1
|
Casas Gimeno G, Paridaen JTML. The Symmetry of Neural Stem Cell and Progenitor Divisions in the Vertebrate Brain. Front Cell Dev Biol 2022; 10:885269. [PMID: 35693936 PMCID: PMC9174586 DOI: 10.3389/fcell.2022.885269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Robust brain development requires the tight coordination between tissue growth, neuronal differentiation and stem cell maintenance. To achieve this, neural stem cells need to balance symmetric proliferative and terminal divisions with asymmetric divisions. In recent years, the unequal distribution of certain cellular components in mitosis has emerged as a key mechanism to regulate the symmetry of division, and the determination of equal and unequal sister cell fates. Examples of such components include polarity proteins, signaling components, and cellular structures such as endosomes and centrosomes. In several types of neural stem cells, these factors show specific patterns of inheritance that correlate to specific cell fates, albeit the underlying mechanism and the potential causal relationship is not always understood. Here, we review these examples of cellular neural stem and progenitor cell asymmetries and will discuss how they fit into our current understanding of neural stem cell function in neurogenesis in developing and adult brains. We will focus mainly on the vertebrate brain, though we will incorporate relevant examples from invertebrate organisms as well. In particular, we will highlight recent advances in our understanding of the complexities related cellular asymmetries in determining division mode outcomes, and how these mechanisms are spatiotemporally regulated to match the different needs for proliferation and differentiation as the brain forms.
Collapse
|
2
|
Angstadt S, Zhu Q, Jaffee EM, Robinson DN, Anders RA. Pancreatic Ductal Adenocarcinoma Cortical Mechanics and Clinical Implications. Front Oncol 2022; 12:809179. [PMID: 35174086 PMCID: PMC8843014 DOI: 10.3389/fonc.2022.809179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to low therapeutic response rates and poor prognoses. Majority of patients present with symptoms post metastatic spread, which contributes to its overall lethality as the 4th leading cause of cancer-related deaths. Therapeutic approaches thus far target only one or two of the cancer specific hallmarks, such as high proliferation rate, apoptotic evasion, or immune evasion. Recent genomic discoveries reveal that genetic heterogeneity, early micrometastases, and an immunosuppressive tumor microenvironment contribute to the inefficacy of current standard treatments and specific molecular-targeted therapies. To effectively combat cancers like PDAC, we need an innovative approach that can simultaneously impact the multiple hallmarks driving cancer progression. Here, we present the mechanical properties generated by the cell’s cortical cytoskeleton, with a spotlight on PDAC, as an ideal therapeutic target that can concurrently attack multiple systems driving cancer. We start with an introduction to cancer cell mechanics and PDAC followed by a compilation of studies connecting the cortical cytoskeleton and mechanical properties to proliferation, metastasis, immune cell interactions, cancer cell stemness, and/or metabolism. We further elaborate on the implications of these findings in disease progression, therapeutic resistance, and clinical relapse. Manipulation of the cancer cell’s mechanical system has already been shown to prevent metastasis in preclinical models, but it has greater potential for target exploration since it is a foundational property of the cell that regulates various oncogenic behaviors.
Collapse
Affiliation(s)
- Shantel Angstadt
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qingfeng Zhu
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Douglas N. Robinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| | - Robert A. Anders
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| |
Collapse
|
3
|
Maryam A, Chin YR. ANLN Enhances Triple-Negative Breast Cancer Stemness Through TWIST1 and BMP2 and Promotes its Spheroid Growth. Front Mol Biosci 2021; 8:700973. [PMID: 34277708 PMCID: PMC8280772 DOI: 10.3389/fmolb.2021.700973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
ANLN is frequently upregulated in triple-negative breast cancer (TNBC) and its high expression in tumors are significantly associated with poor survival and recurrence, thereby it has been proposed to function as a prognostic marker for breast cancer. However, the specific function and molecular mechanisms by which ANLN promotes TNBC tumorigenesis remain elusive. Using multiomic profiling, we recently uncovered ANLN as a TNBC-specific gene driven by super-enhancer. Here, by Crispr/Cas9 editing, we showed that knockout of ANLN inhibits spheroid growth of TNBC. Interestingly, its effect on cell proliferation in 2D cultures is minimal. ANLN depletion inhibits mammosphere formation and clonogenicity potently, suggesting its important function in regulating cancer stem cells (CSCs). We screened a panel of stem cell-related genes and uncovered several CSC genes regulated by ANLN. We further identify TWIST1 and BMP2 as essential genes that mediate ANLN’s function in stemness but not spheroid growth. These findings may contribute to search for effective targeted therapies to treat TNBC.
Collapse
Affiliation(s)
- Alishba Maryam
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Y Rebecca Chin
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
4
|
Naydenov NG, Koblinski JE, Ivanov AI. Anillin is an emerging regulator of tumorigenesis, acting as a cortical cytoskeletal scaffold and a nuclear modulator of cancer cell differentiation. Cell Mol Life Sci 2021; 78:621-633. [PMID: 32880660 PMCID: PMC11072349 DOI: 10.1007/s00018-020-03605-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Remodeling of the intracellular cytoskeleton plays a key role in accelerating tumor growth and metastasis. Targeting different cytoskeletal elements is important for existing and future anticancer therapies. Anillin is a unique scaffolding protein that interacts with major cytoskeletal structures, e.g., actin filaments, microtubules and septin polymers. A well-studied function of this scaffolding protein is the regulation of cytokinesis at the completion of cell division. Emerging evidence suggest that anillin has other important activities in non-dividing cells, including control of intercellular adhesions and cell motility. Anillin is markedly overexpressed in different solid cancers and its high expression is commonly associated with poor prognosis of patient survival. This review article summarizes rapidly accumulating evidence that implicates anillin in the regulation of tumor growth and metastasis. We focus on molecular and cellular mechanisms of anillin-dependent tumorigenesis that include both canonical control of cytokinesis and novel poorly understood functions as a nuclear regulator of the transcriptional reprogramming and phenotypic plasticity of cancer cells.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, 9500 Euclid Avenue, NC22, Cleveland, OH, 44195, USA
| | - Jennifer E Koblinski
- Department of Pathology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, 9500 Euclid Avenue, NC22, Cleveland, OH, 44195, USA.
| |
Collapse
|
5
|
Nerli E, Rocha-Martins M, Norden C. Asymmetric neurogenic commitment of retinal progenitors involves Notch through the endocytic pathway. eLife 2020; 9:e60462. [PMID: 33141024 PMCID: PMC7679139 DOI: 10.7554/elife.60462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 01/07/2023] Open
Abstract
During brain development, progenitor cells need to balanceproliferation and differentiation in order to generate different neurons in the correct numbers and proportions. Currently, the patterns of multipotent progenitor divisions that lead to neurogenic entry and the factors that regulate them are not fully understood. We here use the zebrafish retina to address this gap, exploiting its suitability for quantitative live-imaging. We show that early neurogenic progenitors arise from asymmetric divisions. Notch regulates this asymmetry, as when inhibited, symmetric divisions producing two neurogenic progenitors occur. Surprisingly however, Notch does not act through an apicobasal activity gradient as previously suggested, but through asymmetric inheritance of Sara-positive endosomes. Further, the resulting neurogenic progenitors show cell biological features different from multipotent progenitors, raising the possibility that an intermediate progenitor state exists in the retina. Our study thus reveals new insights into the regulation of proliferative and differentiative events during central nervous system development.
Collapse
Affiliation(s)
- Elisa Nerli
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Mauricio Rocha-Martins
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| |
Collapse
|
6
|
Covello G, Rossello FJ, Filosi M, Gajardo F, Duchemin A, Tremonti BF, Eichenlaub M, Polo JM, Powell D, Ngai J, Allende ML, Domenici E, Ramialison M, Poggi L. Transcriptome analysis of the zebrafish atoh7-/- Mutant, lakritz, highlights Atoh7-dependent genetic networks with potential implications for human eye diseases. FASEB Bioadv 2020; 2:434-448. [PMID: 32676583 PMCID: PMC7354691 DOI: 10.1096/fba.2020-00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of the bHLH transcription protein Atoh7 is a crucial factor conferring competence to retinal progenitor cells for the development of retinal ganglion cells. Several studies have emerged establishing ATOH7 as a retinal disease gene. Remarkably, such studies uncovered ATOH7 variants associated with global eye defects including optic nerve hypoplasia, microphthalmia, retinal vascular disorders, and glaucoma. The complex genetic networks and cellular decisions arising downstream of atoh7 expression, and how their dysregulation cause development of such disease traits remains unknown. To begin to understand such Atoh7-dependent events in vivo, we performed transcriptome analysis of wild-type and atoh7 mutant (lakritz) zebrafish embryos at the onset of retinal ganglion cell differentiation. We investigated in silico interplays of atoh7 and other disease-related genes and pathways. By network reconstruction analysis of differentially expressed genes, we identified gene clusters enriched in retinal development, cell cycle, chromatin remodeling, stress response, and Wnt pathways. By weighted gene coexpression network, we identified coexpression modules affected by the mutation and enriched in retina development genes tightly connected to atoh7. We established the groundwork whereby Atoh7-linked cellular and molecular processes can be investigated in the dynamic multi-tissue environment of the developing normal and diseased vertebrate eye.
Collapse
Affiliation(s)
- Giuseppina Covello
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of BiologyUniversity of PadovaPadovaItaly
| | - Fernando J. Rossello
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- Present address:
University of Melbourne Centre for Cancer ResearchUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Felipe Gajardo
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | | | - Beatrice F. Tremonti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michael Eichenlaub
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Jose M. Polo
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- BDIMonash University Clayton VICClaytonAustralia
| | - David Powell
- Monash Bioinformatics PlatformMonash University Clayton VICClaytonAustralia
| | - John Ngai
- Department of Molecular and Cell Biology & Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Miguel L. Allende
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems BiologyTrentoItaly
| | - Mirana Ramialison
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Centre for Organismal StudyHeidelberg UniversityHeidelbergGermany
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
7
|
Albadri S, Armant O, Aljand-Geschwill T, Del Bene F, Carl M, Strähle U, Poggi L. Expression of a Barhl1a reporter in subsets of retinal ganglion cells and commissural neurons of the developing zebrafish brain. Sci Rep 2020; 10:8814. [PMID: 32483163 PMCID: PMC7264323 DOI: 10.1038/s41598-020-65435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/05/2020] [Indexed: 12/03/2022] Open
Abstract
Promoting the regeneration or survival of retinal ganglion cells (RGCs) is one focus of regenerative medicine. Homeobox Barhl transcription factors might be instrumental in these processes. In mammals, only barhl2 is expressed in the retina and is required for both subtype identity acquisition of amacrine cells and for the survival of RGCs downstream of Atoh7, a transcription factor necessary for RGC genesis. The underlying mechanisms of this dual role of Barhl2 in mammals have remained elusive. Whole genome duplication in the teleost lineage generated the barhl1a and barhl2 paralogues. In the Zebrafish retina, Barhl2 functions as a determinant of subsets of amacrine cells lineally related to RGCs independently of Atoh7. In contrast, barhl1a expression depends on Atoh7 but its expression dynamics and function have not been studied. Here we describe for the first time a Barhl1a reporter line in vivo showing that barhl1a turns on exclusively in subsets of RGCs and their post-mitotic precursors. We also show transient expression of barhl1a:GFP in diencephalic neurons extending their axonal projections as part of the post-optic commissure, at the time of optic chiasm formation. This work sets the ground for future studies on RGC subtype identity, axonal projections and genetic specification of Barhl1a-positive RGCs and commissural neurons.
Collapse
Affiliation(s)
- Shahad Albadri
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany.,Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Olivier Armant
- Institute of Biological and Chemical Systems, Biological Information Processing Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Filippo Del Bene
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Uwe Strähle
- Institute of Biological and Chemical Systems, Biological Information Processing Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Lucia Poggi
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany. .,Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
8
|
Moore R, Alexandre P. Delta-Notch Signaling: The Long and The Short of a Neuron's Influence on Progenitor Fates. J Dev Biol 2020; 8:jdb8020008. [PMID: 32225077 PMCID: PMC7345741 DOI: 10.3390/jdb8020008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 01/16/2023] Open
Abstract
Maintenance of the neural progenitor pool during embryonic development is essential to promote growth of the central nervous system (CNS). The CNS is initially formed by tightly compacted proliferative neuroepithelial cells that later acquire radial glial characteristics and continue to divide at the ventricular (apical) and pial (basal) surface of the neuroepithelium to generate neurons. While neural progenitors such as neuroepithelial cells and apical radial glia form strong connections with their neighbours at the apical and basal surfaces of the neuroepithelium, neurons usually form the mantle layer at the basal surface. This review will discuss the existing evidence that supports a role for neurons, from early stages of differentiation, in promoting progenitor cell fates in the vertebrates CNS, maintaining tissue homeostasis and regulating spatiotemporal patterning of neuronal differentiation through Delta-Notch signalling.
Collapse
Affiliation(s)
- Rachel Moore
- Centre for Developmental Neurobiology, King’s College London, London SE1 1UL, UK
- Correspondence: (R.M.); (P.A.)
| | - Paula Alexandre
- Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Correspondence: (R.M.); (P.A.)
| |
Collapse
|
9
|
Bai X, Melesse M, Sorensen Turpin CG, Sloan DE, Chen CY, Wang WC, Lee PY, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen BC, Cheerambathur D, Bembenek JN. Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans. Development 2020; 147:dev.181099. [PMID: 31806662 PMCID: PMC6983721 DOI: 10.1242/dev.181099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Although cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant Caenorhabditis elegans embryonic divisions and found several parameters that are altered at different stages in a reproducible manner. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis, including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, we demonstrate that cytokinesis is implemented in a specialized way during epithelial polarization and that Aurora B has a role in the formation of the apical surface.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael Melesse
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Dillon E. Sloan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - James R. Simmons
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Nebenfuehr
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Mitchell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey R. Klebanow
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicholas Mattson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric Betzig
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
10
|
Anillin regulates breast cancer cell migration, growth, and metastasis by non-canonical mechanisms involving control of cell stemness and differentiation. Breast Cancer Res 2020; 22:3. [PMID: 31910867 PMCID: PMC6947866 DOI: 10.1186/s13058-019-1241-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Breast cancer metastasis is driven by a profound remodeling of the cytoskeleton that enables efficient cell migration and invasion. Anillin is a unique scaffolding protein regulating major cytoskeletal structures, such as actin filaments, microtubules, and septin polymers. It is markedly overexpressed in breast cancer, and high anillin expression is associated with poor prognosis. The aim of this study was to investigate the role of anillin in breast cancer cell migration, growth, and metastasis. Methods CRISPR/Cas9 technology was used to deplete anillin in highly metastatic MDA-MB-231 and BT549 cells and to overexpress it in poorly invasive MCF10AneoT cells. The effects of anillin depletion and overexpression on breast cancer cell motility in vitro were examined by wound healing and Matrigel invasion assays. Assembly of the actin cytoskeleton and matrix adhesion were evaluated by immunofluorescence labeling and confocal microscopy. In vitro tumor development was monitored by soft agar growth assays, whereas cancer stem cells were examined using a mammosphere formation assay and flow cytometry. The effects of anillin knockout on tumor growth and metastasis in vivo were determined by injecting control and anillin-depleted breast cancer cells into NSG mice. Results Loss-of-function and gain-of-function studies demonstrated that anillin is necessary and sufficient to accelerate migration, invasion, and anchorage-independent growth of breast cancer cells in vitro. Furthermore, loss of anillin markedly attenuated primary tumor growth and metastasis of breast cancer in vivo. In breast cancer cells, anillin was localized in the nucleus; however, knockout of this protein affected the cytoplasmic/cortical events, e.g., the organization of actin cytoskeleton and cell-matrix adhesions. Furthermore, we observed a global transcriptional reprogramming of anillin-depleted breast cancer cells that resulted in suppression of their stemness and induction of the mesenchymal to epithelial trans-differentiation. Such trans-differentiation was manifested by the upregulation of basal keratins along with the increased expression of E-cadherin and P-cadherin. Knockdown of E-cadherin restored the impaired migration and invasion of anillin-deficient breast cancer cells. Conclusion Our study demonstrates that anillin plays essential roles in promoting breast cancer growth and metastatic dissemination in vitro and in vivo and unravels novel functions of anillin in regulating breast cancer stemness and differentiation.
Collapse
|
11
|
Poggi L, Casarosa S, Carl M. An Eye on the Wnt Inhibitory Factor Wif1. Front Cell Dev Biol 2018; 6:167. [PMID: 30574494 PMCID: PMC6292148 DOI: 10.3389/fcell.2018.00167] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
The coordinated interplay between extrinsic activating and repressing cell signaling molecules is pivotal for embryonic development and subsequent tissue homeostasis. This is well exemplified by studies on the evolutionarily conserved Wnt signaling pathways. Tight temporal and spatial regulation of Wnt signaling activity is required throughout lifetime, from maternal stages before gastrulation until and throughout adulthood. Outside cells, the action of numerous Wnt ligands is counteracted and fine-tuned by only a handful of well characterized secreted inhibitors, such as for instance Dickkopf, secreted Frizzled Related Proteins and Cerberus. Here, we give an overview of our current understanding of another secreted Wnt signaling antagonist, the Wnt inhibitory factor Wif1. Wif1 can directly interact with various Wnt ligands and inhibits their binding to membrane bound receptors. Epigenetic promoter methylation of Wif1, leading to silencing of its transcription and concomitant up-regulation of Wnt signaling, is a common feature during cancer progression. Furthermore, an increasing number of reports describe Wif1 involvement in regulating processes during embryonic development, which so far has not received as much attention. We will summarize our knowledge on Wif1 function and its mode of action with a particular focus on the zebrafish (Danio rerio). In addition, we highlight the potential of Wif1 research to understand and possibly influence mechanisms underlying eye diseases and regeneration.
Collapse
Affiliation(s)
- Lucia Poggi
- Laboratory of Molecular and Cellular Ophthalmology, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Simona Casarosa
- Laboratory of Neural Development and Regeneration, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Matthias Carl
- Laboratory of Translational Neurogenetics, Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
12
|
Anton KA, Kajita M, Narumi R, Fujita Y, Tada M. Src-transformed cells hijack mitosis to extrude from the epithelium. Nat Commun 2018; 9:4695. [PMID: 30410020 PMCID: PMC6224566 DOI: 10.1038/s41467-018-07163-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
At the initial stage of carcinogenesis single mutated cells appear within an epithelium. Mammalian in vitro experiments show that potentially cancerous cells undergo live apical extrusion from normal monolayers. However, the mechanism underlying this process in vivo remains poorly understood. Mosaic expression of the oncogene vSrc in a simple epithelium of the early zebrafish embryo results in extrusion of transformed cells. Here we find that during extrusion components of the cytokinetic ring are recruited to adherens junctions of transformed cells, forming a misoriented pseudo-cytokinetic ring. As the ring constricts, it separates the basal from the apical part of the cell releasing both from the epithelium. This process requires cell cycle progression and occurs immediately after vSrc-transformed cell enters mitosis. To achieve extrusion, vSrc coordinates cell cycle progression, junctional integrity, cell survival and apicobasal polarity. Without vSrc, modulating these cellular processes reconstitutes vSrc-like extrusion, confirming their sufficiency for this process. Potentially cancerous cells undergo live apical extrusion from normal monolayers and vSrc expression induces this in zebrafish epithelia. Here, the authors show that vSrc coordinates cytokinetic ring formation, cell cycle progression, junctional integrity, cell survival and apicobasal polarity to induce extrusion of transformed cells.
Collapse
Affiliation(s)
- Katarzyna A Anton
- Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Mihoko Kajita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| | - Rika Narumi
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| | - Masazumi Tada
- Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
13
|
Hiscock TW, Miesfeld JB, Mosaliganti KR, Link BA, Megason SG. Feedback between tissue packing and neurogenesis in the zebrafish neural tube. Development 2018; 145:dev.157040. [PMID: 29678815 DOI: 10.1242/dev.157040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 04/03/2018] [Indexed: 01/22/2023]
Abstract
Balancing the rate of differentiation and proliferation in developing tissues is essential to produce organs of robust size and composition. Although many molecular regulators have been established, how these connect to physical and geometrical aspects of tissue architecture is poorly understood. Here, using high-resolution timelapse imaging, we find that changes to cell geometry associated with dense tissue packing play a significant role in regulating differentiation rate in the zebrafish neural tube. Specifically, progenitors that are displaced away from the apical surface due to crowding, tend to differentiate in a Notch-dependent manner. Using simulations we show that interplay between progenitor density, cell shape and changes in differentiation rate could naturally result in negative-feedback control on progenitor cell number. Given these results, we suggest a model whereby differentiation rate is regulated by density dependent effects on cell geometry to: (1) correct variability in cell number; and (2) balance the rates of proliferation and differentiation over development to 'fill' the available space.
Collapse
Affiliation(s)
- Tom W Hiscock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joel B Miesfeld
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Johnson CA, Wright CE, Ghashghaei HT. Regulation of cytokinesis during corticogenesis: focus on the midbody. FEBS Lett 2017; 591:4009-4026. [PMID: 28493553 DOI: 10.1002/1873-3468.12676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/23/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022]
Abstract
Development of the cerebral cortices depends on tight regulation of cell divisions. In this system, stem and progenitor cells undergo symmetric and asymmetric divisions to ultimately produce neurons that establish the layers of the cortex. Cell division culminates with the formation of the midbody, a transient organelle that establishes the site of abscission between nascent daughter cells. During cytokinetic abscission, the final stage of cell division, one daughter cell will inherit the midbody remnant, which can then maintain or expel the remnant, but mechanisms and circumstances influencing this decision are unclear. This review describes the midbody and its constituent proteins, as well as the known consequences of their manipulation during cortical development. The potential functional relevance of midbody mechanisms is discussed.
Collapse
Affiliation(s)
- Caroline A Johnson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Biomedical Sciences Graduate Program, Neurosciences Concentration Area, North Carolina State University, Raleigh, NC, USA
| | - Catherine E Wright
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Biomedical Sciences Graduate Program, Neurosciences Concentration Area, North Carolina State University, Raleigh, NC, USA.,Program in Genetics, North Carolina State University, Raleigh, NC, USA.,Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
15
|
Neural Stem Cells to Cerebral Cortex: Emerging Mechanisms Regulating Progenitor Behavior and Productivity. J Neurosci 2017; 36:11394-11401. [PMID: 27911741 DOI: 10.1523/jneurosci.2359-16.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
This review accompanies a 2016 SFN mini-symposium presenting examples of current studies that address a central question: How do neural stem cells (NSCs) divide in different ways to produce heterogeneous daughter types at the right time and in proper numbers to build a cerebral cortex with the appropriate size and structure? We will focus on four aspects of corticogenesis: cytokinesis events that follow apical mitoses of NSCs; coordinating abscission with delamination from the apical membrane; timing of neurogenesis and its indirect regulation through emergence of intermediate progenitors; and capacity of single NSCs to generate the correct number and laminar fate of cortical neurons. Defects in these mechanisms can cause microcephaly and other brain malformations, and understanding them is critical to designing diagnostic tools and preventive and corrective therapies.
Collapse
|
16
|
Thieleke-Matos C, Osório DS, Carvalho AX, Morais-de-Sá E. Emerging Mechanisms and Roles for Asymmetric Cytokinesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:297-345. [PMID: 28526136 DOI: 10.1016/bs.ircmb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis completes cell division by physically separating the contents of the mother cell between the two daughter cells. This event requires the highly coordinated reorganization of the cytoskeleton within a precise window of time to ensure faithful genomic segregation. In addition, recent progress in the field highlighted the importance of cytokinesis in providing particularly important cues in the context of multicellular tissues. The organization of the cytokinetic machinery and the asymmetric localization or inheritance of the midbody remnants is critical to define the spatial distribution of mechanical and biochemical signals. After a brief overview of the conserved steps of animal cytokinesis, we review the mechanisms controlling polarized cytokinesis focusing on the challenges of epithelial cytokinesis. Finally, we discuss the significance of these asymmetries in defining embryonic body axes, determining cell fate, and ensuring the correct propagation of epithelial organization during proliferation.
Collapse
Affiliation(s)
- C Thieleke-Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - D S Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - A X Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - E Morais-de-Sá
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
17
|
Cepero Malo M, Duchemin AL, Guglielmi L, Patzel E, Sel S, Auffarth GU, Carl M, Poggi L. The Zebrafish Anillin-eGFP Reporter Marks Late Dividing Retinal Precursors and Stem Cells Entering Neuronal Lineages. PLoS One 2017; 12:e0170356. [PMID: 28107513 PMCID: PMC5249142 DOI: 10.1371/journal.pone.0170356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023] Open
Abstract
Monitoring cycling behaviours of stem and somatic cells in the living animal is a powerful tool to better understand tissue development and homeostasis. The tg(anillin:anillin-eGFP) transgenic line carries the full-length zebrafish F-actin binding protein Anillin fused to eGFP from a bacterial artificial chromosome (BAC) containing Anillin cis-regulatory sequences. Here we report the suitability of the Anillin-eGFP reporter as a direct indicator of cycling cells in the late embryonic and post-embryonic retina. We show that combining the anillin:anillin-eGFP with other transgenes such as ptf1a:dsRed and atoh7:gap-RFP allows obtaining spatial and temporal resolution of the mitotic potentials of specific retinal cell populations. This is exemplified by the analysis of the origin of the previously reported apically and non-apically dividing late committed precursors of the photoreceptor and horizontal cell layers.
Collapse
Affiliation(s)
- Meret Cepero Malo
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Luca Guglielmi
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eva Patzel
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Saadettin Sel
- The David J Apple Center for Vision Research, Department of Ophthalmology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerd U. Auffarth
- The David J Apple Center for Vision Research, Department of Ophthalmology, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Carl
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lucia Poggi
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- The David J Apple Center for Vision Research, Department of Ophthalmology, Heidelberg University Hospital, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
18
|
Jordan SN, Davies T, Zhuravlev Y, Dumont J, Shirasu-Hiza M, Canman JC. Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division. J Cell Biol 2016; 212:39-49. [PMID: 26728855 PMCID: PMC4700484 DOI: 10.1083/jcb.201510063] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In asymmetrically dividing C. elegans embryos, the core cortical PAR proteins are required to retain septin and anillin at the anterior cortex away from the contractile ring and to promote normal F-actin levels at the contractile ring and successful cytokinesis. Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation.
Collapse
Affiliation(s)
- Shawn N Jordan
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Tim Davies
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Yelena Zhuravlev
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Julien Dumont
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Unites Mixtes de Recherche 7592, Universite Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
19
|
Engerer P, Plucinska G, Thong R, Trovò L, Paquet D, Godinho L. Imaging Subcellular Structures in the Living Zebrafish Embryo. J Vis Exp 2016:e53456. [PMID: 27078038 DOI: 10.3791/53456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.
Collapse
Affiliation(s)
- Peter Engerer
- Institute of Neuronal Cell Biology, Technische Universität München;
| | - Gabriela Plucinska
- Institute of Neuronal Cell Biology, Technische Universität München; Cell Biology, Department of Biology, Faculty of Science, Utrecht University
| | - Rachel Thong
- Institute of Neuronal Cell Biology, Technische Universität München; Faculty of Biology, Ludwig-Maximilians-Universität-München
| | - Laura Trovò
- Institute of Neuronal Cell Biology, Technische Universität München
| | - Dominik Paquet
- Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-Universität-München; German Center for Neurodegenerative Diseases; Laboratory of Brain Development and Repair, The Rockefeller University
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München;
| |
Collapse
|