1
|
Alharbi HOA, Khan A, Rahmani AH. Investigating the Role of Hub Calcification Proteins in Atherosclerosis via Integrated Transcriptomics and Network-Based Approach. BIOLOGY 2024; 13:867. [PMID: 39596822 PMCID: PMC11592380 DOI: 10.3390/biology13110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory condition of the arteries, characterized by plaque formation that can restrict blood flow and lead to potentially fatal cardiovascular events. Given that AS is responsible for a quarter of global deaths, this study aimed to develop a systematic bioinformatics approach to identify biomarkers and regulatory targets involved in plaque development, with the goal of reducing cardiovascular disease risk. AS-specific mRNA expression profiles were retrieved from a publicly accessible database, followed by differentially expressed genes (DEGs) identification and AS-specific weighted gene co-expression network (WGCN) construction. Thereafter, calcification and atherosclerosis-specific (CASS) DEGs were utilized for protein-protein interaction network (PPIN) formation, followed by gene ontology (GO) term and pathway enrichment analyses. Lastly, AS-specific 3-node miRNA feed-forward loop (FFL) construction and analysis was performed. Microarray datasets GSE43292 and GSE28829 were obtained from gene expression omnibus (GEO). A total of 3785 and 6176 DEGs were obtained in case of GSE28829 and GSE43292; 3256 and 5962 module DEGs corresponding to GSE28829 and GSE43292 were obtained from WGCN. From a total of 54 vascular calcification (VC) genes, 20 and 29 CASS-DEGs corresponding to GSE28829 and GSE43292 were overlapped. As observed from FFL centrality measures, the highest-order subnetwork motif comprised one TF (SOX7), one miRNA (miR-484), and one mRNA (SPARC) in the case of GSE28829. Also, in the case of GSE43292, the highest-order subnetwork motif comprised one TF (ESR2), one miRNA (miR-214-3p), and one mRNA (MEF2C). These findings have important implications for developing new therapeutic strategies for AS. The identified TFs and miRNAs may serve as potential therapeutic targets for treating atherosclerotic plaques, offering insights into the molecular mechanisms underlying the pathogenesis and highlighting new avenues for research and treatment.
Collapse
Affiliation(s)
- Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Asifa Khan
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Nishimura Y, Kurosawa K. Analysis of Gene-Environment Interactions Related to Developmental Disorders. Front Pharmacol 2022; 13:863664. [PMID: 35370658 PMCID: PMC8969575 DOI: 10.3389/fphar.2022.863664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Various genetic and environmental factors are associated with developmental disorders (DDs). It has been suggested that interaction between genetic and environmental factors (G × E) is involved in the etiology of DDs. There are two major approaches to analyze the interaction: genome-wide and candidate gene-based approaches. In this mini-review, we demonstrate how these approaches can be applied to reveal the G × E related to DDs focusing on zebrafish and mouse models. We also discuss novel approaches to analyze the G × E associated with DDs.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
- Department of Clinical Dysmorphology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
3
|
Chen D, Schwartz MA, Simons M. Developmental Perspectives on Arterial Fate Specification. Front Cell Dev Biol 2021; 9:691335. [PMID: 34249941 PMCID: PMC8269928 DOI: 10.3389/fcell.2021.691335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Blood vessel acquisition of arterial or venous fate is an adaptive phenomenon in response to increasing blood circulation during vascular morphogenesis. The past two decades of effort in this field led to development of a widely accepted paradigm of molecular regulators centering on VEGF and Notch signaling. More recent findings focused on shear stress-induced cell cycle arrest as a prerequisite for arterial specification substantially modify this traditional understanding. This review aims to summarize key molecular mechanisms that work in concert to drive the acquisition of arterial fate in two distinct developmental settings of vascular morphogenesis: de novo vasculogenesis of the dorsal aorta and postnatal retinal angiogenesis. We will also discuss the questions and conceptual controversies that potentially point to novel directions of investigation and possible clinical relevance.
Collapse
Affiliation(s)
- Dongying Chen
- Yale Cardiovascular Research Center, Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Michael Simons
- Yale Cardiovascular Research Center, Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Weijts B, Shaked I, Ginsberg M, Kleinfeld D, Robin C, Traver D. Endothelial struts enable the generation of large lumenized blood vessels de novo. Nat Cell Biol 2021; 23:322-329. [PMID: 33837285 PMCID: PMC8500358 DOI: 10.1038/s41556-021-00664-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 03/05/2021] [Indexed: 02/01/2023]
Abstract
De novo blood vessel formation occurs through coalescence of endothelial cells (ECs) into a cord-like structure, followed by lumenization either through cell-1-3 or cord-hollowing4-7. Vessels generated in this manner are restricted in diameter to one or two ECs, and these models fail to explain how vasculogenesis can form large-diameter vessels. Here, we describe a model for large vessel formation that does not require a cord-like structure or a hollowing step. In this model, ECs coalesce into a network of struts in the future lumen of the vessel, a process dependent upon bone morphogenetic protein signalling. The vessel wall forms around this network and consists initially of only a few patches of ECs. To withstand external forces and to maintain the shape of the vessel, strut formation traps erythrocytes into compartments to form a rigid structure. Struts gradually prune and ECs from struts migrate into and become part of the vessel wall. Experimental severing of struts resulted in vessel collapse, disturbed blood flow and remodelling defects, demonstrating that struts enable the patency of large vessels during their formation.
Collapse
Affiliation(s)
- Bart Weijts
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA,Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands,Correspondence to: ;
| | - Iftach Shaked
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mark Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands,Regenerative Medicine Center, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - David Traver
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA,Correspondence to: ;
| |
Collapse
|
5
|
Antiangiogenic molecules from marine actinomycetes and the importance of using zebrafish model in cancer research. Heliyon 2020; 6:e05662. [PMID: 33319107 PMCID: PMC7725737 DOI: 10.1016/j.heliyon.2020.e05662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Blood vessel sprouting from pre-existing vessels or angiogenesis plays a significant role in tumour progression. Development of novel biomolecules from marine natural sources has a promising role in drug discovery specifically in the area of antiangiogenic chemotherapeutics. Symbiotic actinomycetes from marine origin proved to be potent and valuable sources of antiangiogenic compounds. Zebrafish represent a well-established model for small molecular screening and employed to study tumour angiogenesis over the last decade. Use of zebrafish has increased in the laboratory due to its various advantages like rapid embryo development, optically transparent embryos, large clutch size of embryos and most importantly high genetic conservation comparable to humans. Zebrafish also shares similar physiopathology of tumour angiogenesis with humans and with these advantages, zebrafish has become a popular model in the past decade to study on angiogenesis related disorders like diabetic retinopathy and cancer. This review focuses on the importance of antiangiogenic compounds from marine actinomycetes and utility of zebrafish in cancer angiogenesis research.
Collapse
|
6
|
Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:189-223. [PMID: 32304074 DOI: 10.1007/978-981-15-2389-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are among the most common human birth defects. However, the etiology of a large proportion of CHDs remains undefined. Studies identifying the molecular and cellular mechanisms that underlie cardiac development have been critical to elucidating the origin of CHDs. Building upon this knowledge to understand the pathogenesis of CHDs requires examining how genetic or environmental stress changes normal cardiac development. Due to strong molecular conservation to humans and unique technical advantages, studies using zebrafish have elucidated both fundamental principles of cardiac development and have been used to create cardiac disease models. In this chapter we examine the unique toolset available to zebrafish researchers and how those tools are used to interrogate the genetic and environmental contributions to CHDs.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Savanna Tillman
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Joseph Natalizio
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | | |
Collapse
|
7
|
Higashijima Y, Kanki Y. Molecular mechanistic insights: The emerging role of SOXF transcription factors in tumorigenesis and development. Semin Cancer Biol 2019; 67:39-48. [PMID: 31536760 DOI: 10.1016/j.semcancer.2019.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/31/2019] [Accepted: 09/15/2019] [Indexed: 01/22/2023]
Abstract
Over the last decade, the development and progress of next-generation sequencers incorporated with classical biochemical analyses have drastically produced novel insights into transcription factors, including Sry-like high-mobility group box (SOX) factors. In addition to their primary functions in binding to and activating specific downstream genes, transcription factors also participate in the dedifferentiation or direct reprogramming of somatic cells to undifferentiated cells or specific lineage cells. Since the discovery of SOX factors, members of the SOXF (SOX7, SOX17, and SOX18) family have been identified to play broad roles, especially with regard to cardiovascular development. More recently, SOXF factors have been recognized as crucial players in determining the cell fate and in the regulation of cancer cells. Here, we provide an overview of research on the mechanism by which SOXF factors regulate development and cancer, and discuss their potential as new targets for cancer drugs while offering insight into novel mechanistic transcriptional regulation during cell lineage commitment.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
8
|
Novel role of sex-determining region Y-box 7 (SOX7) in tumor biology and cardiovascular developmental biology. Semin Cancer Biol 2019; 67:49-56. [PMID: 31473269 DOI: 10.1016/j.semcancer.2019.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The sex-determining region Y-box 7 (Sox7) is an important member of the SOX F family, which is characterized by a high-mobility-group DNA-binding domain. Previous studies have demonstrated the role of SOX7 in cardiovascular development. SOX7 expression could be detected in normal adult tissues. Furthermore, the expression levels of SOX7 were different in different tumors. Most studies showed the downregulation of SOX7 in tumors, while some studies reported its upregulation in tumors. In this review, we first summarized the upstream regulators (including transcription factors, microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and some exogenous regulators) and downstream molecules (including factors in the Wnt/β-catenin signaling pathway and some other signaling pathways) of SOX7. Then, the roles of SOX7 in multiple tumors were presented. Finally, the significance of divergent SOX7 expression during cardiovascular development was briefly discussed. The information compiled in this study characterized SOX7 during tumorigenesis and cardiovascular development, which should facilitate the design of future research and promote SOX7 as a therapeutic target.
Collapse
|
9
|
Abstract
The formation and remodeling of a functional circulatory system is critical for sustaining prenatal and postnatal life. During embryogenesis, newly differentiated endothelial cells require further specification to create the unique features of distinct vessel subtypes needed to support tissue morphogenesis. In this review, we explore signaling pathways and transcriptional regulators that modulate endothelial cell differentiation and specification, as well as applications of these processes to stem cell biology and regenerative medicine. We also summarize recent technical advances, including the growing utilization of single-cell sequencing to study vascular heterogeneity and development.
Collapse
Affiliation(s)
- Jingyao Qiu
- From the Department of Genetics (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Department of Medicine (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Yale Cardiovascular Research Center (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT
| | - Karen K Hirschi
- From the Department of Genetics (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Department of Medicine (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Yale Cardiovascular Research Center (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
10
|
Marass M, Beisaw A, Gerri C, Luzzani F, Fukuda N, Günther S, Kuenne C, Reischauer S, Stainier DYR. Genome-wide strategies reveal target genes of Npas4l associated with vascular development in zebrafish. Development 2019; 146:dev.173427. [PMID: 31097478 DOI: 10.1242/dev.173427] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022]
Abstract
The development of a vascular network is essential to nourish tissues and sustain organ function throughout life. Endothelial cells (ECs) are the building blocks of blood vessels, yet our understanding of EC specification remains incomplete. Zebrafish cloche/npas4l mutants have been used broadly as an avascular model, but little is known about the molecular mechanisms of action of the Npas4l transcription factor. Here, to identify its direct and indirect target genes, we have combined complementary genome-wide approaches, including transcriptome analyses and chromatin immunoprecipitation. The cross-analysis of these datasets indicates that Npas4l functions as a master regulator by directly inducing a group of transcription factor genes that are crucial for hematoendothelial specification, such as etv2, tal1 and lmo2 We also identified new targets of Npas4l and investigated the function of a subset of them using the CRISPR/Cas9 technology. Phenotypic characterization of tspan18b mutants reveals a novel player in developmental angiogenesis, confirming the reliability of the datasets generated. Collectively, these data represent a useful resource for future studies aimed to better understand EC fate determination and vascular development.
Collapse
Affiliation(s)
- Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Arica Beisaw
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Claudia Gerri
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Francesca Luzzani
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Nana Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Carsten Kuenne
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
11
|
Qin Y, Sun B, Zhang F, Wang Y, Shen B, Liu Y, Guo Y, Fan Y, Qiu J. Sox7 is involved in antibody-dependent endothelial cell activation and renal allograft injury via the Jagged1-Notch1 pathway. Exp Cell Res 2019; 375:20-27. [PMID: 30639059 DOI: 10.1016/j.yexcr.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Antibody-mediated rejection (AMR) can cause graft loss and reduces long-term graft survival after kidney transplantation. Human leukocyte antigen (HLA) and/or non-HLA antibodies play a key role in the pathogenesis of AMR by targeting the allograft epithelium via complement activation and complement-independent mechanisms. However, the precise mechanisms of AMR remain unclear and treatment is still limited. METHODS In this study, we investigated the role of the endothelial-associated transcription factor Sox7 in AMR, using the anti-HLA antibody W6/32, shRNA-mediated Sox7 knockdown, and by manipulating the Notch pathway. We used an in vitro human kidney glomerular endothelial cells (HKGECs) model and an in vivo MHC-mismatched kidney transplantation model. RESULTS Sox7 expression was upregulated and the Jagged1-Notch1 pathway was activated in HKGECs after W6/32 activation. W6/32 antibodies increased the expression of adhesion molecules (VCAM-1, ICAM-1), inflammatory cytokines (IL-6, TNF-α), and chemokines (CXCL8, CXCL10), and Sox7 knockdown and inhibition of the Notch pathway by DAPT significantly reduced these effects. Jagged1 overexpression rescued the inhibitory effects of Sox7 knockdown. In addition, Sox7 knockdown attenuated acute allograft kidney injury in mice and reduced the expression of adhesion molecules and Jagged1-Notch1 signaling after transplantation. CONCLUSIONS Our findings suggest that Sox7 plays an important role in mediating HLA I antibody-dependent endothelial cell activation and acute kidney allograft rejection via the Jagged1-Notch1 pathway. Manipulating Sox7 in donor organs may represent a useful treatment for AMR in solid organ transplantation.
Collapse
Affiliation(s)
- Yan Qin
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Bo Sun
- Shanghai Center for Drug Evaluation & Inspection, Shanghai 201203, China
| | - Fang Zhang
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yong Wang
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Bing Shen
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yong Liu
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yifeng Guo
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yu Fan
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jianxin Qiu
- Department of Kidney Transplantation & Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China.
| |
Collapse
|
12
|
Weijts B, Gutierrez E, Saikin SK, Ablooglu AJ, Traver D, Groisman A, Tkachenko E. Blood flow-induced Notch activation and endothelial migration enable vascular remodeling in zebrafish embryos. Nat Commun 2018; 9:5314. [PMID: 30552331 PMCID: PMC6294260 DOI: 10.1038/s41467-018-07732-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022] Open
Abstract
Arteries and veins are formed independently by different types of endothelial cells (ECs). In vascular remodeling, arteries and veins become connected and some arteries become veins. It is unclear how ECs in transforming vessels change their type and how fates of individual vessels are determined. In embryonic zebrafish trunk, vascular remodeling transforms arterial intersegmental vessels (ISVs) into a functional network of arteries and veins. Here we find that, once an ISV is connected to venous circulation, venous blood flow promotes upstream migration of ECs that results in displacement of arterial ECs by venous ECs, completing the transformation of this ISV into a vein without trans-differentiation of ECs. Arterial blood flow initiated in two neighboring ISVs prevents their transformation into veins by activating Notch signaling in ECs. Together, different responses of ECs to arterial and venous blood flow lead to formation of a balanced network with equal numbers of arteries and veins.
Collapse
Affiliation(s)
- Bart Weijts
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Edgar Gutierrez
- Dpartment of Physics, University of California-San Diego, La Jolla, CA, 92093, USA
- MuWells Inc, San Diego, CA, 92121, USA
| | - Semion K Saikin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ararat J Ablooglu
- Department of Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA.
| | - Alex Groisman
- Dpartment of Physics, University of California-San Diego, La Jolla, CA, 92093, USA.
| | - Eugene Tkachenko
- Department of Medicine, University of California-San Diego, La Jolla, CA, 92093, USA.
- MuWells Inc, San Diego, CA, 92121, USA.
| |
Collapse
|
13
|
Boyle Anderson EAT, Ho RK. A transcriptomics analysis of the Tbx5 paralogues in zebrafish. PLoS One 2018; 13:e0208766. [PMID: 30532148 PMCID: PMC6287840 DOI: 10.1371/journal.pone.0208766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
TBX5 is essential for limb and heart development. Mutations in TBX5 are associated with Holt-Oram syndrome in humans. Due to the teleost specific genome duplication, zebrafish have two copies of TBX5: tbx5a and tbx5b. Both of these genes are expressed in regions of the lateral plate mesoderm and retina. In this study, we perform comparative RNA sequencing analysis on zebrafish embryos during the stages of lateral plate mesoderm migration. This work shows that knockdown of the Tbx5 paralogues results in altered gene expression in many tissues outside of the lateral plate mesoderm, especially in the somitic mesoderm and the intermediate mesoderm. Specifically, knockdown of tbx5b results in changes in somite size, in the differentiation of vasculature progenitors and in later patterning of trunk blood vessels.
Collapse
Affiliation(s)
- Erin A. T. Boyle Anderson
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Robert K. Ho
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gibb N, Lazic S, Yuan X, Deshwar AR, Leslie M, Wilson MD, Scott IC. Hey2 regulates the size of the cardiac progenitor pool during vertebrate heart development. Development 2018; 145:dev.167510. [PMID: 30355727 DOI: 10.1242/dev.167510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/13/2018] [Indexed: 01/04/2023]
Abstract
A key event in heart development is the timely addition of cardiac progenitor cells, defects in which can lead to congenital heart defects. However, how the balance and proportion of progenitor proliferation versus addition to the heart is regulated remains poorly understood. Here, we demonstrate that Hey2 functions to regulate the dynamics of cardiac progenitor addition to the zebrafish heart. We found that the previously noted increase in myocardial cell number found in the absence of Hey2 function was due to a pronounced expansion in the size of the cardiac progenitor pool. Expression analysis and lineage tracing of hey2-expressing cells showed that hey2 is active in cardiac progenitors. Hey2 acted to limit proliferation of cardiac progenitors, prior to heart tube formation. Use of a transplantation approach demonstrated a likely cell-autonomous (in cardiac progenitors) function for Hey2. Taken together, our data suggest a previously unappreciated role for Hey2 in controlling the proliferative capacity of cardiac progenitors, affecting the subsequent contribution of late-differentiating cardiac progenitors to the developing vertebrate heart.
Collapse
Affiliation(s)
- Natalie Gibb
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Savo Lazic
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Ashish R Deshwar
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Ian C Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada.,Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada.,Heart and Stroke Richard Lewar Centres of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| |
Collapse
|
15
|
Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR, Rattner A, Goff LA, Ecker JR, Nathans J. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. eLife 2018; 7:36187. [PMID: 30188322 PMCID: PMC6126923 DOI: 10.7554/elife.36187] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial cell (EC) function depends on appropriate organ-specific molecular and cellular specializations. To explore genomic mechanisms that control this specialization, we have analyzed and compared the transcriptome, accessible chromatin, and DNA methylome landscapes from mouse brain, liver, lung, and kidney ECs. Analysis of transcription factor (TF) gene expression and TF motifs at candidate cis-regulatory elements reveals both shared and organ-specific EC regulatory networks. In the embryo, only those ECs that are adjacent to or within the central nervous system (CNS) exhibit canonical Wnt signaling, which correlates precisely with blood-brain barrier (BBB) differentiation and Zic3 expression. In the early postnatal brain, single-cell RNA-seq of purified ECs reveals (1) close relationships between veins and mitotic cells and between arteries and tip cells, (2) a division of capillary ECs into vein-like and artery-like classes, and (3) new endothelial subtype markers, including new validated tip cell markers.
Collapse
Affiliation(s)
- Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jacob S Heng
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chongyuan Luo
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
16
|
Balik-Meisner M, Truong L, Scholl EH, La Du JK, Tanguay RL, Reif DM. Elucidating Gene-by-Environment Interactions Associated with Differential Susceptibility to Chemical Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:067010. [PMID: 29968567 PMCID: PMC6084885 DOI: 10.1289/ehp2662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Modern societies are exposed to vast numbers of potentially hazardous chemicals. Despite demonstrated linkages between chemical exposure and severe health effects, there are limited, often conflicting, data on how adverse health effects of exposure differ across individuals. OBJECTIVES We tested the hypothesis that population variability in response to certain chemicals could elucidate a role for gene-environment interactions (GxE) in differential susceptibility. METHODS High-throughput screening (HTS) data on thousands of chemicals in genetically heterogeneous zebrafish were leveraged to identify a candidate chemical (Abamectin) with response patterns indicative of population susceptibility differences. We tested the prediction by generating genome-wide sequence data for 276 individual zebrafish displaying susceptible (Affected) vs. resistant (Unaffected) phenotypes following identical chemical exposure. RESULTS We found GxE associated with differential susceptibility in the sox7 promoter region and then confirmed gene expression differences between phenotypic response classes. CONCLUSIONS The results for Abamectin in zebrafish demonstrate that GxE associated with naturally occurring, population genetic variation play a significant role in mediating individual response to chemical exposure. https://doi.org/10.1289/EHP2662.
Collapse
Affiliation(s)
- Michele Balik-Meisner
- Bioinformatics Research Center, Center for Human Health and the Environment, Dept. of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Dept. of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth H Scholl
- Bioinformatics Research Center, Center for Human Health and the Environment, Dept. of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Jane K La Du
- Sinnhuber Aquatic Research Laboratory, Dept. of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Robert L Tanguay
- Sinnhuber Aquatic Research Laboratory, Dept. of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - David M Reif
- Bioinformatics Research Center, Center for Human Health and the Environment, Dept. of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
17
|
Wu DC, Zhang MF, Su SG, Fang HY, Wang XH, He D, Xie YY, Liu XH. HEY2, a target of miR-137, indicates poor outcomes and promotes cell proliferation and migration in hepatocellular carcinoma. Oncotarget 2018; 7:38052-38063. [PMID: 27191260 PMCID: PMC5122371 DOI: 10.18632/oncotarget.9343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/26/2016] [Indexed: 01/26/2023] Open
Abstract
HEY2, a bHLH transcription factor, has been implicated in the progression of human cancers. Here, we showed that HEY2 expression was markedly increased in HCC, compared with the adjacent nontumorous tissues. High HEY2 expression was closely correlated with tumor multiplicity, tumor differentiation and TNM stage. Kaplan-Meier analyses revealed that HEY2 expression was significantly associated with poor overall and disease-free survival in a training cohort of 361 patients with HCC. The prognostic implication of HEY2 was validated in another cohort of 169 HCC patients. Multivariate Cox regression model indicated HEY2 as an independent factor for overall survival in HCC (Hazard ratio = 1.645, 95% confident interval: 1.309-2.067, P<0.001). We also demonstrated that HEY2 expression was inhibited by miR-137. In clinical samples, HEY2 expression was reversely associated to miR-137 expression. Furthermore, overexpression of HEY2 increased cell viabilities, colony formation and cell migration, whereas knockdown of HEY2 resulted in the opposite phenotypes. Collectively, our data suggest HEY2 as a promising biomarker for unfavorable outcomes and a novel therapeutic target for the clinical management of HCC.
Collapse
Affiliation(s)
- Dan-Chun Wu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shu-Guang Su
- Department of Pathology, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Heng-Ying Fang
- Department of Nursing, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xue-Hua Wang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan He
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan-Yuan Xie
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xu-Hui Liu
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Chen X, Gays D, Milia C, Santoro MM. Cilia Control Vascular Mural Cell Recruitment in Vertebrates. Cell Rep 2017; 18:1033-1047. [PMID: 28122229 PMCID: PMC5289940 DOI: 10.1016/j.celrep.2016.12.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 01/09/2023] Open
Abstract
Vascular mural cells (vMCs) are essential components of the vertebrate vascular system, controlling blood vessel maturation and homeostasis. Discrete molecular mechanisms have been associated with vMC development and differentiation. The function of hemodynamic forces in controlling vMC recruitment is unclear. Using transgenic lines marking developing vMCs in zebrafish embryos, we find that vMCs are recruited by arterial-fated vessels and that the process is flow dependent. We take advantage of tissue-specific CRISPR gene targeting to demonstrate that hemodynamic-dependent Notch activation and the ensuing arterial genetic program is driven by endothelial primary cilia. We also identify zebrafish foxc1b as a cilia-dependent Notch-specific target that is required within endothelial cells to drive vMC recruitment. In summary, we have identified a hemodynamic-dependent mechanism in the developing vasculature that controls vMC recruitment.
Collapse
Affiliation(s)
- Xiaowen Chen
- Vesalius Research Center, VIB-KUL, Leuven 3000, Belgium
| | - Dafne Gays
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Carlo Milia
- Vesalius Research Center, VIB-KUL, Leuven 3000, Belgium
| | - Massimo M Santoro
- Vesalius Research Center, VIB-KUL, Leuven 3000, Belgium; Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy.
| |
Collapse
|
19
|
Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S. Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis. Dev Biol 2017; 434:108-120. [PMID: 29229250 PMCID: PMC5814753 DOI: 10.1016/j.ydbio.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/12/2023]
Abstract
The transcription factors GATA4, GATA5 and GATA6 are important regulators of heart muscle differentiation (cardiomyogenesis), which function in a partially redundant manner. We identified genes specifically regulated by individual cardiogenic GATA factors in a genome-wide transcriptomics analysis. The genes regulated by gata4 are particularly interesting because GATA4 is able to induce differentiation of beating cardiomyocytes in Xenopus and in mammalian systems. Among the specifically gata4-regulated transcripts we identified two SoxF family members, sox7 and sox18. Experimental reinstatement of gata4 restores sox7 and sox18 expression, and loss of cardiomyocyte differentiation due to gata4 knockdown is partially restored by reinstating sox7 or sox18 expression, while (as previously reported) knockdown of sox7 or sox18 interferes with heart muscle formation. In order to test for conservation in mammalian cardiomyogenesis, we confirmed in mouse embryonic stem cells (ESCs) undergoing cardiomyogenesis that knockdown of Gata4 leads to reduced Sox7 (and Sox18) expression and that Gata4 is also uniquely capable of promptly inducing Sox7 expression. Taken together, we identify an important and conserved gene regulatory axis from gata4 to the SoxF paralogs sox7 and sox18 and further to heart muscle cell differentiation. Gata 4, 5 and 6 have redundant and non-redundant functions in heart development. RNA-seq analysis of Gata4, 5 and 6 knockdown experiments was carried out. Genes specifically regulated by Gata4, 5 and 6 were identified. The SoxF genes sox7 and sox18 were identified as specifically regulated by Gata4. Epistasis demonstrates a regulatory axis from Gata4 to Sox7/18 to cardiomyogenesis.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Adam T Lynch
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Eduardo de Paiva Alves
- Centre for Genome-Enabled Biology and Medicine, King's College Campus, University of Aberdeen, Scotland, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK.
| |
Collapse
|
20
|
Hogan BM, Schulte-Merker S. How to Plumb a Pisces: Understanding Vascular Development and Disease Using Zebrafish Embryos. Dev Cell 2017; 42:567-583. [PMID: 28950100 DOI: 10.1016/j.devcel.2017.08.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023]
Abstract
Our vasculature plays diverse and critical roles in homeostasis and disease. In recent decades, the use of zebrafish has driven our understanding of vascular development into new areas, identifying new genes and mechanisms controlling vessel formation and allowing unprecedented observation of the cellular and molecular events that shape the developing vasculature. Here, we highlight key mechanisms controlling formation of the zebrafish vasculature and investigate how knowledge from this highly tractable model system has informed our understanding of vascular disease in humans.
Collapse
Affiliation(s)
- Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia.
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster 48149, Germany; Cells-in-Motion Cluster of Excellence (EXC-1003), WWU Münster, 48149 Münster, Germany.
| |
Collapse
|
21
|
Hasan SS, Tsaryk R, Lange M, Wisniewski L, Moore JC, Lawson ND, Wojciechowska K, Schnittler H, Siekmann AF. Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol 2017; 19:928-940. [PMID: 28714969 PMCID: PMC5534340 DOI: 10.1038/ncb3574] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/15/2017] [Indexed: 01/01/2023]
Abstract
Angiogenic sprouting needs to be tightly controlled. It has been suggested that the Notch ligand dll4 expressed in leading tip cells restricts angiogenesis by activating Notch signalling in trailing stalk cells. Here, we show using live imaging in zebrafish that activation of Notch signalling is rather required in tip cells. Notch activation initially triggers expression of the chemokine receptor cxcr4a. This allows for proper tip cell migration and connection to the pre-existing arterial circulation, ultimately establishing functional arterial-venous blood flow patterns. Subsequently, Notch signalling reduces cxcr4a expression, thereby preventing excessive blood vessel growth. Finally, we find that Notch signalling is dispensable for limiting blood vessel growth during venous plexus formation that does not generate arteries. Together, these findings link the role of Notch signalling in limiting angiogenesis to its role during artery formation and provide a framework for our understanding of the mechanisms underlying blood vessel network expansion and maturation.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Arteries/cytology
- Arteries/metabolism
- Cell Movement
- Cells, Cultured
- Endothelial Cells/metabolism
- Gene Expression Regulation, Developmental
- Genotype
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Fluorescence
- Microscopy, Video
- Neovascularization, Physiologic
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Phenotype
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction
- Time Factors
- Time-Lapse Imaging
- Transfection
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Sana S. Hasan
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
| | - Roman Tsaryk
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
| | - Martin Lange
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
| | - Laura Wisniewski
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
| | - John C. Moore
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Nathan D. Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | | | - Hans Schnittler
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149 Münster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
| |
Collapse
|
22
|
Lilly AJ, Mazan A, Scott DA, Lacaud G, Kouskoff V. SOX7 expression is critically required in FLK1-expressing cells for vasculogenesis and angiogenesis during mouse embryonic development. Mech Dev 2017; 146:31-41. [PMID: 28577909 PMCID: PMC5496588 DOI: 10.1016/j.mod.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/27/2017] [Accepted: 05/31/2017] [Indexed: 01/01/2023]
Abstract
The transcriptional program that regulates the differentiation of endothelial precursor cells into a highly organized vascular network is still poorly understood. Here we explore the role of SOX7 during this process, performing a detailed analysis of the vascular defects resulting from either a complete deficiency in Sox7 expression or from the conditional deletion of Sox7 in FLK1-expressing cells. We analysed the consequence of Sox7 deficiency from E7.5 onward to determine from which stage of development the effect of Sox7 deficiency can be observed. We show that while Sox7 is expressed at the onset of endothelial specification from mesoderm, Sox7 deficiency does not impact the emergence of the first endothelial progenitors. However, by E8.5, clear signs of defective vascular development are already observed with the presence of highly unorganised endothelial cords rather than distinct paired dorsal aorta. By E10.5, both Sox7 complete knockout and FLK1-specific deletion of Sox7 lead to widespread vascular defects. In contrast, while SOX7 is expressed in the earliest specified blood progenitors, the VAV-specific deletion of Sox7 does not affect the hematopoietic system. Together, our data reveal the unique role of SOX7 in vasculogenesis and angiogenesis during embryonic development.
Collapse
Affiliation(s)
- Andrew J Lilly
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK
| | - Andrzej Mazan
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, BCM227, Houston, TX 77030, USA
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK.
| | - Valerie Kouskoff
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK; Division of Developmental Biology and Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
23
|
Tang CSM, Gui H, Kapoor A, Kim JH, Luzón-Toro B, Pelet A, Burzynski G, Lantieri F, So MT, Berrios C, Shin HD, Fernández RM, Le TL, Verheij JBGM, Matera I, Cherny SS, Nandakumar P, Cheong HS, Antiñolo G, Amiel J, Seo JM, Kim DY, Oh JT, Lyonnet S, Borrego S, Ceccherini I, Hofstra RMW, Chakravarti A, Kim HY, Sham PC, Tam PKH, Garcia-Barceló MM. Trans-ethnic meta-analysis of genome-wide association studies for Hirschsprung disease. Hum Mol Genet 2017; 25:5265-5275. [PMID: 27702942 DOI: 10.1093/hmg/ddw333] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/28/2016] [Indexed: 02/04/2023] Open
Abstract
Hirschsprung disease (HSCR) is the most common cause of neonatal intestinal obstruction. It is characterized by the absence of ganglia in the nerve plexuses of the lower gastrointestinal tract. So far, three common disease-susceptibility variants at the RET, SEMA3 and NRG1 loci have been detected through genome-wide association studies (GWAS) in Europeans and Asians to understand its genetic etiologies. Here we present a trans-ethnic meta-analysis of 507 HSCR cases and 1191 controls, combining all published GWAS results on HSCR to fine-map these loci and narrow down the putatively causal variants to 99% credible sets. We also demonstrate that the effects of RET and NRG1 are universal across European and Asian ancestries. In contrast, we detected a European-specific association of a low-frequency variant, rs80227144, in SEMA3 [odds ratio (OR) = 5.2, P = 4.7 × 10-10]. Conditional analyses on the lead SNPs revealed a secondary association signal, corresponding to an Asian-specific, low-frequency missense variant encoding RET p.Asp489Asn (rs9282834, conditional OR = 20.3, conditional P = 4.1 × 10-14). When in trans with the RET intron 1 enhancer risk allele, rs9282834 increases the risk of HSCR from 1.1 to 26.7. Overall, our study provides further insights into the genetic architecture of HSCR and has profound implications for future study designs.
Collapse
Affiliation(s)
- Clara Sze-Man Tang
- Department of Surgery.,Centre for Genomic Sciences.,Dr Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong SAR, China
| | | | - Ashish Kapoor
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeong-Hyun Kim
- Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Anna Pelet
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Grzegorz Burzynski
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Courtney Berrios
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyoung Doo Shin
- Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea.,Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Thuy-Linh Le
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Joke B G M Verheij
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ivana Matera
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Stacey S Cherny
- Centre for Genomic Sciences.,Department of Psychiatry.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Priyanka Nandakumar
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul 121-742, Republic of Korea
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Jeong-Meen Seo
- Division of Pediatric Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Dae-Yeon Kim
- Department of Pediatric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jung-Tak Oh
- Department of Pediatric Surgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | | | - Robert M W Hofstra
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre UCL Institute of Child Health, London, UK
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Children's Hospital, Seoul 110-744, Republic of Korea
| | - Pak Chung Sham
- Centre for Genomic Sciences.,Department of Psychiatry.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Paul K H Tam
- Department of Surgery.,Dr Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong SAR, China
| | | |
Collapse
|
24
|
Chiang IKN, Fritzsche M, Pichol-Thievend C, Neal A, Holmes K, Lagendijk A, Overman J, D'Angelo D, Omini A, Hermkens D, Lesieur E, Liu K, Ratnayaka I, Corada M, Bou-Gharios G, Carroll J, Dejana E, Schulte-Merker S, Hogan B, Beltrame M, De Val S, Francois M. SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development 2017; 144:2629-2639. [PMID: 28619820 PMCID: PMC5536923 DOI: 10.1242/dev.146241] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/07/2017] [Indexed: 12/30/2022]
Abstract
Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancers were able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Arteries/embryology
- Arteries/metabolism
- Arteriovenous Malformations/embryology
- Arteriovenous Malformations/genetics
- Arteriovenous Malformations/metabolism
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Human Umbilical Vein Endothelial Cells
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Pregnancy
- Receptor, Notch1/deficiency
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- SOXF Transcription Factors/deficiency
- SOXF Transcription Factors/genetics
- SOXF Transcription Factors/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Zebrafish
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Ivy Kim-Ni Chiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin Fritzsche
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Cathy Pichol-Thievend
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alice Neal
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Kelly Holmes
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Anne Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Donatella D'Angelo
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Alice Omini
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Dorien Hermkens
- University of Münster, 48149 Münster, Germany Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Westfälische Wilhelms-Universität Münster (WWU), Mendelstrasse 7, 48149 Münster and CiM Cluster of Excellence, Germany
| | - Emmanuelle Lesieur
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ke Liu
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Indrika Ratnayaka
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Monica Corada
- IFOM, FIRC Institute of Molecular Oncology, 1620139 Milan, Italy
| | - George Bou-Gharios
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Jason Carroll
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Elisabetta Dejana
- IFOM, FIRC Institute of Molecular Oncology, 1620139 Milan, Italy
- Department of Immunology Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Stefan Schulte-Merker
- University of Münster, 48149 Münster, Germany Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Westfälische Wilhelms-Universität Münster (WWU), Mendelstrasse 7, 48149 Münster and CiM Cluster of Excellence, Germany
| | - Benjamin Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Monica Beltrame
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Sarah De Val
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
25
|
Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017; 18:477-494. [PMID: 28537573 DOI: 10.1038/nrm.2017.36] [Citation(s) in RCA: 421] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.
Collapse
|
26
|
Lilly AJ, Lacaud G, Kouskoff V. SOXF transcription factors in cardiovascular development. Semin Cell Dev Biol 2017; 63:50-57. [PMID: 27470491 DOI: 10.1016/j.semcdb.2016.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
Cardiovascular development during embryogenesis involves complex changes in gene regulatory networks regulated by a variety of transcription factors. In this review we discuss the various reported roles of the SOXF factors: SOX7, SOX17 and SOX18 in cardiac, vascular and lymphatic development. SOXF factors have pleiotropic roles during these processes, and there is significant redundancy and functional compensation between SOXF family members. Despite this, evidence suggests that there is some specificity in the transcriptional programs they regulate which is necessary to control the differentiation and behaviour of endothelial subpopulations. Furthermore, SOXF factors appear to have an indirect role in regulating cardiac mesoderm specification and differentiation. Understanding how SOXF factors are regulated, as well as their downstream transcriptional target genes, will be important for unravelling their roles in cardiovascular development and related diseases.
Collapse
Affiliation(s)
- Andrew J Lilly
- Cancer Research UK, Stem Cell Hematopoiesis, The University of Manchester, Wilmslow road, M20 4BX, UK
| | - Georges Lacaud
- Cancer Research UK, Stem Cell Biology group Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK.
| | - Valerie Kouskoff
- Cancer Research UK, Stem Cell Hematopoiesis, The University of Manchester, Wilmslow road, M20 4BX, UK.
| |
Collapse
|
27
|
Crist AM, Young C, Meadows SM. Characterization of arteriovenous identity in the developing neonate mouse retina. Gene Expr Patterns 2017; 23-24:22-31. [PMID: 28167138 DOI: 10.1016/j.gep.2017.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/14/2016] [Accepted: 01/31/2017] [Indexed: 12/26/2022]
Abstract
The murine retina has become an ideal model to study blood vessel formation. Blood vessels in the retina undergo various processes, including remodeling and differentiation, to form a stereotypical network that consists of precisely patterned arteries and veins. This model presents a powerful tool for understanding many different aspects of angiogenesis including artery and vein (AV) cell fate acquisition and differentiation. However, characterization of AV differentiation has been largely unexplored in the mouse retinal model. In this study, we describe the expression of previously established AV markers and assess arteriovenous acquisition and identity in the murine neonatal retina. Using in situ hybridization and immunofluorescent antibody staining techniques, we analyzed numerous AV differentiation markers such as EphB4-EphrinB2 and members of the Notch pathway. We find that at postnatal day 3 (P3), when blood vessels are beginning to populate the retina, AV identity is not immediately established. However, by P5 expression of many molecular identifiers of arteries and veins become restricted to their respective vessel types. This molecular distinction is more obvious at P7 and remains unchanged through P9. Overall, these studies indicate that, similar to the embryo, acquisition of AV identity occurs in a step-wise process and is largely established by P7 during retina development.
Collapse
Affiliation(s)
- Angela M Crist
- Department of Cell and Molecular Biology, Tulane University, USA
| | - Chandler Young
- Department of Cell and Molecular Biology, Tulane University, USA
| | | |
Collapse
|
28
|
Overman J, Fontaine F, Moustaqil M, Mittal D, Sierecki E, Sacilotto N, Zuegg J, Robertson AAB, Holmes K, Salim AA, Mamidyala S, Butler MS, Robinson AS, Lesieur E, Johnston W, Alexandrov K, Black BL, Hogan BM, De Val S, Capon RJ, Carroll JS, Bailey TL, Koopman P, Jauch R, Smyth MJ, Cooper MA, Gambin Y, Francois M. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. eLife 2017; 6:e21221. [PMID: 28137359 PMCID: PMC5283831 DOI: 10.7554/elife.21221] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics.
Collapse
Affiliation(s)
- Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Mehdi Moustaqil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Emma Sierecki
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Natalia Sacilotto
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford, United Kingdom
| | - Johannes Zuegg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Avril AB Robertson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kelly Holmes
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Angela A Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sreeman Mamidyala
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ashley S Robinson
- Cardiovascular Research Institute, The University of California, San Francisco, San Francisco, United States
| | - Emmanuelle Lesieur
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Wayne Johnston
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Brian L Black
- Cardiovascular Research Institute, The University of California, San Francisco, San Francisco, United States
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sarah De Val
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford, United Kingdom
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jason S Carroll
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Timothy L Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ralf Jauch
- Genome Regulation Laboratory, Drug Discovery Pipeline, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Medicine, The University of Queensland, Herston, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yann Gambin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
29
|
SoxF Transcription Factors Are Positive Feedback Regulators of VEGF Signaling. Circ Res 2016; 119:839-52. [DOI: 10.1161/circresaha.116.308483] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022]
Abstract
Rationale:
Vascular endothelial growth factor (VEGF) signaling is a key pathway for angiogenesis and requires highly coordinated regulation. Although the Notch pathway-mediated suppression of excessive VEGF activity via negative feedback is well known, the positive feedback control for augmenting VEGF signaling remains poorly understood. Transcription factor Sox17 is indispensable for angiogenesis, but its association with VEGF signaling is largely unknown. The contribution of other Sox members to angiogenesis also remains to be determined.
Objective:
To reveal the genetic interaction of Sox7, another Sox member, with Sox17 in developmental angiogenesis and their functional relationship with VEGF signaling.
Methods and Results:
Sox7 is expressed specifically in endothelial cells and its global and endothelial-specific deletion resulted in embryonic lethality with severely impaired angiogenesis in mice, substantially overlapping with Sox17 in both expression and function. Interestingly, compound heterozygosity for
Sox7
and
Sox17
phenocopied vascular defects of
Sox7
or
Sox17
homozygous knockout, indicating that the genetic cooperation of Sox7 and Sox17 is sensitive to their combined gene dosage. VEGF signaling upregulated both Sox7 and Sox17 expression in angiogenesis via mTOR pathway. Furthermore, Sox7 and Sox17 promoted VEGFR2 (VEGF receptor 2) expression in angiogenic vessels, suggesting a positive feedback loop between VEGF signaling and SoxF.
Conclusions:
Our findings demonstrate that SoxF transcription factors are indispensable players in developmental angiogenesis by acting as positive feedback regulators of VEGF signaling.
Collapse
|
30
|
Mouse Sox17 haploinsufficiency leads to female subfertility due to impaired implantation. Sci Rep 2016; 6:24171. [PMID: 27053385 PMCID: PMC4823729 DOI: 10.1038/srep24171] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/22/2016] [Indexed: 12/24/2022] Open
Abstract
Embryonic implantation comprises a dynamic and complicated series of events, which takes place only when the maternal uterine endometrium is in a receptive state. Blastocysts reaching the uterus communicate with the uterine endometrium to implant within a narrow time window. Interplay among various signalling molecules and transcription factors under the control of ovarian hormones is necessary for successful establishment of pregnancy. However, the molecular mechanisms that allow embryonic implantation in the receptive endometrium are still largely unknown. Here, we show that Sry-related HMG box gene-17 (Sox17) heterozygous mutant female mice exhibit subfertility due to implantation failure. Sox17 was expressed in the oviduct, uterine luminal epithelium, and blood vessels. Sox17 heterozygosity caused no appreciable defects in ovulation, fertilisation, blastocyst formation, and gross morphology of the oviduct and uterus. Another group F Sox transcription factor, Sox7, was also expressed in the uterine luminal and glandular epithelium relatively weakly. Despite uterine Sox7 expression, a significant reduction in the number of implantation sites was observed in Sox17 heterozygous mutant females due to haploinsufficiency. Our findings revealed a novel role of Sox17 in uterine receptivity to embryo implantation.
Collapse
|
31
|
Chávez MN, Aedo G, Fierro FA, Allende ML, Egaña JT. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Front Physiol 2016; 7:56. [PMID: 27014075 PMCID: PMC4781882 DOI: 10.3389/fphys.2016.00056] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.
Collapse
Affiliation(s)
- Myra N Chávez
- Department of Plastic Surgery and Hand Surgery, University Hospital rechts der Isar, Technische Universität MünchenMunich, Germany; Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de ChileSantiago, Chile; Department of Biochemistry and Molecular Biology, FONDAP Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| | - Geraldine Aedo
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - Fernando A Fierro
- Department of Cell Biology and Human Anatomy, University of California Davis, Sacramento, CA, USA
| | - Miguel L Allende
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - José T Egaña
- Institute for Medical and Biological Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontifícia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
32
|
Zhou Y, Williams J, Smallwood PM, Nathans J. Sox7, Sox17, and Sox18 Cooperatively Regulate Vascular Development in the Mouse Retina. PLoS One 2015; 10:e0143650. [PMID: 26630461 PMCID: PMC4667919 DOI: 10.1371/journal.pone.0143650] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/06/2015] [Indexed: 02/06/2023] Open
Abstract
Vascular development and maintenance are controlled by a complex transcriptional program, which integrates both extracellular and intracellular signals in endothelial cells. Here we study the roles of three closely related SoxF family transcription factors–Sox7, Sox17, and Sox18 –in the developing and mature mouse vasculature using targeted gene deletion on a mixed C57/129/CD1 genetic background. In the retinal vasculature, each SoxF gene exhibits a distinctive pattern of expression in different classes of blood vessels. On a mixed genetic background, vascular endothelial-specific deletion of individual SoxF genes has little or no effect on vascular architecture or differentiation, a result that can be explained by overlapping function and by reciprocal regulation of gene expression between Sox7 and Sox17. By contrast, combined deletion of Sox7, Sox17, and Sox18 at the onset of retinal angiogenesis leads to a dense capillary plexus with a nearly complete loss of radial arteries and veins, whereas the presence of a single Sox17 allele largely restores arterial identity, as determined by vascular smooth muscle cell coverage. In the developing retina, expression of all three SoxF genes is reduced in the absence of Norrin/Frizzled4-mediated canonical Wnt signaling, but SoxF gene expression is unaffected by reduced VEGF signaling in response to deletion of Neuropilin1 (Npn1). In adulthood, Sox7, Sox17, and Sox18 act in a largely redundant manner to maintain blood vessel function, as adult onset vascular endothelial-specific deletion of all three SoxF genes leads to massive edema despite nearly normal vascular architecture. These data reveal critical and partially redundant roles for Sox7, Sox17 and Sox18 in vascular growth, differentiation, and maintenance.
Collapse
Affiliation(s)
- Yulian Zhou
- Departments of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - John Williams
- Departments of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Philip M. Smallwood
- Departments of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Jeremy Nathans
- Departments of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- * E-mail:
| |
Collapse
|
33
|
Koltowska K, Paterson S, Bower NI, Baillie GJ, Lagendijk AK, Astin JW, Chen H, Francois M, Crosier PS, Taft RJ, Simons C, Smith KA, Hogan BM. mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes Dev 2015; 29:1618-30. [PMID: 26253536 PMCID: PMC4536310 DOI: 10.1101/gad.263210.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Koltowska et al. used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. Vegfc signaling increases mafba expression to control downstream transcription, and this relationship is SoxF transcription factor-dependent. The lymphatic vasculature plays roles in tissue fluid balance, immune cell trafficking, fatty acid absorption, cancer metastasis, and cardiovascular disease. Lymphatic vessels form by lymphangiogenesis, the sprouting of new lymphatics from pre-existing vessels, in both development and disease contexts. The apical signaling pathway in lymphangiogenesis is the VEGFC/VEGFR3 pathway, yet how signaling controls cellular transcriptional output remains unknown. We used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. We found that mafba is required for the migration of lymphatic precursors after their initial sprouting from the posterior cardinal vein. mafba expression is enriched in sprouts emerging from veins, and we show that mafba functions cell-autonomously during lymphatic vessel development. Mechanistically, Vegfc signaling increases mafba expression to control downstream transcription, and this regulatory relationship is dependent on the activity of SoxF transcription factors, which are essential for mafba expression in venous endothelium. Here we identify an indispensable Vegfc–SoxF–Mafba pathway in lymphatic development.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Anne K Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Huijun Chen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mathias Francois
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Ryan J Taft
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|