In this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic.
Collapse
Affiliation(s)
- Stephanie S Steltzer
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Adam C Abraham
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
von Witzleben M, Hahn J, Richter RF, de Freitas B, Steyer E, Schütz K, Vater C, Bernhardt A, Elschner C, Gelinsky M. Tailoring the pore design of embroidered structures by melt electrowriting to enhance the cell alignment in scaffold-based tendon reconstruction. BIOMATERIALS ADVANCES 2024; 156:213708. [PMID: 38029698 DOI: 10.1016/j.bioadv.2023.213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Tissue engineering of ligaments and tendons aims to reproduce the complex and hierarchical tissue structure while meeting the biomechanical and biological requirements. For the first time, the additive manufacturing methods of embroidery technology and melt electrowriting (MEW) were combined to mimic these properties closely. The mechanical benefits of embroidered structures were paired with a superficial micro-scale structure to provide a guide pattern for directional cell growth. An evaluation of several previously reported MEW fiber architectures was performed. The designs with the highest cell orientation of primary dermal fibroblasts were then applied to embroidery structures and subsequently evaluated using human adipose-derived stem cells (AT-MSC). The addition of MEW fibers resulted in the formation of a mechanically robust layer on the embroidered scaffolds, leading to composite structures with mechanical properties comparable to those of the anterior cruciate ligament. Furthermore, the combination of embroidered and MEW structures supports a higher cell orientation of AT-MSC compared to embroidered structures alone. Collagen coating further promoted cell attachment. Thus, these investigations provide a sound basis for the fabrication of heterogeneous and hierarchical synthetic tendon and ligament substitutes.
Collapse
Affiliation(s)
- Max von Witzleben
- Technische Universität Dresden, University Hospital Carl Gustav Carus and Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Judith Hahn
- Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Institute of Polymer Materials, Hohe Str. 6, 01069 Dresden, Germany
| | - Ron F Richter
- Technische Universität Dresden, University Hospital Carl Gustav Carus and Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Bianca de Freitas
- Technische Universität Dresden, University Hospital Carl Gustav Carus and Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Emily Steyer
- Technische Universität Dresden, University Hospital Carl Gustav Carus and Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Kathleen Schütz
- Technische Universität Dresden, University Hospital Carl Gustav Carus and Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Corina Vater
- Technische Universität Dresden, University Hospital Carl Gustav Carus and Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anne Bernhardt
- Technische Universität Dresden, University Hospital Carl Gustav Carus and Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Cindy Elschner
- Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Institute of Polymer Materials, Hohe Str. 6, 01069 Dresden, Germany
| | - Michael Gelinsky
- Technische Universität Dresden, University Hospital Carl Gustav Carus and Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany.
| |
Collapse
|
19
|
Tu T, Shi Y, Zhou B, Wang X, Zhang W, Zhou G, Mo X, Wang W, Wu J, Liu W. Type I collagen and fibromodulin enhance the tenogenic phenotype of hASCs and their potential for tendon regeneration. NPJ Regen Med 2023; 8:67. [PMID: 38092758 PMCID: PMC10719373 DOI: 10.1038/s41536-023-00341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Our previous work demonstrated the tendon-derived extracellular matrix (ECM) extracts as vital niches to specifically direct mesenchymal stem cells towards tenogenic differentiation. This study aims to further define the effective ECM molecules capable of teno-lineage induction on human adipose-derived stem cells (hASCs) and test their function for tendon engineering. By detecting the teno-markers expression levels in hASCs exposed to various substrate coatings, collagen I (COL1) and fibromodulin (FMOD) were identified to be the key molecules as a combination and further employed to the modification of poly(L-lactide-co-ε-caprolactone) electrospun nanoyarns, which showed advantages in inducting seeded hASCs for teno-lineage specific differentiation. Under dynamic mechanical loading, modified scaffold seeded with hASCs formed neo-tendon in vitro at the histological level and formed better tendon tissue in vivo with mature histology and enhanced mechanical properties. Primary mechanistic investigation with RNA sequencing demonstrated that the inductive mechanism of these two molecules for hASCs tenogenic differentiation was directly correlated with positive regulation of peptidase activity, regulation of cell-substrate adhesion and regulation of cytoskeletal organization. These biological processes were potentially affected by LOC101929398/has-miR-197-3p/TENM4 ceRNA regulation axis. In summary, COL1 and FMOD in combination are the major bioactive molecules in tendon ECM for likely directing tenogenic phenotype of hASCs and certainly valuable for hASCs-based tendon engineering.
Collapse
Affiliation(s)
- Tian Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yuan Shi
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China
| | - Boya Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyu Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Tissue Engineering Center of China, Shanghai, 200241, China.
| |
Collapse
|
20
|
Kviatkovsky SA, Hickner RC, Cabre HE, Small SD, Ormsbee MJ. Collagen peptides supplementation improves function, pain, and physical and mental outcomes in active adults. J Int Soc Sports Nutr 2023; 20:2243252. [PMID: 37551682 PMCID: PMC10411303 DOI: 10.1080/15502783.2023.2243252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
INTRODUCTION Chronic pain affects 19% of adults in the United States, with increasing prevalence in active and aging populations. Pain can limit physical activity and activities of daily living (ADLs), resulting in declined mental and social health. Nutritional interventions for pain currently target inflammation or joint health, but few influence both. Collagen, the most abundant protein in the human body and constituent of the extra cellular matrix, is such a nutraceutical. While there have been reports of reductions in pain with short-term collagen peptide (CP) supplementation, there are no long-term studies specifically in healthy middle-aged active adults. PURPOSE To determine the effects of daily CP consumption over 3, 6, and 9 months on survey measures of pain, function, and physical and mental health using The Knee Injury & Osteoarthritis Outcomes Score (KOOS) and Veterans Rand 12 (VR-12) in middle-aged active adults. METHODS This study was a double-blind randomized control trial with three treatment groups (Placebo, 10 g/d CP, and 20 g/d CP). RESULTS Improvements in ADLs (p = .031, ηp2 = .096) and pain (p = .037, ηp2 = .164) were observed with 10 g/d CP over 6 months, although pain only improved in high frequency exercisers (>180 min/week). Additionally, VR-12 mental component scores (MCS) improved with 10 g/d of CP over 3-9 months (p = .017, ηp2 = .309), while physical component scores (PCS) improved with 20 g/d of CP over 3-9 months, but only in females (p = .013, ηp2= .582). CONCLUSION These findings suggest 10 to 20 g/d of CP supplementation over 6 to 9 months may improve ADLs, pain, MCS, and PCS in middle-aged active adults.
Collapse
Affiliation(s)
- Shiloah A. Kviatkovsky
- Florida State University, Department of Nutrition and Integrative Physiology, Tallahassee, FL, USA
- Florida State University, Institute of Sports Sciences and Medicine, Tallahassee, FL, USA
- University of Arkansas for Medical Sciences, Center for Aging and Longevity, Geriatrics, Little Rock, AR, USA
| | - Robert C. Hickner
- Florida State University, Department of Nutrition and Integrative Physiology, Tallahassee, FL, USA
- Florida State University, Institute of Sports Sciences and Medicine, Tallahassee, FL, USA
- University of KwaZulu-Natal, School of Health Sciences, Discipline of Biokinetics, Exercise and Leisure Sciences, Durban, South Africa
| | - Hannah E. Cabre
- The University of North Carolina at Chapel Hill, Applied Physiology Lab, Department of Sport Science, Chapel Hill, NC, USA
| | - Stephanie D. Small
- University of Toronto, Faculty of Kinesiology & Physical Education, Toronto, ON, Canada
| | - Michael J. Ormsbee
- Florida State University, Department of Nutrition and Integrative Physiology, Tallahassee, FL, USA
- Florida State University, Institute of Sports Sciences and Medicine, Tallahassee, FL, USA
- University of KwaZulu-Natal, School of Health Sciences, Discipline of Biokinetics, Exercise and Leisure Sciences, Durban, South Africa
| |
Collapse
|
21
|
Tsai SL, Villaseñor S, Shah RR, Galloway JL. Endogenous tenocyte activation underlies the regenerative capacity of the adult zebrafish tendon. NPJ Regen Med 2023; 8:52. [PMID: 37726307 PMCID: PMC10509205 DOI: 10.1038/s41536-023-00328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
Tendons are essential, frequently injured connective tissues that transmit forces from muscle to bone. Their unique highly ordered, matrix-rich structure is critical for proper function. While adult mammalian tendons heal after acute injuries, endogenous tendon cells, or tenocytes, fail to respond appropriately, resulting in the formation of disorganized fibrovascular scar tissue with impaired function and increased propensity for re-injury. Here, we show that, unlike mammals, adult zebrafish tenocytes activate upon injury and fully regenerate the tendon. Using a full tear injury model in the adult zebrafish craniofacial tendon, we defined the hallmark stages and cellular basis of tendon regeneration through multiphoton imaging, lineage tracing, and transmission electron microscopy approaches. Remarkably, we observe that zebrafish tendons regenerate and restore normal collagen matrix ultrastructure by 6 months post-injury (mpi). Tendon regeneration progresses in three main phases: inflammation within 24 h post-injury (hpi), cellular proliferation and formation of a cellular bridge between the severed tendon ends at 3-5 days post-injury (dpi), and re-differentiation and matrix remodeling beginning from 5 dpi to 6 mpi. Importantly, we demonstrate that pre-existing tenocytes are the main cellular source of regeneration, proliferating and migrating upon injury to ultimately bridge the tendon ends. Finally, we show that TGF-β signaling is required for tenocyte recruitment and bridge formation. Collectively, our work debuts and aptly positions the adult zebrafish tendon as an invaluable comparative system to elucidate regenerative mechanisms that may inspire new therapeutic strategies.
Collapse
Affiliation(s)
- Stephanie L Tsai
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steffany Villaseñor
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rishita R Shah
- Department of Biology, Barnard College, New York, NY, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
22
|
Fukumoto Y, Taniguchi M, Hirono T, Yagi M, Yamagata M, Nakai R, Yamada Y, Kimura M, Ichihashi N. Association of Regional Muscle Thickness and Echo Intensity with Muscle Volume, Intramuscular Adipose Tissue, and Strength of the Quadriceps Femoris. Clin Interv Aging 2023; 18:1513-1521. [PMID: 37724172 PMCID: PMC10505373 DOI: 10.2147/cia.s424504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Purpose This study aimed to investigate the association of muscle thickness (MT) and echo intensity (EI) obtained at different regions along the muscle length with muscle volume (MV), intramuscular adipose tissue (IntraMAT), and muscle strength of the quadriceps femoris (QF). Patients and Methods A total of 135 community-dwelling adults (64 men and 71 women) participated in the study. Ultrasound scanning of the rectus femoris (RF) and vastus intermedius (VI) was performed at three locations (from mid- to distal thigh). The MT of the RF and VI and EI of the RF were measured. MRI-derived MV, IntraMAT, and muscle strength of the QF were measured. Results The correlation between RF-MT and RF-MV weakened as scanning approached the distal thigh, and the difference between the coefficients for the scanning locations was significant for women. However, the correlation of VI-MT with VI-MV and that of the combined MT of RF and VI with the MV of the whole QF and muscle strength were comparable among the scanning locations for both sexes. The correlation of RF-EI with the IntraMAT of the RF and the whole QF and muscle strength was also comparable among the scanning locations for both sexes. Conclusion The results of this study suggest that ultrasound measurements at the distal thigh can predict MV, IntraMAT, and muscle strength of the QF to the same degree as those at the mid-thigh.
Collapse
Affiliation(s)
- Yoshihiro Fukumoto
- Faculty of Rehabilitation, Kansai Medical University, Hirakata, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Taniguchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuya Hirono
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahide Yagi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Yamagata
- Faculty of Rehabilitation, Kansai Medical University, Hirakata, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryusuke Nakai
- Kyoto University Institute for the Future of Human Society, Kyoto, Japan
| | - Yosuke Yamada
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Tokyo, Japan
| | - Misaka Kimura
- Institute for Active Health, Kyoto University of Advanced Science, Kameoka, Japan
| | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Shojaee A. Equine tendon mechanical behaviour: Prospects for repair and regeneration applications. Vet Med Sci 2023; 9:2053-2069. [PMID: 37471573 PMCID: PMC10508504 DOI: 10.1002/vms3.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Tendons are dense connective tissues that play an important role in the biomechanical function of the musculoskeletal system. The mechanical forces have been implicated in every aspect of tendon biology. Tendon injuries are frequently occurring and their response to treatments is often unsatisfactory. A better understanding of tendon biomechanics and mechanobiology can help develop treatment options to improve clinical outcomes. Recently, tendon tissue engineering has gained more attention as an alternative treatment due to its potential to overcome the limitations of current treatments. This review first provides a summary of tendon mechanical properties, focusing on recent findings of tendon mechanobiological responses. In the next step, we highlight the biomechanical parameters of equine energy-storing and positional tendons. The final section is devoted to how mechanical loading contributes to tenogenic differentiation using bioreactor systems. This study may help develop novel strategies for tendon injury prevention or accelerate and improve tendon healing.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of PhysiologyDepartment of Basic SciencesFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
24
|
Subramanian A, Kanzaki LF, Schilling TF. Mechanical force regulates Sox9 expression at the developing enthesis. Development 2023; 150:dev201141. [PMID: 37497608 PMCID: PMC10445799 DOI: 10.1242/dev.201141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Entheses transmit force from tendons and ligaments to the skeleton. Regional organization of enthesis extracellular matrix (ECM) generates differences in stiffness required for force transmission. Two key transcription factors co-expressed in entheseal tenocytes, scleraxis (Scx) and Sox9, directly control production of enthesis ECM components. Formation of embryonic craniofacial entheses in zebrafish coincides with onset of jaw movements, possibly in response to the force of muscle contraction. We show dynamic changes in scxa and sox9a mRNA levels in subsets of entheseal tenocytes that correlate with their roles in force transmission. We also show that transcription of a direct target of Scxa, Col1a, in enthesis ECM is regulated by the ratio of scxa to sox9a expression. Eliminating muscle contraction by paralyzing embryos during early stages of musculoskeletal differentiation alters relative levels of scxa and sox9a in entheses, primarily owing to increased sox9a expression. Force-dependent TGF-β (TGFβ) signaling is required to maintain this balance of scxa and sox9a expression. Thus, force from muscle contraction helps establish a balance of transcription factor expression that controls specialized ECM organization at the tendon enthesis and its ability to transmit force.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Lauren F. Kanzaki
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
25
|
Parker JB, Valencia C, Akras D, DiIorio SE, Griffin MF, Longaker MT, Wan DC. Understanding Fibroblast Heterogeneity in Form and Function. Biomedicines 2023; 11:2264. [PMID: 37626760 PMCID: PMC10452440 DOI: 10.3390/biomedicines11082264] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Historically believed to be a homogeneous cell type that is often overlooked, fibroblasts are more and more understood to be heterogeneous in nature. Though the mechanisms behind how fibroblasts participate in homeostasis and pathology are just beginning to be understood, these cells are believed to be highly dynamic and play key roles in fibrosis and remodeling. Focusing primarily on fibroblasts within the skin and during wound healing, we describe the field's current understanding of fibroblast heterogeneity in form and function. From differences due to embryonic origins to anatomical variations, we explore the diverse contributions that fibroblasts have in fibrosis and plasticity. Following this, we describe molecular techniques used in the field to provide deeper insights into subpopulations of fibroblasts and their varied roles in complex processes such as wound healing. Limitations to current work are also discussed, with a focus on future directions that investigators are recommended to take in order to gain a deeper understanding of fibroblast biology and to develop potential targets for translational applications in a clinical setting.
Collapse
Affiliation(s)
- Jennifer B. Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Deena Akras
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Sarah E. DiIorio
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| |
Collapse
|
26
|
Ge Z, Li W, Zhao R, Xiong W, Wang D, Tang Y, Fang Q, Deng X, Zhang Z, Zhou Y, Chen X, Li Y, Lu Y, Wang C, Wang G. Programmable DNA Hydrogel Provides Suitable Microenvironment for Enhancing TSPCS Therapy in Healing of Tendinopathy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207231. [PMID: 37066733 DOI: 10.1002/smll.202207231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Tendon stem/progenitor cells (TSPCs) therapy is a promising strategy for enhancing cell matrix and collagen synthesis, and regulating the metabolism of the tendon microenvironment during tendon injury repair. Nevertheless, the barren microenvironment and gliding shear of tendon cause insufficient nutrition supply, damage, and aggregation of injected TSPCs around tendon tissues, which severely hinders their clinical application in tendinopathy. In this study, a TSPCs delivery system is developed by encapsulating TSPCs within a DNA hydrogel (TSPCs-Gel) as the DNA hydrogel offers an excellent artificial extracellular matrix (ECM) microenvironment by providing nutrition for proliferation and protection against shear forces. This delivery method restricts TSPCs to the tendons, significantly extending their retention time. It is also found that TSPCs-Gel injections can promote the healing of rat tendinopathy in vivo, where cross-sectional area and load to failure of injured tendons in rats are significantly improved compared to the free TSPCs treatment group at 8 weeks. Furthermore, the potential healing mechanism of TSPCs-Gel is investigated by RNA-sequencing to identify a series of potential gene and signaling pathway targets for further clinical treatment strategies. These findings suggest the potential pathways of using DNA hydrogels as artificial ECMs to promote cell proliferation and protect TSPCs in TSPC therapy.
Collapse
Affiliation(s)
- Zilu Ge
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Renliang Zhao
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Xiong
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dong Wang
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunfeng Tang
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian Fang
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangtian Deng
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Zhang
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaojia Zhou
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Li
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guanglin Wang
- Trauma Medical Center, Department of Orthopaedic surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
27
|
Fang W, Sekhon S, Teramoto D, Fung C, La V, Duong C, Doescher C, Thai A, Thankam FG, Agrawal DK. Pathological alterations in the expression status of rotator cuff tendon matrix components in hyperlipidemia. Mol Cell Biochem 2023; 478:1887-1898. [PMID: 36576716 DOI: 10.1007/s11010-022-04643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Hyperlipidemia is an important risk factor in the development and progression of tendon pathology, however its role in aggravating rotator cuff tendon injury (RCTI) is largely unknown. We aimed to assess the expression status of key extracellular matrix (ECM) components in the tendon tissues and tenocytes under hyperlipidemia. Shoulder rotator cuff (RC) tendon tissues harvested from the swine model of hyperlipidemia displayed alterations in histomorphometry and the expression status of major ECM component proteins including COL-I, COL-III, COL-IV, COL-V, COL-VI, MMP2, and MMP9. Similarly, the LDL- and oxLDL-challenged tenocytes displayed altered expression of the same proteins at both transcriptional and translational levels. In addition, the lipid uptake and cellular reactive oxygen radicals predominated in the lipid-challenged tenocytes compared to the control. Overall, the LDL-treated cells displayed predominant pathological alterations compared to the ox-LDL-treated cells. Further understanding regarding the underlying molecular mechanisms driving the tendon matrisome alteration and subsequent aggravated RCTI pathology in hyperlipidemia could open novel translational avenues in the management of RCTI.
Collapse
Affiliation(s)
- William Fang
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Seerat Sekhon
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Darren Teramoto
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Cameron Fung
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Vy La
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Cindy Duong
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Christian Doescher
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - An Thai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
28
|
Mauro D, Gandolfo S, Tirri E, Schett G, Maksymowych WP, Ciccia F. The bone marrow side of axial spondyloarthritis. Nat Rev Rheumatol 2023:10.1038/s41584-023-00986-6. [PMID: 37407716 DOI: 10.1038/s41584-023-00986-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Spondyloarthritis (SpA) is characterized by the infiltration of innate and adaptive immune cells into entheses and bone marrow. Molecular, cellular and imaging evidence demonstrates the presence of bone marrow inflammation, a hallmark of SpA. In the spine and the peripheral joints, bone marrow is critically involved in the pathogenesis of SpA. Evidence suggests that bone marrow inflammation is associated with enthesitis and that there are roles for mechano-inflammation and intestinal inflammation in bone marrow involvement in SpA. Specific cell types (including mesenchymal stem cells, innate lymphoid cells and γδ T cells) and mediators (Toll-like receptors and cytokines such as TNF, IL-17A, IL-22, IL-23, GM-CSF and TGFβ) are involved in these processes. Using this evidence to demonstrate a bone marrow rather than an entheseal origin for SpA could change our understanding of the disease pathogenesis and the relevant therapeutic approach.
Collapse
Affiliation(s)
- Daniele Mauro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Saviana Gandolfo
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Enrico Tirri
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Francesco Ciccia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
29
|
Son YH, Yang DH, Uricoli B, Park SJ, Jeong GJ, Chun HJ. Three-Dimensional Cell Culture System for Tendon Tissue Engineering. Tissue Eng Regen Med 2023; 20:553-562. [PMID: 37278865 PMCID: PMC10313620 DOI: 10.1007/s13770-023-00550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/07/2023] [Accepted: 05/01/2023] [Indexed: 06/07/2023] Open
Abstract
Tendon, connective tissue between bone and muscle has unique component of the musculoskeletal system. It plays important role for transporting mechanical stress from muscle to bone and enabling locomotive motion of the body. There are some restoration capacities in the tendon tissue, but the injured tendons are not completely regenerated after acute and chronic tendon injury. At this point, the treatment options for tendon injuries are limited and not that successful. Therefore, biomedical engineering approaches are emerged to cope with this issue. Among them, three-dimensional cell culture platforms provided similarity to in vivo conditions and suggested opportunities for new therapeutic approaches for treatment of tendon injuries. In this review, we focus on the characteristics of tendon tissue and tendon pathologies which can be targets for tendon tissue engineering strategies. Then proof-of-concept and pre-clinical studies leveraging advanced 3-dimensional cell culture platforms for tendon tissue regeneration have been discussed.
Collapse
Affiliation(s)
- Young Hoon Son
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, the Republic of Korea
| | - Biaggio Uricoli
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sung-Jin Park
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, the Republic of Korea.
| | - Heung Jae Chun
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, the Republic of Korea.
| |
Collapse
|
30
|
Kundu A, Bhadoria P. A Case Report on Myotendinous Junction. Cureus 2023; 15:e42233. [PMID: 37605688 PMCID: PMC10440011 DOI: 10.7759/cureus.42233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Myotendinous junction is the transition zone between the muscle and its tendon. Hence, it is subject to immense stress within the muscle. In this study, it is found that muscles having a greater tensile have a more arranged myotendinous junction compared to muscles with lesser tensile strength. Cadaveric specimens - plantaris, gastrocnemius, and soleus have been histologically studied to study the same.
Collapse
Affiliation(s)
- Aditya Kundu
- Anatomy, All India Institute of Medical Sciences, Rishikesh, IND
| | - Pooja Bhadoria
- Anatomy, All India Institute of Medical Sciences, Rishikesh, IND
| |
Collapse
|
31
|
Sunadome K, Erickson AG, Kah D, Fabry B, Adori C, Kameneva P, Faure L, Kanatani S, Kaucka M, Dehnisch Ellström I, Tesarova M, Zikmund T, Kaiser J, Edwards S, Maki K, Adachi T, Yamamoto T, Fried K, Adameyko I. Directionality of developing skeletal muscles is set by mechanical forces. Nat Commun 2023; 14:3060. [PMID: 37244931 PMCID: PMC10224984 DOI: 10.1038/s41467-023-38647-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/05/2023] [Indexed: 05/29/2023] Open
Abstract
Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.
Collapse
Affiliation(s)
- Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Alek G Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Delf Kah
- Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Molecular Biosciences, Wenner Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Polina Kameneva
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str.2, 24306, Plön, Germany
| | | | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Steven Edwards
- KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria.
| |
Collapse
|
32
|
Arostegui M, Scott RW, Underhill TM. Hic1 identifies a specialized mesenchymal progenitor population in the embryonic limb responsible for bone superstructure formation. Cell Rep 2023; 42:112325. [PMID: 37002923 DOI: 10.1016/j.celrep.2023.112325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023] Open
Abstract
The musculoskeletal system relies on the integration of multiple components with diverse physical properties, such as striated muscle, tendon, and bone, that enable locomotion and structural stability. This relies on the emergence of specialized, but poorly characterized, interfaces between these various elements during embryonic development. Within the appendicular skeleton, we show that a subset of mesenchymal progenitors (MPs), identified by Hic1, do not contribute to the primary cartilaginous anlagen but represent the MP population, whose progeny directly contribute to the interfaces that connect bone to tendon (entheses), tendon to muscle (myotendinous junctions), and the associated superstructures. Furthermore, deletion of Hic1 leads to skeletal defects reflective of deficient muscle-bone coupling and, consequently, perturbation of ambulation. Collectively, these findings show that Hic1 identifies a unique MP population that contributes to a secondary wave of bone sculpting critical to skeletal morphogenesis.
Collapse
Affiliation(s)
- Martin Arostegui
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - R Wilder Scott
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - T Michael Underhill
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
33
|
Costa FR, Costa Marques MR, Costa VC, Santos GS, Martins RA, Santos MDS, Santana MHA, Nallakumarasamy A, Jeyaraman M, Lana JVB, Lana JFSD. Intra-Articular Hyaluronic Acid in Osteoarthritis and Tendinopathies: Molecular and Clinical Approaches. Biomedicines 2023; 11:biomedicines11041061. [PMID: 37189679 DOI: 10.3390/biomedicines11041061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Musculoskeletal diseases continue to rise on a global scale, causing significant socioeconomic impact and decreased quality of life. The most common disorders affecting musculoskeletal structures are osteoarthritis and tendinopathies, complicated orthopedic conditions responsible for major pain and debilitation. Intra-articular hyaluronic acid (HA) has been a safe, effective, and minimally invasive therapeutic tool for treating these diseases. Several studies from bedside to clinical practice reveal the multiple benefits of HA such as lubrication, anti-inflammation, and stimulation of cellular activity associated with proliferation, differentiation, migration, and secretion of additional molecules. Collectively, these effects have demonstrated positive outcomes that assist in the regeneration of chondral and tendinous tissues which are otherwise destroyed by the predominant catabolic and inflammatory conditions seen in tissue injury. The literature describes the physicochemical, mechanical, and biological properties of HA, their commercial product types, and clinical applications individually, while their interfaces are seldom reported. Our review addresses the frontiers of basic sciences, products, and clinical approaches. It provides physicians with a better understanding of the boundaries between the processes that lead to diseases, the molecular mechanisms that contribute to tissue repair, and the benefits of the HA types for a conscientious choice. In addition, it points out the current needs for the treatments.
Collapse
|
34
|
Tsai SL, Villasenor S, Shah R, Galloway JL. Endogenous Tenocyte Activation Underlies the Regenerative Capacity of Adult Zebrafish Tendon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.04.527141. [PMID: 36778338 PMCID: PMC9915736 DOI: 10.1101/2023.02.04.527141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tendons are essential, frequently injured connective tissues that transmit forces from muscle to bone. Their unique highly ordered, matrix-rich structure is critical for proper function. While adult mammalian tendons heal after acute injuries, endogenous tendon cells, or tenocytes, fail to respond appropriately, resulting in the formation of disorganized fibrovascular scar tissue with impaired function and increased propensity for re-injury. Here, we show that unlike mammals, adult zebrafish tenocytes activate upon injury and fully regenerate the tendon. Using a full tear injury model in the adult zebrafish craniofacial tendon, we defined the hallmark stages and cellular basis of tendon regeneration through multiphoton imaging, lineage tracing, and transmission electron microscopy approaches. Remarkably, we observe that the zebrafish tendon can regenerate and restore normal collagen matrix ultrastructure by 6 months post-injury (mpi). We show that tendon regeneration progresses in three main phases: inflammation within 24 hours post-injury (hpi), cellular proliferation and formation of a cellular bridge between the severed tendon ends at 3-5 days post-injury (dpi), and re-differentiation and matrix remodeling beginning from 5 dpi to 6 mpi. Importantly, we demonstrate that pre-existing tenocytes are the main cellular source of regeneration. Collectively, our work debuts the zebrafish tendon as one of the only reported adult tendon regenerative models and positions it as an invaluable comparative system to identify regenerative mechanisms that may inspire new tendon injury treatments in the clinic.
Collapse
|
35
|
Wang C, Wei Z, Yu T, Zhang L. Dysregulation of metalloproteinases in spinal ligament degeneration. Connect Tissue Res 2023:1-13. [PMID: 36600486 DOI: 10.1080/03008207.2022.2160327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Degenerative changes in the spinal ligaments, such as hypertrophy or ossification, are important pathophysiological mechanisms of secondary spinal stenosis and neurological compression. Extracellular matrix (ECM) remodeling is one of the major pathological changes in ligament degeneration, and in this remodeling, ECM proteinase-mediated degradation of elastin and collagen plays a vital role. Zinc-dependent endopeptidases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin-1 motifs (ADAMTSs) are key factors in ECM remodeling. This review aims to elucidate the underlying mechanisms of these metalloproteinases in the initiation and progression of spinal ligament degeneration. METHODS We clarify current literature on the dysregulation of MMPs/ADAMs/ADAMTS and their endogenous inhibitors in degenerative spinal ligament diseases. In addition, some instructive information was excavated from the raw data of the relevant high-throughput analysis. RESULTS AND CONCLUSIONS The dysregulation of metalloproteinases and their endogenous inhibitors may affect ligament degeneration by involving several interrelated processes, represented by ECM degradation, fibroblast proliferation, and osteogenic differentiation. Antagonists of the key targets of the processes may in turn ease ligament degeneration.
Collapse
Affiliation(s)
- Chao Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziran Wei
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Medical Research Centre, Institute of Orthopaedics and Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Xu X, Zhang Y, Ha P, Chen Y, Li C, Yen E, Bai Y, Chen R, Wu BM, Da Lio A, Ting K, Soo C, Zheng Z. A novel injectable fibromodulin-releasing granular hydrogel for tendon healing and functional recovery. Bioeng Transl Med 2023; 8:e10355. [PMID: 36684085 PMCID: PMC9842059 DOI: 10.1002/btm2.10355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/25/2023] Open
Abstract
A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yulong Zhang
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Pin Ha
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yao Chen
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chenshuang Li
- Department of OrthodonticsSchool of Dental Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emily Yen
- Arcadia High SchoolArcadiaCaliforniaUSA
| | - Yuxing Bai
- Department of OrthodonticsBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Renji Chen
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Benjamin M. Wu
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Andrew Da Lio
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Kang Ting
- Forsyth Research InstituteHarvard UniversityCambridgeMassachusettsUSA
- Samueli School of EngineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic SurgeryThe Orthopaedic Hospital Research Center, University of CaliforniaLos AngelesCaliforniaUSA
| | - Zhong Zheng
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
37
|
Peserico A, Barboni B, Russo V, Bernabò N, El Khatib M, Prencipe G, Cerveró-Varona A, Haidar-Montes AA, Faydaver M, Citeroni MR, Berardinelli P, Mauro A. Mammal comparative tendon biology: advances in regulatory mechanisms through a computational modeling. Front Vet Sci 2023; 10:1175346. [PMID: 37180059 PMCID: PMC10174257 DOI: 10.3389/fvets.2023.1175346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
There is high clinical demand for the resolution of tendinopathies, which affect mainly adult individuals and animals. Tendon damage resolution during the adult lifetime is not as effective as in earlier stages where complete restoration of tendon structure and property occurs. However, the molecular mechanisms underlying tendon regeneration remain unknown, limiting the development of targeted therapies. The research aim was to draw a comparative map of molecules that control tenogenesis and to exploit systems biology to model their signaling cascades and physiological paths. Using current literature data on molecular interactions in early tendon development, species-specific data collections were created. Then, computational analysis was used to construct Tendon NETworks in which information flow and molecular links were traced, prioritized, and enriched. Species-specific Tendon NETworks generated a data-driven computational framework based on three operative levels and a stage-dependent set of molecules and interactions (embryo-fetal or prepubertal) responsible, respectively, for signaling differentiation and morphogenesis, shaping tendon transcriptional program and downstream modeling of its fibrillogenesis toward a mature tissue. The computational network enrichment unveiled a more complex hierarchical organization of molecule interactions assigning a central role to neuro and endocrine axes which are novel and only partially explored systems for tenogenesis. Overall, this study emphasizes the value of system biology in linking the currently available disjointed molecular data, by establishing the direction and priority of signaling flows. Simultaneously, computational enrichment was critical in revealing new nodes and pathways to watch out for in promoting biomedical advances in tendon healing and developing targeted therapeutic strategies to improve current clinical interventions.
Collapse
|
38
|
Moucaud B, Prince E, Jagla K, Soler C. Developmental origin of tendon diversity in Drosophila melanogaster. Front Physiol 2023; 14:1176148. [PMID: 37143929 PMCID: PMC10151533 DOI: 10.3389/fphys.2023.1176148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Myogenesis is a developmental process that is largely conserved in both Drosophila and higher organisms. Consequently, the fruit fly is an excellent in vivo model for identifying the genes and mechanisms involved in muscle development. Moreover, there is growing evidence indicating that specific conserved genes and signaling pathways govern the formation of tissues that connect the muscles to the skeleton. In this review, we present an overview of the different stages of tendon development, from the specification of tendon progenitors to the assembly of a stable myotendinous junction across three different myogenic contexts in Drosophila: larval, flight and leg muscle development. We underline the different aspects of tendon cell specification and differentiation in embryo and during metamorphosis that result into tendon morphological and functional diversity.
Collapse
|
39
|
Korntner SH, Jana A, Kinnard E, Leo E, Beane T, Li X, Sengupta R, Becker L, Kuo CK. Craniofacial tendon development-Characterization of extracellular matrix morphology and spatiotemporal protein distribution. Front Cell Dev Biol 2022; 10:944126. [PMID: 36158210 PMCID: PMC9490420 DOI: 10.3389/fcell.2022.944126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Craniofacial (CF) tendons are often affected by traumatic injuries and painful disorders that can severely compromise critical jaw functions, such as mastication and talking. Unfortunately, tendons lack the ability to regenerate, and there are no solutions to restore their native properties or function. An understanding of jaw tendon development could inform tendon regeneration strategies to restore jaw function, however CF tendon development has been relatively unexplored. Using the chick embryo, we identified the jaw-closing Tendon of the musculus Adductor Mandibulae Externus (TmAM) and the jaw-opening Tendon of the musculus Depressor Mandibulae (TmDM) that have similar functions to the masticatory tendons in humans. Using histological and immunohistochemical (IHC) analyses, we characterized the TmAM and TmDM on the basis of cell and extracellular matrix (ECM) morphology and spatiotemporal protein distribution from early to late embryonic development. The TmAM and TmDM were detectable as early as embryonic day (d) 9 based on histological staining and tenascin-C (TNC) protein distribution. Collagen content increased and became more organized, cell density decreased, and cell nuclei elongated over time during development in both the TmAM and TmDM. The TmAM and TmDM exhibited similar spatiotemporal patterns for collagen type III (COL3), but differential spatiotemporal patterns for TNC, lysyl oxidase (LOX), and matrix metalloproteinases (MMPs). Our results demonstrate markers that play a role in limb tendon formation are also present in jaw tendons during embryonic development, implicate COL3, TNC, LOX, MMP2, and MMP9 in jaw tendon development, and suggest TmAM and TmDM possess different developmental programs. Taken together, our study suggests the chick embryo may be used as a model with which to study CF tendon extracellular matrix development, the results of which could ultimately inform therapeutic approaches for CF tendon injuries and disorders.
Collapse
Affiliation(s)
- Stefanie H Korntner
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Aniket Jana
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Elizabeth Kinnard
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Emily Leo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Timothy Beane
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Xianmu Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Rohit Sengupta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Lauren Becker
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Catherine K Kuo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Maryland Medical Center, Baltimore, MD, United States
| |
Collapse
|
40
|
Chen Z, Chen P, Zheng M, Gao J, Liu D, Wang A, Zheng Q, Leys T, Tai A, Zheng M. Challenges and perspectives of tendon-derived cell therapy for tendinopathy: from bench to bedside. Stem Cell Res Ther 2022; 13:444. [PMID: 36056395 PMCID: PMC9438319 DOI: 10.1186/s13287-022-03113-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Tendon is composed of dense fibrous connective tissues, connecting muscle at the myotendinous junction (MTJ) to bone at the enthesis and allowing mechanical force to transmit from muscle to bone. Tendon diseases occur at different zones of the tendon, including enthesis, MTJ and midsubstance of the tendon, due to a variety of environmental and genetic factors which consequently result in different frequencies and recovery rates. Self-healing properties of tendons are limited, and cell therapeutic approaches in which injured tendon tissues are renewed by cell replenishment are highly sought after. Homologous use of individual’s tendon-derived cells, predominantly differentiated tenocytes and tendon-derived stem cells, is emerging as a treatment for tendinopathy through achieving minimal cell manipulation for clinical use. This is the first review summarizing the progress of tendon-derived cell therapy in clinical use and its challenges due to the structural complexity of tendons, heterogeneous composition of extracellular cell matrix and cells and unsuitable cell sources. Further to that, novel future perspectives to improve therapeutic effect in tendon-derived cell therapy based on current basic knowledge are discussed.
Collapse
Affiliation(s)
- Ziming Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Peilin Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Monica Zheng
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Delin Liu
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Allan Wang
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Qiujian Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, Guangdong, China
| | - Toby Leys
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Andrew Tai
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| | - Minghao Zheng
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia. .,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| |
Collapse
|
41
|
Cellular taxonomy of Hic1 + mesenchymal progenitor derivatives in the limb: from embryo to adult. Nat Commun 2022; 13:4989. [PMID: 36008423 PMCID: PMC9411605 DOI: 10.1038/s41467-022-32695-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/05/2022] [Indexed: 12/18/2022] Open
Abstract
Tissue development and regeneration rely on the cooperation of multiple mesenchymal progenitor (MP) subpopulations. We recently identified Hic1 as a marker of quiescent MPs in multiple adult tissues. Here, we describe the embryonic origin of appendicular Hic1+ MPs and demonstrate that they arise in the hypaxial somite, and migrate into the developing limb at embryonic day 11.5, well after limb bud initiation. Time-resolved single-cell-omics analyses coupled with lineage tracing reveal that Hic1+ cells generate a unique MP hierarchy, that includes both recently identified adult universal fibroblast populations (Dpt+, Pi16+ and Dpt+ Col15a1+) and more specialised mesenchymal derivatives such as, peri and endoneurial cells, pericytes, bone marrow stromal cells, myotenocytes, tenocytes, fascia-resident fibroblasts, with limited contributions to chondrocytes and osteocytes within the skeletal elements. MPs endure within these compartments, continue to express Hic1 and represent a critical reservoir to support post-natal growth and regeneration.
Collapse
|
42
|
Wang D, Ding J, Chen B, Liu Y, Jiang Y, Zhu S, Zang M, Li S. Synergistic effects of myogenic cells and fibroblasts on the promotion of engineered tendon regeneration with muscle derived cells. Connect Tissue Res 2022; 63:329-338. [PMID: 34030527 DOI: 10.1080/03008207.2021.1924158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS Tendon development requires the coordinated interaction of muscles and tendons. Muscle-derived cells (MDCs), a mixed cell population containing both myogenic and fibroblastic cell subsets, have been found to be ideal seed cells for tendon regeneration. However, the necessity of these cell types for tendon regeneration has not yet been tested. In this study, we aim to explore the possible synergistic effects of myogenic cells and fibroblasts in engineered tendon regeneration. METHODS MDCs were separated into rapidly adhering cell (RAC; fibroblasts) and slowly adhering cell (SAC; myogenic cells) populations. Myogenic- and tenogenic-related molecules were analyzed by immunofluorescent staining, RT-PCR and real-time PCR. The proliferative abilities of MDCs, RACs and SACs were also evaluated. Cell-scaffold constructs were implanted into nude mice, and subsequently evaluated for their histologic, ultrastructure, gene expression, and biomechanical characteristics. RESULTS MDCs have better proliferative activity than RAC and SAC population. RACs could express higher levels of tenogenic-related molecules tenomodulin (TNMD) and scleraxis (SCX) than SACs. Whereas SACs only expressed myogenic-related molecules MyoD. In contrast to the tendons engineered using RACs and SACs, the tendons engineered using MDCs exhibited a relatively more mature and well-organized tissue structure and ultrastructure as well as better mechanical properties. CONCLUSIONS Fibroblasts in muscle may be the primary cell population involved in tendon regeneration and that myogenic cells are an important component of the niche and control the fibroblast activity during tendon regeneration. The synergistic effects between fibroblasts and myogenic cells significantly contribute to efficient and effective regeneration of engineered tendons.
Collapse
Affiliation(s)
- Danying Wang
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| | - Jinping Ding
- Department of Plastic Surgery, Beijing Hospital, National Center of Gerontology, Beijing PR China
| | - Bo Chen
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| | - Yuanbo Liu
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai PR China
| | - Shan Zhu
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| | - Mengqing Zang
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| | - Shanshan Li
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing PR China
| |
Collapse
|
43
|
Abstract
We show that interfering with insect chitin deacetylation by down-regulation of specific chitin deacetylase (CDA) isoforms, belonging to subfamily group I, causes breakage of the chitinous internal tendon cuticle at the femur–tibia joint, muscle detachment from both internal and external tendon cells, and defective locomotion. Our studies reveal a previously unrecognized role of CDA-like proteins in cooperation with zona pellucida domain-containing proteins in musculoskeletal connectivity, maintenance of tendon cell microtubule integrity, muscle force transmission, limb movement, and locomotion. We propose an essential function for group I CDAs, which are highly conserved among insect and other arthropod species, in invertebrate musculoskeletal connectivity involving partially deacetylated chitin in the extracellular matrix overlying the tendon cells. Muscle attachment sites (MASs, apodemes) in insects and other arthropods involve specialized epithelial cells, called tendon cells or tenocytes, that adhere to apical extracellular matrices containing chitin. Here, we have uncovered a function for chitin deacetylases (CDAs) in arthropod locomotion and muscle attachment using a double-stranded RNA-mediated gene-silencing approach targeted toward specific CDA isoforms in the red flour beetle, Tribolium castaneum (Tc). Depletion of TcCDA1 or the alternatively spliced TcCDA2 isoform, TcCDA2a, resulted in internal tendon cuticle breakage at the femur–tibia joint, muscle detachment from both internal and external tendon cells, and defective locomotion. TcCDA deficiency did not affect early muscle development and myofiber growth toward the cuticular MASs but instead resulted in aborted microtubule development, loss of hemiadherens junctions, and abnormal morphology of tendon cells, all features consistent with a loss of tension within and between cells. Moreover, simultaneous depletion of TcCDA1 or TcCDA2a and the zona pellucida domain protein, TcDumpy, prevented the internal tendon cuticle break, further supporting a role for force-dependent interactions between muscle and tendon cells. We propose that in T. castaneum, the absence of N-acetylglucosamine deacetylation within chitin leads to a loss of microtubule organization and reduced membrane contacts at MASs in the femur, which adversely affect musculoskeletal connectivity, force transmission, and physical mobility.
Collapse
|
44
|
Pothiawala A, Sahbazoglu BE, Ang BK, Matthias N, Pei G, Yan Q, Davis BR, Huard J, Zhao Z, Nakayama N. GDF5+ chondroprogenitors derived from human pluripotent stem cells preferentially form permanent chondrocytes. Development 2022; 149:dev196220. [PMID: 35451016 PMCID: PMC9245189 DOI: 10.1242/dev.196220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/07/2022] [Indexed: 12/02/2023]
Abstract
It has been established in the mouse model that during embryogenesis joint cartilage is generated from a specialized progenitor cell type, distinct from that responsible for the formation of growth plate cartilage. We recently found that mesodermal progeny of human pluripotent stem cells gave rise to two types of chondrogenic mesenchymal cells in culture: SOX9+ and GDF5+ cells. The fast-growing SOX9+ cells formed in vitro cartilage that expressed chondrocyte hypertrophy markers and readily underwent mineralization after ectopic transplantation. In contrast, the slowly growing GDF5+ cells derived from SOX9+ cells formed cartilage that tended to express low to undetectable levels of chondrocyte hypertrophy markers, but expressed PRG4, a marker of embryonic articular chondrocytes. The GDF5+-derived cartilage remained largely unmineralized in vivo. Interestingly, chondrocytes derived from the GDF5+ cells seemed to elicit these activities via non-cell-autonomous mechanisms. Genome-wide transcriptomic analyses suggested that GDF5+ cells might contain a teno/ligamento-genic potential, whereas SOX9+ cells resembled neural crest-like progeny-derived chondroprogenitors. Thus, human pluripotent stem cell-derived GDF5+ cells specified to generate permanent-like cartilage seem to emerge coincidentally with the commitment of the SOX9+ progeny to the tendon/ligament lineage.
Collapse
Affiliation(s)
- Azim Pothiawala
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Berke E. Sahbazoglu
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bryan K. Ang
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nadine Matthias
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qing Yan
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian R. Davis
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Johnny Huard
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Naoki Nakayama
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
45
|
Williams K, Yokomori K, Mortazavi A. Heterogeneous Skeletal Muscle Cell and Nucleus Populations Identified by Single-Cell and Single-Nucleus Resolution Transcriptome Assays. Front Genet 2022; 13:835099. [PMID: 35646075 PMCID: PMC9136090 DOI: 10.3389/fgene.2022.835099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) has revolutionized modern genomics, but the large size of myotubes and myofibers has restricted use of scRNA-seq in skeletal muscle. For the study of muscle, single-nucleus RNA-seq (snRNA-seq) has emerged not only as an alternative to scRNA-seq, but as a novel method providing valuable insights into multinucleated cells such as myofibers. Nuclei within myofibers specialize at junctions with other cell types such as motor neurons. Nuclear heterogeneity plays important roles in certain diseases such as muscular dystrophies. We survey current methods of high-throughput single cell and subcellular resolution transcriptomics, including single-cell and single-nucleus RNA-seq and spatial transcriptomics, applied to satellite cells, myoblasts, myotubes and myofibers. We summarize the major myonuclei subtypes identified in homeostatic and regenerating tissue including those specific to fiber type or at junctions with other cell types. Disease-specific nucleus populations were found in two muscular dystrophies, FSHD and Duchenne muscular dystrophy, demonstrating the importance of performing transcriptome studies at the single nucleus level in muscle.
Collapse
Affiliation(s)
- Katherine Williams
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
46
|
Fan C, Zhao Y, Chen Y, Qin T, Lin J, Han S, Yan R, Lei T, Xie Y, Wang T, Gu S, Ouyang H, Shen W, Yin Z, Chen X. A Cd9 +Cd271 + stem/progenitor population and the SHP2 pathway contribute to neonatal-to-adult switching that regulates tendon maturation. Cell Rep 2022; 39:110762. [PMID: 35476985 DOI: 10.1016/j.celrep.2022.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/06/2022] [Accepted: 04/08/2022] [Indexed: 11/03/2022] Open
Abstract
Tendon maturation lays the foundation for postnatal tendon development, its proper mechanical function, and regeneration, but the critical cell populations and the entangled mechanisms remain poorly understood. Here, by integrating the structural, mechanical, and molecular properties, we show that post-natal days 7-14 are the crucial transitional stage for mouse tendon maturation. We decode the cellular and molecular regulatory networks at the single-cell level. We find that a nerve growth factor (NGF)-secreting Cd9+Cd271+ tendon stem/progenitor cell population mainly prompts conversion from neonate to adult tendon. Through single-cell gene regulatory network analysis, in vitro inhibitor identification, and in vivo tendon-specific Shp2 deletion, we find that SHP2 signaling is a regulator for tendon maturation. Our research comprehensively reveals the dynamic cell population transition during tendon maturation, implementing insights into the critical roles of the maturation-related stem cell population and SHP2 signaling pathway during tendon differentiation and regeneration.
Collapse
Affiliation(s)
- Chunmei Fan
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yanyan Zhao
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yangwu Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Tian Qin
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Junxin Lin
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Shan Han
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Ruojin Yan
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Tingyun Lei
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yuanhao Xie
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Shen Gu
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Weiliang Shen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
47
|
Filippi M, Garello F, Yasa O, Kasamkattil J, Scherberich A, Katzschmann RK. Engineered Magnetic Nanocomposites to Modulate Cellular Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104079. [PMID: 34741417 DOI: 10.1002/smll.202104079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Magnetic nanoparticles (MNPs) have various applications in biomedicine, including imaging, drug delivery and release, genetic modification, cell guidance, and patterning. By combining MNPs with polymers, magnetic nanocomposites (MNCs) with diverse morphologies (core-shell particles, matrix-dispersed particles, microspheres, etc.) can be generated. These MNCs retain the ability of MNPs to be controlled remotely using external magnetic fields. While the effects of these biomaterials on the cell biology are still poorly understood, such information can help the biophysical modulation of various cellular functions, including proliferation, adhesion, and differentiation. After recalling the basic properties of MNPs and polymers, and describing their coassembly into nanocomposites, this review focuses on how polymeric MNCs can be used in several ways to affect cell behavior. A special emphasis is given to 3D cell culture models and transplantable grafts, which are used for regenerative medicine, underlining the impact of MNCs in regulating stem cell differentiation and engineering living tissues. Recent advances in the use of MNCs for tissue regeneration are critically discussed, particularly with regard to their prospective involvement in human therapy and in the construction of advanced functional materials such as magnetically operated biomedical robots.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jesil Kasamkattil
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
48
|
Boyd A, Montandon M, Wood AJ, Currie PD. FKRP directed fibronectin glycosylation: A novel mechanism giving insights into muscular dystrophies? Bioessays 2022; 44:e2100270. [PMID: 35229908 DOI: 10.1002/bies.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.
Collapse
Affiliation(s)
- Andrew Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
49
|
Marqueti RDC, Kjaer M, Moriscot AS. Editorial: Trends in Muscle and Tendon Molecular and Cell Biology. Front Physiol 2022; 12:832613. [PMID: 35185607 PMCID: PMC8851330 DOI: 10.3389/fphys.2021.832613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rita de Cássia Marqueti
- Graduate Program in Rehabilitation Sciences and Graduate Program of Sciences and Technology of Health, Faculty of Ceilândia, University of Brasília, Brasília, Brazil
- *Correspondence: Rita de Cássia Marqueti ;
| | - Michael Kjaer
- Department of Orthopedic Surgery, Institute of Sports Medicine, Copenhagen University Hospital - Bispebjerg Frederiksberg, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anselmo Sigari Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Shengnan Q, Bennett S, Wen W, Aiguo L, Jiake X. The role of tendon derived stem/progenitor cells and extracellular matrix components in the bone tendon junction repair. Bone 2021; 153:116172. [PMID: 34506992 DOI: 10.1016/j.bone.2021.116172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
Fibrocartilage enthesis is the junction between bone and tendon with a typical characteristics of fibrocartilage transition zones. The regeneration of this transition zone is the bottleneck for functional restoration of bone tendon junction (BTJ). Biomimetic approaches, especially decellularized extracellular matrix (ECM) materials, are strategies which aim to mimic the components of tissues to the utmost extent, and are becoming popular in BTJ healing because of their ability not only to provide scaffolds to allow cells to attach and migrate, but also to provide a microenvironment to guide stem/progenitor cells lineage-specific differentiation. However, the cellular and molecular mechanisms of those approaches, especially the ECM proteins, remain unclear. For BTJ reconstruction, fibrocartilage regeneration is the key for good integrity of bone and tendon as well as its mechanical recovery, so the components which can guide stem cells to a chondrogenic commitment in biomimetic approaches might well be the key for fibrocartilage regeneration and eventually for the better BTJ healing. In this review, we firstly discuss the importance of cartilage-like formation in the healing process of BTJ. Next, we explore the possibility of tendon-derived stem/progenitor cells as cell sources for BTJ regeneration due to their multi-differentiation potential. Finally, we summarize the role of extracellular matrix components of BTJ in guiding stem cell fate to a chondrogenic commitment, so as to provide cues for understanding the mechanisms of lineage-specific potential of biomimetic approaches as well as to inspire researchers to incorporate unique ECM components that facilitate BTJ repair into design.
Collapse
Affiliation(s)
- Qin Shengnan
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Wang Wen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Li Aiguo
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.
| | - Xu Jiake
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|