1
|
Sánchez-Cisneros LE, Frutis-Osorio MF, Ríos-Barrera LD. A tale of two tissues: Patterning of the epidermis through morphogens and their role in establishing tracheal system organization. Cells Dev 2025:203998. [PMID: 39884391 DOI: 10.1016/j.cdev.2025.203998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Throughout embryonic development, cells respond to a diverse set of signals and forces, making individual or collective decisions that drive the formation of specialized tissues. The development of these structures is tightly regulated in space and time. In recent years, the possibility that neighboring tissues influence one another's morphogenesis has been explored, as some of them develop simultaneously. We study this issue by reviewing the interactions between Drosophila epidermal and tracheal tissues in early and late stages of embryogenesis. Early in development, the epidermis emerges from the ectodermal layer. During its differentiation, epidermal cells produce morphogen gradients that influence the fundamental organization of the embryo. In this work, we analyze how molecules produced by the epidermis guide tracheal system development. Since both tissues emerge from the same germ layer and lie in close proximity all along their development, they are an excellent model for studying induction processes and tissue interactions.
Collapse
Affiliation(s)
- L E Sánchez-Cisneros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - M F Frutis-Osorio
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - L D Ríos-Barrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
2
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Karkali K, Pastor-Pareja JC, Martin-Blanco E. JNK signaling and integrins cooperate to maintain cell adhesion during epithelial fusion in Drosophila. Front Cell Dev Biol 2024; 11:1034484. [PMID: 38264353 PMCID: PMC10803605 DOI: 10.3389/fcell.2023.1034484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
The fusion of epithelial sheets is an essential and conserved morphogenetic event that requires the maintenance of tissue continuity. This is secured by membrane-bound or diffusible signals that instruct the epithelial cells, in a coordinated fashion, to change shapes and adhesive properties and when, how and where to move. Here we show that during Dorsal Closure (DC) in Drosophila, the Jun kinase (JNK) signaling pathway modulates integrins expression and ensures tissue endurance. An excess of JNK activity, as an outcome of a failure in the negative feedback implemented by the dual-specificity phosphatase Puckered (Puc), promotes the loss of integrins [the ß-subunit Myospheroid (Mys)] and amnioserosa detachment. Likewise, integrins signal back to the pathway to regulate the duration and strength of JNK activity. Mys is necessary for the regulation of JNK activity levels and in its absence, puc expression is downregulated and JNK activity increases.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| | - Jose Carlos Pastor-Pareja
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (IN-CSIC), Alicante, Spain
| | - Enrique Martin-Blanco
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
4
|
Wang XC, Liu Z, Jin LH. Anchor negatively regulates BMP signalling to control Drosophila wing development. Eur J Cell Biol 2018; 97:308-317. [PMID: 29735293 DOI: 10.1016/j.ejcb.2018.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors play particularly important roles in many organisms. The novel Drosophila gene anchor is an orthologue of vertebrate GPR155. However, the roles of anchor in molecular functions and biological processes, especially in wing development, remain unknown. Knockdown of anchor resulted in an increased wing size and additional and thickened veins. These abnormal wing phenotypes were similar to those observed in BMP signalling gain-of-function experiments. We observed that the BMP signalling indicator p-Mad was significantly increased in wing discs in which anchor RNAi was induced in larvae and accumulated abnormally in intervein regions in pupae. Furthermore, the expression of target genes of the BMP signalling pathway was examined using a lacZ reporter, and the results indicated that omb and sal were substantially increased in anchor-knockdown wing discs. An investigation of genetic interactions between Anchor and the BMP signalling pathway revealed that the thickened and ectopic vein tissues were rescued by knocking down BMP levels. These results suggested that Anchor functions to negatively regulate BMP signalling during wing development and vein formation.
Collapse
Affiliation(s)
- Xiao Chun Wang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Ziguang Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
5
|
Le V, Anderson E, Akiyama T, Wharton KA. Drosophila models of FOP provide mechanistic insight. Bone 2018; 109:192-200. [PMID: 29128351 PMCID: PMC11957552 DOI: 10.1016/j.bone.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare bone disease characterized by episodic events of heterotopic ossification (HO). All cases of FOP have been attributed to mutations in the ACVR1 gene that render the encoded BMP type I ALK2 receptor hypersensitive, resulting in the activation of BMP signaling, at inappropriate times in inappropriate locations. The episodic or sporadic nature of HO associated with FOP rests with the occurrence of specific 'triggers' that push the hypersensitive ALK2-FOP receptor into full signaling mode. Identification of these triggers and their mechanism of action is critical for preventing HO and its devastating consequences in FOP patients. Models of FOP, generated in Drosophila, are shown to activate the highly conserved BMP signaling pathway in both Drosophila cell culture and in developing tissues in vivo. The most common FOP mutation, R206H, in ALK2 and its synonymous mutation, K262H, in the orthologous Drosophila receptor Sax, abolish the ability of wild type receptors to inhibit BMP ligand-induced signaling and lead to ubiquitous pathway activation in both cases but with important differences. When expressed in Drosophila, human ALK2R206H exhibits constitutive signaling. SaxK262H on the other hand can elicit excessive signaling similar to that observed for ALK2R206H in mammalian systems in vivo. For example, hyperactive signaling mediated by SaxK262H is triggered by an increase in ligand or in type II receptors. Interestingly, while the constitutive nature of ALK2R2026H in Drosophila requires activation by the type II receptor, it does not require its ligand binding domain. The differences exhibited by the two Drosophila FOP models enable a valuable comparative analysis poised to reveal critical regulatory mechanisms governing signaling output from these mutated receptors. Modifier screens using these Drosophila FOP models will be extremely valuable in identifying genes or compounds that reduce or prevent the hyperactive BMP signaling that initiates HO associated with FOP.
Collapse
Affiliation(s)
- Viet Le
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA; Program in Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Edward Anderson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Takuya Akiyama
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA; Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Kim AR, Choi EB, Kim MY, Choi KW. Angiotensin-converting enzyme Ance is cooperatively regulated by Mad and Pannier in Drosophila imaginal discs. Sci Rep 2017; 7:13174. [PMID: 29030610 PMCID: PMC5640665 DOI: 10.1038/s41598-017-13487-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/26/2017] [Indexed: 02/02/2023] Open
Abstract
Angiotensin-converting enzyme (ACE) is an evolutionarily conserved peptidyl dipeptidase. Mammalian ACE converts angiotensin I to the active vasoconstrictor angiotensin II, thus playing a critical role for homeostasis of the renin-angiotensin system. In Drosophila, the ACE homolog Ance is expressed in specific regions of developing organs, but its regulatory mechanism has not been identified. Here we provide evidence that Ance expression is regulated by a combination of Mad and Pannier (Pnr) in imaginal discs. We demonstrate that Ance expression in eye and wing discs depends on Dpp signaling. The Mad binding site of Ance regulatory region is essential for Ance expression. Ance expression in imaginal discs is also regulated by the GATA family transcription factor Pnr. Pnr directly regulates Ance expression by binding to a GATA site of Ance enhancer. In addition, Pnr and Mad physically and genetically interact. Ance null mutants are morphologically normal but show genetic interaction with dpp mutants. Furthermore, we show that human SMAD2 and GATA4 physically interact and ACE expression in HEK293 cells is regulated by SMAD2 and GATA4. Taken together, this study reveals a cooperative mechanism of Ance regulation by Mad and Pnr. Our data also suggest a conserved transcriptional regulation of human ACE.
Collapse
Affiliation(s)
- Ah-Ram Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Eun-Bee Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
7
|
Monsivais D, Matzuk MM, Pangas SA. The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022251. [PMID: 28193725 DOI: 10.1101/cshperspect.a022251] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transforming growth factor β (TGF-β) family has a profound impact on the reproductive function of various organisms. In this review, we discuss how highly conserved members of the TGF-β family influence the reproductive function across several species. We briefly discuss how TGF-β-related proteins balance germ-cell proliferation and differentiation as well as dauer entry and exit in Caenorhabditis elegans. In Drosophila melanogaster, TGF-β-related proteins maintain germ stem-cell identity and eggshell patterning. We then provide an in-depth analysis of landmark studies performed using transgenic mouse models and discuss how these data have uncovered basic developmental aspects of male and female reproductive development. In particular, we discuss the roles of the various TGF-β family ligands and receptors in primordial germ-cell development, sexual differentiation, and gonadal cell development. We also discuss how mutant mouse studies showed the contribution of TGF-β family signaling to embryonic and postnatal testis and ovarian development. We conclude the review by describing data obtained from human studies, which highlight the importance of the TGF-β family in normal female reproductive function during pregnancy and in various gynecologic pathologies.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
8
|
Deignan L, Pinheiro MT, Sutcliffe C, Saunders A, Wilcockson SG, Zeef LAH, Donaldson IJ, Ashe HL. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo. PLoS Genet 2016; 12:e1006164. [PMID: 27379389 PMCID: PMC4933369 DOI: 10.1371/journal.pgen.1006164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022] Open
Abstract
The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates. Embryogenesis involves the patterning of many different cell fates by a limited number of types of signals. One way that these signals promote a particular cell fate is through the induction of a complex, yet highly reproducible, gene expression programme that instructs changes in the cell. For example, there is a conserved role for BMP signals in specifying cell fates during dorsal-ventral axis patterning. Here, we have used genomics approaches to identify the gene expression programme implemented in response to BMP signaling during axis patterning in the Drosophila embryo. Part of the gene network downstream of BMP signaling includes members of the EGF signaling pathway, with our data highlighting reciprocal interactions between these two pathways. We have also determined genome-wide binding of BMP-responsive transcription factors to gain new insights into how the BMP gene network is activated. Our data reveal roles for specific transcription factors and insulator binding proteins, with the latter traditionally associated with the separation of transcriptional domains. Overall, our data will provide a platform for exploiting the tractability of the Drosophila embryo to determine which features of the network are critical drivers of BMP-induced cell fate changes during embryogenesis.
Collapse
Affiliation(s)
- Lisa Deignan
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Marco T. Pinheiro
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Catherine Sutcliffe
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Abbie Saunders
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Scott G. Wilcockson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo A. H. Zeef
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian J. Donaldson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Hilary L. Ashe
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Matsuda R, Hosono C, Samakovlis C, Saigo K. Multipotent versus differentiated cell fate selection in the developing Drosophila airways. eLife 2015; 4. [PMID: 26633813 PMCID: PMC4775228 DOI: 10.7554/elife.09646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/02/2015] [Indexed: 12/03/2022] Open
Abstract
Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI:http://dx.doi.org/10.7554/eLife.09646.001 Many organs are composed of tubes of different sizes, shapes and patterns that transport vital substances from one site to another. In the fruit fly species Drosophila melanogaster, oxygen is transported by a tubular network, which divides into finer tubes that allow the oxygen to reach every part of the body. Different parts of the fruit fly’s airways develop from different groups of tracheal precursor cells. P-fate cells form the most 'proximal' tubes (which are found next to the outer layer of the fly). These cells are 'multipotent' stem cells, and have the ability to specialize into many different types of cells during metamorphosis. The more 'distal' branches that emerge from the proximal tubes develop from D-fate cells. These are cells that generally acquire a narrower range of cell identities. By performing a genetic analysis of fruit fly embryos, Matsuda et al. have now identified several proteins and signaling molecules that control whether tracheal precursor cells become D-fate or P-fate cells. For example, several signaling pathways work with a protein called Ventral veinless to cause D-fate cells to develop instead of P-fate cells. However, molecules that prevent signaling occurring via these pathways help P-fate cells to form. Different amounts of the molecules that either promote or hinder these signaling processes are present in different parts of the fly embryo; this helps the airways of the fly to develop in the correct pattern. This work provides a comprehensive view of how cell types with different developmental potentials are positioned in a complex tubular network. This sets a basis for future studies addressing how the respiratory organs – and indeed the entire organism – are sustained. DOI:http://dx.doi.org/10.7554/eLife.09646.002
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden.,ECCPS, Justus Liebig University of Giessen, Giessen, Germany
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Ducuing A, Keeley C, Mollereau B, Vincent S. A DPP-mediated feed-forward loop canalizes morphogenesis during Drosophila dorsal closure. ACTA ACUST UNITED AC 2015; 208:239-48. [PMID: 25601405 PMCID: PMC4298692 DOI: 10.1083/jcb.201410042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During Drosophila dorsal closure, DPP and JNK signaling form a feed-forward loop that controls the specification and differentiation of leading edge cells to ensure robust morphogenesis. Development is robust because nature has selected various mechanisms to buffer the deleterious effects of environmental and genetic variations to deliver phenotypic stability. Robustness relies on smart network motifs such as feed-forward loops (FFLs) that ensure the reliable interpretation of developmental signals. In this paper, we show that Decapentaplegic (DPP) and JNK form a coherent FFL that controls the specification and differentiation of leading edge cells during Drosophila melanogaster dorsal closure (DC). We provide molecular evidence that through repression by Brinker (Brk), the DPP branch of the FFL filters unwanted JNK activity. High-throughput live imaging revealed that this DPP/Brk branch is dispensable for DC under normal conditions but is required when embryos are subjected to thermal stress. Our results indicate that the wiring of DPP signaling buffers against environmental challenges and canalizes cell identity. We propose that the main function of DPP pathway during Drosophila DC is to ensure robust morphogenesis, a distinct function from its well-established ability to spread spatial information.
Collapse
Affiliation(s)
- Antoine Ducuing
- Laboratory of Molecular Biology of the Cell, UMR5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | - Charlotte Keeley
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | - Stéphane Vincent
- Laboratory of Molecular Biology of the Cell, UMR5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| |
Collapse
|
11
|
Two novel disease-causing variants in BMPR1B are associated with brachydactyly type A1. Eur J Hum Genet 2015; 23:1640-5. [PMID: 25758993 PMCID: PMC4795202 DOI: 10.1038/ejhg.2015.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 01/14/2023] Open
Abstract
Brachydactyly type A1 is an autosomal dominant disorder primarily characterized by hypoplasia/aplasia of the middle phalanges of digits 2–5. Human and mouse genetic perturbations in the BMP-SMAD signaling pathway have been associated with many brachymesophalangies, including BDA1, as causative mutations in IHH and GDF5 have been previously identified. GDF5 interacts directly as the preferred ligand for the BMP type-1 receptor BMPR1B and is important for both chondrogenesis and digit formation. We report pathogenic variants in BMPR1B that are associated with complex BDA1. A c.975A>C (p.(Lys325Asn)) was identified in the first patient displaying absent middle phalanges and shortened distal phalanges of the toes in addition to the significant shortening of middle phalanges in digits 2, 3 and 5 of the hands. The second patient displayed a combination of brachydactyly and arachnodactyly. The sequencing of BMPR1B in this individual revealed a novel c.447-1G>A at a canonical acceptor splice site of exon 8, which is predicted to create a novel acceptor site, thus leading to a translational reading frameshift. Both mutations are most likely to act in a dominant-negative manner, similar to the effects observed in BMPR1B mutations that cause BDA2. These findings demonstrate that BMPR1B is another gene involved with the pathogenesis of BDA1 and illustrates the continuum of phenotypes between BDA1 and BDA2.
Collapse
|
12
|
Matsuda R, Hosono C, Saigo K, Samakovlis C. The intersection of the extrinsic hedgehog and WNT/wingless signals with the intrinsic Hox code underpins branching pattern and tube shape diversity in the drosophila airways. PLoS Genet 2015; 11:e1004929. [PMID: 25615601 PMCID: PMC4304712 DOI: 10.1371/journal.pgen.1004929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/28/2014] [Indexed: 01/04/2023] Open
Abstract
The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. Tubes are common structural elements of many internal organs,
facilitating fluid flow and material exchange. To meet the local needs of diverse tissues, the branching patterns and tube shapes vary regionally. Diametric tapering and specialized branch targeting to the brain represent two common examples of variations with organismal benefits in the Drosophila airways and our vascular system. Several extrinsic signals instruct tube diversifications but the impact of intrinsic factors remains underexplored. Here, we show that the local, tube-intrinsic Hox code instructs the pattern and shape of the dorsal trunk (DT), the main Drosophila airway. In the cephalic part (DT1), where Bithorax Complex (BX-C) Hox genes are not expressed, the extrinsic Hedgehog signal is epistatic to WNT/Wingless signals. Hedgehog instructs anterior DT1 cells to take a long and narrow tube fate targeting the brain. In more posterior metameres, BX-C genes make the extrinsic WNT/Wingless signals epistatic over Hedgehog. There, WNT/Wingless instruct all DT cells to take the thick and short tube fate. Moreover, BX-C genes modulate the outputs of WNT/wingless signaling, making the DT tubes thicker in more posterior metameres. We provide a model for how intrinsic factors modify extrinsic signaling to control regional tube morphologies in a network.
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- ECCPS, University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
13
|
Iordanou E, Chandran RR, Yang Y, Essak M, Blackstone N, Jiang L. The novel Smad protein Expansion regulates the receptor tyrosine kinase pathway to control Drosophila tracheal tube size. Dev Biol 2014; 393:93-108. [PMID: 24973580 DOI: 10.1016/j.ydbio.2014.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/01/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Tubes with distinct shapes and sizes are critical for the proper function of many tubular organs. Here we describe a unique phenotype caused by the loss of a novel, evolutionarily-conserved, Drosophila Smad-like protein, Expansion. In expansion mutants, unicellular and intracellular tracheal branches develop bubble-like cysts with enlarged apical membranes. Cysts in unicellular tubes are enlargements of the apical lumen, whereas cysts in intracellular tubes are cytoplasmic vacuole-like compartments. The cyst phenotype in expansion mutants is similar to, but weaker than, that observed in double mutants of Drosophila type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. Ptp4E and Ptp10D negatively regulate the receptor tyrosine kinase (RTK) pathways, especially epithelial growth factor receptor (EGFR) and fibroblast growth factor receptor/breathless (FGFR, Btl) signaling to maintain the proper size of unicellular and intracellular tubes. We show Exp genetically interacts with RTK signaling, the downstream targets of RPTPs. Cyst size and number in expansion mutants is enhanced by increased RTK signaling and suppressed by reduced RTK signaling. Genetic interaction studies strongly suggest that Exp negatively regulates RTK (EGFR, Btl) signaling to ensure proper tube sizes. Smad proteins generally function as intermediate components of the transforming growth factor-β (TGF-β, DPP) signaling pathway. However, no obvious genetic interaction between expansion and TGF-β (DPP) signaling was observed. Therefore, Expansion does not function as a typical Smad protein. The expansion phenotype demonstrates a novel role for Smad-like proteins in epithelial tube formation.
Collapse
Affiliation(s)
- Ekaterini Iordanou
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Rachana R Chandran
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Yonghua Yang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Mina Essak
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Nicholas Blackstone
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
14
|
Peterson AJ, O'Connor MB. Strategies for exploring TGF-β signaling in Drosophila. Methods 2014; 68:183-93. [PMID: 24680699 PMCID: PMC4057889 DOI: 10.1016/j.ymeth.2014.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
The TGF-β pathway is an evolutionarily conserved signal transduction module that mediates diverse biological processes in animals. In Drosophila, both the BMP and Activin branches are required for viability. Studies rooted in classical and molecular genetic approaches continue to uncover new developmental roles for TGF-β signaling. We present an overview of the secreted ligands, transmembrane receptors and cellular Smad transducer proteins that compose the core pathway in Drosophila. An assortment of tools have been developed to conduct tissue-specific loss- and gain-of-function experiments for these pathway components. We discuss the deployment of these reagents, with an emphasis on appropriate usage and limitations of the available tools. Throughout, we note reagents that are in need of further improvement or development, and signaling features requiring further study. A general theme is that comparison of phenotypes for ligands, receptors, and Smads can be used to map tissue interactions, and to separate canonical and non-canonical signaling activities. Core TGF-β signaling components are subject to multiple layers of regulation, and are coupled to context-specific inputs and outputs. In addition to fleshing out how TGF-β signaling serves the fruit fly, we anticipate that future studies will uncover new regulatory nodes and modes and will continue to advance paradigms for how TGF-β signaling regulates general developmental processes.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
15
|
Butí E, Mesquita D, Araújo SJ. Hedgehog is a positive regulator of FGF signalling during embryonic tracheal cell migration. PLoS One 2014; 9:e92682. [PMID: 24651658 PMCID: PMC3961400 DOI: 10.1371/journal.pone.0092682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
Cell migration is a widespread and complex process that is crucial for morphogenesis and for the underlying invasion and metastasis of human cancers. During migration, cells are steered toward target sites by guidance molecules that induce cell direction and movement through complex intracellular mechanisms. The spatio-temporal regulation of the expression of these guidance molecules is of extreme importance for both normal morphogenesis and human disease. One way to achieve this precise regulation is by combinatorial inputs of different transcription factors. Here we used Drosophila melanogaster mutants with migration defects in the ganglionic branches of the tracheal system to further clarify guidance regulation during cell migration. By studying the cellular consequences of overactivated Hh signalling, using ptc mutants, we found that Hh positively regulates Bnl/FGF levels during embryonic stages. Our results show that Hh modulates cell migration non-autonomously in the tissues surrounding the action of its activity. We further demonstrate that the Hh signalling pathway regulates bnl expression via Stripe (Sr), a zinc-finger transcription factor with homology to the Early Growth Response (EGR) family of vertebrate transcription factors. We propose that Hh modulates embryonic cell migration by participating in the spatio-temporal regulation of bnl expression in a permissive mode. By doing so, we provide a molecular link between the activation of Hh signalling and increased chemotactic responses during cell migration.
Collapse
Affiliation(s)
- Elisenda Butí
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Duarte Mesquita
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Sofia J. Araújo
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- * E-mail:
| |
Collapse
|
16
|
Sharma R, Beermann A, Schröder R. FGF signalling controls anterior extraembryonic and embryonic fate in the beetle Tribolium. Dev Biol 2013; 381:121-33. [DOI: 10.1016/j.ydbio.2013.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 11/30/2022]
|
17
|
Das S, Chen QB, Saucier JD, Drescher B, Zong Y, Morgan S, Forstall J, Meriwether A, Toranzo R, Leal SM. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc. Mech Dev 2013; 130:577-601. [PMID: 23962751 DOI: 10.1016/j.mod.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022]
Abstract
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis.
Collapse
Affiliation(s)
- Sudeshna Das
- The Department of Biological Sciences, University of Southern Mississippi, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zuo L, Iordanou E, Chandran RR, Jiang L. Novel mechanisms of tube-size regulation revealed by the Drosophila trachea. Cell Tissue Res 2013; 354:343-54. [PMID: 23824100 DOI: 10.1007/s00441-013-1673-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/27/2013] [Indexed: 12/17/2022]
Abstract
The size of various tubes within tubular organs such as the lung, vascular system and kidney must be finely tuned for the optimal delivery of gases, nutrients, waste and cells within the entire organism. Aberrant tube sizes lead to devastating human illnesses, such as polycystic kidney disease, fibrocystic breast disease, pancreatic cystic neoplasm and thyroid nodules. However, the underlying mechanisms that are responsible for tube-size regulation have yet to be fully understood. Therefore, no effective treatments are available for disorders caused by tube-size defects. Recently, the Drosophila tracheal system has emerged as an excellent in vivo model to explore the fundamental mechanisms of tube-size regulation. Here, we discuss the role of the apical luminal matrix, cell polarity and signaling pathways in regulating tube size in Drosophila trachea. Previous studies of the Drosophila tracheal system have provided general insights into epithelial tube morphogenesis. Mechanisms that regulate tube size in Drosophila trachea could be well conserved in mammalian tubular organs. This knowledge should greatly aid our understanding of tubular organogenesis in vertebrates and potentially lead to new avenues for the treatment of human disease caused by tube-size defects.
Collapse
Affiliation(s)
- Li Zuo
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; School of Health and Rehabilitation Sciences, The Ohio State College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ekaterini Iordanou
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Rachana R Chandran
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; Dodge Hall of Engineering 322, 2200 N. Squirrel Road, Rochester, MI 48309, USA
| |
Collapse
|
19
|
Shen W, Chen X, Cormier O, Cheng DCP, Reed B, Harden N. Modulation of morphogenesis by Egfr during dorsal closure in Drosophila. PLoS One 2013; 8:e60180. [PMID: 23579691 PMCID: PMC3620322 DOI: 10.1371/journal.pone.0060180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/23/2013] [Indexed: 01/12/2023] Open
Abstract
During Drosophila embryogenesis the process of dorsal closure (DC) results in continuity of the embryonic epidermis, and DC is well recognized as a model system for the analysis of epithelial morphogenesis as well as wound healing. During DC the flanking lateral epidermal sheets stretch, align, and fuse along the dorsal midline, thereby sealing a hole in the epidermis occupied by an extra-embryonic tissue known as the amnioserosa (AS). Successful DC requires the regulation of cell shape change via actomyosin contractility in both the epidermis and the AS, and this involves bidirectional communication between these two tissues. We previously demonstrated that transcriptional regulation of myosin from the zipper (zip) locus in both the epidermis and the AS involves the expression of Ack family tyrosine kinases in the AS in conjunction with Dpp secreted from the epidermis. A major function of Ack in other species, however, involves the negative regulation of Egfr. We have, therefore, asked what role Egfr might play in the regulation of DC. Our studies demonstrate that Egfr is required to negatively regulate epidermal expression of dpp during DC. Interestingly, we also find that Egfr signaling in the AS is required to repress zip expression in both the AS and the epidermis, and this may be generally restrictive to the progression of morphogenesis in these tissues. Consistent with this theme of restricting morphogenesis, it has previously been shown that programmed cell death of the AS is essential for proper DC, and we show that Egfr signaling also functions to inhibit or delay AS programmed cell death. Finally, we present evidence that Ack regulates zip expression by promoting the endocytosis of Egfr in the AS. We propose that the general role of Egfr signaling during DC is that of a braking mechanism on the overall progression of DC.
Collapse
Affiliation(s)
- Weiping Shen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Xi Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Olga Cormier
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - David Chung-Pei Cheng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bruce Reed
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
20
|
Activation and function of TGFβ signalling during Drosophila wing development and its interactions with the BMP pathway. Dev Biol 2013; 377:138-53. [PMID: 23485686 DOI: 10.1016/j.ydbio.2013.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/26/2012] [Accepted: 02/06/2013] [Indexed: 11/20/2022]
Abstract
The development of the Drosophila wing disc requires the activities of the BMP and TGFβ signalling pathways. BMP signalling is critical for the correct growth and patterning of the disc, whereas the related TGFβ pathway is mostly required for growth. The BMP and TGFβ pathways share a common co-receptor (Punt) and a nuclear effector (Medea), and consequently it is likely that these pathways can interfere with each other during normal development. In this work we focus on the spatial activation domains and requirements for TGFβ signalling during wing disc development. We found that the phosphorylation of Smad2, the specific transducer for TGFβ signalling, occurs in a generalised manner in the wing disc. It appears that the expression of the four candidate TGFβ ligands (Activinβ, Dawdle, Maverick and Myoglianin) in the wing disc is required to obtain normal levels of TGFβ signalling in this tissue. We show that Baboon, the specific receptor of the TGFβ pathway, can phosphorylate Mad, the specific transducer of the BMP pathway, in vivo. However, this activation only occurs in the wing disc when the receptor is constitutively activated in a background of reduced expression of Smad2. In the presence of Smad2, the normal situation during wing disc development, high levels of activated Baboon lead to a depletion in Mad phosphorylation and to BMP loss-of-function phenotypes. Although loss of either babo or Smad2 expression reduce growth in the wing blade in a similar manner, loss of Smad2 can also cause phenotypes related to ectopic BMP signalling, suggesting a physiological role for this transducer in the regulation of Mad spatial activation.
Collapse
|
21
|
Ríos-Barrera LD, Riesgo-Escovar JR. Regulating cell morphogenesis: The drosophila jun N-terminal kinase pathway. Genesis 2012; 51:147-62. [DOI: 10.1002/dvg.22354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/14/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Luis Daniel Ríos-Barrera
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| |
Collapse
|
22
|
Lada K, Gorfinkiel N, Martinez Arias A. Interactions between the amnioserosa and the epidermis revealed by the function of the u-shaped gene. Biol Open 2012; 1:353-61. [PMID: 23213425 PMCID: PMC3509461 DOI: 10.1242/bio.2012497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dorsal closure (DC) is an essential step during Drosophila development whereby a hole is sealed in the dorsal epidermis and serves as a model for cell sheet morphogenesis and wound healing. It involves the orchestrated interplay of transcriptional networks and dynamic regulation of cell machinery to bring about shape changes, mechanical forces, and emergent properties. Here we provide insight into the regulation of dorsal closure by describing novel autonomous and non-autonomous roles for U-shaped (Ush) in the amnioserosa, the epidermis, and in mediation of communication between the tissues. We identified Ush by gene expression microarray analysis of Dpp signaling targets and show that Ush mediates some DC functions of Dpp. By selectively restoring Ush function in either the AS or the epidermis in ush mutants, we show that the AS makes a greater (Ush-dependent) contribution to closure than the epidermis. A signal from the AS induces epidermal cell elongation and JNK activation in the DME, while cable formation requires Ush on both sides of the leading edge, i.e. in both the AS and epidermis. Our study demonstrates that the amnioserosa and epidermis communicate at several steps during the process: sometimes the epidermis instructs the amnioserosa, other times the AS instructs the epidermis, and still other times they appear to collaborate.
Collapse
Affiliation(s)
- Karolina Lada
- Department of Genetics, University of Cambridge , CB2 3EH, Cambridge , UK
| | | | | |
Collapse
|
23
|
Maruyama R, Andrew DJ. Drosophila as a model for epithelial tube formation. Dev Dyn 2011; 241:119-35. [PMID: 22083894 DOI: 10.1002/dvdy.22775] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 12/17/2022] Open
Abstract
Epithelial tubular organs are essential for life in higher organisms and include the pancreas and other secretory organs that function as biological factories for the synthesis and delivery of secreted enzymes, hormones, and nutrients essential for tissue homeostasis and viability. The lungs, which are necessary for gas exchange, vocalization, and maintaining blood pH, are organized as highly branched tubular epithelia. Tubular organs include arteries, veins, and lymphatics, high-speed passageways for delivery and uptake of nutrients, liquids, gases, and immune cells. The kidneys and components of the reproductive system are also epithelial tubes. Both the heart and central nervous system of many vertebrates begin as epithelial tubes. Thus, it is not surprising that defects in tube formation and maintenance underlie many human diseases. Accordingly, a thorough understanding how tubes form and are maintained is essential to developing better diagnostics and therapeutics. Among the best-characterized tubular organs are the Drosophila salivary gland and trachea, organs whose relative simplicity have allowed for in depth analysis of gene function, yielding key mechanistic insight into tube initiation, remodeling and maintenance. Here, we review our current understanding of salivary gland and trachea formation - highlighting recent discoveries into how these organs attain their final form and function.
Collapse
Affiliation(s)
- Rika Maruyama
- The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
24
|
Kolahgar G, Bardet PL, Langton PF, Alexandre C, Vincent JP. Apical deficiency triggers JNK-dependent apoptosis in the embryonic epidermis of Drosophila. Development 2011; 138:3021-31. [PMID: 21693518 DOI: 10.1242/dev.059980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial homeostasis and the avoidance of diseases such as cancer require the elimination of defective cells by apoptosis. Here, we investigate how loss of apical determinants triggers apoptosis in the embryonic epidermis of Drosophila. Transcriptional profiling and in situ hybridisation show that JNK signalling is upregulated in mutants lacking Crumbs or other apical determinants. This leads to transcriptional activation of the pro-apoptotic gene reaper and to apoptosis. Suppression of JNK signalling by overexpression of Puckered, a feedback inhibitor of the pathway, prevents reaper upregulation and apoptosis. Moreover, removal of endogenous Puckered leads to ectopic reaper expression. Importantly, disruption of the basolateral domain in the embryonic epidermis does not trigger JNK signalling or apoptosis. We suggest that apical, not basolateral, integrity could be intrinsically required for the survival of epithelial cells. In apically deficient embryos, JNK signalling is activated throughout the epidermis. Yet, in the dorsal region, reaper expression is not activated and cells survive. One characteristic of these surviving cells is that they retain discernible adherens junctions despite the apical deficit. We suggest that junctional integrity could restrain the pro-apoptotic influence of JNK signalling.
Collapse
Affiliation(s)
- Golnar Kolahgar
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
25
|
Ghabrial AS, Levi BP, Krasnow MA. A systematic screen for tube morphogenesis and branching genes in the Drosophila tracheal system. PLoS Genet 2011; 7:e1002087. [PMID: 21750678 PMCID: PMC3131284 DOI: 10.1371/journal.pgen.1002087] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/05/2011] [Indexed: 01/10/2023] Open
Abstract
Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general “house-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system. Elucidating the genetic programs that control formation and maintenance of body organs is a central goal of developmental biology, and understanding how these programs go awry in disease has important implications for medicine. Many such organogenesis genes have been identified, but most are early-acting “patterning genes” encoding signaling proteins and gene regulators that control expression of a poorly characterized set of downstream “morphogenesis genes,” which encode proteins that generate the remarkable organ forms and structures of the constituent cells. We screened ∼40% of the fruit fly Drosophila genome for mutations that affect tracheal (respiratory) system development. We included steps to bypass complexities from mutant effects on other tissues and steps to exclude mutations in general cell “housekeeping genes.” We isolated mutations in ∼70 genes that identify major steps in the organogenesis program including an integral cell growth control step. Many of the new tracheal genes are “morphogenesis genes” that encode proteins involved in cell structure or intracellular transport. The results suggest that genetic screens can elucidate a full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ.
Collapse
Affiliation(s)
- Amin S. Ghabrial
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Cell and Developmental Biology, University Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (ASG); (MAK)
| | - Boaz P. Levi
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mark A. Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (ASG); (MAK)
| |
Collapse
|
26
|
Wang X, Ward RE. Sec61alpha is required for dorsal closure during Drosophila embryogenesis through its regulation of Dpp signaling. Dev Dyn 2010; 239:784-97. [PMID: 20112345 DOI: 10.1002/dvdy.22219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
During dorsal closure in Drosophila, signaling events in the dorsalmost row of epidermal cells (DME cells) direct the migration of lateral epidermal sheets towards the dorsal midline where they fuse to enclose the embryo. A Jun amino-terminal kinase (JNK) cascade in the DME cells induces the expression of Decapentaplegic (Dpp). Dpp signaling then regulates the cytoskeleton in the DME cells and amnioserosa to affect the cell shape changes necessary to complete dorsal closure. We identified a mutation in Sec61alpha that specifically perturbs dorsal closure. Sec61alpha encodes the main subunit of the translocon complex for co-translational import of proteins into the ER. JNK signaling is normal in Sec61alpha mutant embryos, but Dpp signaling is attenuated and the DME cells fail to maintain an actinomyosin cable as epithelial migration fails. Consistent with this model, dorsal closure is rescued in Sec61alpha mutant embryos by an activated form of the Dpp receptor Thick veins.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
27
|
Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev Cell 2010; 19:296-306. [PMID: 20708591 PMCID: PMC2941037 DOI: 10.1016/j.devcel.2010.07.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 12/17/2022]
Abstract
Details of the mechanisms that determine the shape and positioning of organs in the body cavity remain largely obscure. We show that stereotypic positioning of outgrowing Drosophila renal tubules depends on signaling in a subset of tubule cells and results from enhanced sensitivity to guidance signals by targeted matrix deposition. VEGF/PDGF ligands from the tubules attract hemocytes, which secrete components of the basement membrane to ensheath them. Collagen IV sensitizes tubule cells to localized BMP guidance cues. Signaling results in pathway activation in a subset of tubule cells that lead outgrowth through the body cavity. Failure of hemocyte migration, loss of collagen IV, or abrogation of BMP signaling results in tubule misrouting and defective organ shape and positioning. Such regulated interplay between cell-cell and cell-matrix interactions is likely to have wide relevance in organogenesis and congenital disease.
Collapse
|
28
|
Scarface, a secreted serine protease-like protein, regulates polarized localization of laminin A at the basement membrane of the Drosophila embryo. EMBO Rep 2010; 11:373-9. [PMID: 20379222 DOI: 10.1038/embor.2010.43] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 11/08/2022] Open
Abstract
Cell-matrix interactions brought about by the activity of integrins and laminins maintain the polarized architecture of epithelia and mediate morphogenetic interactions between apposing tissues. Although the polarized localization of laminins at the basement membrane is a crucial step in these processes, little is known about how this polarized distribution is achieved. Here, in Drosophila, we analyse the role of the secreted serine protease-like protein Scarface in germ-band retraction and dorsal closure-morphogenetic processes that rely on the activity of integrins and laminins. We present evidence that scarface is regulated by c-Jun amino-terminal kinase and that scarface mutant embryos show defects in these morphogenetic processes. Anomalous accumulation of laminin A on the apical surface of epithelial cells was observed in these embryos before a loss of epithelial polarity was induced. We propose that Scarface has a key role in regulating the polarized localization of laminin A in this developmental context.
Collapse
|
29
|
Lapraz F, Besnardeau L, Lepage T. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 2009; 7:e1000248. [PMID: 19956794 PMCID: PMC2772021 DOI: 10.1371/journal.pbio.1000248] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 10/14/2009] [Indexed: 01/18/2023] Open
Abstract
Formation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGFbeta Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood. In this paper, we provide evidence that the long-range organizing activity of Nodal is assured by a relay molecule synthesized in the ventral ectoderm, then translocated to the opposite side of the embryo. We identified this relay molecule as BMP2/4 based on the following arguments. First, blocking BMP2/4 function eliminated the long-range organizing activity of an activated Nodal receptor in an axis rescue assay. Second, we demonstrate that BMP2/4 and the corresponding type I receptor Alk3/6 functions are both essential for specification of the dorsal region of the embryo. Third, using anti-phospho-Smad1/5/8 immunostaining, we show that, despite its ventral transcription, the BMP2/4 ligand triggers receptor mediated signaling exclusively on the dorsal side of the embryo, one of the most extreme cases of BMP translocation described so far. We further report that the pattern of pSmad1/5/8 is graded along the dorsal-ventral axis and that two BMP2/4 target genes are expressed in nested patterns centered on the region with highest levels of pSmad1/5/8, strongly suggesting that BMP2/4 is acting as a morphogen. We also describe the very unusual ventral co-expression of chordin and bmp2/4 downstream of Nodal and demonstrate that Chordin is largely responsible for the spatial restriction of BMP2/4 signaling to the dorsal side. Thus, unlike in most organisms, in the sea urchin, a single ventral signaling centre is responsible for induction of ventral and dorsal cell fates. Finally, we show that Chordin may not be required for long-range diffusion of BMP2/4, describe a striking dorsal-ventral asymmetry in the expression of Glypican 5, a heparin sulphated proteoglycan that regulates BMP mobility, and show that this asymmetry depends on BMP2/4 signaling. Our study provides new insights into the mechanisms by which positional information is established along the dorsal-ventral axis of the sea urchin embryo, and more generally on how a BMP morphogen gradient is established in a multicellular embryo. From an evolutionary point of view, it highlights that although the genes used for dorsal-ventral patterning are highly conserved in bilateria, there are considerable variations, even among deuterostomes, in the manner these genes are used to shape a BMP morphogen gradient.
Collapse
Affiliation(s)
- François Lapraz
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Thierry Lepage
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
30
|
Eivers E, Fuentealba LC, Sander V, Clemens JC, Hartnett L, De Robertis EM. Mad is required for wingless signaling in wing development and segment patterning in Drosophila. PLoS One 2009; 4:e6543. [PMID: 19657393 PMCID: PMC2717371 DOI: 10.1371/journal.pone.0006543] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/04/2009] [Indexed: 11/18/2022] Open
Abstract
A key question in developmental biology is how growth factor signals are integrated to generate pattern. In this study we investigated the integration of the Drosophila BMP and Wingless/GSK3 signaling pathways via phosphorylations of the transcription factor Mad. Wingless was found to regulate the phosphorylation of Mad by GSK3 in vivo. In epistatic experiments, the effects of Wingless on wing disc molecular markers (senseless, distalless and vestigial) were suppressed by depletion of Mad with RNAi. Wingless overexpression phenotypes, such as formation of ectopic wing margins, were induced by Mad GSK3 phosphorylation-resistant mutant protein. Unexpectedly, we found that Mad phosphorylation by GSK3 and MAPK occurred in segmental patterns. Mad depletion or overexpression produced Wingless-like embryonic segmentation phenotypes. In Xenopus embryos, segmental border formation was disrupted by Smad8 depletion. The results show that Mad is required for Wingless signaling and for the integration of gradients of positional information.
Collapse
Affiliation(s)
- Edward Eivers
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Luis C. Fuentealba
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Veronika Sander
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - James C. Clemens
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lori Hartnett
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - E. M. De Robertis
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Functional analysis of saxophone, the Drosophila gene encoding the BMP type I receptor ortholog of human ALK1/ACVRL1 and ACVR1/ALK2. Genetics 2009; 183:563-79, 1SI-8SI. [PMID: 19620392 DOI: 10.1534/genetics.109.105585] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In metazoans, bone morphogenetic proteins (BMPs) direct a myriad of developmental and adult homeostatic events through their heterotetrameric type I and type II receptor complexes. We examined 3 existing and 12 newly generated mutations in the Drosophila type I receptor gene, saxophone (sax), the ortholog of the human Activin Receptor-Like Kinase1 and -2 (ALK1/ACVRL1 and ALK2/ACVR1) genes. Our genetic analyses identified two distinct classes of sax alleles. The first class consists of homozygous viable gain-of-function (GOF) alleles that exhibit (1) synthetic lethality in combination with mutations in BMP pathway components, and (2) significant maternal effect lethality that can be rescued by an increased dosage of the BMP encoding gene, dpp+. In contrast, the second class consists of alleles that are recessive lethal and do not exhibit lethality in combination with mutations in other BMP pathway components. The alleles in this second class are clearly loss-of-function (LOF) with both complete and partial loss-of-function mutations represented. We find that one allele in the second class of recessive lethals exhibits dominant-negative behavior, albeit distinct from the GOF activity of the first class of viable alleles. On the basis of the fact that the first class of viable alleles can be reverted to lethality and on our ability to independently generate recessive lethal sax mutations, our analysis demonstrates that sax is an essential gene. Consistent with this conclusion, we find that a normal sax transcript is produced by saxP, a viable allele previously reported to be null, and that this allele can be reverted to lethality. Interestingly, we determine that two mutations in the first class of sax alleles show the same amino acid substitutions as mutations in the human receptors ALK1/ACVRl-1 and ACVR1/ALK2, responsible for cases of hereditary hemorrhagic telangiectasia type 2 (HHT2) and fibrodysplasia ossificans progressiva (FOP), respectively. Finally, the data presented here identify different functional requirements for the Sax receptor, support the proposal that Sax participates in a heteromeric receptor complex, and provide a mechanistic framework for future investigations into disease states that arise from defects in BMP/TGF-beta signaling.
Collapse
|
32
|
Bakal C, Linding R, Llense F, Heffern E, Martin-Blanco E, Pawson T, Perrimon N. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds. Science 2008; 322:453-6. [PMID: 18927396 PMCID: PMC2581798 DOI: 10.1126/science.1158739] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have succeeded in providing parts lists of the essential components of signaling networks, they typically do not provide much insight into the hierarchical and functional relations that exist among these components. We describe a high-throughput screen in which we used RNA interference to systematically inhibit two genes simultaneously in 17,724 combinations to identify regulators of Drosophila JUN NH(2)-terminal kinase (JNK). Using both genetic and phosphoproteomics data, we then implemented an integrative network algorithm to construct a JNK phosphorylation network, which provides structural and mechanistic insights into the systems architecture of JNK signaling.
Collapse
Affiliation(s)
- Chris Bakal
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Fernández BG, Arias AM, Jacinto A. Dpp signalling orchestrates dorsal closure by regulating cell shape changes both in the amnioserosa and in the epidermis. Mech Dev 2007; 124:884-97. [PMID: 17950580 DOI: 10.1016/j.mod.2007.09.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 08/31/2007] [Accepted: 09/06/2007] [Indexed: 01/16/2023]
Abstract
During the final stages of embryogenesis, the Drosophila embryo exhibits a dorsal hole covered by a simple epithelium of large cells termed the amnioserosa (AS). Dorsal closure is the process whereby this hole is closed through the coordination of cellular activities within both the AS and the epidermis. Genetic analysis has shown that signalling through Jun N-terminal Kinase (JNK) and Decapentaplegic (Dpp), a Drosophila member of the BMP/TGF-beta family of secreted factors, controls these activities. JNK activates the expression of dpp in the dorsal-most epidermal cells, and subsequently Dpp acts as a secreted signal to control the elongation of lateral epidermis. Our analysis shows that Dpp function not only affects the epidermal cells, but also the AS. Embryos defective in Dpp signalling display defects in AS cell shape changes, specifically in the reduction of their apical surface areas, leading to defective AS contraction. Our data also demonstrate that Dpp regulates adhesion between epidermis and AS, and mediates expression of the transcription factor U-shaped in a gradient across both the AS and the epidermis. In summary, we show that Dpp plays a crucial role in coordinating the activity of the AS and its interactions with the LE cells during dorsal closure.
Collapse
|
34
|
Dow LE, Humbert PO. Polarity Regulators and the Control of Epithelial Architecture, Cell Migration, and Tumorigenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:253-302. [PMID: 17631191 DOI: 10.1016/s0074-7696(07)62006-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A large body of work on Drosophila melanogaster has identified and characterized a number of key polarity regulators, many of which are required for the regulation of multiple other processes including proliferation, migration, invasion, and tumorigenesis. Humans possess either single or multiple homologues of each of the Drosophila polarity proteins, and in most cases, these are highly conserved between species, implying an important and conserved function for each of the polarity complexes. Recent studies in cultured mammalian epithelial cells have shed some light on the requirement for the polarity complexes in the regulation of epithelial cell function, including an unexpected link to the regulation of directed cell migration. However, many questions still remain regarding the molecular mechanisms of polarity regulation and whether disruption of polarity protein function is an important step in the development of human cancers. Here we will review what is currently understood about the regulation of cell polarity, migration, and invasion and the level of functional conservation between Drosophila and mammalian tissues. Particular reference will be made as to how the Scribble and Par polarity complexes may be involved in the regulation of apical-basal polarity, migration, and tumorigenesis.
Collapse
Affiliation(s)
- Lukas E Dow
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Center, Melbourne, Australia
| | | |
Collapse
|
35
|
LeMosy EK. Proteolytic regulatory mechanisms in the formation of extracellular morphogen gradients. ACTA ACUST UNITED AC 2006; 78:243-55. [PMID: 17061259 DOI: 10.1002/bdrc.20074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Growth factors are secreted into the extracellular space, where they encounter soluble inhibitors, extracellular matrix glycoproteins and proteoglycans, and proteolytic enzymes that can each modulate the spatial distribution, activity state, and receptor interactions of these signaling molecules. During development, morphogenetic gradients of these growth factors pattern fields of cells responsive to different levels of signaling, creating such structures as the branched pattern of airways and vasculature, and the arrangement of digits in the hand. This review focuses specifically on the roles of proteolytic enzymes and their regulators in the generation of such activity gradients. Evidence from Drosophila developmental pathways provides a detailed understanding of general mechanisms underlying proteolytic control of morphogen gradients, while recent studies of several mammalian growth factors illustrate the relevance of this proteolytic control to human development and disease.
Collapse
Affiliation(s)
- Ellen K LeMosy
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA.
| |
Collapse
|
36
|
Kerman BE, Cheshire AM, Andrew DJ. From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis. Differentiation 2006; 74:326-48. [PMID: 16916373 PMCID: PMC2827874 DOI: 10.1111/j.1432-0436.2006.00095.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tube formation is a ubiquitous process required to sustain life in multicellular organisms. The tubular organs of adult mammals include the lungs, vasculature, digestive and excretory systems, as well as secretory organs such as the pancreas, salivary, prostate, and mammary glands. Other tissues, including the embryonic heart and neural tube, have requisite stages of tubular organization early in development. To learn the molecular and cellular basis of how epithelial cells are organized into tubular organs of various shapes and sizes, investigators have focused on the Drosophila trachea and salivary gland as model genetic systems for branched and unbranched tubes, respectively. Both organs begin as polarized epithelial placodes, which through coordinated cell shape changes, cell rearrangement, and cell migration form elongated tubes. Here, we discuss what has been discovered regarding the details of cell fate specification and tube formation in the two organs; these discoveries reveal significant conservation in the cellular and molecular events of tubulogenesis.
Collapse
Affiliation(s)
- Bilal E Kerman
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | |
Collapse
|
37
|
Wada A, Kato K, Uwo MF, Yonemura S, Hayashi S. Specialized extraembryonic cells connect embryonic and extraembryonic epidermis in response to Dpp during dorsal closure in Drosophila. Dev Biol 2006; 301:340-9. [PMID: 17034783 DOI: 10.1016/j.ydbio.2006.09.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 12/20/2022]
Abstract
Dorsal closure in Drosophila embryogenesis involves expansion of the dorsal epidermis, followed by closure of the opposite epidermal edges. This process is driven by contractile force generated by an extraembryonic epithelium covering the yolk syncytium known as the amnioserosa. The secreted signaling molecule Dpp is expressed in the leading edge of the dorsal epidermis and is essential for dorsal closure. We found that the outermost row of amnioserosa cells (termed pAS) maintains a tight basolateral cell-cell adhesion interface with the leading edge of dorsal epidermis throughout the dorsal closure process. pAS was subject to altered cell motility in response to Dpp emanating from the dorsal epidermis, and this response was essential for dorsal closure. alphaPS3 and betaPS integrin subunits accumulated in the interface between pAS and dorsal epidermis, and were both required for dorsal closure. Looking at alphaPS3, type I Dpp receptor, and JNK mutants, we found that pAS cell motility was altered and pAS and dorsal epidermis adhesion failed under the mechanical stress of dorsal closure, suggesting that a Dpp-mediated mechanism connects the squamous pAS to the columnar dorsal epidermis to form a single coherent epithelial layer.
Collapse
Affiliation(s)
- Atsushi Wada
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
38
|
Carneiro K, Fontenele M, Negreiros E, Lopes E, Bier E, Araujo H. Graded maternal short gastrulation protein contributes to embryonic dorsal-ventral patterning by delayed induction. Dev Biol 2006; 296:203-18. [PMID: 16781701 DOI: 10.1016/j.ydbio.2006.04.453] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 04/04/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Establishment of the dorsal-ventral (DV) axis of the Drosophila embryo depends on ventral activation of the maternal Toll pathway, which creates a gradient of the NFkB/c-rel-related transcription factor dorsal. Signaling through the maternal BMP pathway also alters the dorsal gradient, probably by regulating degradation of the IkB homologue Cactus. The BMP4 homologue decapentaplegic (dpp) and the BMP antagonist short gastrulation (sog) are expressed by follicle cells during mid-oogenesis, but it is unknown how they affect embryonic patterning following fertilization. Here, we provide evidence that maternal Sog and Dpp proteins are secreted into the perivitelline space where they remain until early embryogenesis to modulate Cactus degradation, enabling their dual function in patterning the eggshell and embryo. We find that metalloproteases encoded by tolloid (tld) and tolkin (tok), which cleave Sog, are expressed by follicle cells and are required to generate DV asymmetry in the Dpp signal. Expression of tld and tok is ventrally restricted by the TGF-alpha ligand encoded by gurken, suggesting that signaling via the EGF receptor pathway may regulate embryonic patterning through two independent mechanisms: by restricting the expression of pipe and thereby activation of Toll signaling and by spatially regulating BMP activity.
Collapse
Affiliation(s)
- K Carneiro
- Department of Histology and Embryology, Universidade Federal do Rio de Janeiro, CCS, Bl. F, Sala F2-031, Av. Brig. Trompowski, s/n, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Myat MM, Lightfoot H, Wang P, Andrew DJ. A molecular link between FGF and Dpp signaling in branch-specific migration of the Drosophila trachea. Dev Biol 2005; 281:38-52. [PMID: 15848387 PMCID: PMC2827869 DOI: 10.1016/j.ydbio.2005.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 01/27/2005] [Accepted: 02/07/2005] [Indexed: 11/18/2022]
Abstract
The tracheal system of Drosophila embryos achieves its archetypal branching pattern through a series of cell migration events requiring the FGF, Dpp, and Wg/WNT signaling pathways. To gain insight into tracheal cell migration, we performed an F4 EMS mutagenesis screen to generate and characterize new mutations resulting in tracheal defects. From 2591 mutagenized third chromosome lines, we identified 33 mutations with defects in tracheal development, corresponding to 12 distinct complementation groups. The new mutations included novel hypomorphic alleles of the FGF receptor gene, breathless, and the ETS-domain transcription factor gene, pointed. We show that reduced function of either breathless or pointed specifically affects migration of the dorsal and ventral tracheal branches, more specific functions than previously described for these genes. Our analysis reveals that breathless and pointed control dorsal branch migration through transcriptional regulation of the Dpp pathway effectors, Knirps and Knirps-related, which are necessary for migration of this branch. We further show that expression of knirps or knirps-related rescues dorsal but not ventral branch migration in the breathless hypomorph. These studies support a model in which both the Dpp- and the FGF-signaling pathways control expression of knirps and knirps-related, thereby regulating cell migration during dorsal branch formation.
Collapse
Affiliation(s)
- Monn Monn Myat
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
40
|
Gibson MC, Perrimon N. Extrusion and Death of DPP/BMP-Compromised Epithelial Cells in the Developing Drosophila Wing. Science 2005; 307:1785-9. [PMID: 15774762 DOI: 10.1126/science.1104751] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During animal development, epithelial cell fates are specified according to spatial position by extracellular signaling pathways. Among these, the transforming growth factor beta/bone morphogenetic protein (TGF-beta/BMP) pathways are evolutionarily conserved and play crucial roles in the development and homeostasis of a wide range of multicellular tissues. Here we show that in the developing Drosophila wing imaginal epithelium, cell clones deprived of the BMP-like ligand Decapentaplegic (DPP) do not die as previously thought but rather extrude from the cell layer as viable cysts exhibiting marked abnormalities in cell shape and cytoskeletal organization. We propose that in addition to assigning cell fates, a crucial developmental function of DPP/BMP signaling is the position-specific control of epithelial architecture.
Collapse
Affiliation(s)
- Matthew C Gibson
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
41
|
Sonnenfeld MJ, Barazesh N, Sedaghat Y, Fan C. The jing and ras1 pathways are functionally related during CNS midline and tracheal development. Mech Dev 2004; 121:1531-47. [PMID: 15511644 DOI: 10.1016/j.mod.2004.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 06/23/2004] [Accepted: 07/09/2004] [Indexed: 10/26/2022]
Abstract
The Drosophila jing gene encodes a zinc finger protein required for the differentiation and survival of embryonic CNS midline and tracheal cells. We show that there is a functional relationship between jing and the Egfr pathway in the developing CNS midline and trachea. jing function is required for Egfr pathway gene expression and MAPK activity in both the CNS midline and trachea. jing over-expression effects phenocopy those of the Egfr pathway and require Egfr pathway function. Activation of the Egfr pathway in loss-of-function jing mutants partially rescues midline cell loss. Egfr pathway genes and jing show dominant genetic interactions in the trachea and CNS midline. Together, these results show that jing regulates signal transduction in developing midline and tracheal cells.
Collapse
Affiliation(s)
- Margaret J Sonnenfeld
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada.
| | | | | | | |
Collapse
|
42
|
Abstract
Many organs including the mammalian lung and vascular system consist of branched tubular networks that transport essential gases or fluids, but the genetic programs that control the development of these complex three-dimensional structures are not well understood. The Drosophila melanogaster tracheal (respiratory) system is a network of interconnected epithelial tubes that transports oxygen and other gases in the body and provides a paradigm of branching morphogenesis. It develops by sequential sprouting of primary, secondary, and terminal branches from an epithelial sac of approximately 80 cells in each body segment of the embryo. Mapping of the cell movements and shape changes during the sprouting process has revealed that distinct mechanisms of epithelial migration and tube formation are used at each stage of branching. Genetic dissection of the process has identified a general program in which a fibroblast growth factor (FGF) and fibroblast growth factor receptor (FGFR) are used repeatedly to control branch budding and outgrowth. At each stage of branching, the mechanisms controlling FGF expression and the downstream signal transduction pathway change, altering the pattern and structure of the branches that form. During terminal branching, FGF expression is regulated by hypoxia, ensuring that tracheal structure matches cellular oxygen need. A branch diversification program operates in parallel to the general budding program: Regional signals locally modify the general program, conferring specific structural features and other properties on individual branches, such as their substrate outgrowth preferences, differences in tube size and shape, and the ability to fuse to other branches to interconnect the network.
Collapse
Affiliation(s)
- Amin Ghabrial
- Howard Hughes Medical Institute, Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | | | | | | |
Collapse
|
43
|
Harden N. Signaling pathways directing the movement and fusion of epithelial sheets: lessons from dorsal closure in Drosophila. Differentiation 2002; 70:181-203. [PMID: 12147138 DOI: 10.1046/j.1432-0436.2002.700408.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wound healing in embryos and various developmental events in metazoans require the spreading and fusion of epithelial sheets. The complex signaling pathways regulating these processes are being pieced together through genetic, cell biological, and biochemical approaches. At present, dorsal closure of the Drosophila embryo is the best-characterized example of epithelial sheet movement. Dorsal closure involves migration of the lateral epidermal flanks to close a hole in the dorsal epidermis occupied by an epithelium called the amnioserosa. Detailed genetic studies have revealed a network of interacting signaling molecules regulating this process. At the center of this network is a Jun N-terminal kinase cascade acting at the leading edge of the migrating epidermis that triggers signaling by the TGF-beta superfamily member Decapentaplegic and which interacts with the Wingless pathway. These signaling modules regulate the cytoskeletal reorganization and cell shape change necessary to drive dorsal closure. Activation of this network requires signals from the amnioserosa and input from a variety of proteins at cell-cell junctions. The Rho family of small GTPases is also instrumental, both in activation of signaling and regulation of the cytoskeleton. Many of the proteins regulating dorsal closure have been implicated in epithelial movement in other organisms, and dorsal closure has emerged as an ideal model system for the study of the migration and fusion of epithelial sheets.
Collapse
Affiliation(s)
- Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
44
|
Ebner A, Kiefer FN, Ribeiro C, Petit V, Nussbaumer U, Affolter M. Tracheal development in Drosophila melanogaster as a model system for studying the development of a branched organ. Gene 2002; 287:55-66. [PMID: 11992723 DOI: 10.1016/s0378-1119(01)00895-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of the tracheal system of Drosophila melanogaster represents a paradigm for studying the molecular mechanisms involved in the formation of a branched tubular network. Tracheogenesis has been characterized at the morphological, cellular and genetic level and a series of successive, but linked events have been described as the basis for the formation of the complex network of tubules which extend over the entire organism. Tracheal cells stop to divide early in the process of tracheogenesis and the formation of the interconnected network requires highly controlled cell migration events and cell shape changes. A number of genes involved in these two processes have been identified but in order to obtain a more complete view of branching morphogenesis, many more genes carrying essential functions have to be isolated and characterized. Here, we provide a progress report on our attempts to identify further genes expressed in the tracheal system. We show that empty spiracles (ems), a head gap gene, is required for the formation of a specific tracheal branch, the visceral branch. We also identified a Sulfotransferase and a Multiple Inositol Polyphosphate phosphatase that are strongly upregulated in tracheal cells and discuss their possible involvement in tracheal development.
Collapse
Affiliation(s)
- Andreas Ebner
- Abteilung Zellbiologie, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Raymond K, Bergeret E, Dagher MC, Breton R, Griffin-Shea R, Fauvarque MO. The Rac GTPase-activating protein RotundRacGAP interferes with Drac1 and Dcdc42 signalling in Drosophila melanogaster. J Biol Chem 2001; 276:35909-16. [PMID: 11468292 DOI: 10.1074/jbc.m105779200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RhoGTPases are negatively regulated by GTPase-activating proteins (GAPs). Here we demonstrate that Drosophila RotundRacGAP is active in vitro on Drac1 and Dcdc42 but not Drho1. Similarly, in yeast, RotundRacGAP interacts specifically with Drac1 and Dcdc42, as well as with their activated V12 forms, showing a particularly strong interaction with Dcdc42V12. In the fly, lowering RotundRacGAP dosage specifically modifies eye defects induced by expressing Drac1 or Dcdc42 but not Drho1, confirming that Drac1 and Dcdc42 are indeed in vivo targets of RotundRacGAP. Furthermore, embryonic-directed expression of either RotundRacGAP, or dominant negative Drac1N17, transgenes induces similar defects in dorsal closure and inhibits Drac1-dependent cytoskeleton assembly at the leading edge. Expression of truncated forms of RotundRacGAP shows that the GAP domain of RotundRacGAP is essential for its function. Unexpectedly, transgenes encoding Drac1N17, Dcdc42N17, or RotundRacGAP do not affect the c-Jun N-terminal kinase-dependent gene expression of decapentaplegic and puckered, indicating that another Drac1-independent signal redundantly activates this pathway. Finally, in a situation where Drac1 is constitutively activated, RotundRacGAP greatly reduces the ectopic expression of decapentaplegic, possibly by negatively regulating Dcdc42.
Collapse
Affiliation(s)
- K Raymond
- Département de Biologie Moléculaire et Structurale, CEA-CNRS-UJF, UMR 5092, 17 rue des Martyrs, Grenoble 38054, France
| | | | | | | | | | | |
Collapse
|
46
|
Torres-Vazquez J, Park S, Warrior R, Arora K. The transcription factor Schnurri plays a dual role in mediating Dpp signaling during embryogenesis. Development 2001; 128:1657-70. [PMID: 11290303 DOI: 10.1242/dev.128.9.1657] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Decapentaplegic (Dpp), a homolog of vertebrate bone morphogenic protein 2/4, is crucial for embryonic patterning and cell fate specification in Drosophila. Dpp signaling triggers nuclear accumulation of the Smads Mad and Medea, which affect gene expression through two distinct mechanisms: direct activation of target genes and relief of repression by the nuclear protein Brinker (Brk). The zinc-finger transcription factor Schnurri (Shn) has been implicated as a co-factor for Mad, based on its DNA-binding ability and evidence of signaling dependent interactions between the two proteins. A key question is whether Shn contributes to both repression of brk as well as to activation of target genes. We find that during embryogenesis, brk expression is derepressed in shn mutants. However, while Mad is essential for Dpp-mediated repression of brk, the requirement for shn is stage specific. Analysis of brk; shn double mutants reveals that upregulation of brk does not account for all aspects of the shn mutant phenotype. Several Dpp target genes are expressed at intermediate levels in double mutant embryos, demonstrating that shn also provides a brk-independent positive input to gene activation. We find that Shn-mediated relief of brk repression establishes broad domains of gene activation, while the brk-independent input from Shn is crucial for defining the precise limits and levels of Dpp target gene expression in the embryo.
Collapse
Affiliation(s)
- J Torres-Vazquez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The elaborate branching pattern of the Drosophila tracheal system originates from ten tracheal placodes on both sides of the embryo, each consisting of about 80 cells. Simultaneous cell migration from each tracheal pit in six different directions gives rise to the stereotyped branching pattern. Each branch contains a fixed number of cells. Previous work has shown that in the dorsoventral axis, localized activation of the Dpp, Wnt and EGF receptor (DER) pathways, subdivides the tracheal pit into distinct domains. We present the role of the Hedgehog (Hh) signaling system in patterning the tracheal branches. Hh is expressed in segmental stripes abutting the anterior border of the tracheal placodes. Induction of patched expression, which results from activation by Hh, demonstrates that cells in the anterior half of the tracheal pit are activated. In hh-mutant embryos migration of all tracheal branches is absent or stalled. These defects arise from a direct effect of Hh on tracheal cells, rather than by indirect effects on patterning of the ectoderm. Tracheal cell migration could be rescued by expressing Hh only in the tracheal cells, without rescuing the ectodermal defects. Signaling by several pathways, including the Hh pathway, thus serves to subdivide the uniform population of tracheal cells into distinct cell types that will subsequently be recruited into the different branches.
Collapse
Affiliation(s)
- L Glazer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
48
|
Beck T, Delley PA, Hall MN. Control of the actin cytoskeleton by extracellular signals. Results Probl Cell Differ 2001; 32:231-62. [PMID: 11131835 DOI: 10.1007/978-3-540-46560-7_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- T Beck
- Department of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
49
|
Franch-Marro X, Casanova J. The alternative migratory pathways of the Drosophila tracheal cells are associated with distinct subsets of mesodermal cells. Dev Biol 2000; 227:80-90. [PMID: 11076678 DOI: 10.1006/dbio.2000.9890] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila tracheal system is a model for the study of the mechanisms that guide cell migration. The general conclusion from many studies is that migration of tracheal cells relies on directional cues provided by nearby cells. However, very little is known about which paths are followed by the migrating tracheal cells and what kind of interactions they establish to move in the appropriate direction. Here we analyze how tracheal cells migrate relative to their surroundings and which tissues participate in tracheal cell migration. We find that cells in different branches exploit different strategies for their migration; while some migrate through preexisting grooves, others make their way through homogeneous cell populations. We also find that alternative migratory pathways of tracheal cells are associated with distinct subsets of mesodermal cells and propose a model for the allocation of groups of tracheal cells to different branches. These results show how adjacent tissues influence morphogenesis of the tracheal system and offer a model for understanding how organ formation is determined by its genetic program and by the surrounding topological constraints.
Collapse
Affiliation(s)
- X Franch-Marro
- Institut de Biologia Molecular de Barcelona, C/ Jordi Girona 18-26, Barcelona, 08034, Spain
| | | |
Collapse
|
50
|
Affolter M. Cell-cell interaction during Drosophila embryogenesis: novel mechanisms and molecules. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:65-79. [PMID: 10943305 DOI: 10.1007/978-3-662-04264-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- M Affolter
- Abteilung Zellbiologie, Biozentrum Universität Basel, Switzerland
| |
Collapse
|