1
|
Xu Y, Gehlot R, Capon SJ, Albu M, Gretz J, Bloomekatz J, Mattonet K, Vucicevic D, Talyan S, Kikhi K, Günther S, Looso M, Firulli BA, Sanda M, Firulli AB, Lacadie SA, Yelon D, Stainier DYR. PDGFRA is a conserved HAND2 effector during early cardiac development. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1531-1548. [PMID: 39658721 PMCID: PMC11634778 DOI: 10.1038/s44161-024-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
The basic helix-loop-helix transcription factor HAND2 has multiple roles during vertebrate organogenesis, including cardiogenesis. However, much remains to be uncovered about its mechanism of action. Here, we show the generation of several hand2 mutant alleles in zebrafish and demonstrate that dimerization-deficient mutants display the null phenotype but DNA-binding-deficient mutants do not. Rescue experiments with Hand2 variants using a newly identified hand2 enhancer confirmed these observations. To identify Hand2 effectors critical for cardiogenesis, we analyzed the transcriptomes of hand2 loss- and gain-of-function embryonic cardiomyocytes and tested the function of eight candidate genes in vivo; pdgfra was most effective in rescuing myocardial migration in hand2 mutants. Accordingly, we identified a putative Hand2-binding region in the zebrafish pdgfra locus that is important for its expression. In addition, Hand2 loss- and gain-of-function experiments in mouse embryonic stem cell-derived cardiac cells decreased and increased Pdgfra expression, respectively. Altogether, these results further our mechanistic understanding of HAND2 function during early cardiogenesis.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rupal Gehlot
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Samuel J Capon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Gretz
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Joshua Bloomekatz
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, University of Mississippi, University, MS, USA
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Dubravka Vucicevic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Sweta Talyan
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Beth A Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Miloslav Sanda
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Scott Allen Lacadie
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
2
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Qu X, Harmelink C, Baldwin HS. Endocardial-Myocardial Interactions During Early Cardiac Differentiation and Trabeculation. Front Cardiovasc Med 2022; 9:857581. [PMID: 35600483 PMCID: PMC9116504 DOI: 10.3389/fcvm.2022.857581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Throughout the continuum of heart formation, myocardial growth and differentiation occurs in concert with the development of a specialized population of endothelial cells lining the cardiac lumen, the endocardium. Once the endocardial cells are specified, they are in close juxtaposition to the cardiomyocytes, which facilitates communication between the two cell types that has been proven to be critical for both early cardiac development and later myocardial function. Endocardial cues orchestrate cardiomyocyte proliferation, survival, and organization. Additionally, the endocardium enables oxygenated blood to reach the cardiomyocytes. Cardiomyocytes, in turn, secrete factors that promote endocardial growth and function. As misregulation of this delicate and complex endocardial-myocardial interplay can result in congenital heart defects, further delineation of underlying genetic and molecular factors involved in cardiac paracrine signaling will be vital in the development of therapies to promote cardiac homeostasis and regeneration. Herein, we highlight the latest research that has advanced the elucidation of endocardial-myocardial interactions in early cardiac morphogenesis, including endocardial and myocardial crosstalk necessary for cellular differentiation and tissue remodeling during trabeculation, as well as signaling critical for endocardial growth during trabeculation.
Collapse
Affiliation(s)
- Xianghu Qu
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cristina Harmelink
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN, United States
| | - H. Scott Baldwin
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Development Biology, Vanderbilt University, Nashville, TN, United States
- *Correspondence: H. Scott Baldwin
| |
Collapse
|
4
|
Capon SJ, Uribe V, Dominado N, Ehrlich O, Smith KA. Endocardial identity is established during early somitogenesis by Bmp signalling acting upstream of npas4l and etv2. Development 2022; 149:275317. [PMID: 35531980 PMCID: PMC9148566 DOI: 10.1242/dev.190421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
Abstract
The endocardium plays important roles in the development and function of the vertebrate heart; however, few molecular markers of this tissue have been identified and little is known about what regulates its differentiation. Here, we describe the Gt(SAGFF27C); Tg(4xUAS:egfp) line as a marker of endocardial development in zebrafish. Transcriptomic comparison between endocardium and pan-endothelium confirms molecular distinction between these populations and time-course analysis suggests differentiation as early as eight somites. To investigate what regulates endocardial identity, we employed npas4l, etv2 and scl loss-of-function models. Endocardial expression is lost in npas4l mutants, significantly reduced in etv2 mutants and only modestly affected upon scl loss-of-function. Bmp signalling was also examined: overactivation of Bmp signalling increased endocardial expression, whereas Bmp inhibition decreased expression. Finally, epistasis experiments showed that overactivation of Bmp signalling was incapable of restoring endocardial expression in etv2 mutants. By contrast, overexpression of either npas4l or etv2 was sufficient to rescue endocardial expression upon Bmp inhibition. Together, these results describe the differentiation of the endocardium, distinct from vasculature, and place npas4l and etv2 downstream of Bmp signalling in regulating its differentiation. Summary: A zebrafish transgenic reporter of the endocardium is identified, permitting transcriptomic analysis and identification of new endocardial markers. Epistasis experiments demonstrate npas4l and etv2 act downstream of Bmp signalling to regulate endocardial differentiation.
Collapse
Affiliation(s)
- Samuel J Capon
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Veronica Uribe
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicole Dominado
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ophelia Ehrlich
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Feulner L, van Vliet PP, Puceat M, Andelfinger G. Endocardial Regulation of Cardiac Development. J Cardiovasc Dev Dis 2022; 9:jcdd9050122. [PMID: 35621833 PMCID: PMC9144171 DOI: 10.3390/jcdd9050122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/16/2023] Open
Abstract
The endocardium is a specialized form of endothelium that lines the inner side of the heart chambers and plays a crucial role in cardiac development. While comparatively less studied than other cardiac cell types, much progress has been made in understanding the regulation of and by the endocardium over the past two decades. In this review, we will summarize what is currently known regarding endocardial origin and development, the relationship between endocardium and other cardiac cell types, and the various lineages that endocardial cells derive from and contribute to. These processes are driven by key molecular mechanisms such as Notch and BMP signaling. These pathways in particular have been well studied, but other signaling pathways and mechanical cues also play important roles. Finally, we will touch on the contribution of stem cell modeling in combination with single cell sequencing and its potential translational impact for congenital heart defects such as bicuspid aortic valves and hypoplastic left heart syndrome. The detailed understanding of cellular and molecular processes in the endocardium will be vital to further develop representative stem cell-derived models for disease modeling and regenerative medicine in the future.
Collapse
Affiliation(s)
- Lara Feulner
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
| | - Michel Puceat
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
- INSERM U-1251, Marseille Medical Genetics, Aix-Marseille University, 13885 Marseille, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
6
|
Miklas JW, Levy S, Hofsteen P, Mex DI, Clark E, Muster J, Robitaille AM, Sivaram G, Abell L, Goodson JM, Pranoto I, Madan A, Chin MT, Tian R, Murry CE, Moon RT, Wang Y, Ruohola-Baker H. Amino acid primed mTOR activity is essential for heart regeneration. iScience 2022; 25:103574. [PMID: 34988408 PMCID: PMC8704488 DOI: 10.1016/j.isci.2021.103574] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/17/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Heart disease is the leading cause of death with no method to repair damaged myocardium due to the limited proliferative capacity of adult cardiomyocytes. Curiously, mouse neonates and zebrafish can regenerate their hearts via cardiomyocyte de-differentiation and proliferation. However, a molecular mechanism of why these cardiomyocytes can re-enter cell cycle is poorly understood. Here, we identify a unique metabolic state that primes adult zebrafish and neonatal mouse ventricular cardiomyocytes to proliferate. Zebrafish and neonatal mouse hearts display elevated glutamine levels, predisposing them to amino-acid-driven activation of TOR, and that TOR activation is required for zebrafish cardiomyocyte regeneration in vivo. Through a multi-omics approach with cellular validation we identify metabolic and mitochondrial changes during the first week of regeneration. These data suggest that regeneration of zebrafish myocardium is driven by metabolic remodeling and reveals a unique metabolic regulator, TOR-primed state, in which zebrafish and mammalian cardiomyocytes are regeneration competent.
Collapse
Affiliation(s)
- Jason W. Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Shiri Levy
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Peter Hofsteen
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Diego Ic Mex
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Elisa Clark
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jeanot Muster
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Aaron M. Robitaille
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Gargi Sivaram
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Lauren Abell
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jamie M. Goodson
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | - Inez Pranoto
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA 98052, USA
| | - Michael T. Chin
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Rong Tian
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Charles E. Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Randall T. Moon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Cheng L, Xie M, Qiao W, Song Y, Zhang Y, Geng Y, Xu W, Wang L, Wang Z, Huang K, Dong N, Sun Y. Generation and characterization of cardiac valve endothelial-like cells from human pluripotent stem cells. Commun Biol 2021; 4:1039. [PMID: 34489520 PMCID: PMC8421482 DOI: 10.1038/s42003-021-02571-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
The cardiac valvular endothelial cells (VECs) are an ideal cell source that could be used for making the valve organoids. However, few studies have been focused on the derivation of this important cell type. Here we describe a two-step chemically defined xeno-free method for generating VEC-like cells from human pluripotent stem cells (hPSCs). HPSCs were specified to KDR+/ISL1+ multipotent cardiac progenitors (CPCs), followed by differentiation into valve endothelial-like cells (VELs) via an intermediate endocardial cushion cell (ECC) type. Mechanistically, administration of TGFb1 and BMP4 may specify VEC fate by activating the NOTCH/WNT signaling pathways and previously unidentified targets such as ATF3 and KLF family of transcription factors. When seeded onto the surface of the de-cellularized porcine aortic valve (DCV) matrix scaffolds, hPSC-derived VELs exhibit superior proliferative and clonogenic potential than the primary VECs and human aortic endothelial cells (HAEC). Our results show that hPSC-derived valvular cells could be efficiently generated from hPSCs, which might be used as seed cells for construction of valve organoids or next generation tissue engineered heart valves. Cheng et al. provide a detailed characterization of the differentiation of human pluripotent stem cells to valve endothelial cells and their function. Their results show that the valve endothelial-like cells express key markers for valve endothelial cells, exhibiting proliferative and clonogenic potential.
Collapse
Affiliation(s)
- LinXi Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - MingHui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - WeiHua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - YanYong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - YingChao Geng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - WeiLin Xu
- Wuhan Textile University, Wuhan, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiovascular Internal Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - NianGuo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - YuHua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Carlantoni C, Allanki S, Kontarakis Z, Rossi A, Piesker J, Günther S, Stainier DY. Tie1 regulates zebrafish cardiac morphogenesis through Tolloid-like 1 expression. Dev Biol 2021; 469:54-67. [DOI: 10.1016/j.ydbio.2020.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/13/2023]
|
9
|
Fang Y, Lai KS, She P, Sun J, Tao W, Zhong TP. Tbx20 Induction Promotes Zebrafish Heart Regeneration by Inducing Cardiomyocyte Dedifferentiation and Endocardial Expansion. Front Cell Dev Biol 2020; 8:738. [PMID: 32850848 PMCID: PMC7417483 DOI: 10.3389/fcell.2020.00738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Heart regeneration requires replenishment of lost cardiomyocytes (CMs) and cells of the endocardial lining. However, the signaling regulation and transcriptional control of myocardial dedifferentiation and endocardial activation are incompletely understood during cardiac regeneration. Here, we report that T-Box Transcription Factor 20 (Tbx20) is induced rapidly in the myocardial wound edge in response to various sources of cardiac damages in zebrafish. Inducing Tbx20 specifically in the adult myocardium promotes injury-induced CM proliferation through CM dedifferentiation, leading to loss of CM cellular contacts and re-expression of cardiac embryonic or fetal gene programs. Unexpectedly, we identify that myocardial Tbx20 induction activates the endocardium at the injury site with enhanced endocardial cell extension and proliferation, where it induces the endocardial Bone morphogenetic protein 6 (Bmp6) signaling. Pharmacologically inactivating endocardial Bmp6 signaling reduces expression of its targets, Id1 and Id2b, attenuating the increased endocardial regeneration in tbx20-overexpressing hearts. Altogether, our study demonstrates that Tbx20 induction promotes adult heart regeneration by inducing cardiomyocyte dedifferentiation as well as non-cell-autonomously enhancing endocardial cell regeneration.
Collapse
Affiliation(s)
- Yabo Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaa Seng Lai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Peilu She
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
10
|
Chen Z, Li S, Guo L, Peng X, Liu Y. Prenatal alcohol exposure induced congenital heart diseases: From bench to bedside. Birth Defects Res 2020; 113:521-534. [PMID: 32578335 DOI: 10.1002/bdr2.1743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
Alcohol consumption is increasing worldwide. Many child-bearing-aged women consume alcohol during pregnancy, intentionally or unintentionally, thereby increasing the potential risk for severe congenital diseases. Congenital heart disease (CHD) is the most common birth defect worldwide and can result from both hereditary and acquired factors. Prenatal alcohol exposure (PAE) is considered a key factor that leads to teratogenesis in CHD and its specific phenotypes, especially defects of the cardiac septa, cardiac valves, cardiac canals, and great arteries, adjacent to the chambers, both in animal experiments and clinical retrospective studies. The mechanisms underlying CHD and its phenotypes caused by PAE are associated with changes in retinoic acid biosynthesis and its signaling pathway, apoptosis and defective function of cardiac neural crest cells, disturbance of the Wntβ-catenin signaling pathway, suppression of bone morphogenetic protein (BMP) signaling, and other epigenetic mechanisms. Drug supplements and early diagnosis can help prevent PAE from inducing CHDs.
Collapse
Affiliation(s)
- Zhiyan Chen
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Research, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Sheng Li
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Research, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Linghong Guo
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, Sichuan, China
| | - Xu Peng
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, Sichuan, China
| | - Yin Liu
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Research, Zigong First People's Hospital, Zigong, Sichuan, China.,Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Chestnut B, Casie Chetty S, Koenig AL, Sumanas S. Single-cell transcriptomic analysis identifies the conversion of zebrafish Etv2-deficient vascular progenitors into skeletal muscle. Nat Commun 2020; 11:2796. [PMID: 32493965 PMCID: PMC7271194 DOI: 10.1038/s41467-020-16515-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 04/29/2020] [Indexed: 01/09/2023] Open
Abstract
Cell fate decisions involved in vascular and hematopoietic embryonic development are still poorly understood. An ETS transcription factor Etv2 functions as an evolutionarily conserved master regulator of vasculogenesis. Here we report a single-cell transcriptomic analysis of hematovascular development in wild-type and etv2 mutant zebrafish embryos. Distinct transcriptional signatures of different types of hematopoietic and vascular progenitors are identified using an etv2ci32Gt gene trap line, in which the Gal4 transcriptional activator is integrated into the etv2 gene locus. We observe a cell population with a skeletal muscle signature in etv2-deficient embryos. We demonstrate that multiple etv2ci32Gt; UAS:GFP cells differentiate as skeletal muscle cells instead of contributing to vasculature in etv2-deficient embryos. Wnt and FGF signaling promote the differentiation of these putative multipotent etv2 progenitor cells into skeletal muscle cells. We conclude that etv2 actively represses muscle differentiation in vascular progenitors, thus restricting these cells to a vascular endothelial fate.
Collapse
Affiliation(s)
- Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Andrew L Koenig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.,Center for Cardiovascular Research, Washington University School of Medicine, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
12
|
Biomechanical Cues Direct Valvulogenesis. J Cardiovasc Dev Dis 2020; 7:jcdd7020018. [PMID: 32438610 PMCID: PMC7345189 DOI: 10.3390/jcdd7020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
The vertebrate embryonic heart initially forms with two chambers, a ventricle and an atrium, separated by the atrioventricular junction. Localized genetic and biomechanical information guides the development of valves, which function to ensure unidirectional blood flow. If the valve development process goes awry, pathology associated with congenital valve defects can ensue. Congenital valve defects (CVD) are estimated to affect 1–2% of the population and can often require a lifetime of treatment. Despite significant clinical interest, molecular genetic mechanisms that direct valve development remain incompletely elucidated. Cells in the developing valve must contend with a dynamic hemodynamic environment. A growing body of research supports the idea that cells in the valve are highly sensitive to biomechanical forces, which cue changes in gene expression required for normal development or for maintenance of the adult valve. This review will focus on mechanotransductive pathways involved in valve development across model species. We highlight current knowledge regarding how cells sense physical forces associated with blood flow and pressure in the forming heart, and summarize how these changes are transduced into genetic and developmental responses. Lastly, we provide perspectives on how altered biomechanical cues may lead to CVD pathogenesis.
Collapse
|
13
|
Borasch K, Richardson K, Plendl J. Cardiogenesis with a focus on vasculogenesis and angiogenesis. Anat Histol Embryol 2020; 49:643-655. [PMID: 32319704 DOI: 10.1111/ahe.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
The initial intraembryonic vasculogenesis occurs in the cardiogenic mesoderm. Here, a cell population of proendocardial cells detaches from the mesoderm that subsequently generates the single endocardial tube by forming vascular plexuses. In the course of embryogenesis, the endocardium retains vasculogenic, angiogenic and haematopoietic potential. The coronary blood vessels that sustain the rapidly expanding myocardium develop in the course of the formation of the cardiac loop by vasculogenesis and angiogenesis from progenitor cells of the proepicardial serosa at the venous pole of the heart as well as from the endocardium and endothelial cells of the sinus venosus. Prospective coronary endothelial cells and progenitor cells of the coronary blood vessel walls (smooth muscle cells, perivascular cells) originate from different cell populations that are in close spatial as well as regulatory connection with each other. Vasculo- and angiogenesis of the coronary blood vessels are for a large part regulated by the epicardium and epicardium-derived cells. Vasculogenic and angiogenic signalling pathways include the vascular endothelial growth factors, the angiopoietins and the fibroblast growth factors and their receptors.
Collapse
Affiliation(s)
- Katrin Borasch
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| | - Kenneth Richardson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| |
Collapse
|
14
|
Zuppo DA, Tsang M. Zebrafish heart regeneration: Factors that stimulate cardiomyocyte proliferation. Semin Cell Dev Biol 2019; 100:3-10. [PMID: 31563389 DOI: 10.1016/j.semcdb.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Myocardial infarctions (MI) remain a leading cause of global morbidity and mortality, and a reason for this is the inability of adult, mammalian cardiomyocytes to divide post-MI. Recent studies demonstrate a limited population of cardiomyocytes retain their proliferative capacity and understanding how endogenous cardiomyocytes can be stimulated to re-enter the cell cycle is a focus of current research. In this review we discuss the history of zebrafish cardiac regeneration and highlight how different models reveal the molecular pathways important in driving cardiomyocyte proliferation after injury. Understanding the molecules that regulate cell cycle re-entry can provide insights into promoting cardiac repair in humans.
Collapse
Affiliation(s)
- D A Zuppo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - M Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
15
|
Saint-Jean L, Barkas N, Harmelink C, Tompkins KL, Oakey RJ, Baldwin HS. Myocardial differentiation is dependent upon endocardial signaling during early cardiogenesis in vitro. Development 2019; 146:dev.172619. [PMID: 31023876 DOI: 10.1242/dev.172619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/10/2019] [Indexed: 01/18/2023]
Abstract
The endocardium interacts with the myocardium to promote proliferation and morphogenesis during the later stages of heart development. However, the role of the endocardium in early cardiac ontogeny remains under-explored. Given the shared origin, subsequent juxtaposition, and essential cell-cell interactions of endocardial and myocardial cells throughout heart development, we hypothesized that paracrine signaling from the endocardium to the myocardium is crucial for initiating early differentiation of myocardial cells. To test this, we generated an in vitro, endocardial-specific ablation model using the diphtheria toxin receptor under the regulatory elements of the Nfat c1 genomic locus (NFATc1-DTR). Early treatment of NFATc1-DTR mouse embryoid bodies with diphtheria toxin efficiently ablated endocardial cells, which significantly attenuated the percentage of beating EBs in culture and expression of early and late myocardial differentiation markers. The addition of Bmp2 during endocardial ablation partially rescued myocyte differentiation, maturation and function. Therefore, we conclude that early stages of myocardial differentiation rely on endocardial paracrine signaling mediated in part by Bmp2. Our findings provide novel insight into early endocardial-myocardial interactions that can be explored to promote early myocardial development and growth.
Collapse
Affiliation(s)
- Leshana Saint-Jean
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nikolaos Barkas
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Cristina Harmelink
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin L Tompkins
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rebecca J Oakey
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - H Scott Baldwin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA .,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
16
|
smarce1 mutants have a defective endocardium and an increased expression of cardiac transcription factors in zebrafish. Sci Rep 2018; 8:15369. [PMID: 30337622 PMCID: PMC6194089 DOI: 10.1038/s41598-018-33746-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
SWI/SNF or BAF chromatin-remodeling complexes are polymorphic assemblies of homologous subunit families that remodel nucleosomes and facilitate tissue-specific gene regulation during development. BAF57/SMARCE1 is a BAF complex subunit encoded in animals by a single gene and is a component of all mammalian BAF complexes. In vivo, the loss of SMARCE1 would lead to the formation of deficient combinations of the complex which might present limited remodeling activities. To address the specific contribution of SMARCE1 to the function of the BAF complex, we generated CRISPR/Cas9 mutations of smarce1 in zebrafish. Smarce1 mutants showed visible defects at 72 hpf, including smaller eyes, abnormal body curvature and heart abnormalities. Gene expression analysis revealed that the mutant embryos displayed defects in endocardial development since early stages, which led to the formation of a misshapen heart tube. The severe morphological and functional cardiac problems observed at 4 dpf were correlated with the substantially increased expression of different cardiac transcription factors. Additionally, we showed that Smarce1 binds to cis-regulatory regions of the gata5 gene and is necessary for the recruitment of the BAF complex to these regions.
Collapse
|
17
|
Zhong S, Wang Y, Li J, Wang M, Meng L, Ma Z, Zhang S, Liu Z. Spatial and temporal expression of bmp8a and its role in regulation of lipid metabolism in zebrafish Danio rerio. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Jin D, Zhu D, Fang Y, Chen Y, Yu G, Pan W, Liu D, Li F, Zhong TP. Vegfa signaling regulates diverse artery/vein formation in vertebrate vasculatures. J Genet Genomics 2017; 44:483-492. [DOI: 10.1016/j.jgg.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 06/11/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
|
19
|
Genome editing of factor X in zebrafish reveals unexpected tolerance of severe defects in the common pathway. Blood 2017; 130:666-676. [PMID: 28576875 DOI: 10.1182/blood-2017-02-765206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/23/2017] [Indexed: 12/24/2022] Open
Abstract
Deficiency of factor X (F10) in humans is a rare bleeding disorder with a heterogeneous phenotype and limited therapeutic options. Targeted disruption of F10 and other common pathway factors in mice results in embryonic/neonatal lethality with rapid resorption of homozygous mutants, hampering additional studies. Several of these mutants also display yolk sac vascular defects, suggesting a role for thrombin signaling in vessel development. The zebrafish is a vertebrate model that demonstrates conservation of the mammalian hemostatic and vascular systems. We have leveraged these advantages for in-depth study of the role of the coagulation cascade in the developmental regulation of hemostasis and vasculogenesis. In this article, we show that ablation of zebrafish f10 by using genome editing with transcription activator-like effector nucleases results in a major embryonic hemostatic defect. However, widespread hemorrhage and subsequent lethality does not occur until later stages, with absence of any detectable defect in vascular development. We also use f10-/- zebrafish to confirm 5 novel human F10 variants as causative mutations in affected patients, providing a rapid and reliable in vivo model for testing the severity of F10 variants. These findings as well as the prolonged survival of f10-/- mutants will enable us to expand our understanding of the molecular mechanisms of hemostasis, including a platform for screening variants of uncertain significance in patients with F10 deficiency and other coagulation disorders. Further study as to how fish tolerate what is an early lethal mutation in mammals could facilitate improvement of diagnostics and therapeutics for affected patients with bleeding disorders.
Collapse
|
20
|
El-Rass S, Eisa-Beygi S, Khong E, Brand-Arzamendi K, Mauro A, Zhang H, Clark KJ, Ekker SC, Wen XY. Disruption of pdgfra alters endocardial and myocardial fusion during zebrafish cardiac assembly. Biol Open 2017; 6:348-357. [PMID: 28167492 PMCID: PMC5374395 DOI: 10.1242/bio.021212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiac development in vertebrates is a finely tuned process regulated by a set
of conserved signaling pathways. Perturbations of these processes are often
associated with congenital cardiac malformations. Platelet-derived growth factor
receptor α (PDGFRα) is a highly conserved tyrosine kinase
receptor, which is essential for development and organogenesis. Disruption of
Pdgfrα function in murine models is embryonic lethal
due to severe cardiovascular defects, suggesting a role in cardiac development,
thus necessitating the use of alternative models to explore its precise
function. In this study, we generated a zebrafish pdgfra mutant
line by gene trapping, in which the Pdgfra protein is truncated and fused with
mRFP (Pdgfra-mRFP). Our results demonstrate that pdgfra mutants
have defects in cardiac morphology as a result of abnormal fusion of myocardial
precursors. Expression analysis of the developing heart at later stages
suggested that Pdgfra-mRFP is expressed in the endocardium. Further examination
of the endocardium in pdgfra mutants revealed defective
endocardial migration to the midline, where cardiac fusion eventually occurs.
Together, our data suggests that pdgfra is required for proper
medial migration of both endocardial and myocardial precursors, an essential
step required for cardiac assembly and development. Summary: The molecular mechanisms regulating cardiac fusion are not
well understood. Here, we show that platelet-derived growth factor receptor
alpha is essential for normal endocardial and myocardial fusion during zebrafish
development.
Collapse
Affiliation(s)
- Suzan El-Rass
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2
| | - Shahram Eisa-Beygi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center. Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Edbert Khong
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8
| | - Koroboshka Brand-Arzamendi
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8
| | - Antonio Mauro
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2
| | - Haibo Zhang
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2.,Department of Medicine & Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8 .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2.,Department of Medicine & Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
21
|
Zhu D, Fang Y, Gao K, Shen J, Zhong TP, Li F. Vegfa Impacts Early Myocardium Development in Zebrafish. Int J Mol Sci 2017; 18:ijms18020444. [PMID: 28230770 PMCID: PMC5343978 DOI: 10.3390/ijms18020444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 11/16/2022] Open
Abstract
Vascular endothelial growth factor A (Vegfa) signaling regulates cardiovascular development. However, the cellular mechanisms of Vegfa signaling in early cardiogenesis remain poorly understood. The present study aimed to understand the differential functions and mechanisms of Vegfa signaling in cardiac development. A loss-of-function approach was utilized to study the effect of Vegfa signaling in cardiogenesis. Both morphants and mutants for vegfaa display defects in cardiac looping and chamber formation, especially the ventricle. Vegfa regulates the heart morphogenesis in a dose-dependent manner. Furthermore, the initial fusion of the bilateral myocardium population is delayed rather than endocardium. The results demonstrate that Vegfa signaling plays a direct impact on myocardium fusion, indicating that it is the initial cause of the heart defects. The heart morphogenesis is regulated by Vegfa in a dose-dependent manner, and later endocardium defects may be secondary to impaired myocardium–endocardium crosstalk.
Collapse
Affiliation(s)
- Diqi Zhu
- Department of Pediatric Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| | - Yabo Fang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Kun Gao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Jie Shen
- Department of Pediatric Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| | - Tao P Zhong
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
22
|
Grant MG, Patterson VL, Grimes DT, Burdine RD. Modeling Syndromic Congenital Heart Defects in Zebrafish. Curr Top Dev Biol 2017; 124:1-40. [DOI: 10.1016/bs.ctdb.2016.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
DeLaughter DM, Bick AG, Wakimoto H, McKean D, Gorham JM, Kathiriya IS, Hinson JT, Homsy J, Gray J, Pu W, Bruneau BG, Seidman JG, Seidman CE. Single-Cell Resolution of Temporal Gene Expression during Heart Development. Dev Cell 2016; 39:480-490. [PMID: 27840107 PMCID: PMC5198784 DOI: 10.1016/j.devcel.2016.10.001] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/30/2016] [Accepted: 09/30/2016] [Indexed: 12/29/2022]
Abstract
Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease.
Collapse
Affiliation(s)
| | - Alexander G. Bick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - David McKean
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Irfan S. Kathiriya
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco
| | - John T. Hinson
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jason Homsy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jesse Gray
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - William Pu
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA
- Cardiovascular Research Institute and Department of Pediatrics, University of California, San Francisco
| | - J. G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute and Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
24
|
Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish. PLoS One 2016; 11:e0161205. [PMID: 27556898 PMCID: PMC4996461 DOI: 10.1371/journal.pone.0161205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3–24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish.
Collapse
|
25
|
Haack T, Abdelilah-Seyfried S. The force within: endocardial development, mechanotransduction and signalling during cardiac morphogenesis. Development 2016; 143:373-86. [PMID: 26839341 DOI: 10.1242/dev.131425] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endocardial cells are cardiac endothelial cells that line the interior of the heart tube. Historically, their contribution to cardiac development has mainly been considered from a morphological perspective. However, recent studies have begun to define novel instructive roles of the endocardium, as a sensor and signal transducer of biophysical forces induced by blood flow, and as an angiocrine signalling centre that is involved in myocardial cellular morphogenesis, regeneration and reprogramming. In this Review, we discuss how the endocardium develops, how endocardial-myocardial interactions influence the developing embryonic heart, and how the dysregulation of blood flow-responsive endocardial signalling can result in pathophysiological changes.
Collapse
Affiliation(s)
- Timm Haack
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, Hannover D-30625, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, Hannover D-30625, Germany Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, Potsdam D-14476, Germany
| |
Collapse
|
26
|
Xie H, Ye D, Sepich D, Lin F. S1pr2/Gα13 signaling regulates the migration of endocardial precursors by controlling endoderm convergence. Dev Biol 2016; 414:228-43. [PMID: 27158029 DOI: 10.1016/j.ydbio.2016.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/09/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Formation of the heart tube requires synchronized migration of endocardial and myocardial precursors. Our previous studies indicated that in S1pr2/Gα13-deficient embryos, impaired endoderm convergence disrupted the medial migration of myocardial precursors, resulting in the formation of two myocardial populations. Here we show that endoderm convergence also regulates endocardial migration. In embryos defective for S1pr2/Gα13 signaling, endocardial precursors failed to migrate towards the midline, and the presumptive endocardium surrounded the bilaterally-located myocardial cells rather than being encompassed by them. In vivo imaging of control embryos revealed that, like their myocardial counterparts, endocardial precursors migrated with the converging endoderm, though from a more anterior point, then moved from the dorsal to the ventral side of the endoderm (subduction), and finally migrated posteriorly towards myocardial precursors, ultimately forming the inner layer of the heart tube. In embryos defective for endoderm convergence due to an S1pr2/Gα13 deficiency, both the medial migration and the subduction of endocardial precursors were impaired, and their posterior migration towards the myocardial precursors was premature. This placed them medial to the myocardial populations, physically blocking the medial migration of the myocardial precursors. Furthermore, contact between the endocardial and myocardial precursor populations disrupted the epithelial architecture of the myocardial precursors, and thus their medial migration; in embryos depleted of endocardial cells, the myocardial migration defect was partially rescued. Our data indicate that endoderm convergence regulates the medial migration of endocardial precursors, and that premature association of the endocardial and myocardial populations contributes to myocardial migration defects observed in S1pr2/Gα13-deficient embryos. The demonstration that endoderm convergence regulates the synchronized migration of endocardial and myocardial precursors reveals a new role of the endoderm in heart development.
Collapse
Affiliation(s)
- Huaping Xie
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 N Road, Iowa City, IA 52242-1109, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 N Road, Iowa City, IA 52242-1109, USA; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Diane Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 N Road, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
27
|
Brown DR, Samsa LA, Qian L, Liu J. Advances in the Study of Heart Development and Disease Using Zebrafish. J Cardiovasc Dev Dis 2016; 3. [PMID: 27335817 PMCID: PMC4913704 DOI: 10.3390/jcdd3020013] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications.
Collapse
Affiliation(s)
- Daniel R. Brown
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leigh Ann Samsa
- Department of Cell Biology and Physiology; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-962-0326; Fax: +1-919- 843-2063
| |
Collapse
|
28
|
Abstract
Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis.
Collapse
|
29
|
Orlova VV, Chuva de Sousa Lopes S, Valdimarsdottir G. BMP-SMAD signaling: From pluripotent stem cells to cardiovascular commitment. Cytokine Growth Factor Rev 2016; 27:55-63. [DOI: 10.1016/j.cytogfr.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
|
30
|
García de Vinuesa A, Abdelilah-Seyfried S, Knaus P, Zwijsen A, Bailly S. BMP signaling in vascular biology and dysfunction. Cytokine Growth Factor Rev 2015; 27:65-79. [PMID: 26823333 DOI: 10.1016/j.cytogfr.2015.12.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology.
Collapse
Affiliation(s)
- Amaya García de Vinuesa
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany; Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, Berlin, Germany
| | - An Zwijsen
- VIB Center for the Biology of Disease, Leuven, Belgium; KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Médicale (INSERM, U1036), Grenoble F-38000, France; Commissariat à l'Énergie Atomique et aux Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Biologie du Cancer et de l'Infection, Grenoble F-38000, France; Université Grenoble-Alpes, Grenoble F-38000, France.
| |
Collapse
|