1
|
Ricolo D, Tamba F, Casanova J. Autocrine Wingless constricts the Drosophila embryonic gut by Ca +2-mediated repolarisation of mesoderm cells. EMBO Rep 2025; 26:1737-1748. [PMID: 40055467 PMCID: PMC11977022 DOI: 10.1038/s44319-025-00411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 04/09/2025] Open
Abstract
Wg/Wnt signalling-a highly conserved transduction pathway-has most commonly been found to be involved in patterning, cell fate, or cell proliferation, but less so in shaping organs or body parts. A remarkable case of the latter is the role of Wg signalling in the midgut of the Drosophila embryo. The Drosophila embryonic midgut is divided into four chambers that arise by the formation of three constrictions at distinct sites along the midgut. In particular, Wg is responsible for the middle constriction, a role first described more than 30 years ago. However, while some partial data have been obtained regarding the formation of this gut constriction, an overall picture of the process is lacking. Here we unveil that Wg signalling leads to this constriction by inducing ClC-a transcription in a subset of mesodermal cells. ClC-a, encodes a chloride channel, which in turn prompts a Ca+2 pulse in these cells. Consequently, the mesoderm cells, which already showed some polarity, repolarise and in so doing so they reshape the microtubule organisation, therefore inducing the constriction of the cells.
Collapse
Affiliation(s)
- Delia Ricolo
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain.
- Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.
| | - Francesca Tamba
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain.
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.
| |
Collapse
|
2
|
Bi H, Merchant A, Gu J, Li X, Zhou X, Zhang Q. CRISPR/Cas9-Mediated Mutagenesis of Abdominal-A and Ultrabithorax in the Asian Corn Borer, Ostrinia furnacalis. INSECTS 2022; 13:insects13040384. [PMID: 35447826 PMCID: PMC9031573 DOI: 10.3390/insects13040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Homeotic genes encode transcription factors that coordinated the anatomical structure formation during the early embryonic development of organisms. In this study, we functionally characterized two homeotic genes, Abdominal-A (Abd-A) and Ultrabithorax (Ubx), in the Asian corn borer, Ostrinia furnacalis (a maize pest that has devastated the Asia-Pacific region) by using a CRISPR/Cas9 genome editing system. Our results show that the mutagenesis of OfAbd-A and OfUbx led to severe morphological defects in O. furnacalis, which included fused segments and segmental twist during the larval stage, and hollowed and incision-like segments during the pupal stage in OfAbd-A mutants, as well as defects in the wing-pad development in pupal and adult OfUbx mutants. Overall, knocking out Abd-A and Ubx in O. furnacalis resulted in the embryonic lethality to, and pleiotropic impact on, other homeotic genes. This study not only confirms the conserved body planning functions in OfAbd-A and OfUbx, but it also strengthens the control implications of these homeotic genes for lepidopteran pests. Abstract (1) Background: Abdominal-A (Abd-A) and Ultrabithorax (Ubx) are homeotic genes that determine the identity and morphology of the thorax and abdomen in insects. The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Pyralidae), is a devastating maize pest throughout Asia, the Western Pacific, and Australia. Building on previous knowledge, we hypothesized that the knockout of Abd-A and Ubx would disrupt the abdominal body planning in O. furnacalis. (2) Methods: CRISPR/Cas9-targeted mutagenesis was employed to decipher the functions of these homeotic genes. (3) Results: Knockout insects demonstrated classical homeotic transformations. Specifically, the mutagenesis of OfAbd-A resulted in: (1) Fused segments and segmental twist during the larval stage; (2) Embryonic lethality; and (3) The pleiotropic upregulation of other homeotic genes, including Lab, Pd, Dfd, Antp, and Abd-B. The mutagenesis of OfUbx led to: (1) Severe defects in the wing pads, which limited the ability of the adults to fly and mate; (2) Female sterility; and (3) The pleiotropic upregulation of other homeotic genes, including Dfd, Abd-B, and Wnt1. (4) Conclusions: These combined results not only support our hypothesis, but they also strengthen the potential of using homeotic genes as molecular targets for the genetic control of this global insect pest.
Collapse
Affiliation(s)
- Honglun Bi
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (A.M.); (X.Z.)
| | - Junwen Gu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
| | - Xiaowei Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (A.M.); (X.Z.)
| | - Qi Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
- Correspondence: ; Tel.: +86-13609876667
| |
Collapse
|
3
|
Poliacikova G, Maurel-Zaffran C, Graba Y, Saurin AJ. Hox Proteins in the Regulation of Muscle Development. Front Cell Dev Biol 2021; 9:731996. [PMID: 34733846 PMCID: PMC8558437 DOI: 10.3389/fcell.2021.731996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes encode evolutionary conserved transcription factors that specify the anterior-posterior axis in all bilaterians. Being well known for their role in patterning ectoderm-derivatives, such as CNS and spinal cord, Hox protein function is also crucial in mesodermal patterning. While well described in the case of the vertebrate skeleton, much less is known about Hox functions in the development of different muscle types. In contrast to vertebrates however, studies in the fruit fly, Drosophila melanogaster, have provided precious insights into the requirement of Hox at multiple stages of the myogenic process. Here, we provide a comprehensive overview of Hox protein function in Drosophila and vertebrate muscle development, with a focus on the molecular mechanisms underlying target gene regulation in this process. Emphasizing a tight ectoderm/mesoderm cross talk for proper locomotion, we discuss shared principles between CNS and muscle lineage specification and the emerging role of Hox in neuromuscular circuit establishment.
Collapse
Affiliation(s)
| | | | - Yacine Graba
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
4
|
Loganathan R, Kim JH, Wells MB, Andrew DJ. Secrets of secretion-How studies of the Drosophila salivary gland have informed our understanding of the cellular networks underlying secretory organ form and function. Curr Top Dev Biol 2020; 143:1-36. [PMID: 33820619 DOI: 10.1016/bs.ctdb.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Secretory organs are critical for organismal survival. Yet, the transcriptional regulatory mechanisms governing their development and maintenance remain unclear for most model secretory organs. The Drosophila embryonic salivary gland (SG) remedies this deficiency as one of the few organs wherein direct connections from the expression of the early patterning genes to cell specification to organ architecture and functional specialization can be made. Few other models of secretion can be accorded this distinction. Studies from the past three decades have made enormous strides in parsing out the roles of distinct transcription factors (TFs) that direct major steps in furnishing this secretory organ. In the first step of specifying the salivary gland, the activity of the Hox factors Sex combs reduced, Extradenticle, and Homothorax activate expression of fork head (fkh), sage, and CrebA, which code for the major suite of TFs that carry forward the task of organ building and maintenance. Then, in the second key step of building the SG, the program for cell fate maintenance and morphogenesis is deployed. Fkh maintains the secretory cell fate by regulating its own expression and that of sage and CrebA. Fkh and Sage maintain secretory cell viability by actively blocking apoptotic cell death. Fkh, along with two other TFs, Hkb and Rib, also coordinates organ morphogenesis, transforming two plates of precursor cells on the embryo surface into elongated internalized epithelial tubes. Acquisition of functional specialization, the third key step, is mediated by CrebA and Fkh working in concert with Sage and yet another TF, Sens. CrebA directly upregulates expression of all of the components of the secretory machinery as well as other genes (e.g., Xbp1) necessary for managing the physiological stress that inexorably accompanies high secretory load. Secretory cargo specificity is controlled by Sage and Sens in collaboration with Fkh. Investigations have also uncovered roles for various signaling pathways, e.g., Dpp signaling, EGF signaling, GPCR signaling, and cytoskeletal signaling, and their interactions within the gene regulatory networks that specify, build, and specialize the SG. Collectively, studies of the SG have expanded our knowledge of secretory dynamics, cell polarity, and cytoskeletal mechanics in the context of organ development and function. Notably, the embryonic SG has made the singular contribution as a model system that revealed the core function of CrebA in scaling up secretory capacity, thus, serving as the pioneer system in which the conserved roles of the mammalian Creb3/3L-family orthologues were first discovered.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ji Hoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael B Wells
- Idaho College of Osteopathic Medicine, Meridian, ID, United States
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
5
|
Zhang R, Zhang Z, Huang Y, Qian A, Tan A. A single ortholog of teashirt and tiptop regulates larval pigmentation and adult appendage patterning in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103369. [PMID: 32243904 DOI: 10.1016/j.ibmb.2020.103369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Two paralogous genes, teashirt (tsh) and tiptop (tio), encode zinc-finger transcription factors and play important roles in insect growth and development. In the fruit fly, Drosophila melanogaster, tsh promotes trunk segmental identities and contributes to the patterning of other tissues during the embryonic stage. During the adult stage, tsh contributes to the specification and patterning of appendages, including the leg, wing and eye. While tio acts redundantly with tsh, flies lacking tio function are viable without deleterious phenotypes. This gene pair is present in the genomes of all Drosophila species but only as a single homologue in several other insect species. In Oncopeltus fasciatus and Tribolium castaneum, tsh/tio has been functionally characterized as specifying the identity of the leg during the adult stage. However, in lepidopteran insects which include large numbers of pests in agriculture and forestry, as well as the major silk producer silkworm Bombyx mori, the biological functions of tsh/tio are still poorly understood. In the current study, we performed functional analysis of tsh/tio by using both CRISPR/Cas9-mediated mutagenesis and transposon-mediated ectopic expression in B. mori. The results show that loss of tsh/tio function affected pigmentation during the larval stage and appendage pattering during the adult stage. RNA-seq analysis and subsequent q-RT-PCR analysis revealed that depletion of tsh/tio significantly elevated the expression of the kynurenine 3-monooxygenase gene, as well as melanin synthase-related genes during the larval stage. Furthermore, ubiquitous ectopic expression of tsh/tio induces developmental retardation and eventually larval lethality. These data reveal evolutionarily conserved functions of tsh/tio in controlling adult appendage patterning, as well as the novel function of regulating larval pigmentation in B. mori, providing novel insights into how tsh/tio regulates insect growth and development.
Collapse
Affiliation(s)
- Ru Zhang
- Faculty of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Airong Qian
- Faculty of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Wu K, Shirk PD, Taylor CE, Furlong RB, Shirk BD, Pinheiro DH, Siegfried BD. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in fall armyworm moth (Spodoptera frugiperda). PLoS One 2018; 13:e0208647. [PMID: 30521608 PMCID: PMC6283638 DOI: 10.1371/journal.pone.0208647] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/20/2018] [Indexed: 12/04/2022] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is an important pest of maize in the Americas and has recently been introduced into Africa. Fall armyworm populations have developed resistance to control strategies that depend on insecticides and transgenic plants expressing Bacillus thuringiensis toxins. The study of various resistance mechanisms at the molecular level and the development novel control strategies have been hampered by a lack of functional genomic tools such as gene editing in this pest. In the current study, we explored the possibility of using the CRISPR/Cas9 system to modify the genome of FAW. We first identified and characterized the abdominal-A (Sfabd-A) gene of FAW. Sfabd-A single guide RNA (sgRNA) and Cas9 protein were then injected into 244 embryos of FAW. Sixty-two embryos injected with Sfabd-A sgRNA hatched. Of these hatched embryos, twelve developed into larvae that displayed typical aba-A mutant phenotypes such as fused segments. Of the twelve mutant larvae, three and five eventually developed into female and male moths, respectively. Most mutant moths were sterile, and one female produced a few unviable eggs when it was outcrossed to a wild-type male. Genotyping of 20 unhatched Sfabd-A sgRNA-injected embryos and 42 moths that developed from Sfabd-A sgRNA-injected embryos showed that 100% of the unhatched embryos and 50% of the moths contained indel mutations at the Sfabd-A genomic locus near the guide RNA target site. These results suggest that the CRISPR/Cas9 system is highly efficient in editing FAW genome. Importantly, this gene editing technology can be used to validate gene function to facilitate an understanding of the resistance mechanism and lead to the development of novel pest management approaches.
Collapse
Affiliation(s)
- Ke Wu
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Paul D. Shirk
- USDA-ARS, CMAVE-IBBRU, Gainesville, FL, United States of America
| | - Caitlin E. Taylor
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States of America
| | | | - Bryce D. Shirk
- USDA-ARS, CMAVE-IBBRU, Gainesville, FL, United States of America
| | - Daniele H. Pinheiro
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States of America
| | - Blair D. Siegfried
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
7
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
|
9
|
Huang Y, Chen Y, Zeng B, Wang Y, James AA, Gurr GM, Yang G, Lin X, Huang Y, You M. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:98-106. [PMID: 27318252 DOI: 10.1016/j.ibmb.2016.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
The diamondback moth, Plutella xylostella (L.), is a worldwide agricultural pest that has developed resistance to multiple classes of insecticides. Genetics-based approaches show promise as alternative pest management approaches but require functional studies to identify suitable gene targets. Here we use the CRISPR/Cas9 system to target a gene, abdominal-A, which has an important role in determining the identity and functionality of abdominal segments. We report that P. xylostella abdominal-A (Pxabd-A) has two structurally-similar splice isoforms (A and B) that differ only in the length of exon II, with 15 additional nucleotides in isoform A. Pxabd-A transcripts were detected in all developmental stages, and particularly in pupae and adults. CRISPR/Cas9-based mutagenesis of Pxabd-A exon I produced 91% chimeric mutants following injection of 448 eggs. Phenotypes with abnormal prolegs and malformed segments were visible in hatched larvae and unhatched embryos, and various defects were inherited by the next generation (G1). Genotyping of mutants demonstrated several mutations at the Pxabd-A genomic locus. The results indicate that a series of insertions and deletions were induced in the Pxabd-A locus, not only in G0 survivors but also in G1 individuals, and this provides a foundation for genome editing. Our study demonstrates the utility of the CRISPR/Cas9 system for targeting genes in an agricultural pest and therefore provides a foundation the development of novel pest management tools.
Collapse
Affiliation(s)
- Yuping Huang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Yazhou Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Baosheng Zeng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yajun Wang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697-4025, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Geoff M Gurr
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Graham Centre, Charles Sturt University, Orange, NSW 2800, Australia
| | - Guang Yang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Xijian Lin
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Minsheng You
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.
| |
Collapse
|
10
|
Meng M, Cheng DJ, Peng J, Qian WL, Li JR, Dai DD, Zhang TL, Xia QY. The homeodomain transcription factors antennapedia and POU-M2 regulate the transcription of the steroidogenic enzyme gene Phantom in the silkworm. J Biol Chem 2015; 290:24438-52. [PMID: 26253172 DOI: 10.1074/jbc.m115.651810] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 12/22/2022] Open
Abstract
The steroid hormone ecdysone, which controls insect molting and metamorphosis, is synthesized in the prothoracic gland (PG), and several steroidogenic enzymes that are expressed specifically in the PG are involved in ecdysteroidogenesis. In this study, we identified new regulators that are involved in the transcriptional control of the silkworm steroidogenic enzyme genes. In silico analysis predicted several potential cis-regulatory elements (CREs) for the homeodomain transcription factors Antennapedia (Antp) and POU-M2 in the proximal promoters of steroidogenic enzyme genes. Antp and POU-M2 are expressed dynamically in the PG during larval development, and their overexpression in silkworm embryo-derived (BmE) cells induced the expression of steroidogenic enzyme genes. Importantly, luciferase reporter analyses, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays revealed that Antp and POU-M2 promote the transcription of the silkworm steroidogenic enzyme gene Phantom (Phm) by binding directly to specific motifs within overlapping CREs in the Phm promoter. Mutations of these CREs in the Phm promoter suppressed the transcriptional activities of both Antp and POU-M2 in BmE cells and decreased the activities of mutated Phm promoters in the silkworm PG. In addition, pulldown and co-immunoprecipitation assays demonstrated that Antp can interact with POU-M2. Moreover, RNA interference-mediated down-regulation of either Antp or POU-M2 during silkworm wandering not only decreased the ecdysone titer but also led to the failure of metamorphosis. In summary, our results suggest that Antp and POU-M2 coordinate the transcription of the silkworm Phm gene directly, indicating new roles for homeodomain proteins in regulating insect ecdysteroidogenesis.
Collapse
Affiliation(s)
- Meng Meng
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Dao-Jun Cheng
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Jian Peng
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Wen-Liang Qian
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Jia-Rui Li
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Dan-Dan Dai
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Tian-Lei Zhang
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Qing-You Xia
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Wittkorn E, Sarkar A, Garcia K, Kango-Singh M, Singh A. The Hippo pathway effector Yki downregulates Wg signaling to promote retinal differentiation in the Drosophila eye. Development 2015; 142:2002-13. [PMID: 25977365 DOI: 10.1242/dev.117358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/16/2015] [Indexed: 01/22/2023]
Abstract
The evolutionarily conserved Hippo signaling pathway is known to regulate cell proliferation and maintain tissue homeostasis during development. We found that activation of Yorkie (Yki), the effector of the Hippo signaling pathway, causes separable effects on growth and differentiation of the Drosophila eye. We present evidence supporting a role for Yki in suppressing eye fate by downregulation of the core retinal determination genes. Other upstream regulators of the Hippo pathway mediate this effect of Yki on retinal differentiation. Here, we show that, in the developing eye, Yki can prevent retinal differentiation by blocking morphogenetic furrow (MF) progression and R8 specification. The inhibition of MF progression is due to ectopic induction of Wingless (Wg) signaling and Homothorax (Hth), the negative regulators of eye development. Modulating Wg signaling can modify Yki-mediated suppression of eye fate. Furthermore, ectopic Hth induction due to Yki activation in the eye is dependent on Wg. Last, using Cut (Ct), a marker for the antennal fate, we show that suppression of eye fate by hyperactivation of yki does not change the cell fate (from eye to antenna-specific fate). In summary, we provide the genetic mechanism by which yki plays a role in cell fate specification and differentiation - a novel aspect of Yki function that is emerging from multiple model organisms.
Collapse
Affiliation(s)
- Erika Wittkorn
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Kristine Garcia
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA Premedical Program, University of Dayton, Dayton, OH 45469, USA Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA Premedical Program, University of Dayton, Dayton, OH 45469, USA Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
12
|
Pace RM, Eskridge PC, Grbić M, Nagy LM. Evidence for the plasticity of arthropod signal transduction pathways. Dev Genes Evol 2014; 224:209-22. [PMID: 25213332 PMCID: PMC10492230 DOI: 10.1007/s00427-014-0479-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 01/23/2023]
Abstract
Metazoans are known to contain a limited, yet highly conserved, set of signal transduction pathways that instruct early developmental patterning mechanisms. Genomic surveys that have compared gene conservation in signal transduction pathways between various insects and Drosophila support the conclusion that these pathways are conserved in evolution. However, the degree to which individual components of signal transduction pathways vary among more divergent arthropods is not known. Here, we report our results of a survey of the genome of the two-spotted spider mite Tetranychus urticae, using a set of 294 Drosophila orthologs of genes that function in signal transduction. We find a third of all genes surveyed absent from the spider mite genome. We also identify several novel duplications that have not been previously reported for a chelicerate. In comparison with previous insect surveys, Tetranychus contains a decrease in overall gene conservation, as well as an unusual ratio of ligands to receptors and other modifiers. These findings suggest that gene loss and duplication among components of signal transduction pathways are common among arthropods and suggest that signal transduction pathways in arthropods are more evolutionarily labile than previously hypothesized.
Collapse
Affiliation(s)
- Ryan M Pace
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | |
Collapse
|
13
|
Denholm B, Hu N, Fauquier T, Caubit X, Fasano L, Skaer H. The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila. Development 2013; 140:1100-10. [PMID: 23404107 PMCID: PMC3583044 DOI: 10.1242/dev.088989] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The physiological activities of organs are underpinned by an interplay between the distinct cell types they contain. However, little is known about the genetic control of patterned cell differentiation during organ development. We show that the conserved Teashirt transcription factors are decisive for the differentiation of a subset of secretory cells, stellate cells, in Drosophila melanogaster renal tubules. Teashirt controls the expression of the water channel Drip, the chloride conductance channel CLC-a and the Leukokinin receptor (LKR), all of which characterise differentiated stellate cells and are required for primary urine production and responsiveness to diuretic stimuli. Teashirt also controls a dramatic transformation in cell morphology, from cuboidal to the eponymous stellate shape, during metamorphosis. teashirt interacts with cut, which encodes a transcription factor that underlies the differentiation of the primary, principal secretory cells, establishing a reciprocal negative-feedback loop that ensures the full differentiation of both cell types. Loss of teashirt leads to ineffective urine production, failure of homeostasis and premature lethality. Stellate cell-specific expression of the teashirt paralogue tiptop, which is not normally expressed in larval or adult stellate cells, almost completely rescues teashirt loss of expression from stellate cells. We demonstrate conservation in the expression of the family of tiptop/teashirt genes in lower insects and establish conservation in the targets of Teashirt transcription factors in mouse embryonic kidney.
Collapse
Affiliation(s)
- Barry Denholm
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Mark PR, Radlinski BC, Core N, Fryer A, Kirk EP, Haldeman-Englert CR. Narrowing the critical region for congenital vertical talus in patients with interstitial 18q deletions. Am J Med Genet A 2013; 161A:1117-21. [PMID: 23495172 DOI: 10.1002/ajmg.a.35791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 10/31/2012] [Indexed: 11/11/2022]
Abstract
Interstitial deletions of 18q lead to a number of phenotypic features, including multiple types of foot deformities. Many of these associated phenotypes have had their critical regions narrowly defined. Here we report on three patients with small overlapping deletions of chromosome 18q determined by microarray analysis (chr18:72493281-73512553 hg19 coordinates). All of the patients have congenital vertical talus (CVT). Based on these findings and previous reports in the literature and databases, we narrow the critical region for CVT to a minimum of five genes (ZNF407, ZADH2, TSHZ1, C18orf62, and ZNF516), and propose that TSHZ1 is the likely causative gene for CVT in 18q deletion syndrome.
Collapse
Affiliation(s)
- Paul R Mark
- Department of Medical Genetics, Spectrum Health, Grand Rapids, MI 49503, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Schaub C, Frasch M. Org-1 is required for the diversification of circular visceral muscle founder cells and normal midgut morphogenesis. Dev Biol 2013; 376:245-59. [PMID: 23380635 DOI: 10.1016/j.ydbio.2013.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/23/2013] [Indexed: 02/08/2023]
Abstract
The T-Box family of transcription factors plays fundamental roles in the generation of appropriate spatial and temporal gene expression profiles during cellular differentiation and organogenesis in animals. In this study we report that the Drosophila Tbx1 orthologue optomotor-blind-related-gene-1 (org-1) exerts a pivotal function in the diversification of circular visceral muscle founder cell identities in Drosophila. In embryos mutant for org-1, the specification of the midgut musculature per se is not affected, but the differentiating midgut fails to form the anterior and central midgut constrictions and lacks the gastric caeca. We demonstrate that this phenotype results from the nearly complete loss of the founder cell specific expression domains of several genes known to regulate midgut morphogenesis, including odd-paired (opa), teashirt (tsh), Ultrabithorax (Ubx), decapentaplegic (dpp) and wingless (wg). To address the mechanisms that mediate the regulatory inputs from org-1 towards Ubx, dpp, and wg in these founder cells we genetically dissected known visceral mesoderm specific cis-regulatory-modules (CRMs) of these genes. The analyses revealed that the activities of the dpp and wg CRMs depend on org-1, the CRMs are bound by Org-1 in vivo and their T-Box binding sites are essential for their activation in the visceral muscle founder cells. We conclude that Org-1 acts within a well-defined signaling and transcriptional network of the trunk visceral mesoderm as a crucial founder cell-specific competence factor, in concert with the general visceral mesodermal factor Biniou. As such, it directly regulates several key genes involved in the establishment of morphogenetic centers along the anteroposterior axis of the visceral mesoderm, which subsequently organize the formation of midgut constrictions and gastric caeca and thereby determine the morphology of the midgut.
Collapse
Affiliation(s)
- Christoph Schaub
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | |
Collapse
|
16
|
Homeodomain POU and Abd-A proteins regulate the transcription of pupal genes during metamorphosis of the silkworm, Bombyx mori. Proc Natl Acad Sci U S A 2012; 109:12598-603. [PMID: 22802616 DOI: 10.1073/pnas.1203149109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cascade of 20-hydroxyecdysone-mediated gene expression and repression initiates larva-to-pupa metamorphosis. We recently showed that two transcription factors, BmPOUM2 and BmβFTZ-F1, bind to the cis-regulatory elements in the promoter of the gene coding for cuticle protein, BmWCP4, and regulate its expression during Bombyx mori metamorphosis. Here we show that down-regulation of BmPOUM2 expression by RNA interference during the wandering stage resulted in failure to complete metamorphosis. The thorax epidermis of RNA interference-treated larvae became transparent, wing disc growth and differentiation were arrested, and the larvae failed to spin cocoons. Quantitative real-time PCR analysis showed that expression of the genes coding for pupal-specific wing cuticle proteins BmWCP1, BmWCP2, BmWCP3, BmWCP4, BmWCP5, BmWCP6, BmWCP8, and BmWCP9 were down-regulated in BmPOUM2 dsRNA-treated animals, whereas overexpression of BmPOUM2 protein increased the expression of BmWCP4, BmWCP5, BmWCP6, BmWCP7, and BmWCP8. Pull-down assays, far-Western blot, and electrophoretic mobility shift assay showed that the BmPOUM2 protein interacted with another homeodomain transcription factor, BmAbd-A, to induce the expression of BmWCP4. Immunohistochemical localization of BmPOUM2, BmAbd-A, and BmWCP4 proteins revealed that BmAbd-A and BmPOUM2 proteins are colocalized in the wing disc cell nuclei, whereas BmWCP4 protein is localized in the cytoplasm. Together these data suggest that BmPOUM2 interacts with the homeodomain transcription factor BmAbd-A and regulates the expression of BmWCP4 and probably other BmWCPs to complete the larva-to-pupa transformation. Although homeodomain proteins are known to regulate embryonic development, this study showed that these proteins also regulate metamorphosis.
Collapse
|
17
|
A dissection of the teashirt and tiptop genes reveals a novel mechanism for regulating transcription factor activity. Dev Biol 2011; 360:391-402. [PMID: 22019301 DOI: 10.1016/j.ydbio.2011.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/02/2011] [Accepted: 09/27/2011] [Indexed: 11/23/2022]
Abstract
In the Drosophila eye the retinal determination (RD) network controls both tissue specification and cell proliferation. Mutations in network members result in severe reductions in the size of the eye primordium and the transformation of the eye field into head cuticle. The zinc-finger transcription factor Teashirt (Tsh) plays a role in promoting cell proliferation in the anterior most portions of the eye field as well as in inducing ectopic eye formation in forced expression assays. Tiptop (Tio) is a recently discovered paralog of Tsh. It is distributed in an identical pattern to Tsh within the retina and can also promote ectopic eye development. In a previous study we demonstrated that Tio can induce ectopic eye formation in a broader range of cell populations than Tsh and is also a more potent inducer of cell proliferation. Here we have focused on understanding the molecular and biochemical basis that underlies these differences. The two paralogs are structurally similar but differ in one significant aspect: Tsh contains three zinc finger motifs while Tio has four such domains. We used a series of deletion and chimeric proteins to identify the zinc finger domains that are selectively used for either promoting cell proliferation or inducing eye formation. Our results indicate that for both proteins the second zinc finger is essential to the proper functioning of the protein while the remaining zinc finger domains appear to contribute but are not absolutely required. Interestingly, these domains antagonize each other to balance the overall activity of the protein. This appears to be a novel internal mechanism for regulating the activity of a transcription factor. We also demonstrate that both Tsh and Tio bind to C-terminal Binding Protein (CtBP) and that this interaction is important for promoting both cell proliferation and eye development. And finally we report that the physical interaction that has been described for Tsh and Homothorax (Hth) do not occur through the zinc finger domains.
Collapse
|
18
|
Erickson T, Pillay LM, Waskiewicz AJ. Zebrafish Tshz3b negatively regulates Hox function in the developing hindbrain. Genesis 2011; 49:725-42. [PMID: 21714061 DOI: 10.1002/dvg.20781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 06/13/2011] [Accepted: 06/19/2011] [Indexed: 01/18/2023]
Abstract
In flies, the zinc-finger protein Teashirt promotes trunk segmental identities, in part, by repressing the expression and function of anterior hox paralog group (PG) 1-4 genes that specify head fates. Anterior-posterior patterning of the vertebrate hindbrain also requires Hox PG 1-4 function, but the role of vertebrate teashirt-related genes in this process has not been investigated. In this work, we use overexpression and structure-function analyses to show that zebrafish tshz3b antagonizes Hox-dependent hindbrain segmentation. Ectopic Tshz3b perturbs the specification of rhombomere identities and leads to the caudal expansion of r1, the only rhombomere whose identity is specified independently of Hox function. This overexpression phenotype does not require the homeodomain and C-terminal zinc fingers that are unique to vertebrate Teashirt-related proteins, but does require that Tshz3b function as a repressor. Together, these results argue that the negative regulation of Hox PG 1-4 function is a conserved characteristic of Teashirt-related proteins.
Collapse
Affiliation(s)
- Timothy Erickson
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
19
|
Yamamoto M, Cid E, Bru S, Yamamoto F. Rare and frequent promoter methylation, respectively, of TSHZ2 and 3 genes that are both downregulated in expression in breast and prostate cancers. PLoS One 2011; 6:e17149. [PMID: 21423795 PMCID: PMC3056709 DOI: 10.1371/journal.pone.0017149] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/20/2011] [Indexed: 01/28/2023] Open
Abstract
Background Neoplastic cells harbor both hypomethylated and hypermethylated regions of
DNA. Whereas hypomethylation is found mainly in repeat sequences, regional
hypermethylation has been linked to the transcriptional silencing of certain
tumor suppressor genes. We attempted to search for candidate genes involved
in breast/prostate carcinogenesis, using the criteria that they should be
expressed in primary cultures of normal breast/prostate epithelial cells but
are frequently downregulated in breast/prostate cancer cell lines and that
their promoters are hypermethylated. Methodology/Principal Findings We identified several dozens of candidates among 194 homeobox and related
genes using Systematic Multiplex RT-PCR and among 23,000 known genes and
23,000 other expressed sequences in the human genome by DNA microarray
hybridization. An additional examination, by real-time
qRT-PCR of clinical specimens of breast cancer, further narrowed the list of
the candidates. Among them, the most frequently downregulated genes in
tumors were NP_775756 and ZNF537, from the homeobox gene search and the
genome-wide search, respectively. To our surprise, we later discovered that
these genes belong to the same gene family, the 3-member Teashirt family,
bearing the new names of TSHZ2 and TSHZ3. We subsequently determined the
methylation status of their gene promoters. The TSHZ3 gene promoter was
found to be methylated in all the breast/prostate cancer cell lines and some
of the breast cancer clinical specimens analyzed. The TSHZ2 gene promoter,
on the other hand, was unmethylated except for the MDA-MB-231 breast cancer
cell line. The TSHZ1 gene was always expressed, and its promoter was
unmethylated in all cases. Conclusions/Significance TSHZ2 and TSHZ3 genes turned out to be the most interesting candidates for
novel tumor suppressor genes. Expression of both genes is downregulated.
However, differential promoter methylation suggests the existence of
distinctive mechanisms of transcriptional inactivation for these genes.
Collapse
Affiliation(s)
- Miyako Yamamoto
- Burnham Institute for Medical Research, La Jolla, California, United States of America.
| | | | | | | |
Collapse
|
20
|
Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet 2011; 88:138-49. [PMID: 21276947 DOI: 10.1016/j.ajhg.2010.12.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/15/2010] [Accepted: 12/21/2010] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution.
Collapse
|
21
|
Santos JS, Fonseca NA, Vieira CP, Vieira J, Casares F. Phylogeny of the teashirt-related zinc finger (tshz) gene family and analysis of the developmental expression of tshz2 and tshz3b in the zebrafish. Dev Dyn 2010; 239:1010-8. [PMID: 20108322 DOI: 10.1002/dvdy.22228] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The tshz genes comprise a family of evolutionarily conserved transcription factors. However, despite the major role played by Drosophila tsh during the development of the fruit fly, the expression and function of other tshz genes have been analyzed in a very limited set of organisms and, therefore, our current knowledge of these genes is still fragmentary. In this study, we perform detailed phylogenetic analyses of the tshz genes, identify the members of this gene family in zebrafish and describe the developmental expressions of two of them, tshz2 and tshz3b, and compare them with meis1, meis2.1, meis2.2, pax6a, and pax6b expression patterns. The expression patterns of these genes define a complex set of coexpression domains in the developing zebrafish brain where their gene products have the potential to interact.
Collapse
Affiliation(s)
- Joana S Santos
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Sevilla, Spain
| | | | | | | | | |
Collapse
|
22
|
Itasaki N, Hoppler S. Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev Dyn 2010; 239:16-33. [PMID: 19544585 DOI: 10.1002/dvdy.22009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Wnt and the bone morphogenic protein (BMP) pathways are evolutionarily conserved and essentially independent signaling mechanisms, which, however, often regulate similar biological processes. Wnt and BMP signaling are functionally integrated in many biological processes, such as embryonic patterning in Drosophila and vertebrates, formation of kidney, limb, teeth and bones, maintenance of stem cells, and cancer progression. Detailed inspection of regulation in these and other tissues reveals that Wnt and BMP signaling are functionally integrated in four fundamentally different ways. The molecular mechanism evolved to mediate this integration can also be summarized in four different ways. However, a fundamental aspect of functional and mechanistic interaction between these pathways relies on tissue-specific mechanisms, which are often not conserved and cannot be extrapolated to other tissues. Integration of the two pathways contributes toward the sophisticated means necessary for creating the complexity of our bodies and the reliable and healthy function of its tissues and organs.
Collapse
Affiliation(s)
- Nobue Itasaki
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
| | | |
Collapse
|
23
|
Pan MH, Wang XY, Chai CL, Zhang CD, Lu C, Xiang ZH. Identification and function of Abdominal-A in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2009; 18:155-160. [PMID: 19320756 DOI: 10.1111/j.1365-2583.2009.00862.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Abdominal-A (adb-A) is a key gene in the development of insects. To understand its function in the silkworm, we cloned 1193 bp of the abd-A gene of Bombyx mori (Bmabd-A), including the complete coding sequence and part of the 3' untranslated region sequence. Bmabd-A has at least three mRNA splice variants with coding sequences of lengths 1032, 1044 and 1059 bp, encoding 343, 347 and 352 amino acids, respectively. Each splice variant of Bmabd-A has three exons and differs only in second exon size. Bmabd-A was expressed at low levels in unfertilized eggs, but increased gradually in fertilized eggs after laying 22 h. Bmabd-A expression decreased in ant silkworms (newly hatched silkworms). After RNA interference for Bmabd-A, the embryos had two mutant phenotypes, either completely or partially absent abdominal feet from the third to sixth abdominal segments, suggesting that Bmabd-A is responsible for normal development of the third to sixth abdominal segments during embryonic development.
Collapse
Affiliation(s)
- M-H Pan
- Southwest University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
24
|
Bessa J, Carmona L, Casares F. Zinc-finger paralogues tsh and tio are functionally equivalent during imaginal development in Drosophila and maintain their expression levels through auto- and cross-negative feedback loops. Dev Dyn 2009; 238:19-28. [PMID: 19097089 DOI: 10.1002/dvdy.21808] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
teashirt (tsh) and tiptop (tio) are two Drosophila gene paralogues encoding zinc-finger transcription factors. While tsh is an important developmental regulator, tio null individuals are viable and fertile. Here, we show that tio and tsh have coincident expression domains in the imaginal discs, the precursors of the adult body, and that both genes show similar functional properties when expressed ectopically. Furthermore, tio is able to rescue the development of tsh mutants, indicating that both genes are functionally equivalent during imaginal development. Of interest, the transcriptional regulation of tio and tsh is linked by a negative feedback loop. This mechanism might be required to maintain a tight control on the total levels of tio/tsh and could help explaining why Drosophila keeps an apparently dispensable gene.
Collapse
Affiliation(s)
- José Bessa
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide, Campus UPO, Seville, Spain
| | | | | |
Collapse
|
25
|
Casas-Tinto S, Gomez-Velazquez M, Granadino B, Fernandez-Funez P. FoxK mediates TGF-beta signalling during midgut differentiation in flies. ACTA ACUST UNITED AC 2009; 183:1049-60. [PMID: 19075113 PMCID: PMC2600746 DOI: 10.1083/jcb.200808149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inductive signals across germ layers are important for the development of the endoderm in vertebrates and invertebrates (Tam, P.P., M. Kanai-Azuma, and Y. Kanai. 2003. Curr. Opin. Genet. Dev. 13:393–400; Nakagoshi, H. 2005. Dev. Growth Differ. 47:383–392). In flies, the visceral mesoderm secretes signaling molecules that diffuse into the underlying midgut endoderm, where conserved signaling cascades activate the Hox gene labial, which is important for the differentiation of copper cells (Bienz, M. 1997. Curr. Opin. Genet. Dev. 7:683–688). We present here a Drosophila melanogaster gene of the Fox family of transcription factors, FoxK, that mediates transforming growth factor β (TGF-β) signaling in the embryonic midgut endoderm. FoxK mutant embryos fail to generate midgut constrictions and lack Labial in the endoderm. Our observations suggest that TGF-β signaling directly regulates FoxK through functional Smad/Mad-binding sites, whereas FoxK, in turn, regulates labial expression. We also describe a new cooperative activity of the transcription factors FoxK and Dfos/AP-1 that regulates labial expression in the midgut endoderm. This regulatory activity does not require direct labial activation by the TGF-β effector Mad. Thus, we propose that the combined activity of the TGF-β target genes FoxK and Dfos is critical for the direct activation of lab in the endoderm.
Collapse
Affiliation(s)
- Sergio Casas-Tinto
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|
26
|
Caubit X, Tiveron MC, Cremer H, Fasano L. Expression patterns of the three Teashirt-related genes define specific boundaries in the developing and postnatal mouse forebrain. J Comp Neurol 2008; 486:76-88. [PMID: 15834955 DOI: 10.1002/cne.20500] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We compare the expression patterns of the three mouse Teashirt (mTsh) genes during development of the forebrain and at a postnatal stage. During development, mTsh genes are expressed in domains that are restricted both dorsoventrally and rostrocaudally, with major changes in expression level coinciding with compartment boundaries. Striking complementarities in the distribution of mTsh transcripts were observed in the developing diencephalon, telencephalon, and olfactory bulb (OB). A mTsh1-positive cell population is part of the DLX-positive population localized in the dorsalmost portion of the lateral ganglionic eminence (dLGE). Comparison of the mTsh1 expression domain with the domains of Er81 and Islet1, which mark two distinct progenitor populations in the subventricular zone of the LGE, suggests that mTsh1 marks OB interneuron progenitors. Furthermore, the distinct expression patterns of mTsh1 and mTsh2 in the ventral LGE and the dLGE highlight the differential contributions of these structures to the striatum and the amydaloid complex. For Sey/Sey mutants, we show that Pax6 function is critical for the correct specification of the mTsh1+ population in the dLGE during embryogenesis. At postnatal stages in the OB, mTsh1 is expressed in granule and periglomerular cells, which originate from the subpallium during development. Furthermore, mTsh1+ cells line the walls of the anterior lateral ventricle, a region that gives rise to the interneurons that migrate in the rostral migratory streams and populate the OB postnatally. Our results suggest a role for mTsh genes in the establishment of regional identity and specification of cell types in the developing and adult forebrain.
Collapse
Affiliation(s)
- Xavier Caubit
- Laboratoire de génétique et de physiologie du développement, Centre National de la Recherche Scientifique-Institut National de la Santé et de la Recherche Médicale-Université de la Méditerranée, Campus de Luminy, Marseille, France.
| | | | | | | |
Collapse
|
27
|
Jakobsen JS, Braun M, Astorga J, Gustafson EH, Sandmann T, Karzynski M, Carlsson P, Furlong EE. Temporal ChIP-on-chip reveals Biniou as a universal regulator of the visceral muscle transcriptional network. Genes Dev 2007; 21:2448-60. [PMID: 17908931 PMCID: PMC1993875 DOI: 10.1101/gad.437607] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Smooth muscle plays a prominent role in many fundamental processes and diseases, yet our understanding of the transcriptional network regulating its development is very limited. The FoxF transcription factors are essential for visceral smooth muscle development in diverse species, although their direct regulatory role remains elusive. We present a transcriptional map of Biniou (a FoxF transcription factor) and Bagpipe (an Nkx factor) activity, as a first step to deciphering the developmental program regulating Drosophila visceral muscle development. A time course of chromatin immunoprecipitatation followed by microarray analysis (ChIP-on-chip) experiments and expression profiling of mutant embryos reveal a dynamic map of in vivo bound enhancers and direct target genes. While Biniou is broadly expressed, it regulates enhancers driving temporally and spatially restricted expression. In vivo reporter assays indicate that the timing of Biniou binding is a key trigger for the time span of enhancer activity. Although bagpipe and biniou mutants phenocopy each other, their regulatory potential is quite different. This network architecture was not apparent from genetic studies, and highlights Biniou as a universal regulator in all visceral muscle, regardless of its developmental origin or subsequent function. The regulatory connection of a number of Biniou target genes is conserved in mice, suggesting an ancient wiring of this developmental program.
Collapse
Affiliation(s)
| | - Martina Braun
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Jeanette Astorga
- Department of Cell and Molecular Biology, Goteborg University, SE-405 30 Goteborg, Sweden
| | | | - Thomas Sandmann
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Michal Karzynski
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Peter Carlsson
- Department of Cell and Molecular Biology, Goteborg University, SE-405 30 Goteborg, Sweden
| | - Eileen E.M. Furlong
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
- Corresponding author.E-MAIL ; FAX 49-6221-387166
| |
Collapse
|
28
|
Coré N, Caubit X, Metchat A, Boned A, Djabali M, Fasano L. Tshz1 is required for axial skeleton, soft palate and middle ear development in mice. Dev Biol 2007; 308:407-20. [PMID: 17586487 DOI: 10.1016/j.ydbio.2007.05.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 05/04/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
Members of the Tshz gene family encode putative zinc fingers transcription factors that are broadly expressed during mouse embryogenesis. Tshz1 is detected from E9.5 in the somites, the spinal cord, the limb buds and the branchial arches. In order to assess the function of Tshz1 during mouse development, we generated Tshz1-deficient mice. Tshz1 inactivation leads to neonatal lethality and causes multiple developmental defects. In the craniofacial region, loss of Tshz1 function leads to specific malformations of middle ear components, including the malleus and the tympanic ring. Tshz1(-/-) mice exhibited Hox-like vertebral malformations and homeotic transformations in the cervical and thoracic regions, suggesting that Tshz1 and Hox genes are involved in common pathways to control skeletal morphogenesis. Finally, we demonstrate that Tshz1 is required for the development of the soft palate.
Collapse
Affiliation(s)
- Nathalie Coré
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216, CNRS, Université de la Méditerranée, F-13288 Marseille cedex 09, France.
| | | | | | | | | | | |
Collapse
|
29
|
Onai T, Matsuo-Takasaki M, Inomata H, Aramaki T, Matsumura M, Yakura R, Sasai N, Sasai Y. XTsh3 is an essential enhancing factor of canonical Wnt signaling in Xenopus axial determination. EMBO J 2007; 26:2350-60. [PMID: 17431396 PMCID: PMC1864982 DOI: 10.1038/sj.emboj.7601684] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Accepted: 03/19/2007] [Indexed: 12/26/2022] Open
Abstract
In Xenopus, an asymmetric distribution of Wnt activity that follows cortical rotation in the fertilized egg leads to the dorsal-ventral (DV) axis establishment. However, how a clear DV polarity develops from the initial difference in Wnt activity still remains elusive. We report here that the Teashirt-class Zn-finger factor XTsh3 plays an essential role in dorsal determination by enhancing canonical Wnt signaling. Knockdown of the XTsh3 function causes ventralization in the Xenopus embryo. Both in vivo and in vitro studies show that XTsh3 substantially enhances Wnt signaling activity in a beta-catenin-dependent manner. XTsh3 cooperatively promotes the formation of a secondary axis on the ventral side when combined with weak Wnt activity, whereas XTsh3 alone has little axis-inducing ability. Furthermore, Wnt1 requires XTsh3 for its dorsalizing activity in vivo. Immunostaining and protein analyses indicate that XTsh3 is a nuclear protein that physically associates with beta-catenin and efficiently increases the level of beta-catenin in the nucleus. We discuss the role of XTsh3 as an essential amplifying factor of canonical Wnt signaling in embryonic dorsal determination.
Collapse
Affiliation(s)
- Takayuki Onai
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Mami Matsuo-Takasaki
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Hidehiko Inomata
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Toshihiro Aramaki
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Michiru Matsumura
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Rieko Yakura
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Noriaki Sasai
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Yoshiki Sasai
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe, Japan
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo, Kobe 650-0047, Japan. Tel.: +81 78 306 1841; Fax +81 78 306 1854; E-mail:
| |
Collapse
|
30
|
Manfroid I, Caubit X, Marcelle C, Fasano L. Teashirt 3 expression in the chick embryo reveals a remarkable association with tendon development. Gene Expr Patterns 2006; 6:908-12. [PMID: 16631416 DOI: 10.1016/j.modgep.2006.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/03/2006] [Accepted: 03/03/2006] [Indexed: 11/26/2022]
Abstract
Drosophila teashirt (tsh) is involved in the patterning of the trunk identity together with the Hox genes. In addition, it is also a player in the Wingless and the Hedgehog pathways. In birds and mammals, three Tshz genes are identified and the expression patterns for mouse Tshz1 and Tshz2 have been reported during embryogenesis. Recently, we showed that all three mouse Tshz genes can rescue the Drosophila tsh loss-of-function phenotype, indicating that the function of the teashirt genes has been conserved during evolution. Here we describe the expression pattern of chick TSHZ3 during embryogenesis. Chick TSHZ3 is expressed in several tissues including mesodermal derivatives, the central and peripheral nervous systems. Emphasis is laid on the dynamic expression occurring in regions of the somites and limbs where tendons develop. We show that TSHZ3 is activated in the somites by FGF8, a known inducer of the tendon marker SCX.
Collapse
Affiliation(s)
- Isabelle Manfroid
- Institut de Biologie du Développement de Marseille-Luminy, UMR CNRS 6216, Centre National de la Recherche Scientifique-Université de la Méditerranée, Campus de Luminy, F-13288 Marseille cedex 09, France
| | | | | | | |
Collapse
|
31
|
Wang H, Lee EMJ, Sperber SM, Lin S, Ekker M, Long Q. Isolation and expression of zebrafish zinc-finger transcription factor gene tsh1. Gene Expr Patterns 2006; 7:318-22. [PMID: 17035100 DOI: 10.1016/j.modgep.2006.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/16/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
We report the expression patterns of tsh1, a zebrafish homologue of the Drosophila homeotic gene teashirt. Expression of tsh1 is first detected at the 2-somite stage (10h post-fertilization, hpf) at the anterior end of the spinal cord. Expression expands toward the posterior spinal cord, and by the prim-5 stage (24 hpf) tsh1 transcripts are detected throughout spinal cord. Between the 14- and 25-somite stage (16-24 hpf), spinal cord expression shows a clear anterior boundary at the rostral margin of rhombomere 7. Around the prim-25 stage (36 hpf), while the spinal expression of tsh1 decreases, new expression is detected in the pectoral fin buds and dorsal forebrain. By the long-pec stage (48 hpf), spinal cord expression is undetectable, but strong expression is observed in the rhombencephalon, telencephalon, tectum opticum, midbrain-hindbrain boundary, in the first pharyngeal arch and in the eyes. This expression persists at least until the larval stages. Retinoic acid signaling influences tsh1 expression. Zebrafish tsh1 expression was induced in the anterior neural tube in embryos treated briefly with exogenous retinoic acid. Furthermore, tsh1 expression was down-regulated in the spinal cord in the zebrafish neckless mutant in which RA signaling is disrupted due to a missense mutation in the gene encoding retinaldehyde dehydrogenase type 2.
Collapse
Affiliation(s)
- Han Wang
- Department of Zoology and Stephenson Research and Technology Center, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The discovery of homeobox gene clusters led us to realize that the mechanisms for body patterning and other developmental programs are evolutionally-conserved in vertebrates and invertebrates. The endoderm contributes to the lining of the gut and associated organs such as the liver and pancreas, which are critical for physiological functions. Our knowledge of endoderm development is limited; however, recent studies suggest that cooperation between the HNF3/Fork head and GATA transcription factors is crucial for endoderm specification. It is necessary to further understand the mechanism through which cells become functionally organized. Molecular genetic analyses of the Drosophila endoderm would provide insights into this issue. During proventriculus morphogenesis, a simple epithelial tube is folded into a functional multilayered structure, while two functions of midgut copper cells (i.e. copper absorption and acid secretion) can be easily visualized. The homeobox gene defective proventriculus (dve) plays key roles in these functional specifications.
Collapse
Affiliation(s)
- Hideki Nakagoshi
- Graduate School of Natural and Science Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| |
Collapse
|
33
|
Tang Q, Staub CM, Gao G, Jin Q, Wang Z, Ding W, Aurigemma RE, Mulder KM. A novel transforming growth factor-beta receptor-interacting protein that is also a light chain of the motor protein dynein. Mol Biol Cell 2002; 13:4484-96. [PMID: 12475967 PMCID: PMC138648 DOI: 10.1091/mbc.e02-05-0245] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Revised: 08/23/2002] [Accepted: 08/29/2002] [Indexed: 11/11/2022] Open
Abstract
The phosphorylated, activated cytoplasmic domains of the transforming growth factor-beta (TGFbeta) receptors were used as probes to screen an expression library that was prepared from a highly TGFbeta-responsive intestinal epithelial cell line. One of the TGFbeta receptor-interacting proteins isolated was identified to be the mammalian homologue of the LC7 family (mLC7) of dynein light chains (DLCs). This 11-kDa cytoplasmic protein interacts with the TGFbeta receptor complex intracellularly and is phosphorylated on serine residues after ligand-receptor engagement. Forced expression of mLC7-1 induces specific TGFbeta responses, including an activation of Jun N-terminal kinase (JNK), a phosphorylation of c-Jun, and an inhibition of cell growth. Furthermore, TGFbeta induces the recruitment of mLC7-1 to the intermediate chain of dynein. A kinase-deficient form of TGFbeta RII prevents both mLC7-1 phosphorylation and interaction with the dynein intermediate chain (DIC). This is the first demonstration of a link between cytoplasmic dynein and a natural growth inhibitory cytokine. Furthermore, our results suggest that TGFbeta pathway components may use a motor protein light chain as a receptor for the recruitment and transport of specific cargo along microtublules.
Collapse
Affiliation(s)
- Qian Tang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
In the embryonic midgut of Drosophila, Wingless (Wg) signaling elicits threshold-specific transcriptional response, that is, low-signaling levels activate target genes, whereas high-signaling levels repress them. Wg-mediated repression of the HOX gene Ultrabithorax (Ubx) is conferred by a response sequence within the Ubx B midgut enhancer, called WRS-R. It further depends on the Teashirt (Tsh) repressor, which acts through the WRS-R without binding to it. Here, we show that Wg-mediated repression of Ubx B depends on Brinker, which binds to the WRS-R. Furthermore, Brinker blocks transcriptional activation by ubiquitous Wg signaling. Brinker binds to Tsh in vitro, recruits Tsh to the WRS-R, and we find mutual physical interactions between Brinker, Tsh, and the corepressor dCtBP. This suggests that the three proteins may form a ternary repressor complex at the WRS-R to quench the activity of the nearby-bound dTCF/Armadillo transcription complex. Finally, brinker and tsh produce similar mutant phenotypes in the ventral epidermis, and double mutants mimic overactive Wg signaling in this tissue. This suggests that Brinker may have a widespread function in antagonizing Wg signaling.
Collapse
Affiliation(s)
- Elisabeth Saller
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|
35
|
Long Q, Park BK, Ekker M. Expression and regulation of mouse Mtsh1 during limb and branchial arch development. Dev Dyn 2001; 222:308-12. [PMID: 11668608 DOI: 10.1002/dvdy.1176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The mouse genome contains at least two genes, Mtsh1 and Mtsh2, related in sequence to the Drosophila homeotic gene teashirt (tsh). In this paper, we report the characterization of Mtsh1 expression in the developing branchial arches and forelimbs during mouse embryogenesis. Mtsh1 was found predominantly transcribed in the mesenchymal tissue of branchial arches and forelimbs. Surgical removal of the epithelium of both forelimb and branchial arch significantly decreased the expression of Mtsh1 in the mesenchymal cells of these tissues. Upon implantation of FGF8-soaked beads into arches and limbs, Mtsh1 transcription was up-regulated. In contrast, when BMP4-soaked beads were implanted, Mtsh1 expression was inhibited. Together, these results suggest that mouse Mtsh1 gene may be involved in the outgrowth of limbs and arches and may be functioning downstream of BMP and FGF signaling pathways.
Collapse
Affiliation(s)
- Q Long
- Ottawa Health Research Institute, Civic Campus of the Ottawa Hospital, 725 Parkdale Avenue, Ottawa, Ontario, Canada K1Y 4E9
| | | | | |
Collapse
|
36
|
Soanes KH, Bell JB. The drosophila aeroplane mutant is caused by an I-element insertion into a tissue-specific teashirt enhancer motif. Genome 2001; 44:919-28. [PMID: 11681617 DOI: 10.1139/g01-077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Drosophila melanogaster, aeroplane (ae) is a regulatory allele of teashirt (tsh), and the mutant wing posture phenotype of homozygous ae flies is caused by a defect in the hinge region of the wing, whereby the base of the wing at the proximal ventral radius is fused to the thorax in the region of the pleural wing process. The apparent paralysis of the wings and the drooping halteres are caused by an I-element insertion into a 3' noncoding sequence of tsh. The cis-acting regulatory element interrupted by the I element is required, to drive tsh expression in the regions of the developing adult that give rise to proximal wing and haltere tissues. Loss of this expression results in the fusion of the proximal structures of the wing and halteres to the thoracic cuticle. Further characterization of this tsh regulatory motif has now identified an additional enhancer activity directing tsh expression in tissues forming portions of the midgut. Subdivision of this midgut enhancer activity has identified putative negatively acting motifs.
Collapse
Affiliation(s)
- K H Soanes
- Department of Biochemistry and Molecular Biology, The University of Calgary, AB, Canada
| | | |
Collapse
|
37
|
St Amand AL, Klymkowsky MW. Cadherins and catenins, Wnts and SOXs: embryonic patterning in Xenopus. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:291-355. [PMID: 11131519 DOI: 10.1016/s0074-7696(01)03010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wnt signaling plays a critical role in a wide range of developmental and oncogenic processes. Altered gene regulation by the canonical Wnt signaling pathway involves the cytoplasmic stabilization of beta-catenin, a protein critical to the assembly of cadherin-based cell-cell adherence junctions. In addition to binding to cadherins, beta-catenin also interacts with transcription factors of the TCF-subfamily of HMG box proteins and regulates their activity. The Xenopus embryo has proven to be a particularly powerful experimental system in which to study the role of Wnt signaling components in development and differentiation. We review this literature, focusing on the role of Wnt signaling and interacting components in establishing patterns within the early embryo.
Collapse
Affiliation(s)
- A L St Amand
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | |
Collapse
|
38
|
Chauvet S, Merabet S, Bilder D, Scott MP, Pradel J, Graba Y. Distinct hox protein sequences determine specificity in different tissues. Proc Natl Acad Sci U S A 2000; 97:4064-9. [PMID: 10737765 PMCID: PMC18149 DOI: 10.1073/pnas.070046997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox genes encode evolutionarily conserved transcription factors that control the morphological diversification along the anteroposterior (A/P) body axis. Expressed in precise locations in the ectoderm, mesoderm, and endoderm, Hox proteins have distinct regulatory activities in different tissues. How Hox proteins achieve tissue-specific functions and why cells lying at equivalent A/P positions but in different germ layers have distinctive responses to the same Hox protein remains to be determined. Here, we examine this question by identifying parts of Hox proteins necessary for Hox function in different tissues. Available genetic markers allow the regulatory effects of two Hox proteins, Abdominal-A (AbdA) and Ultrabithorax (Ubx), to be distinguished in the Drosophila embryonic epidermis and visceral mesoderm (VM). Chimeric Ubx/AbdA proteins were tested in both tissues and used to identify protein sequences that endow AbdA with a different target gene specificity from Ubx. We found that distinct protein sequences define AbdA, as opposed to Ubx, function in the epidermis vs. the VM. These sequences lie mostly outside the homeodomain (HD), emphasizing the importance of non-HD residues for specific Hox activities. Hox tissue specificity is therefore achieved by sensing distinct Hox protein structures in different tissues.
Collapse
Affiliation(s)
- S Chauvet
- Laboratoire de Génétique et Biologie du Développement, Institut de Biologie du Développement de Marseille, Centre National de la Recherche Scientifique/Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, 13288 Marseille, France
| | | | | | | | | | | |
Collapse
|
39
|
Caubit X, Coré N, Boned A, Kerridge S, Djabali M, Fasano L. Vertebrate orthologues of the Drosophila region-specific patterning gene teashirt. Mech Dev 2000; 91:445-8. [PMID: 10704881 DOI: 10.1016/s0925-4773(99)00318-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In Drosophila the teashirt gene, coding for a zinc finger protein, is active in specific body parts for patterning. For example, Teashirt is required in the trunk (thorax and abdomen) tagmata of the embryo, parts of the intestine and the proximal parts of appendages. Here we report the isolation of vertebrate cDNAs related to teashirt. As in Drosophila, human and murine proteins possess three widely spaced zinc finger motifs. Additionally, we describe the expression patterns of the two murine genes. Both genes show regionalized patterns of expression, in the trunk, in the developing limbs and the gut.
Collapse
Affiliation(s)
- X Caubit
- Upres Biodiversité, Laboratoire de Biologie Animale, Université de Provence, 3 Place Victor Hugo, Case 18, 13331, Marseille, France
| | | | | | | | | | | |
Collapse
|
40
|
Bhanot P, Fish M, Jemison JA, Nusse R, Nathans J, Cadigan KM. Frizzled and Dfrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. Development 1999; 126:4175-86. [PMID: 10457026 DOI: 10.1242/dev.126.18.4175] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cell culture assays, Frizzled and Dfrizzled2, two members of the Frizzled family of integral membrane proteins, are able to bind Wingless and transduce the Wingless signal. To address the role of these proteins in the intact organism and to explore the question of specificity of ligand-receptor interactions in vivo, we have conducted a genetic analysis of frizzled and Dfrizzled2 in the embryo. These experiments utilize a small gamma-ray-induced deficiency that uncovers Dfrizzled2. Mutants lacking maternal frizzled and zygotic frizzled and Dfrizzled2 exhibit defects in the embryonic epidermis, CNS, heart and midgut that are indistinguishable from those observed in wingless mutants. Epidermal patterning defects in the frizzled, Dfrizzled2 double-mutant embryos can be rescued by ectopic expression of either gene. In frizzled, Dfrizzled2 mutant embryos, ectopic production of Wingless does not detectably alter the epidermal patterning defect, but ectopic production of an activated form of Armadillo produces a naked cuticle phenotype indistinguishable from that produced by ectopic production of activated Armadillo in wild-type embryos. These experiments indicate that frizzled and Dfrizzled2 function downstream of wingless and upstream of armadillo, consistent with their proposed roles as Wingless receptors. The lack of an effect on epidermal patterning of ectopic Wingless in a frizzled, Dfrizzled2 double mutant argues against the existence of additional Wingless receptors in the embryo or a model in which Frizzled and Dfrizzled2 act simply to present the ligand to its bona fide receptor. These data lead to the conclusion that Frizzled and Dfrizzled2 function as redundant Wingless receptors in multiple embryonic tissues and that this role is accurately reflected in tissue culture experiments. The redundancy of Frizzled and Dfrizzled2 explains why Wingless receptors were not identified in earlier genetic screens for mutants defective in embryonic patterning.
Collapse
Affiliation(s)
- P Bhanot
- Department of Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
41
|
Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N, Misra S, Rubin GM. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 1999; 153:135-77. [PMID: 10471706 PMCID: PMC1460730 DOI: 10.1093/genetics/153.1.135] [Citation(s) in RCA: 614] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control.
Collapse
Affiliation(s)
- A C Spradling
- Department of Embryology, Howard Hughes Medical Institute Research Laboratories, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wharton KA, Cook JM, Torres-Schumann S, de Castro K, Borod E, Phillips DA. Genetic analysis of the bone morphogenetic protein-related gene, gbb, identifies multiple requirements during Drosophila development. Genetics 1999; 152:629-40. [PMID: 10353905 PMCID: PMC1460618 DOI: 10.1093/genetics/152.2.629] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have isolated mutations in the Drosophila melanogaster gene glass bottom boat (gbb), which encodes a TGF-beta signaling molecule (formerly referred to as 60A) with highest sequence similarity to members of the bone morphogenetic protein (BMP) subgroup including vertebrate BMPs 5-8. Genetic analysis of both null and hypomorphic gbb alleles indicates that the gene is required in many developmental processes, including embryonic midgut morphogenesis, patterning of the larval cuticle, fat body morphology, and development and patterning of the imaginal discs. In the embryonic midgut, we show that gbb is required for the formation of the anterior constriction and for maintenance of the homeotic gene Antennapedia in the visceral mesoderm. In addition, we show a requirement for gbb in the anterior and posterior cells of the underlying endoderm and in the formation and extension of the gastric caecae. gbb is required in all the imaginal discs for proper disc growth and for specification of veins in the wing and of macrochaete in the notum. Significantly, some of these tissues have been shown to also require the Drosophila BMP2/4 homolog decapentaplegic (dpp), while others do not. These results indicate that signaling by both gbb and dpp may contribute to the development of some tissues, while in others, gbb may signal independently of dpp.
Collapse
Affiliation(s)
- K A Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Pan D, Rubin GM. Targeted expression of teashirt induces ectopic eyes in Drosophila. Proc Natl Acad Sci U S A 1998; 95:15508-12. [PMID: 9860999 PMCID: PMC28073 DOI: 10.1073/pnas.95.26.15508] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/1998] [Indexed: 11/18/2022] Open
Abstract
teashirt was initially identified as a gene required for the specification of the trunk segments in Drosophila embryogenesis and encodes a transcription factor with zinc finger motifs. We report here that targeted expression of teashirt in imaginal discs is sufficient to induce ectopic eye formation in non-eye tissues, a phenotype similar to that produced from targeted expression of eyeless, dachshund, and eyes absent. Furthermore, teashirt and eyeless induce the expression of each other, suggesting that teashirt is part of the gene network that functions to specify eye identity.
Collapse
Affiliation(s)
- D Pan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
44
|
Bilder D, Scott MP. Hedgehog and wingless induce metameric pattern in the Drosophila visceral mesoderm. Dev Biol 1998; 201:43-56. [PMID: 9733572 DOI: 10.1006/dbio.1998.8953] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila visceral mesoderm (VM) is a favorite system for studying the regulation of target genes by Hox proteins. The VM is formed by cells from only the anterior subdivision of each mesodermal parasegment (PS). We show here that the VM itself acquires modular anterior-posterior subdivisions similar to those found in the ectoderm. As VM progenitors merge to form a continuous band running anterior to posterior along the embryo, expression of connectin (con) in 11 metameric patches within the VM reveals VM subdivisions analagous to ectodermal compartments. The VM subdivisions form in response to ectodermal production of secreted signals encoded by the segment polarity genes hedgehog (hh) and wingless (wg) and are independent of Hox gene activity. A cascade of induction from ectoderm to mesoderm to endoderm thus subdivides the gut tissues along the A-P axis. Induction of VM subdivisions may converge with Hox-mediated information to refine spatial patterning in the VM. Con patches align with ectodermal engrailed stripes, so the VM subdivisions correspond to PS 2-12 boundaries in the VM. The PS boundaries demarcated by Con in the VM can be used to map expression domains of Hox genes and their targets with high resolution. The resultant map suggests a model for the origins of VM-specific Hox expression in which Hox domains clonally inherited from blastoderm ancestors are modified by diffusible signals acting on VM-specific enhancers.
Collapse
Affiliation(s)
- D Bilder
- Department of Genetics, Howard Hughes Medical Institute, Beckman Center, 279 Campus Drive, Stanford, California, 94305-5329, USA
| | | |
Collapse
|
45
|
Gallet A, Erkner A, Charroux B, Fasano L, Kerridge S. Trunk-specific modulation of wingless signalling in Drosophila by teashirt binding to armadillo. Curr Biol 1998; 8:893-902. [PMID: 9707400 DOI: 10.1016/s0960-9822(07)00369-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND One function of the Wingless signal cascade is to determine the 'naked' cuticle cell-fate choice instead of the denticled one in Drosophila larvae. Wingless stabilises cytoplasmic Armadillo, which may act in a transcriptional activator complex with the DNA-binding protein T-cell factor (also known as Pangolin). As these components are critical for all Wingless-dependent patterning events, the problem arises as to how specific outputs are achieved. RESULTS The Teashirt zinc finger protein was found to be necessary for a subset of late Wingless-dependent functions in the embryonic trunk segments where the teashirt gene is expressed. Teashirt was found to be required for the maintenance of the late Wingless signalling target gene wingless but not for an earlier one, engrailed. Armadillo and Teashirt proteins showed similar Wingless-dependent modulation patterns in homologous parts of each trunk segment in embryos, with high levels of nuclear Teashirt and intracellular Armadillo within cells destined to form naked cuticle. We found that Teashirt associates with, and requires, Armadillo in a complex for its function. CONCLUSIONS Teashirt binds to, and requires, Armadillo for the naked cell-fate choice in the larval trunk. Teashirt is required for trunk segment identity, suggesting that Teashirt provides a region-specific output to Armadillo activity. Further modulation of Wingless is achieved in homologous parts of each trunk segment where Wingless and Teashirt are especially active. Our results provide a novel, cell-intrinsic mechanism to explain the modulation of the activity of the Wingless signalling pathway.
Collapse
Affiliation(s)
- A Gallet
- Laboratoire de Génétique et Physiologie du Développement UMR 9943 CNRS-Université IBDM CNRS-INSERM-Université de la Méditerranée Campus de Luminy Case 907, F-13288, Marseille, Cedex 09, France
| | | | | | | | | |
Collapse
|
46
|
Bilder D, Graba Y, Scott MP. Wnt and TGFbeta signals subdivide the AbdA Hox domain during Drosophila mesoderm patterning. Development 1998; 125:1781-90. [PMID: 9521915 DOI: 10.1242/dev.125.9.1781] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox genes have large expression domains yet control the formation of fine pattern elements at specific locations. We have examined the mechanism underlying subdivision of the abdominal-A (abdA) Hox domain in the visceral mesoderm. AbdA directs formation of an embryonic midgut constriction at a precise location within the broad and uniform abdA expression domain. The constriction divides the abdA domain of the midgut into two chambers, the anterior one producing the Pointed (Pnt) ETS transcription factors and the posterior one the Odd-paired (Opa) zinc finger protein. Transcription of both pnt and opa is activated by abdA but the adjacent non-overlapping patterns are not due to mutual opa-pnt regulation. Near the anterior limit of the abdA domain, two signals, Dpp (a TGFbeta) and Wg (a Wnt), are produced, in adjacent non-overlapping patterns, under Hox control in mesoderm cells. The two signals are known to regulate local mesodermal cell fates and to signal to the endoderm. We find that, in addition, they precisely subdivide the abdA domain: Wg acts upon anterior abdA domain cells to activate pnt transcription, while Dpp is essential in the same region to prevent abdA from activating opa transcription. pnt activation is required to determine the appropriate numbers of mesodermal cells in the third midgut chamber.
Collapse
Affiliation(s)
- D Bilder
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5427, USA
| | | | | |
Collapse
|
47
|
Abstract
The homeotic gene, Sex combs reduced (Scr), is a master regulator of Drosophila salivary gland formation. Embryos in which Scr function is missing do not form salivary glands, and embryos in which SCR protein is expressed everywhere form extra salivary glands. However, other known proteins, including the homeotic protein Abdominal-B, the unusual zinc finger protein Teashirt, and the secreted signaling molecule Decapentaplegic (a TGF-beta family member), limit the recruitment of SCR-expressing cells to salivary glands. To learn the molecular details of how salivary gland gene expression is controlled and as a first step toward understanding how the SCR transcription factor controls salivary gland morphogenesis, we screened for genes expressed in the developing salivary gland. Among our best candidates for potential direct downstream targets of SCR in the salivary gland are the genes trachealess (trh), dCREB-A, jalapeño, and Semaphorin II (SemaII). Our genetic studies suggest distinct and important roles for each of these genes in salivary gland morphogenesis. Current work includes studying the molecular interactions between SCR and these downstream target genes and asking how target genes coordinate their activities to effect the cell biological changes required to build functional salivary glands.
Collapse
Affiliation(s)
- D J Andrew
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| |
Collapse
|
48
|
Coré N, Charroux B, McCormick A, Vola C, Fasano L, Scott MP, Kerridge S. Transcriptional regulation of the Drosophila homeotic gene teashirt by the homeodomain protein Fushi tarazu. Mech Dev 1997; 68:157-72. [PMID: 9431813 DOI: 10.1016/s0925-4773(97)00144-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Drosophila melanogaster gene teashirt (tsh) is essential for segment identity of the embryonic thorax and abdomen. A deletion 3' to the tsh transcription unit causes the loss of tsh early expression in the even-numbered parasegments, and the corresponding larval cuticular patterns are disrupted. tsh function in the odd-numbered parasegments in these mutants is normal by both criteria. The in vivo activities of genomic fragments from the deleted region were tested in transgenic embryos. A 2.0 kb enhancer from the 3' region acts mainly in the even-numbered parasegments and is dependent on fushi tarazu (ftz) activity, which encodes a homeodomain protein required for the development of even-numbered parasegments. Ftz protein binds in vitro to four distinct sequences in a 220 bp sub-fragment; these and neighboring sequences are conserved in the equivalent enhancer isolated from Drosophila virilis. Tsh protein produced under the control of the 220 bp enhancer partially rescues a null tsh mutation, with its strongest effect in the even-numbered parasegments. Mutation of the Ftz binding sites partially abrogates the capacity for rescue. These results suggest a composite mechanism for regulation of tsh, with different activators such as ftz contributing to the overall pattern of expression of this key regulator.
Collapse
Affiliation(s)
- N Coré
- Laboratoire de Génétique et Physiologie du Développement, UMR 9943 C.N.R.S.-Université, I.B.D.M. CNRS-INSERM-Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Sisson JC, Ho KS, Suyama K, Scott MP. Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 1997; 90:235-45. [PMID: 9244298 DOI: 10.1016/s0092-8674(00)80332-3] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Hedgehog (HH) signaling proteins control cell fates and patterning during animal development. In Drosophila, HH protein induces the transcription of target genes encoding secondary signals such as DPP and WG proteins by opposing a repressor system. The repressors include Costal2, protein kinase A, and the HH receptor Patched. Like HH, the kinase Fused and the transcription factor Cubitus interruptus (CI) act positively upon targets. Here we show that costal2 encodes a kinesin-related protein that accumulates preferentially in cells capable of responding to HH. COS2 is cytoplasmic and binds microtubules. We find that CI associates with COS2 in a large protein complex, suggesting that COS2 directly controls the activity of CI.
Collapse
Affiliation(s)
- J C Sisson
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5427, USA
| | | | | | | |
Collapse
|
50
|
Graba Y, Aragnol D, Pradel J. Drosophila Hox complex downstream targets and the function of homeotic genes. Bioessays 1997; 19:379-88. [PMID: 9174403 DOI: 10.1002/bies.950190505] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hox complex genes are key developmental regulators highly conserved throughout evolution. The encoded proteins share a 60-amino-acid DNA-binding motif, the homeodomain, and function as transcription factors to control axial patterning. An important question concerns the nature and function of genes acting downstream of Hox proteins. This review focuses on Drosophila, as little is known about this question in other organisms. The noticeable progress gained in the field during the past few years has significantly improved our current understanding of how Hox genes control diversified morphogenesis. Here we summarise the strategies deployed to identify Hox target genes and discuss how their function contributes to pattern formation and morphogenesis. The regulation of target genes is also considered with special emphasis on the mechanisms underlying the specificity of action of Hox proteins in the whole animal.
Collapse
Affiliation(s)
- Y Graba
- Laboratoire de Génétique et de Biologie du Développement, Institut de Biologie du Développement de Marseille, CNRS Case 907, Marseille, France
| | | | | |
Collapse
|