1
|
Liew YJ, Zoccola D, Li Y, Tambutté E, Venn AA, Michell CT, Cui G, Deutekom ES, Kaandorp JA, Voolstra CR, Forêt S, Allemand D, Tambutté S, Aranda M. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. SCIENCE ADVANCES 2018; 4:eaar8028. [PMID: 29881778 PMCID: PMC5990304 DOI: 10.1126/sciadv.aar8028] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/27/2018] [Indexed: 05/18/2023]
Abstract
There are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated. We show that DNA methylation significantly reduces spurious transcription in the coral Stylophora pistillata. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the hypothesis that linear extension rates are maintained under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization that provides corals with an additional mechanism to cope with environmental change.
Collapse
Affiliation(s)
- Yi Jin Liew
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Didier Zoccola
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Yong Li
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Eric Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Alexander A. Venn
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Craig T. Michell
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Guoxin Cui
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Eva S. Deutekom
- Computational Science Lab, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Jaap A. Kaandorp
- Computational Science Lab, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Christian R. Voolstra
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Denis Allemand
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Manuel Aranda
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
- Corresponding author.
| |
Collapse
|
2
|
Lei X, Cui K, Li Z, Su J, Jiang J, Zhang H, Liu Q, Shi D. BMP-1 participates in the selection and dominance of buffalo follicles by regulating the proliferation and apoptosis of granulosa cells. Theriogenology 2015; 85:999-1012. [PMID: 26778140 DOI: 10.1016/j.theriogenology.2015.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 11/30/2022]
Abstract
BMP1/TLD-related metalloproteinases play a key role in morphogenesis via the proteolytic maturation of a number of extracellular matrix proteins and the activation of a subset of growth factors of the transforming growth factor beta superfamily. Recent data indicated that BMP1 is expressed in sheep ovarian follicles and showed a protease activity. The aim of the present study was to characterize the function of the buffalo BMP1 gene in folliculogenesis. A 3195-bp buffalo BMP1 mRNA fragment was firstly cloned and sequenced, which contained a whole 2967-bp codon sequence. The multialigned results suggested that BMP1 is highly conserved among different species both at the nucleic acid and the amino acid level. BMP1 is located in the oogonium of the fetal buffalo ovary and in the granulosa cells (GCs) and the oocytes of adult ovary from the primordial to the large antral follicles. Further study showed that BMP1 promoted cell cycle and proliferation and inhibited apoptosis in IVC GCs. Adding BMP1 recombinant protein to the culture medium of the GCs increased the expression of the key cell cycle regulators such as cyclin D1 and cyclin D2 and downregulated the expression of cell apoptosis pathway genes such as Cytochrome C, Fas, FasL, and Chop, both at the mRNA and at the protein levels. It also upregulated the expression of PAPP-A, IGF system, and VEGF, and so forth, which play important roles in the selection and dominance of growth follicles. The opposite results were observed by adding BMP1 antibody to the investigation groups. This study suggests that BMP1 regulates the proliferation and apoptosis of IVC GCs by changing the expression pattern of related genes and may potentially promote the selection and dominance of the buffalo follicles.
Collapse
Affiliation(s)
- Xiaocan Lei
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Kuiqing Cui
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Zhipeng Li
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jie Su
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jianrong Jiang
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Haihang Zhang
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Qingyou Liu
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.
| | - Deshun Shi
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Molecular characterization of the BMP7 gene and its potential role in shell formation in Pinctada martensii. Int J Mol Sci 2014; 15:21215-28. [PMID: 25407527 PMCID: PMC4264221 DOI: 10.3390/ijms151121215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/10/2014] [Accepted: 11/11/2014] [Indexed: 11/17/2022] Open
Abstract
Bone morphogenetic protein 7 (BMP7), also called osteogenetic protein-1, can induce bone formation. In this study, the obtained full-length cDNA of BMP7 from Pinctada martensii (Pm-BMP7) was 2972 bp, including a 5'-untranslated region (UTR) of 294 bp, an open reading fragment of 1290 bp encoding a 429 amino acid polypeptide and a 3'-UTR of 1388 bp. The deduced protein sequence of Pm-BMP7 contained a signal peptide, a pro-domain and a mature peptide. The mature peptide consisted of 135 amino acids and included a transforming growth factor β family domain with six shared cysteine residues. The protein sequence of Pm-BMP7 showed 66% identity with that from Crassostrea gigas. Two unigenes encoding Pm-BMPRI (Pm-BMP receptor I) and Pm-BMPRII were obtained from the transcriptome database of P. martensii. Tissue expression analysis demonstrated Pm-BMP7 and Pm-BMPRI were highly expressed in the mantle (shell formation related-tissue), while Pm-BMPRII was highly expressed in the foot. After inhibiting Pm-BMP7 expression using RNA interference (RNAi) technology, Pm-BMP7 mRNA was significantly down-regulated (p < 0.05) in the mantle pallium (nacre formation related-tissue) and the mantle edge (prismatic layer formation related-tissue). The microstructure, observed using a scanning electron microscope, indicated a disordered growth status in the nacre and obvious holes in the prismatic layer in the dsRNA-Pm-BMP7 injected-group. These results suggest that Pm-BMP7 plays a crucial role in the nacre and prismatic layer formation process of the shell.
Collapse
|
4
|
Anderson HC, Gurley DJ, Hsu HHT, Aguilera XM, Davis LS, Moylan PE. SECRETION OF A BONE-INDUCING AGENT (BIA) BY CULTURED SAOS-2 HUMAN OSTEOSARCOMA CELLS. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s0218957799000063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An extractable bone-inducing agent has recently been identified in freeze-dried preparations of Saos-2 cultured human osteosarcoma cells. Although not all osteoinductive components of Saos-2 cell extracts have been identified, we have shown that Saos-2 cells express high levels of mRNA for bone morphogenetic proteins (BMPs)-1,2,3,4 and 6. Any or all of these BMPs (plus possible unknown factors) may be involved in ectopic bone induction, and may act as paracrine agents, conveying morphogenetic information to juxtaposed osteoprogenitor cells. Our objectives in this study were: 1) to determine whether Saos-2 cells secrete BIA into their culture medium; and 2) if secreted, to determine whether released bone-inducing agent is soluble and/or particulate and contains BMPs. Saos-2 cells were grown to confluence, and then overlaid with serum-free DMEM culture medium for 48 hours. The serum-free conditioned medium was then decanted and filtered through 0.45μ pore-size filters to retain any vesicles or other particulates released by the cells. Particulate protein retained on the 0.45μ filter (designated "retentate") was extracted into 6M urea and bioassayed for bone-inducing activity in Nu/Nu mice, along with soluble media protein that had passed through the 0.45μ filter (designated "filtrate") plus freeze-dried Saos-2 cells from which conditioned the culture medium was obtained. Results indicate that the bone-inducing agent of Saos-2 cells is not only retained by the cells, but is also secreted in both soluble and particulate forms into serum-free conditioned medium. Bone-inducing activity (per mg protein) is more concentrated in the particulate fraction, which is shown by electron microscopy to contain a mixture of vesicles (similar to matrix vesicles) plus electron dense granules (resembling ribosomes) and 10 mM microfilaments (of possible collagenous or cytoskeletal origin). BMP-1,2,3,4,6 and 7 were detected by western blots in both the soluble and particulate fractions of conditioned medium. Thus, it is indicated that Saos-2 cells secrete an osteoinductive factor which may function in vivo as a paracrine morphogenetic agent.
Collapse
Affiliation(s)
- H. C. Anderson
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - D. J. Gurley
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - H. H. T. Hsu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - X. M. Aguilera
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - L. S. Davis
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - P. E. Moylan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet 2010; 6:e1001259. [PMID: 21203442 PMCID: PMC3009687 DOI: 10.1371/journal.pgen.1001259] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 11/22/2010] [Indexed: 12/13/2022] Open
Abstract
Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN) regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic ("ciliary band") region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of "ciliary band" genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we uncovered may represent ancient regulatory pathways controlling embryonic patterning.
Collapse
Affiliation(s)
- Alexandra Saudemont
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Emmanuel Haillot
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Flavien Mekpoh
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Nathalie Bessodes
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Magali Quirin
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - François Lapraz
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Eric Röttinger
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Ryan Range
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Arnaud Oisel
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Patrick Wincker
- Génoscope (CEA), UMR8030, CNRS and Université d'Evry, Evry, France
| | - Thierry Lepage
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
6
|
Lapraz F, Besnardeau L, Lepage T. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 2009; 7:e1000248. [PMID: 19956794 PMCID: PMC2772021 DOI: 10.1371/journal.pbio.1000248] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 10/14/2009] [Indexed: 01/18/2023] Open
Abstract
Formation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGFbeta Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood. In this paper, we provide evidence that the long-range organizing activity of Nodal is assured by a relay molecule synthesized in the ventral ectoderm, then translocated to the opposite side of the embryo. We identified this relay molecule as BMP2/4 based on the following arguments. First, blocking BMP2/4 function eliminated the long-range organizing activity of an activated Nodal receptor in an axis rescue assay. Second, we demonstrate that BMP2/4 and the corresponding type I receptor Alk3/6 functions are both essential for specification of the dorsal region of the embryo. Third, using anti-phospho-Smad1/5/8 immunostaining, we show that, despite its ventral transcription, the BMP2/4 ligand triggers receptor mediated signaling exclusively on the dorsal side of the embryo, one of the most extreme cases of BMP translocation described so far. We further report that the pattern of pSmad1/5/8 is graded along the dorsal-ventral axis and that two BMP2/4 target genes are expressed in nested patterns centered on the region with highest levels of pSmad1/5/8, strongly suggesting that BMP2/4 is acting as a morphogen. We also describe the very unusual ventral co-expression of chordin and bmp2/4 downstream of Nodal and demonstrate that Chordin is largely responsible for the spatial restriction of BMP2/4 signaling to the dorsal side. Thus, unlike in most organisms, in the sea urchin, a single ventral signaling centre is responsible for induction of ventral and dorsal cell fates. Finally, we show that Chordin may not be required for long-range diffusion of BMP2/4, describe a striking dorsal-ventral asymmetry in the expression of Glypican 5, a heparin sulphated proteoglycan that regulates BMP mobility, and show that this asymmetry depends on BMP2/4 signaling. Our study provides new insights into the mechanisms by which positional information is established along the dorsal-ventral axis of the sea urchin embryo, and more generally on how a BMP morphogen gradient is established in a multicellular embryo. From an evolutionary point of view, it highlights that although the genes used for dorsal-ventral patterning are highly conserved in bilateria, there are considerable variations, even among deuterostomes, in the manner these genes are used to shape a BMP morphogen gradient.
Collapse
Affiliation(s)
- François Lapraz
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Thierry Lepage
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
7
|
Bradham CA, Oikonomou C, Kühn A, Core AB, Modell JW, McClay DR, Poustka AJ. Chordin is required for neural but not axial development in sea urchin embryos. Dev Biol 2009; 328:221-33. [PMID: 19389361 PMCID: PMC2700341 DOI: 10.1016/j.ydbio.2009.01.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/12/2009] [Indexed: 11/27/2022]
Abstract
The oral-aboral (OA) axis in the sea urchin is specified by the TGFbeta family members Nodal and BMP2/4. Nodal promotes oral specification, whereas BMP2/4, despite being expressed in the oral territory, is required for aboral specification. This study explores the role of Chordin (Chd) during sea urchin embryogenesis. Chd is a secreted BMP inhibitor that plays an important role in axial and neural specification and patterning in Drosophila and vertebrate embryos. In Lytechinus variegatus embryos, Chd and BMP2/4 are functionally antagonistic. Both are expressed in overlapping domains in the oral territory prior to and during gastrulation. Perturbation shows that, surprisingly, Chd is not involved in OA axis specification. Instead, Chd is required both for normal patterning of the ciliary band at the OA boundary and for development of synaptotagmin B-positive (synB) neurons in a manner that is reciprocal with BMP2/4. Chd expression and synB-positive neural development are both downstream from p38 MAPK and Nodal, but not Goosecoid. These data are summarized in a model for synB neural development.
Collapse
Affiliation(s)
- Cynthia A Bradham
- Biology Department, Boston University, 24 Cummington, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Lapraz F, Duboc V, Lepage T. A genomic view of TGF-β signal transduction in an invertebrate deuterostome organism and lessons from the functional analyses of Nodal and BMP2/4 during sea urchin development. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Lapraz F, Röttinger E, Duboc V, Range R, Duloquin L, Walton K, Wu SY, Bradham C, Loza MA, Hibino T, Wilson K, Poustka A, McClay D, Angerer L, Gache C, Lepage T. RTK and TGF-beta signaling pathways genes in the sea urchin genome. Dev Biol 2006; 300:132-52. [PMID: 17084834 DOI: 10.1016/j.ydbio.2006.08.048] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 08/16/2006] [Accepted: 08/16/2006] [Indexed: 12/23/2022]
Abstract
The Receptor Tyrosine kinase (RTK) and TGF-beta signaling pathways play essential roles during development in many organisms and regulate a plethora of cellular responses. From the genome sequence of Strongylocentrotus purpuratus, we have made an inventory of the genes encoding receptor tyrosine kinases and their ligands, and of the genes encoding cytokines of the TGF-beta superfamily and their downstream components. The sea urchin genome contains at least 20 genes coding for canonical receptor tyrosine kinases. Seventeen of the nineteen vertebrate RTK families are represented in the sea urchin. Fourteen of these RTK among which ALK, CCK4/PTK7, DDR, EGFR, EPH, LMR, MET/RON, MUSK, RET, ROR, ROS, RYK, TIE and TRK are present as single copy genes while pairs of related genes are present for VEGFR, FGFR and INSR. Similarly, nearly all the subfamilies of TGF-beta ligands identified in vertebrates are present in the sea urchin genome including the BMP, ADMP, GDF, Activin, Myostatin, Nodal and Lefty, as well as the TGF-beta sensu stricto that had not been characterized in invertebrates so far. Expression analysis indicates that the early expression of nodal, BMP2/4 and lefty is restricted to the oral ectoderm reflecting their role in providing positional information along the oral-aboral axis of the embryo. The coincidence between the emergence of TGF-beta-related factors such as Nodal and Lefty and the emergence of the deuterostome lineage strongly suggests that the ancestral function of Nodal could have been related to the secondary opening of the mouth which characterizes this clade, a hypothesis supported by functional data in the extant species. The sea urchin genome contains 6 genes encoding TGF-beta receptors and 4 genes encoding prototypical Smad proteins. Furthermore, most of the transcriptional activators and repressors shown to interact with Smads in vertebrates have orthologues in echinoderms. Finally, the sea urchin genome contains an almost complete repertoire of genes encoding extracellular modulators of BMP signaling including Chordin, Noggin, Sclerotin, SFRP, Gremlin, DAN and Twisted gastrulation. Taken together, these findings indicate that the sea urchin complement of genes of the RTK and TGF-beta signaling pathways is qualitatively very similar to the repertoire present in vertebrates, and that these genes are part of the common genetool kit for intercellular signaling of deuterostomes.
Collapse
Affiliation(s)
- François Lapraz
- UMR 7009 CNRS, Université Pierre et Marie Curie-Paris 6, Observatoire Oceanologique, 06230 Villefranche-sur-Mer, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Angerer L, Hussain S, Wei Z, Livingston BT. Sea urchin metalloproteases: a genomic survey of the BMP-1/tolloid-like, MMP and ADAM families. Dev Biol 2006; 300:267-81. [PMID: 17059814 DOI: 10.1016/j.ydbio.2006.07.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/25/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
Analysis of the Strongylocentrotus purpuratus genome has revealed approximately 240 metalloprotease genes, and they represent all 23 families expressed in vertebrates. EST/cDNA sequencing and microarray analysis show that nearly 70% are represented in embryo RNA. Among them are many metalloproteases with demonstrated developmental roles in other systems-BMP-1/TLD (tolloid) (astacins), MMPs (matrix metalloproteases) and the ADAMs (disintegrin/metalloproteases). The developmental functions of these kinds of metalloproteases include modifying the extracellular matrix, regulating signaling pathways or modulating cellular adhesive properties. The unexpectedly large number of BMP-1/TLD-like protease genes (23) results primarily from expansion of a set encoding an unusual domain conserved in structure and primary sequence only in nematode astacins. Such proteases may have interesting developmental functions because the expression patterns of several are highly regulated along the primary axis at times when cell differentiation and morphogenesis begin. The size of the sea urchin MMP family and the clustered arrangement of many of its members are similar to vertebrates, but phylogenetic analyses suggest that different ancestral genes were independently amplified in sea urchins and vertebrates. One expansion appears to be genes encoding MMPs that have putative transmembrane domains and may be membrane-tethered (MT). Interestingly, the genes encoding TIMPs, inhibitors of MMPs, have also been amplified and the 10 genes are tandemly arranged in a single cluster. In contrast, there are fewer ADAM and ADAMTS genes in sea urchins, but they represent all but one of the chordate-specific groups. The genome sequence now opens the door to experimental manipulations designed to understand how modulation of the extracellular environment affects development.
Collapse
Affiliation(s)
- Lynne Angerer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20815, USA.
| | | | | | | |
Collapse
|
11
|
Garrigue-Antar L, Hartigan N, Kadler KE. Post-translational modification of bone morphogenetic protein-1 is required for secretion and stability of the protein. J Biol Chem 2002; 277:43327-34. [PMID: 12218058 DOI: 10.1074/jbc.m207342200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP)-1 is a glycosylated metalloproteinase that is fundamental to the synthesis of a normal extracellular matrix because it cleaves type I procollagen, as well as other precursor proteins. Sequence analysis suggests that BMP-1 has six potential N-linked glycosylation sites (i.e. NXS/T) namely: Asn(91) (prodomain), Asn(142) (metalloproteinase domain), Asn(332) and Asn(363) (CUB1 domain), Asn(599) (CUB3 domain), and Asn(726) in the C-terminal-specific domain. In this study we showed that all these sites are N-glycosylated with complex-type oligosaccharides containing sialic acid, except Asn(726) presumably because proline occurs immediately C-terminal of threonine in the consensus sequence. Recombinant BMP-1 molecules lacking all glycosylation sites or the three CUB-specific sites were not secreted. BMP-1 lacking CUB glycosylation was translocated to the proteasome for degradation. BMP-1 molecules lacking individual glycosylation sites were efficiently secreted and exhibited full procollagen C-proteinase activity, but N332Q and N599Q exhibited a slower rate of cleavage. BMP-1 molecules lacking any one of the CUB-specific glycosylation sites were sensitive to thermal denaturation. The study showed that the glycosylation sites in the CUB domains of BMP-1 are important for secretion and stability of the molecule.
Collapse
Affiliation(s)
- Laure Garrigue-Antar
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, School of Biological Sciences, Stopford Building 2.205, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
12
|
Shih LJ, Chen CA, Chen CP, Hwang SPL. Identification and characterization of bone morphogenetic protein 2/4 gene from the starfish Archaster typicus. Comp Biochem Physiol B Biochem Mol Biol 2002; 131:143-51. [PMID: 11818237 DOI: 10.1016/s1096-4959(01)00486-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A bone morphogenetic protein 2/4 (BMP2/4) gene has been cloned from the starfish, Archaster typicus, for the purpose of investigating the expression pattern of the BMP4 gene in echinoderm embryos which do not produce micromeres. The isolated gene (named AtBMP2/4) contained two exons that encoded the entire coding region. The deduced AtBMP2/4 protein sequence contained 509 amino acids. Sequence comparison showed that it shared high amino acid similarity with sea urchin BMP2/4 and Xenopus BMP2 and BMP4. Northern blot analyses indicated that AtBMP2/4 mRNA initially appears at the blastula stage and has a maximal expression level at the gastrula stage. Whole-mount in situ hybridization revealed that AtBMP2/4 mRNA is expressed in the archenteron, coelomic vesicles, and ectodermal cells of gastrula stage embryos. The observed spatial distribution pattern vastly differs from that of sea urchin SpBMP2/4, which is expressed mainly in the oral ectoderm region of the mesenchyme blastula and early gastrula embryos.
Collapse
Affiliation(s)
- L-J Shih
- Institute of Zoology, Academia Sinica, Nankang, Taipei, 11529 Taiwan, ROC
| | | | | | | |
Collapse
|
13
|
Huggins LG, Lennarz WJ. Inhibitors of procollagen C-terminal proteinase block gastrulation and spicule elongation in the sea urchin embryo. Dev Growth Differ 2001; 43:415-24. [PMID: 11473548 DOI: 10.1046/j.1440-169x.2001.00589.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the sea urchin embryo, inhibition of collagen processing and deposition affects both gastrulation and embryonic skeleton (spicule) formation. It has been found that cell-free extracts of gastrula-stage embryos of Strongylocentrotus purpuratus contain a procollagen C-terminal proteinase (PCP) activity. A rationally designed non-peptidic organic hydroxamate, which is a potent and specific inhibitor of human recombinant PCP (FG-HL1), inhibited both the sea urchin PCP as well as purified chick embryo tendon PCP. In the sea urchin embryo, FG-HL1 inhibited gastrulation and blocked spicule elongation, but not spicule nucleation. A related compound with a terminal carboxylate rather than a hydroxamate (FG-HL2) did not inhibit either chick PCP or sea urchin PCP activity in a procollagen-cleavage assay. However, FG-HL2 did block spicule elongation without affecting spicule nucleation or gastrulation. Neither compound was toxic, because their effects were reversible on removal. It was shown that the inhibition of gastrulation and spicule elongation were independent of tissue specification events, because both the endoderm specific marker Endo1 and the primary mesenchyme cell specific marker SM50 were expressed in embryos treated with FG-HL1 and FG-HL2. These results suggest that disruption of the fibrillar collagen deposition in the blastocoele blocks the cell movements of gastrulation and may disrupt the positional information contained within the extracellular matrix, which is necessary for spicule formation.
Collapse
Affiliation(s)
- L G Huggins
- Department of Biochemistry and Cell Biology, Life Sciences Building, State University of New York at Stony Brook, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
14
|
Anderson HC, Hodges PT, Aguilera XM, Missana L, Moylan PE. Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis, and articular cartilage. J Histochem Cytochem 2000; 48:1493-502. [PMID: 11036092 DOI: 10.1177/002215540004801106] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We assessed the distribution and relative staining intensity of bone morphogenetic protein (BMP)-1-7 by immunohistochemistry in tibial growth plates, epiphyses, metaphyses, and articular cartilage in one 21-week and one 22-week human fetus and in five 10-week-old Sprague-Dawley rats. In the rats, articular cartilage was also examined. BMP proteins were mostly cytoplasmic, with negligible matrix staining. Highest BMP levels were seen in (a) hypertrophic and calcifying zone chondrocytes of growth plate (BMP-1-7), (b) osteoblasts and/or osteoprogenitor fibroblasts and vascular cells of the metaphyseal cortex and medulla (BMP-1-6), (c) osteoclasts of the metaphysis and epiphysis (BMP-1,-4,-5, and -6), and (d) mid to deep zone articular chondrocytes of weanling rats (BMP-1-7). BMP staining in osteoclasts, an unexpected finding, was consistently strong with BMP-4, -5, and -6 but was variable and dependent on osteoclast location with BMP-2,-3, and -7. BMP-1-7 were moderately to intensely stained in vascular canals of human fetal epiphyseal cartilage by endothelial cells and pericytes. BMP-1,-3,-5,-6, and -7 were localized in hypertrophic chondrocytes adjacent to cartilage canals. We conclude that BMP expression is associated with maturing chondrocytes of growth plate and articular cartilage, and may play a role in chondrocyte differentiation and/or apoptosis. BMP appears to be expressed by osteoclasts and might be involved in the intercellular "cross-talk" between osteoclasts and neighboring osteoprogenitor cells at sites of bone remodeling.
Collapse
Affiliation(s)
- H C Anderson
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, Kansas City, Kansas 06160, USA.
| | | | | | | | | |
Collapse
|
15
|
Yan L, Leontovich A, Fei K, Sarras MP. Hydra metalloproteinase 1: a secreted astacin metalloproteinase whose apical axis expression is differentially regulated during head regeneration. Dev Biol 2000; 219:115-28. [PMID: 10677259 DOI: 10.1006/dbio.1999.9568] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The newly emerging astacin metalloproteinase family comprises multiple members with diverse functions. Most recently, the development-related functions have been attributed to both (1) proteolytic cleavage and subsequent release of active TGF-beta-like growth factors from latent inhibitory complexes and (2) modification of extracellular matrix (ECM) assembly and composition. We previously identified and purified hydra metalloproteinase 1 (HMP-1), a developmentally important astacin proteinase that functions in head regeneration and transdifferentiation of tentacle battery cells (L. Yan et al., 1995, Development 121, 1591-1602). In the present study, further cloning revealed that HMP-1 is produced as a secreted zymogen with a conserved hydrophobic signal sequence and a putative propeptide. The processed HMP-1 is composed of a characteristic astacin proteinase domain and a unique Cys-rich C-terminus. With this simple domain structure, HMP-1 represents an ancestral astacin proteinase. Consistent with its role in head regeneration, HMP-1 mRNA is expressed at highest levels by endodermal cells at the apical pole of the body column just inferior to the base of tentacles, the region of active cell differentiation or transdifferentiation. A modified immunocytochemical procedure demonstrated that HMP-1 protein can be localized not only to ECM of tentacles as we previously reported, but also to endodermal cells of the body column in a pattern similar to its mRNA distribution. The localization of HMP-1 protein in tentacles was confirmed using an enzymatic approach. A translocation of HMP-1 protein from cells in the body column to the extracellular milieu in tentacles further suggests that HMP-1 is a secreted protein. HMP-1 expression undergoes extensive regulation at the transcriptional level both temporally and spatially during head regeneration. The involvement of HMP-1 in this morphogenetic process is further supported by the blockage of head regeneration with localized antisense treatment. Taken together, these results suggest that HMP-1 is a secreted astacin metalloproteinase that has an important role in regulating hydra head morphogenesis potentially through its differential expression along the body axis.
Collapse
Affiliation(s)
- L Yan
- Department of Anatomy, University of Kansas Medical Center, Kansas City, Kansas, 66160-7400, USA
| | | | | | | |
Collapse
|
16
|
Wardle FC, Welch JV, Dale L. Bone morphogenetic protein 1 regulates dorsal-ventral patterning in early Xenopus embryos by degrading chordin, a BMP4 antagonist. Mech Dev 1999; 86:75-85. [PMID: 10446267 DOI: 10.1016/s0925-4773(99)00114-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bone morphogenetic protein 1 (BMP1) is a metalloprotease that ventralises dorsal mesoderm when overexpressed in early Xenopus embryos. Here we show that Xenopus BMP1 blocks the dorsalising activity of chordin, but not noggin or DeltaxBMPR, when coexpressed in the ventral marginal zone and degrades chordin protein in vitro. We also show that a dominant-negative mutation for XBMP1 (dnBMP1) dorsalises ventral mesoderm in vivo, and blocks degradation of chordin by both XBMP1 and Xolloid, a closely related Xenopus metalloprotease, in vitro. dnBMP1 does not dorsalise ventral mesoderm in UV-irradiated embryos, demonstrating that this activity is dependent upon a functional organiser--the natural source of chordin in Xenopus gastrulae. Our results suggest that XBMP1 may regulate the availability of chordin during vertebrate embryogenesis.
Collapse
Affiliation(s)
- F C Wardle
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
17
|
Cancre I, Van Wormhoudt A, le Gal Y. Heparin-binding molecules with growth factor activities in regenerating-tissues of the starfish Asterias rubens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1999; 123:285-92. [PMID: 10530901 DOI: 10.1016/s0742-8413(99)00036-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Regenerating-tissues of the starfish Asterias rubens were studied for the presence of growth factors liable to stimulate the proliferation of fibroblast and epithelial cells (3T3, BHK21 and Hela cells). As a first attempt to isolate growth factors, the extracts were fixed on heparin-affinity column and were eluted by 1-1.2 M NaCl. After separation on a Vydac C18 HPLC column. a fraction that stimulates the proliferation of fibroblast cells was isolated. It contained four different peptides, separated by electrophoresis, and for which the amino acid composition and molecular mass were determined. All the peptides were lysine rich and one presented an amino-acid composition comparable to basic-fibroblast growth factor (b-FGF) while its molecular weight was higher.
Collapse
Affiliation(s)
- I Cancre
- Station de Biologie Marine du Museum National d'Histoire Naturelle et du Collège de France, Concarneau, France
| | | | | |
Collapse
|
18
|
Hwang SL, Chen CA, Chen C. Sea urchin TgBMP2/4 gene encoding a bone morphogenetic protein closely related to vertebrate BMP2 and BMP4 with maximal expression at the later stages of embryonic development. Biochem Biophys Res Commun 1999; 258:457-63. [PMID: 10329409 DOI: 10.1006/bbrc.1999.0663] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned a gene fragment (named TgBMP2/4) that encodes a protein homologous to vertebrate bone morphogenetic protein (BMP) 2 and BMP4 in the sea urchin Tripneustes gratilla. This peptide sequence contains 204 amino acids with 7 conserved cysteine residues at the C-terminus of the coding region and a cluster of basic amino acids that may serve as a signal for proteolytic cleavage. Sequence comparison and phylogenetic analyses reveal that TgBMP2/4 is closely related to vertebrate BMP2 and BMP4 as well as to amphioxus BMP2/4, with similarity levels ranging from 90% to 94% at the mature C-terminal domain. Northern blot analyses show that a 6.3-kb TgBMP2/4 mRNA appears first at the mesenchyme blastula stage and increases to a maximal level at the gastrula and pluteus stages. This expression pattern is different from that of a BMP2/4-related gene previously found in sea urchin.
Collapse
Affiliation(s)
- S L Hwang
- Institute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan, 11529, Republic of China.
| | | | | |
Collapse
|
19
|
Procollagen C-proteinase and its enhancer protein as regulators of collagen fibril formation and matrix deposition. J CHEM SCI 1999. [DOI: 10.1007/bf02869909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Hahn D, Lottaz D, Sterchi EE. C-cytosolic and transmembrane domains of the N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase alpha subunit (human meprin alpha) are essential for its retention in the endoplasmic reticulum and C-terminal processing. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:933-41. [PMID: 9288917 DOI: 10.1111/j.1432-1033.1997.00933.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase (PPH, human meprin) is a member of the astacin family of Zn-metalloendopeptidases and is highly expressed in the microvillus membrane of human small intestinal epithelial cells. It is a type I transmembrane protein consisting of differentially processed glycosylated alpha and beta subunits. Biosynthesis experiments using transfected, metabolically labelled simian virus 40 (SV40) transformed african green monkey kidney cells (COS-1) and Madin Darby canine kidney (MDCK) cells, have previously shown that PPH alpha was retained in the endoplasmic reticulum (ER) and that for subsequent secretion removal of the alpha-tail was necessary [Grünberg, J., Dumermuth, E., Eldering, J. A. & Sterchi, E. E. (1993) FEBS Lett. 335, 376-379]. We proposed an involvement of the alpha-tail in ER retention. To investigate the possible role of the transmembrane and/or the C-terminal domain of the alpha-subunit, tailswitch mutants were constructed in which these domains were exchanged between the alpha and beta subunits. Biosynthesis and post-translational processing of these mutants were investigated in transiently transfected COS-1 cells. The beta/alpha tailswitch mutant, in which the transmembrane and C-cytosolic parts of PPH beta were substituted by the corresponding parts of the PPH alpha subunit, was transported much slower compared with the wild-type PPH beta subunit. In addition, fusion of the alpha-tail to a C-terminally truncated secretory form of PPH alpha leads to its retention in the ER. This mutant, but not the secretory form, coimmunoprecipitated with calnexin, indicating an involvement of this molecular chaperone in retaining PPH alpha in the ER. The alpha/beta tailswitch mutant, in which the transmembrane domain and the C-cytosolic part of PPH alpha were substituted by the corresponding parts of PPH beta, was processed less efficiently in comparison with PPH alpha, resulting in a lower secretion rate. Taken together these data suggest a role of the alpha-tail in mediating association with ER-resident machinery, facilitating C-terminal processing.
Collapse
Affiliation(s)
- D Hahn
- Institute of Biochemistry and Molecular Biology and Department of Pediatrics, Faculty of Medicine, University of Berne, Switzerland.
| | | | | |
Collapse
|
21
|
Hwang SP, Tsou MF, Lin YC, Liu CH. The zebrafish BMP4 gene: sequence analysis and expression pattern during embryonic development. DNA Cell Biol 1997; 16:1003-11. [PMID: 9303442 DOI: 10.1089/dna.1997.16.1003] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have isolated zebrafish BMP4 gene from a zebrafish genomic DNA library. The size of the isolated BMP4 gene was approximately 14.9 kb. The isolated gene contained two exons which formed the complete coding region together with part of the 3'-noncoding region. The deduced BMP4 protein sequence contained 400 amino acids. Sequence comparison showed that it shared 73% amino acid sequence identity with that of human and mouse BMP4. An intron with a size of 8,963 bp was present between two coding exons. Danio retroposon A (DANA)-like retroposon was located in the intron. It contained four conserved boxes and was flanked by a pair of direct repeats of 9 nucleotide sequence (GTTTTAATA). During embryonic development of the zebrafish, a 3.8-kb BMP4 mRNA was detected from gastrula stage up to a month-old hatching larvae via Northern blot analysis. In addition, the use of reverse transcription polymerase chain reaction further demonstrated the presence of BMP4 mRNA in both the early developmental stages (i.e., cleavage and blastula) and in adult fish. Developmental expression of BMP4 protein was also analyzed. Trace amounts of an 18-kD protein were detected at pharyngula stage, while the production increased from hatching larvae to adult fish. In adult fish, the expression of BMP4 mRNA was observed in brain, heart, digestive tracts, testes, and jaw. The results suggest that the zebrafish BMP4 gene may play important roles during zebrafish development.
Collapse
Affiliation(s)
- S P Hwang
- Institute of Zoology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
22
|
|
23
|
Suzuki N, Labosky PA, Furuta Y, Hargett L, Dunn R, Fogo AB, Takahara K, Peters DM, Greenspan DS, Hogan BL. Failure of ventral body wall closure in mouse embryos lacking a procollagen C-proteinase encoded by Bmp1, a mammalian gene related to Drosophila tolloid. Development 1996; 122:3587-95. [PMID: 8951074 DOI: 10.1242/dev.122.11.3587] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mouse bone morphogenetic protein1 (Bmp1) gene encodes a secreted astacin metalloprotease that cleaves the COOH-propeptide of procollagen I, II and III. BMP-1 is also related to the product of the Drosophila patterning gene, tolloid (tld), which enhances the activity of the TGFbeta-related growth factor Decapentaplegic and promotes development of the dorsalmost amnioserosa. We have disrupted the mouse Bmp1 gene by deleting DNA sequences encoding the active site of the astacin-like protease domain common to all splice variants. Homozygous mutant embryos appear to have a normal skeleton, apart from reduced ossification of certain skull bones. However, they have a persistent herniation of the gut in the umbilical region and do not survive beyond birth. Analysis of the amnion of homozygous mutant embryos reveals the absence of the fold that normally tightly encloses the physiological hernia of the gut. At the electron microscopic level, the extracellular matrix of the amnion contains collagen fibrils with an abnormal morphology, consistent with the incorporation of partially processed procollagen molecules. Metabolical labelling and immunofluorescence studies also reveal abnormal processing and deposition of procollagen by homozygous mutant fibroblasts in culture.
Collapse
Affiliation(s)
- N Suzuki
- Howard Hughes Medical Institute, Vanderbilt University Medical School, Nashville, TN 37232-2175, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lhomond G, Ghiglione C, Lepage T, Gache C. Structure of the gene encoding the sea urchin blastula protease 10 (BP10), a member of the astacin family of Zn2+-metalloproteases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:744-51. [PMID: 8706676 DOI: 10.1111/j.1432-1033.1996.0744w.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Blastula protease 10 (BP10), a metalloprotease of the astacin family, is secreted at the blastula stage by the sea urchin embryo. The BP10 gene shows a precise temporal and spatial regulation during embryogenesis. It has been cloned from a sea urchin lambda genomic library and the transcription unit has been entirely sequenced. It spans 6kb and contains seven exons (2.8 kb) and six introns (3.2 kb). Sequence comparison and phylogeny analysis show that BP10 belongs to a sub-family of molecular proteins which all play a role during development. In the two cases where the exon/intron organization of the gene is known (BP10 and tolloid), the modular structure of the protein is not reflected at the gene level, which indicates that this sub-family probably did not evolve by exon shuffling.
Collapse
Affiliation(s)
- G Lhomond
- Unite de Biologie Cellulaire Marine, Centre National de la Recherche Scientifique et Université de Paris VI. Villefranche-sur-Mer, France
| | | | | | | |
Collapse
|
25
|
Sarras MP. BMP-1 and the astacin family of metalloproteinases: a potential link between the extracellular matrix, growth factors and pattern formation. Bioessays 1996; 18:439-42. [PMID: 8787532 DOI: 10.1002/bies.950180604] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) have previously been linked to cell differentiation and pattern formation during development through a proposed role in the activation of latent growth factors of the TGF-beta superfamily. Recent findings indicate that BMP-1 is identical to pro-collagen C-proteinase, which is a metalloproteinase involved in extracellular matrix (ECM) formation. This observation suggests that a functional link may exist between astacin metalloproteinases, growth factors and cell differentiation and pattern formation during development. Taken together, current studies indicate that BMP-1 and possibly other astacin metalloproteinases are multifunctional enzymes that act directly on growth factors and the ECM. In combination, these dual actions would have profound effects on developmental processes.
Collapse
Affiliation(s)
- M P Sarras
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66160-7400, USA
| |
Collapse
|
26
|
Cell Interactions in the Sea Urchin Embryo. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1064-2722(08)60057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
|
28
|
Stöcker W, Grams F, Baumann U, Reinemer P, Gomis-Rüth FX, McKay DB, Bode W. The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 1995; 4:823-40. [PMID: 7663339 PMCID: PMC2143131 DOI: 10.1002/pro.5560040502] [Citation(s) in RCA: 476] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The three-dimensional structures of the zinc endopeptidases human neutrophil collagenase, adamalysin II from rattle snake venom, alkaline proteinase from Pseudomonas aeruginosa, and astacin from crayfish are topologically similar, with respect to a five-stranded beta-sheet and three alpha-helices arranged in typical sequential order. The four proteins exhibit the characteristic consensus motif HEXXHXXGXXH, whose three histidine residues are involved in binding of the catalytically essential zinc ion. Moreover, they all share a conserved methionine residue beneath the active site metal as part of a superimposable "Met-turn." This structural relationship is supported by a sequence alignment performed on the basis of topological equivalence showing faint but distinct sequential similarity. The alkaline proteinase is about equally distant (26% sequence identity) to both human neutrophil collagenase and astacin and a little further away from adamalysin II (17% identity). The pairs astacin/adamalysin II, astacin/human neutrophil collagenase, and adamalysin II/human neutrophil collagenase exhibit sequence identities of 16%, 14%, and 13%, respectively. Therefore, the corresponding four distinct families of zinc peptidases, the astacins, the matrix metalloproteinases (matrixins, collagenases), the adamalysins/reprolysins (snake venom proteinases/reproductive tract proteins), and the serralysins (large bacterial proteases from Serratia, Erwinia, and Pseudomonas) appear to have originated by divergent evolution from a common ancestor and form a superfamily of proteolytic enzymes for which the designation "metzincins" has been proposed. There is also a faint but significant structural relationship of the metzincins to the thermolysin-like enzymes, which share the truncated zinc-binding motif HEXXH and, moreover, similar topologies in their N-terminal domains.
Collapse
Affiliation(s)
- W Stöcker
- Zoologisches Institut, Universität Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|