1
|
Bose A, Schuster K, Kodali C, Sonam S, Smith-Bolton RK. The pioneer transcription factor Zelda controls the exit from regeneration and restoration of patterning in Drosophila. SCIENCE ADVANCES 2025; 11:eads5743. [PMID: 40479065 PMCID: PMC12143389 DOI: 10.1126/sciadv.ads5743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 05/01/2025] [Indexed: 06/11/2025]
Abstract
Many animals can regenerate tissues after injury. While the initiation of regeneration has been studied extensively, how the damage response ends and normal gene expression returns is unclear. We found that in Drosophila wing imaginal discs, the pioneer transcription factor Zelda controls the exit from regeneration and return to normal gene expression. Optogenetic inactivation of Zelda during regeneration disrupted patterning, induced cell fate errors, and caused morphological defects yet had no effect on normal wing development. Using Cleavage Under Targets & Release Using Nuclease, we identified targets of Zelda important for the end of regeneration, including genes that control wing margin and vein specification, compartment identity, and cell adhesion. We also found that GAGA factor and Fork head similarly coordinate patterning after regeneration and that chromatin regions bound by Zelda increase in accessibility during regeneration. Thus, Zelda orchestrates the transition from regeneration to normal gene expression, highlighting a fundamental difference between developmental and regeneration patterning in the wing disc.
Collapse
Affiliation(s)
- Anish Bose
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Chandril Kodali
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Surabhi Sonam
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel K. Smith-Bolton
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Singh J, Verma D, Sarkar B, Paul MS, Mutsuddi M, Mukherjee A. Notch and LIM-homeodomain protein Arrowhead regulate each other in a feedback mechanism to play a role in wing and neuronal development in Drosophila. Open Biol 2025; 15:240247. [PMID: 40300650 PMCID: PMC12040464 DOI: 10.1098/rsob.240247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 02/09/2025] [Indexed: 05/01/2025] Open
Abstract
The Notch pathway is an evolutionarily conserved signalling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. To identify novel effectors of Notch signalling, we analysed the whole transcriptome of Drosophila wing and eye imaginal discs in which an activated form of Notch was overexpressed. A LIM-homeodomain protein, Arrowhead (Awh), was identified as a novel candidate that plays a crucial role in Notch-mediated developmental events. Awh alleles show strong genetic interaction with Notch pathway components. Awh loss-of-function upregulates Notch targets Cut and Wingless. Awh gain-of-function downregulates Notch targets by reducing the expression of the ligand Delta. Consequently, the expression of the Wingless effector molecule Armadillo and its downstream targets, Senseless and Vestigial, also gets downregulated. Awh overexpression leads to ectopic expression of engrailed, a segment polarity gene in the anterior region of wing disc, leading to patterning defects. Additionally, Notch gain-of-function-mediated neuronal defects get significantly rescued with Awh overexpression. Activated Notch inhibits Awh activity, suggesting a regulatory loop between Awh and Notch. Additionally, the defects caused by Awh gain-of-function were remarkably rescued by Chip, a LIM interaction domain containing transcriptional co-factor. The present study highlights the novel feedback regulation between Awh and Notch.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dipti Verma
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bappi Sarkar
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Maimuna Sali Paul
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Valencia-Expósito A, Khalilgharibi N, Martínez-Abarca Millán A, Mao Y, Martín-Bermudo MD. Local weakening of cell-extracellular matrix adhesion triggers basal epithelial tissue folding. EMBO J 2025; 44:2002-2024. [PMID: 39962267 PMCID: PMC11961693 DOI: 10.1038/s44318-025-00384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 04/03/2025] Open
Abstract
During development, epithelial sheets sculpt organs by folding, either apically or basally, into complex 3D structures. Given the presence of actomyosin networks and cell adhesion sites on both sides of cells, a common machinery mediating apical and basal epithelial tissue folding has been proposed. However, unlike for apical folding, little is known about the mechanisms that regulate epithelial folding towards the basal side. Here, using the Drosophila wing imaginal disc and combining genetic perturbations and computational modeling, we demonstrate opposing roles for cell-cell and cell-extracellular matrix (ECM) adhesion systems during epithelial folding. While cadherin-mediated adhesion, linked to actomyosin network, regulates apical folding, a localized reduction on integrin-dependent adhesion, followed by changes in cell shape and reorganization of the basal actomyosin cytoskeleton and E-Cadherin (E-Cad) levels, is necessary and sufficient to trigger basal folding. These results suggest that modulation of the cell mechanical landscape through the crosstalk between integrins and cadherins is essential for correct epithelial folding.
Collapse
Affiliation(s)
| | - Nargess Khalilgharibi
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, Gower Street, London, WC1E 6BT, UK
| | - María D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla, 41013, Spain.
| |
Collapse
|
4
|
Sharma V, Sachan N, Sarkar B, Mutsuddi M, Mukherjee A. E3 ubiquitin ligase Deltex facilitates the expansion of Wingless gradient and antagonizes Wingless signaling through a conserved mechanism of transcriptional effector Armadillo/β-catenin degradation. eLife 2024; 12:RP88466. [PMID: 38900140 PMCID: PMC11189633 DOI: 10.7554/elife.88466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The Wnt/Wg pathway controls myriads of biological phenomena throughout the development and adult life of all organisms across the phyla. Thus, an aberrant Wnt signaling is associated with a wide range of pathologies in humans. Tight regulation of Wnt/Wg signaling is required to maintain proper cellular homeostasis. Here, we report a novel role of E3 ubiquitin ligase Deltex in Wg signaling regulation. Drosophila dx genetically interacts with wg and its pathway components. Furthermore, Dx LOF results in a reduced spreading of Wg while its over-expression expands the diffusion gradient of the morphogen. We attribute this change in Wg gradient to the endocytosis of Wg through Dx which directly affects the short- and long-range Wg targets. We also demonstrate the role of Dx in regulating Wg effector Armadillo where Dx down-regulates Arm through proteasomal degradation. We also showed the conservation of Dx function in the mammalian system where DTX1 is shown to bind with β-catenin and facilitates its proteolytic degradation, spotlighting a novel step that potentially modulates Wnt/Wg signaling cascade.
Collapse
Affiliation(s)
- Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
- Department of Integrative Biology and Physiology, University of California Los AngelesLos AngelesUnited States
| | - Nalani Sachan
- Department of Cell Biology, NYU Langone Medical CenterNew YorkUnited States
| | - Bappi Sarkar
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
| |
Collapse
|
5
|
Bose A, Schuster K, Kodali C, Sonam S, Smith-Bolton R. The pioneer transcription factor Zelda facilitates the exit from regeneration and restoration of patterning in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596672. [PMID: 38854062 PMCID: PMC11160785 DOI: 10.1101/2024.05.30.596672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
For a damaged tissue to regenerate, the injured site must repair the wound, proliferate, and restore the correct patterning and cell types. We found that Zelda, a pioneer transcription factor largely known for its role in embryonic zygotic genome activation, is dispensable for normal wing development but crucial for wing disc patterning during regeneration. Impairing Zelda function during disc regeneration resulted in adult wings with a plethora of cell fate errors, affecting the veins, margins, and posterior compartment identity. Using CUT&RUN, we identified and validated targets of Zelda including the cell fate genes cut, Delta and achaete, which failed to return to their normal expression patterns upon loss of Zelda. In addition, Zelda controls expression of factors previously established to preserve cell fate during regeneration like taranis and osa, which stabilizes engrailed expression during regeneration, thereby preserving posterior identity. Finally, Zelda ensures proper expression of the integrins encoded by multiple edematous wings and myospheroid during regeneration to prevent blisters in the resuting adult wing. Thus, Zelda is crucial for maintaining cell fate and structural architecture of the regenerating tissue.
Collapse
Affiliation(s)
- Anish Bose
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Keaton Schuster
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chandril Kodali
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Surabhi Sonam
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel Smith-Bolton
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Androniciuc AM, Tate EW, Vincent JP. Engineering of TurboID-Wingless for the identification of Wingless interactors through in vivo proximity labelling. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001210. [PMID: 38872844 PMCID: PMC11170289 DOI: 10.17912/micropub.biology.001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Wnt signalling coordinates growth and cell fate decisions during development and mis-regulation of Wnt signalling in adults is associated with a range of conditions, including cancer and neurodegenerative diseases. Therefore, means of modulating Wnt proteins and/or cofactors could have significant therapeutic potential. As a first step towards enumerating the Wnt interactome, we devised an in vivo proximity labelling strategy to identify proteins that interact with Wingless (Wg), the main Drosophila Wnt. We engineered the wingless locus to express a functional TurboID-Wg fusion at endogenous levels and identified in vivo interactors by streptavidin pull-down from embryos, followed by mass spectrometry. Further analysis may in future extend the screen coverage and deliver functional validation of the newly identified interactors.
Collapse
Affiliation(s)
- Ana-Miruna Androniciuc
- The Francis Crick Institute, London, England, United Kingdom
- Department of Chemistry, Imperial College London, London, England, United Kingdom
| | - Edward W. Tate
- The Francis Crick Institute, London, England, United Kingdom
- Department of Chemistry, Imperial College London, London, England, United Kingdom
| | | |
Collapse
|
7
|
Dang W, Ren Y, Chen Q, He M, Kebreab E, Wang D, Lyu L. Notch2 Regulates the Function of Bovine Follicular Granulosa Cells via the Wnt2/β-Catenin Signaling Pathway. Animals (Basel) 2024; 14:1001. [PMID: 38612240 PMCID: PMC11010942 DOI: 10.3390/ani14071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Ovarian follicular GCs are strongly implicated in the growth, development, and atresia of ovarian follicles. The Wnt/β-catenin and Notch signaling pathways participate in GC proliferation, differentiation, apoptosis, and steroid hormone production during follicular development. However, the crosstalk between Wnt and Notch signaling in GCs remains unclear. This study investigated this crosstalk and the roles of these pathways in apoptosis, cell cycle progression, cell proliferation, and steroid hormone secretion in bovine follicular GCs. The interaction between β-catenin and Notch2 in GCs was assessed by overexpressing CTNNB1, which encodes β-catenin. The results showed that inhibiting the Notch pathway by Notch2 silencing in GCs arrested the cell cycle, promoted apoptosis, reduced progesterone (P4) production, and inhibited the Wnt2-mediated Wnt/β-catenin pathway in GCs. IWR-1 inhibited Wnt2/β-catenin and Notch signaling, reduced GC proliferation, stimulated apoptosis, induced G1 cell cycle arrest, and reduced P4 production. CTNNB1 overexpression had the opposite effect and increased 17β-estradiol (E2) production and Notch2 protein expression. Co-immunoprecipitation assays revealed that Notch2 interacted with β-catenin. These results elucidate the crosstalk between the Wnt/β-catenin and Notch pathways and the role of these pathways in bovine follicular GC development.
Collapse
Affiliation(s)
- Wenqing Dang
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Yongping Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Qingqing Chen
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Min He
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Ermias Kebreab
- College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA;
| | - Dong Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lihua Lyu
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| |
Collapse
|
8
|
Zhang Q, Zhang P, Yang M, Tian Y, Feng C, Wei W. Identifications of three novel alleles of Serrate in Drosophila. Cells Dev 2024; 177:203908. [PMID: 38403117 DOI: 10.1016/j.cdev.2024.203908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The Notch signaling pathway, an evolutionarily highly conserved pathway, participates in various essential physiological processes in organisms. Activation of Notch signaling in the canonical manner requires the combination of ligand and receptor. There are two ligands of Notch in Drosophila: Delta (Dl) and Serrate (Ser). A mutation mf157 is identified for causing nicks of fly wings in genetic analysis from a mutant library (unpublished) that was established previously. Immunofluorescent staining illustrates that mf157 represses the expression of Cut and Wingless (Wg), the targets of Notch signaling. MARCM cloning analysis reveals that mf157 functions at the same level or the upstream of ligands of Notch in signaling sending cells. Sequencing demonstrates that mf157 is a novel allele of the Ser gene. Subsequently, mf553 and mf167 are also identified as new alleles of Ser from our library. Furthermore, the complementary assays and the examination of transcripts confirm the sequencing results. Besides, the repressed phenotypes of Notch signaling were reverted by transposon excision experiments of mf157. In conclusion, we identify three fresh alleles of Ser. Our works supply additional genetic resources for further study of functions of Ser and Notch signaling regulation.
Collapse
Affiliation(s)
- Qinghai Zhang
- Key Laboratory of Medical Insects, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; Research Center for Basic Sciences of Medicine, Guizhou Medical University, Guiyang 550025, China.
| | - Pei Zhang
- Key Laboratory of Medical Insects, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Min Yang
- Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Yingxue Tian
- Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Chunxia Feng
- Department of Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Wei Wei
- Multimedia Laboratory of Morphology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
9
|
Niederhuber MJ, Leatham-Jensen M, McKay DJ. The SWI/SNF nucleosome remodeler constrains enhancer activity during Drosophila wing development. Genetics 2024; 226:iyad196. [PMID: 37949841 PMCID: PMC10847718 DOI: 10.1093/genetics/iyad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Chromatin remodeling is central to the dynamic changes in gene expression that drive cell fate determination. During development, the sets of enhancers that are accessible for use change globally as cells transition between stages. While transcription factors and nucleosome remodelers are known to work together to control enhancer accessibility, it is unclear how the short stretches of DNA that they individually unmask yield the kilobase-sized accessible regions characteristic of active enhancers. Here, we performed a genetic screen to investigate the role of nucleosome remodelers in control of dynamic enhancer activity. We find that the Drosophila Switch/Sucrose Non-Fermenting complex, BAP, is required for repression of a temporally dynamic enhancer, brdisc. Contrary to expectations, we find that the BAP-specific subunit Osa is dispensable for mediating changes in chromatin accessibility between the early and late stages of wing development. Instead, we find that Osa is required to constrain the levels of brdisc activity when the enhancer is normally active. Genome-wide profiling reveals that Osa directly binds brdisc as well as thousands of other developmentally dynamic regulatory sites, including multiple genes encoding components and targets of the Notch signaling pathway. Transgenic reporter analyses demonstrate that Osa is required for activation and for constraint of different sets of target enhancers in the same cells. Moreover, Osa loss results in hyperactivation of the Notch ligand Delta and development of ectopic sensory structures patterned by Notch signaling early in development. Together, these findings indicate that proper constraint of enhancer activity is necessary for regulation of dose-dependent developmental events.
Collapse
Affiliation(s)
- Matthew J Niederhuber
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Troost T, Binshtok U, Sprinzak D, Klein T. Cis-inhibition suppresses basal Notch signaling during sensory organ precursor selection. Proc Natl Acad Sci U S A 2023; 120:e2214535120. [PMID: 37252950 PMCID: PMC10266033 DOI: 10.1073/pnas.2214535120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/29/2023] [Indexed: 06/01/2023] Open
Abstract
The emergence of the sensory organ precursor (SOP) from an equivalence group in Drosophila is a paradigm for studying single-cell fate specification through Notch-mediated lateral inhibition. Yet, it remains unclear how only a single SOP is selected from a relatively large group of cells. We show here that a critical aspect of SOP selection is controlled by cis-inhibition (CI), whereby the Notch ligands, Delta (Dl), cis-inhibit Notch receptors in the same cell. Based on the observation that the mammalian ligand Dl-like 1 cannot cis-inhibit Notch in Drosophila, we probe the role of CI in vivo. We develop a mathematical model for SOP selection where Dl activity is independently regulated by the ubiquitin ligases Neuralized and Mindbomb1. We show theoretically and experimentally that Mindbomb1 induces basal Notch activity, which is suppressed by CI. Our results highlight the trade-off between basal Notch activity and CI as a mechanism for singling out a SOP from a large equivalence group.
Collapse
Affiliation(s)
- Tobias Troost
- Institut fuer Genetik, Heinrich-Heine-Universtitaet Duesseldorf40225Duesseldorf, Germany
| | - Udi Binshtok
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Thomas Klein
- Institut fuer Genetik, Heinrich-Heine-Universtitaet Duesseldorf40225Duesseldorf, Germany
| |
Collapse
|
11
|
Flores-Flores M, Muñoz-Nava LM, Rodríguez-Muñoz R, Zartman J, Nahmad M. Vestigial-dependent induction contributes to robust patterning but is not essential for wing-fate recruitment in Drosophila. Biol Open 2023; 12:bio059908. [PMID: 37199309 PMCID: PMC10214856 DOI: 10.1242/bio.059908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023] Open
Abstract
Cell recruitment is a process by which a differentiated cell induces neighboring cells to adopt its same cell fate. In Drosophila, cells expressing the protein encoded by the wing selector gene, vestigial (vg), drive a feed-forward recruitment signal that expands the Vg pattern as a wave front. However, previous studies on Vg pattern formation do not reveal these dynamics. Here, we use live imaging to show that multiple cells at the periphery of the wing disc simultaneously activate a fluorescent reporter of the recruitment signal, suggesting that cells may be recruited without the need for their contact neighbors be recruited in advance. In support of this observation, when Vg expression is inhibited either at the dorsal-ventral boundary or away from it, the activation of the recruitment signal still occurs at a distance, suggesting that Vg expression is not absolutely required to send or propagate the recruitment signal. However, the strength and extent of the recruitment signal is clearly compromised. We conclude that a feed-forward, contact-dependent cell recruitment process is not essential for Vg patterning, but it is necessary for robustness. Overall, our findings reveal a previously unidentified role of cell recruitment as a robustness-conferring cell differentiation mechanism.
Collapse
Affiliation(s)
- Marycruz Flores-Flores
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
- Department of Chemical and Biomolecular Engineering, Notre Dame University, Notre Dame, IN 46556, USA
| | - Luis Manuel Muñoz-Nava
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, Notre Dame University, Notre Dame, IN 46556, USA
| | - Marcos Nahmad
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| |
Collapse
|
12
|
Beaven R, Denholm B. Early patterning followed by tissue growth establishes distal identity in Drosophila Malpighian tubules. Front Cell Dev Biol 2022; 10:947376. [PMID: 36060795 PMCID: PMC9437309 DOI: 10.3389/fcell.2022.947376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022] Open
Abstract
Specification and elaboration of proximo-distal (P-D) axes for structures or tissues within a body occurs secondarily from that of the main axes of the body. Our understanding of the mechanism(s) that pattern P-D axes is limited to a few examples such as vertebrate and invertebrate limbs. Drosophila Malpighian/renal tubules (MpTs) are simple epithelial tubules, with a defined P-D axis. How this axis is patterned is not known, and provides an ideal context to understand patterning mechanisms of a secondary axis. Furthermore, epithelial tubules are widespread, and their patterning is not well understood. Here, we describe the mechanism that establishes distal tubule and show this is a radically different mechanism to that patterning the proximal MpT. The distal domain is patterned in two steps: distal identity is specified in a small group of cells very early in MpT development through Wingless/Wnt signalling. Subsequently, this population is expanded by proliferation to generate the distal MpT domain. This mechanism enables distal identity to be established in the tubule in a domain of cells much greater than the effective range of Wingless.
Collapse
Affiliation(s)
| | - Barry Denholm
- Deanery of Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Marcogliese PC, Dutta D, Ray SS, Dang NDP, Zuo Z, Wang Y, Lu D, Fazal F, Ravenscroft TA, Chung H, Kanca O, Wan J, Douine ED, Network UD, Pena LDM, Yamamoto S, Nelson SF, Might M, Meyer KC, Yeo NC, Bellen HJ. Loss of IRF2BPL impairs neuronal maintenance through excess Wnt signaling. SCIENCE ADVANCES 2022; 8:eabl5613. [PMID: 35044823 PMCID: PMC8769555 DOI: 10.1126/sciadv.abl5613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/30/2021] [Indexed: 05/12/2023]
Abstract
De novo truncations in Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) lead to severe childhood-onset neurodegenerative disorders. To determine how loss of IRF2BPL causes neural dysfunction, we examined its function in Drosophila and zebrafish. Overexpression of either IRF2BPL or Pits, the Drosophila ortholog, represses Wnt transcription in flies. In contrast, neuronal depletion of Pits leads to increased wingless (wg) levels in the brain and is associated with axonal loss, whereas inhibition of Wg signaling is neuroprotective. Moreover, increased neuronal expression of wg in flies is sufficient to cause age-dependent axonal loss, similar to reduction of Pits. Loss of irf2bpl in zebrafish also causes neurological defects with an associated increase in wnt1 transcription and downstream signaling. WNT1 is also increased in patient-derived astrocytes, and pharmacological inhibition of Wnt suppresses the neurological phenotypes. Last, IRF2BPL and the Wnt antagonist, CKIα, physically and genetically interact, showing that IRF2BPL and CkIα antagonize Wnt transcription and signaling.
Collapse
Affiliation(s)
- Paul C. Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shrestha Sinha Ray
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Nghi D. P. Dang
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL 35294, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Yuchun Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Di Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Fatima Fazal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Thomas A. Ravenscroft
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hyunglok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - JiJun Wan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Emilie D. Douine
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Undiagnosed Diseases Network
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL 35294, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Precision Medicine Institute, University of Alabama, Birmingham, AL 35294, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Loren D. M. Pena
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Matthew Might
- Precision Medicine Institute, University of Alabama, Birmingham, AL 35294, USA
| | - Kathrin C. Meyer
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Nan Cher Yeo
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL 35294, USA
- Precision Medicine Institute, University of Alabama, Birmingham, AL 35294, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Marcetteau J, Matusek T, Luton F, Thérond PP. Arf6 is necessary for senseless expression in response to wingless signalling during Drosophila wing development. Biol Open 2021; 10:273443. [PMID: 34779478 PMCID: PMC8656404 DOI: 10.1242/bio.058892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
Wnt signalling is a core pathway involved in a wide range of developmental processes throughout the metazoa. In vitro studies have suggested that the small GTP binding protein Arf6 regulates upstream steps of Wnt transduction, by promoting the phosphorylation of the Wnt co-receptor, LRP6, and the release of β-catenin from the adherens junctions. To assess the relevance of these previous findings in vivo, we analysed the consequence of the absence of Arf6 activity on Drosophila wing patterning, a developmental model of Wnt/Wingless signalling. We observed a dominant loss of wing margin bristles and Senseless expression in Arf6 mutant flies, phenotypes characteristic of a defect in high level Wingless signalling. In contrast to previous findings, we show that Arf6 is required downstream of Armadillo/β-catenin stabilisation in Wingless signal transduction. Our data suggest that Arf6 modulates the activity of a downstream nuclear regulator of Pangolin activity in order to control the induction of high level Wingless signalling. Our findings represent a novel regulatory role for Arf6 in Wingless signalling.
Collapse
Affiliation(s)
- Julien Marcetteau
- Université Côte d'Azur; UMR7277 CNRS; Inserm 1091; Institut de Biologie de Valrose (iBV); Parc Valrose, 06108 Nice cedex 2, Nice, France
| | - Tamàs Matusek
- Université Côte d'Azur; UMR7277 CNRS; Inserm 1091; Institut de Biologie de Valrose (iBV); Parc Valrose, 06108 Nice cedex 2, Nice, France
| | - Frédéric Luton
- Université Côte d'Azur; UMR7275 CNRS; Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 660 Route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Pascal P Thérond
- Université Côte d'Azur; UMR7277 CNRS; Inserm 1091; Institut de Biologie de Valrose (iBV); Parc Valrose, 06108 Nice cedex 2, Nice, France
| |
Collapse
|
16
|
Magny EG, Platero AI, Bishop SA, Pueyo JI, Aguilar-Hidalgo D, Couso JP. Pegasus, a small extracellular peptide enhancing short-range diffusion of Wingless. Nat Commun 2021; 12:5660. [PMID: 34580289 PMCID: PMC8476528 DOI: 10.1038/s41467-021-25785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Small Open Reading Frames (smORFs) coding for peptides of less than 100 amino-acids are an enigmatic and pervasive gene class, found in the tens of thousands in metazoan genomes. Here we reveal a short 80 amino-acid peptide (Pegasus) which enhances Wingless/Wnt1 protein short-range diffusion and signalling. During Drosophila wing development, Wingless has sequential functions, including late induction of proneural gene expression and wing margin development. Pegasus mutants produce wing margin defects and proneural expression loss similar to those of Wingless. Pegasus is secreted, and co-localizes and co-immunoprecipitates with Wingless, suggesting their physical interaction. Finally, measurements of fixed and in-vivo Wingless gradients support that Pegasus increases Wingless diffusion in order to enhance its signalling. Our results unveil a new element in Wingless signalling and clarify the patterning role of Wingless diffusion, while corroborating the link between small open reading frame peptides, and regulation of known proteins with membrane-related functions.
Collapse
Affiliation(s)
- Emile G Magny
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Ana Isabel Platero
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Sarah A Bishop
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain.,Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Jose I Pueyo
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Daniel Aguilar-Hidalgo
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Juan Pablo Couso
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
17
|
Shen C, Nayak A, Neitzel LR, Adams AA, Silver-Isenstadt M, Sawyer LM, Benchabane H, Wang H, Bunnag N, Li B, Wynn DT, Yang F, Garcia-Contreras M, Williams CH, Dakshanamurthy S, Hong CC, Ayad NG, Capobianco AJ, Ahmed Y, Lee E, Robbins DJ. The E3 ubiquitin ligase component, Cereblon, is an evolutionarily conserved regulator of Wnt signaling. Nat Commun 2021; 12:5263. [PMID: 34489457 PMCID: PMC8421366 DOI: 10.1038/s41467-021-25634-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are important for the treatment of multiple myeloma and myelodysplastic syndrome. Binding of IMiDs to Cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase, induces cancer cell death by targeting key neo-substrates for degradation. Despite this clinical significance, the physiological regulation of CRBN remains largely unknown. Herein we demonstrate that Wnt, the extracellular ligand of an essential signal transduction pathway, promotes the CRBN-dependent degradation of a subset of proteins. These substrates include Casein kinase 1α (CK1α), a negative regulator of Wnt signaling that functions as a key component of the β-Catenin destruction complex. Wnt stimulation induces the interaction of CRBN with CK1α and its resultant ubiquitination, and in contrast with previous reports does so in the absence of an IMiD. Mechanistically, the destruction complex is critical in maintaining CK1α stability in the absence of Wnt, and in recruiting CRBN to target CK1α for degradation in response to Wnt. CRBN is required for physiological Wnt signaling, as modulation of CRBN in zebrafish and Drosophila yields Wnt-driven phenotypes. These studies demonstrate an IMiD-independent, Wnt-driven mechanism of CRBN regulation and provide a means of controlling Wnt pathway activity by CRBN, with relevance for development and disease.
Collapse
Affiliation(s)
- Chen Shen
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,The Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anmada Nayak
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Leif R Neitzel
- Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Amber A Adams
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Leah M Sawyer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Huilan Wang
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nawat Bunnag
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Bin Li
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel T Wynn
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Fan Yang
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,The Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marta Garcia-Contreras
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Charles C Hong
- Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nagi G Ayad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,Center for Therapeutic Innovation, Department of Neurological Surgery, Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anthony J Capobianco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - David J Robbins
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
18
|
Rattanavirotkul N, Kirschner K, Chandra T. Induction and transmission of oncogene-induced senescence. Cell Mol Life Sci 2021; 78:843-852. [PMID: 32936311 PMCID: PMC7897614 DOI: 10.1007/s00018-020-03638-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
Senescence is a cellular stress response triggered by diverse stressors, including oncogene activation, where it serves as a bona-fide tumour suppressor mechanism. Senescence can be transmitted to neighbouring cells, known as paracrine secondary senescence. Secondary senescence was initially described as a paracrine mechanism, but recent evidence suggests a more complex scenario involving juxtacrine communication between cells. In addition, single-cell studies described differences between primary and secondary senescent end-points, which have thus far not been considered functionally distinct. Here we discuss emerging concepts in senescence transmission and heterogeneity in primary and secondary senescence on a cellular and organ level.
Collapse
Affiliation(s)
- Nattaphong Rattanavirotkul
- Chakri Naruebodindra Medical Institute, Ramathibodi Medical School, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111, Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand.
| | - Kristina Kirschner
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| | - Tamir Chandra
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
19
|
Sheng X, Sheng Y, Gao S, Fan F, Wang J. Low fluid shear stress promoted ciliogenesis via Dvl2 in hUVECs. Histochem Cell Biol 2020; 154:639-654. [PMID: 32776193 DOI: 10.1007/s00418-020-01908-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 01/30/2023]
Abstract
This study aims to explore the mechanism of fluid shear stress in regulating the primary cilia assembly or disassembly in human umbilical vein endothelial cells (hUVECs) using microfluidic chamber experiments. Immunofluorescence analysis showed that primary cilia assembled under disturbed fluid shear stress (DF) of 1 dyne/cm2, while disassembled under unidirectional shear stress (USS) of 15 dynes/cm2. Disheveled (Dvl2) in Wnt signaling pathway was effectively co-immunoprecipitated with Bardet-Biedl syndrome proteins 8 (Bbs8) and γ-tubulin. Compared with those in the control group, the percentages of ciliated cells with Dvl2 overexpression were found to be 67% and 59.667%, respectively, under USS and DF (an increment of 21-38.7%); while, those with Dvl2 silencing were 16% and 32.667%, respectively, under USS and DF (a decrement of 23-30%). Further, the expression of Bbs8 and γ-tubulin was decreased by RNA interference of Dvl2 but increased with Dvl2 overexpression. The results indicated that Dvl2 played a pivotal role during DF-induced primary cilia assembly, and was important for apical docking of basal bodies through Bbs8 and γ-tubulin.
Collapse
Affiliation(s)
- Xin Sheng
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China.
| | - Yan Sheng
- Laboratory of Basic Medical Morphology, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Shuanglin Gao
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Fang Fan
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Junhua Wang
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| |
Collapse
|
20
|
Nam S, Cho KO. Wingless and Archipelago, a fly E3 ubiquitin ligase and a homolog of human tumor suppressor FBW7, show an antagonistic relationship in wing development. BMC DEVELOPMENTAL BIOLOGY 2020; 20:14. [PMID: 32594913 PMCID: PMC7322864 DOI: 10.1186/s12861-020-00217-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Archipelago (Ago) is a Drosophila homolog of mammalian F-box and WD repeat domain-containing 7 (FBW7, also known as FBXW7). In previous studies, FBW7 has been addressed as a tumor suppressor mediating ubiquitin-dependent proteolysis of several oncogenic proteins. Ubiquitination is a type of protein modification that directs protein for degradation as well as sorting. The level of beta-catenin (β-cat), an intracellular signal transducer in Wnt signaling pathway, is reduced upon overexpression of FBW7 in human cancer cell lines. Loss of function mutations in FBW7 and overactive Wnt signaling have been reported to be responsible for human cancers. RESULTS We found that Ago is important for the formation of shafts in chemosensory bristles at wing margin. This loss of shaft phenotype by knockdown of ago was rescued by knockdown of wingless (wg) whereas wing notching phenotype by knockdown of wg was rescued by knockdown of ago, establishing an antagonistic relationship between ago and wg. In line with this finding, knockdown of ago increased the level of Armadillo (Arm), a homolog of β-cat, in Drosophila tissue. Furthermore, knockdown of ago increased the level of Distal-less (Dll) and extracellular Wg in wing discs. In S2 cells, the amount of secreted Wg was increased by knockdown of Ago but decreased by Ago overexpression. Therefore, Ago plays a previously unidentified role in the inhibition of Wg secretion. Ago-overexpressing clones in wing discs exhibited accumulation of Wg in endoplasmic reticulum (ER), suggesting that Ago prevents Wg protein from moving to Golgi from ER. CONCLUSIONS We concluded that Ago plays dual roles in inhibiting Wg signaling. First, Ago decreases the level of Arm, by which Wg signaling is downregulated in Wg-responding cells. Second, Ago decreases the level of extracellular Wg by inhibiting movement of Wg from ER to Golgi in Wg-producing cells.
Collapse
Affiliation(s)
- Sujin Nam
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
21
|
Chauhan N, Shrivastava NK, Agrawal N, Shakarad MN. Wing patterning in faster developing Drosophila is associated with high ecdysone titer and wingless expression. Mech Dev 2020; 163:103626. [PMID: 32526278 DOI: 10.1016/j.mod.2020.103626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
'Developmental robustness' is the ability of biological systems to maintain a stable phenotype despite genetic, environmental or physiological perturbations. In holometabolous insects, accurate patterning and development is guaranteed by alignment of final gene expression patterns in tissues at specific developmental stage such as molting and pupariation, irrespective of individual rate of development. In the present study, we used faster developing Drosophila melanogaster populations that show reduction of ~22% in egg to adult development time. Flies from the faster developing population exhibit phenotype constancy, although significantly small in size. The reduction in development time in faster developing flies is possibly due to coordination between higher ecdysteroid release and higher expression of developmental genes. The two together might be ensuring appropriate pattern formation and early exit at each development stage in the populations selected for faster pre-adult development compared to their ancestral controls. We report that apart from plasticity in the rate of pattern progression, alteration in the level of gene expression may be responsible for pattern integrity even under reduced development time.
Collapse
Affiliation(s)
- Namita Chauhan
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | | | - Namita Agrawal
- Fly Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Mallikarjun N Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
22
|
Bertrand FE. The cross-talk of NOTCH and GSK-3 signaling in colon and other cancers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118738. [PMID: 32389646 DOI: 10.1016/j.bbamcr.2020.118738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/14/2022]
Abstract
The GSK-3 kinases, GSK-3α and GSK-3β, have a central role in regulating multiple cellular processes such as glycogen synthesis, insulin signaling, cell proliferation and apoptosis. GSK-3β is the most well studied, and was originally described for its role in regulating glycogen synthase. GSK-3β has been studied as a participant in the oncogenic process in a variety of cancers due to its intersection with the PTEN/PI3K/AKT and RAS/RAF/MEK/ERK pathways. Dysregulated signaling through the Notch family of receptors can also promote oncogenesis. Normal Notch receptor signaling regulates cell fate determination in stem cell pools. GSK-3β and Notch share similar targets such β-catenin and the WNT pathway. WNT and β-catenin are involved in several oncogenic processes including those of the colon. In addition, GSK-3β may directly regulate aspects of Notch signaling. This review describes how crosstalk between GSK-3β and Notch can promote oncogenesis, using colon cancer as the primary example.
Collapse
Affiliation(s)
- Fred E Bertrand
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
23
|
Banerjee TD, Monteiro A. Molecular mechanisms underlying simplification of venation patterns in holometabolous insects. Development 2020; 147:dev.196394. [DOI: 10.1242/dev.196394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
How mechanisms of pattern formation evolve has remained a central research theme in the field of evolutionary and developmental biology. The mechanism of wing vein differentiation in Drosophila is a classic text-book example of pattern formation using a system of positional-information, yet very little is known about how species with a different number of veins pattern their wings, and how insect venation patterns evolved. Here, we examine the expression pattern of genes previously implicated in vein differentiation in Drosophila in two butterfly species with more complex venation Bicyclus anynana and Pieris canidia. We also test the function of some of these genes in B. anynana. We identify both conserved as well as new domains of decapentaplegic, engrailed, invected, spalt, optix, wingless, armadillo, blistered, and rhomboid gene expression in butterflies, and propose how the simplified venation in Drosophila might have evolved via loss of decapentaplegic, spalt and optix gene expression domains, silencing of vein inducing programs at Spalt-expression boundaries, and changes in gene expression of vein maintenance genes.
Collapse
Affiliation(s)
- Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore
- Yale-NUS College, Singapore
| |
Collapse
|
24
|
Exocyst-mediated apical Wg secretion activates signaling in the Drosophila wing epithelium. PLoS Genet 2019; 15:e1008351. [PMID: 31527874 PMCID: PMC6764796 DOI: 10.1371/journal.pgen.1008351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/27/2019] [Accepted: 08/07/2019] [Indexed: 01/19/2023] Open
Abstract
Wnt proteins are secreted signaling factors that regulate cell fate specification and patterning decisions throughout the animal kingdom. In the Drosophila wing epithelium, Wingless (Wg, the homolog of Wnt1) is secreted from a narrow strip of cells at the dorsal-ventral boundary. However, the route of Wg secretion in polarized epithelial cells remains poorly understood and key proteins involved in this process are still unknown. Here, we performed an in vivo RNAi screen and identified members of the exocyst complex to be required for apical but not basolateral Wg secretion. Specifically blocking the apical Wg secretion leads to reduced downstream signaling. Using an in vivo ‘temporal-rescue’ assay, our results further indicate that apically secreted Wg activates target genes that require high signaling activity. In conclusion, our results demonstrate that the exocyst is required for an apical route of Wg secretion from polarized wing epithelial cells. Regulation of Wnt signaling and the production of Wnt ligands is crucial for proper development and homeostasis, as dysregulation leads to developmental defects and diseases such as cancer. This study addresses the question of how functional Wnt ligands are secreted by epithelial cells. By using the polarized epithelium of the developing Drosophila wing as a model system to study Wnt/Wg secretion, the authors performed a large-scale RNAi screen and identified proteins of the exocyst complex to be required for Wnt signaling. The study shows that exocyst complex preferentially regulates apical secretion of Wg proteins. Taken together, this study identifies routes and regulators for secretion of signaling-active Wnt proteins from polarized epithelial cells.
Collapse
|
25
|
Won JH, Kim GW, Kim JY, Cho DG, Kwon B, Bae YK, Cho KO. ADAMTS Sol narae cleaves extracellular Wingless to generate a novel active form that regulates cell proliferation in Drosophila. Cell Death Dis 2019; 10:564. [PMID: 31332194 PMCID: PMC6646336 DOI: 10.1038/s41419-019-1794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 11/23/2022]
Abstract
Wnt/ Wingless (Wg) is essential for embryonic development and adult homeostasis in all metazoans, but the mechanisms by which secreted Wnt/Wg is processed remain largely unknown. A Drosophila Sol narae (Sona) is a member of ADisintegrin And Metalloprotease with ThromboSpondin motif (ADAMTS) family, and positively regulates Wg signaling by promoting Wg secretion. Here we report that Sona and Wg are secreted by both conventional Golgi and exosomal transports, and Sona cleaves extracellular Wg at the two specific sites, leading to the generation of N-terminal domain (NTD) and C-terminal domain (CTD) fragments. The cleaved forms of extracellular Wg were detected in the extracellular region of fly wing discs, and its level was substantially reduced in sona mutants. Transient overexpression of Wg-CTD increased wing size while prolonged overexpression caused lethality and developmental defects. In contrast, Wg-NTD did not induce any phenotype. Moreover, the wing defects and lethality induced by sona RNAi were considerably rescued by Wg-CTD, indicating that a main function of extracellular Sona is the generation of Wg-CTD. Wg-CTD stabilized cytoplasmic Armadillo (Arm) and had genetic interactions with components of canonical Wg signaling. Wg-CTD also induced Wg downstream targets such as Distal-less (Dll) and Vestigial (Vg). Most importantly, Cyclin D (Cyc D) was induced by Wg-CTD but not by full-length Wg. Because Sona also induces Cyc D in a cell non-autonomous manner, Wg-CTD generated by Sona in the extracellular region activates a subset of Wg signaling whose major function is the regulation of cell proliferation.
Collapse
Affiliation(s)
- Jong-Hoon Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Go-Woon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Ja-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Dong-Gyu Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Buki Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Young-Kyung Bae
- Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajung-ro, Yuseung-gu, Daejeon, Korea
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
26
|
Lybrand DB, Naiman M, Laumann JM, Boardman M, Petshow S, Hansen K, Scott G, Wehrli M. Destruction complex dynamics: Wnt/β-catenin signaling alters Axin-GSK3β interactions in vivo. Development 2019; 146:dev164145. [PMID: 31189665 PMCID: PMC6633605 DOI: 10.1242/dev.164145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023]
Abstract
The central regulator of the Wnt/β-catenin pathway is the Axin/APC/GSK3β destruction complex (DC), which, under unstimulated conditions, targets cytoplasmic β-catenin for degradation. How Wnt activation inhibits the DC to permit β-catenin-dependent signaling remains controversial, in part because the DC and its regulation have never been observed in vivo Using bimolecular fluorescence complementation (BiFC) methods, we have now analyzed the activity of the DC under near-physiological conditions in Drosophila By focusing on well-established patterns of Wnt/Wg signaling in the developing Drosophila wing, we have defined the sequence of events by which activated Wnt receptors induce a conformational change within the DC, resulting in modified Axin-GSK3β interactions that prevent β-catenin degradation. Surprisingly, the nucleus is surrounded by active DCs, which principally control the degradation of β-catenin and thereby nuclear access. These DCs are inactivated and removed upon Wnt signal transduction. These results suggest a novel mechanistic model for dynamic Wnt signal transduction in vivo.
Collapse
Affiliation(s)
- Daniel B Lybrand
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
- Reed College, Portland, OR 97202, USA
| | - Misha Naiman
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
- Reed College, Portland, OR 97202, USA
| | - Jessie May Laumann
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mitzi Boardman
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Samuel Petshow
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kevin Hansen
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Gregory Scott
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Marcel Wehrli
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Portland, OR 97239, USA
| |
Collapse
|
27
|
Abstract
Wnt/Wingless (Wg) signaling controls many aspects of animal development and is deregulated in different human cancers. The transcription factor dTcf/Pangolin (Pan) is the final effector of the Wg pathway in Drosophila and has a dual role in regulating the expression of Wg target genes. In the presence of Wg, dTcf/Pan interacts with β-catenin/Armadillo (Arm) and induces the transcription of Wg targets. In absence of Wg, dTcf/Pan partners with the transcriptional corepressor TLE/Groucho (Gro) and inhibits gene expression. Here, we use the wing imaginal disk of Drosophila as a model to examine the functions that dTcf/Pan plays in a proliferating epithelium. We report a function of dTcf/Pan in growth control and tumorigenesis. Our results show that dTcf/Pan can limit tissue growth in normal development and suppresses tumorigenesis in the context of oncogene up-regulation. We identify the conserved transcription factors Sox box protein 15 (Sox15) and Ftz transcription factor 1 (Ftz-f1) as genes controlled by dTcf/Pan involved in tumor development. In conclusion, this study reports a role for dTcf/Pan as a repressor of normal and oncogenic growth and identifies the genes inducing tumorigenesis downstream of dTcf/Pan.
Collapse
|
28
|
Li K, Baker NE. Transcriptional and post-transcriptional regulation of extra macrochaetae during Drosophila adult peripheral neurogenesis. Dev Biol 2019; 449:41-51. [PMID: 30771303 DOI: 10.1016/j.ydbio.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 11/18/2022]
Abstract
Regulation of the Drosophila ID protein Extra macrochaetae (Emc) is important because reduced Emc levels have been proposed to favor proneural gene activity and thereby define a prepattern for neurogenesis. Recent studies suggest a major role for post-translational control of Emc levels. To further define the mechanisms of Emc regulation, we identified two redundant cis-regulatory regions by germline transformation-rescue experiments that make use of new molecularly-defined emc mutants. We distinguished the mechanisms by which Daughterless (Da) regulated Emc expression, finding post-translational regulation in most tissues, and additional transcriptional regulation in the eye imaginal disc posterior to the morphogenetic furrow. Dpp and Hh signaling pathways repressed Emc transcriptionally and post-translationally within the morphogenetic furrow of the eye disc, whereas Wg signaling repressed Emc expression at the anterior margin of the wing imaginal disc. Although the emc 3' UTR is potentially regulatory, no effect of miRNA pathways on Emc protein levels was discernible. Our work supports recent evidence that post-transcriptional mechanisms contribute more to regulation of Emc protein levels than transcriptional mechanisms do.
Collapse
Affiliation(s)
- Ke Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY 10461, USA.
| |
Collapse
|
29
|
Mirth CK, Shingleton AW. Coordinating Development: How Do Animals Integrate Plastic and Robust Developmental Processes? Front Cell Dev Biol 2019; 7:8. [PMID: 30788342 PMCID: PMC6372504 DOI: 10.3389/fcell.2019.00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023] Open
Abstract
Our developmental environment significantly affects myriad aspects of our biology, including key life history traits, morphology, physiology, and our susceptibility to disease. This environmentally-induced variation in phenotype is known as plasticity. In many cases, plasticity results from alterations in the rate of synthesis of important developmental hormones. However, while developmental processes like organ growth are sensitive to environmental conditions, others like patterning - the process that generates distinct cell identities - remain robust to perturbation. This is particularly surprising given that the same hormones that regulate organ growth also regulate organ patterning. In this review, we revisit the current approaches that address how organs coordinate their growth and pattern, and outline our hypotheses for understanding how organs achieve correct pattern across a range of sizes.
Collapse
Affiliation(s)
- Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
30
|
Vuong LT, Iomini C, Balmer S, Esposito D, Aaronson SA, Mlodzik M. Kinesin-2 and IFT-A act as a complex promoting nuclear localization of β-catenin during Wnt signalling. Nat Commun 2018; 9:5304. [PMID: 30546012 PMCID: PMC6294004 DOI: 10.1038/s41467-018-07605-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Wnt/Wg-signalling is critical signalling in all metazoans. Recent studies suggest that IFT-A proteins and Kinesin-2 modulate canonical Wnt/Wg-signalling independently of their ciliary role. Whether they function together in Wnt-signalling and their mechanistic role in the pathway remained unresolved. Here we demonstrate that Kinesin-2 and IFT-A proteins act as a complex during Drosophila Wg-signalling, affecting pathway activity in the same manner, interacting genetically and physically, and co-localizing with β-catenin, the mediator of Wnt/Wg-signalling on microtubules. Following pathway activation, Kinesin-2/IFT-A mutant cells exhibit high cytoplasmic β-catenin levels, yet fail to activate Wg-targets. In mutant tissues in both, Drosophila and mouse/MEFs, nuclear localization of β-catenin is markedly reduced. We demonstrate a conserved, motor-domain dependent function of the Kinesin-2/IFT-A complex in promoting nuclear translocation of β-catenin. We show that this is mediated by protecting β-catenin from a conserved cytoplasmic retention process, thus identifying a mechanism for Kinesin-2/IFT-A in Wnt-signalling that is independent of their ciliary role. IFT-A proteins and Kinesin-2 modulate canonical Wnt/Wg-signalling independent of their ciliary role, but how is unclear. Here, the authors show that Kinesin-2 and IFT-A act as a complex to promote nuclear translocation of β-catenin in Drosophila and mouse MEF Wnt signalling independent of its ciliary role.
Collapse
Affiliation(s)
- Linh T Vuong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Carlo Iomini
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Sophie Balmer
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Sloan Kettering Institute, New York, NY, 10029, USA
| | - Davide Esposito
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Stuart A Aaronson
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
31
|
Wingless Signaling: A Genetic Journey from Morphogenesis to Metastasis. Genetics 2018; 208:1311-1336. [PMID: 29618590 DOI: 10.1534/genetics.117.300157] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
This FlyBook chapter summarizes the history and the current state of our understanding of the Wingless signaling pathway. Wingless, the fly homolog of the mammalian Wnt oncoproteins, plays a central role in pattern generation during development. Much of what we know about the pathway was learned from genetic and molecular experiments in Drosophila melanogaster, and the core pathway works the same way in vertebrates. Like most growth factor pathways, extracellular Wingless/Wnt binds to a cell surface complex to transduce signal across the plasma membrane, triggering a series of intracellular events that lead to transcriptional changes in the nucleus. Unlike most growth factor pathways, the intracellular events regulate the protein stability of a key effector molecule, in this case Armadillo/β-catenin. A number of mysteries remain about how the "destruction complex" destabilizes β-catenin and how this process is inactivated by the ligand-bound receptor complex, so this review of the field can only serve as a snapshot of the work in progress.
Collapse
|
32
|
Beaven R, Denholm B. Release and spread of Wingless is required to pattern the proximo-distal axis of Drosophila renal tubules. eLife 2018; 7:e35373. [PMID: 30095068 PMCID: PMC6086663 DOI: 10.7554/elife.35373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 01/06/2023] Open
Abstract
Wingless/Wnts are signalling molecules, traditionally considered to pattern tissues as long-range morphogens. However, more recently the spread of Wingless was shown to be dispensable in diverse developmental contexts in Drosophila and vertebrates. Here we demonstrate that release and spread of Wingless is required to pattern the proximo-distal (P-D) axis of Drosophila Malpighian tubules. Wingless signalling, emanating from the midgut, directly activates odd skipped expression several cells distant in the proximal tubule. Replacing Wingless with a membrane-tethered version that is unable to diffuse from the Wingless producing cells results in aberrant patterning of the Malpighian tubule P-D axis and development of short, deformed ureters. This work directly demonstrates a patterning role for a released Wingless signal. As well as extending our understanding about the functional modes by which Wnts shape animal development, we anticipate this mechanism to be relevant to patterning epithelial tubes in other organs, such as the vertebrate kidney.
Collapse
Affiliation(s)
- Robin Beaven
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Barry Denholm
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
33
|
Béhague J, Fisher BL, Péronnet R, Rajakumar R, Abouheif E, Molet M. Lack of interruption of the gene network underlying wing polyphenism in an early‐branching ant genus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:109-117. [DOI: 10.1002/jez.b.22794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/30/2017] [Accepted: 01/22/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Julien Béhague
- Sorbonne Université CNRS Institut d'Ecologie et des Sciences de l'Environnement, iEES Paris France
| | - Brian L. Fisher
- Department of Entomology California Academy of Sciences San Francisco California
| | - Romain Péronnet
- Sorbonne Université CNRS Institut d'Ecologie et des Sciences de l'Environnement, iEES Paris France
| | | | - Ehab Abouheif
- Department of Biology McGill University Montreal QC Canada
| | - Mathieu Molet
- Sorbonne Université CNRS Institut d'Ecologie et des Sciences de l'Environnement, iEES Paris France
| |
Collapse
|
34
|
Nagai T, Honda H, Takemura M. Simulation of Cell Patterning Triggered by Cell Death and Differential Adhesion in Drosophila Wing. Biophys J 2018; 114:958-967. [PMID: 29490255 DOI: 10.1016/j.bpj.2017.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/26/2017] [Accepted: 12/18/2017] [Indexed: 11/29/2022] Open
Abstract
The Drosophila wing exhibits a well-ordered cell pattern, especially along the posterior margin, where hair cells are arranged in a zigzag pattern in the lateral view. Based on an experimental result observed during metamorphosis of Drosophila, we considered that a pattern of initial cells autonomously develops to the zigzag pattern through cell differentiation, intercellular communication, and cell death (apoptosis) and performed computer simulations of a cell-based model of vertex dynamics for tissues. The model describes the epithelial tissue as a monolayer cell sheet of polyhedral cells. Their vertices move according to equations of motion, minimizing the sum total of the interfacial and elastic energies of cells. The interfacial energy densities between cells are introduced consistently with an ideal zigzag cell pattern, extracted from the experimental result. The apoptosis of cells is modeled by gradually reducing their equilibrium volume to zero and by assuming that the hair cells prohibit neighboring cells from undergoing apoptosis. Based on experimental observations, we also assumed wing elongation along the proximal-distal axis. Starting with an initial cell pattern similar to the micrograph experimentally obtained just before apoptosis, we carried out the simulations according to the model mentioned above and successfully reproduced the ideal zigzag cell pattern. This elucidates a physical mechanism of patterning triggered by cell apoptosis theoretically and exemplifies, to our knowledge, a new framework to study apoptosis-induced patterning. We conclude that the zigzag cell pattern is formed by an autonomous communicative process among the participant cells.
Collapse
Affiliation(s)
- Tatsuzo Nagai
- Research Institute, Kyushu Kyoritsu University, Kitakyushu, Fukuoka, Japan.
| | - Hisao Honda
- Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Masahiko Takemura
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
35
|
Ma M, Cao X, Dai J, Pastor-Pareja JC. Basement Membrane Manipulation in Drosophila Wing Discs Affects Dpp Retention but Not Growth Mechanoregulation. Dev Cell 2017; 42:97-106.e4. [PMID: 28697337 DOI: 10.1016/j.devcel.2017.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/04/2017] [Accepted: 06/02/2017] [Indexed: 01/19/2023]
Abstract
Basement membranes (BMs) are extracellular matrix polymers basally underlying epithelia, where they regulate cell signaling and tissue mechanics. Constriction by the BM shapes Drosophila wing discs, a well-characterized model of tissue growth. Recently, the hypothesis that mechanical factors govern wing growth has received much attention, but it has not been definitively tested. In this study, we manipulated BM composition to cause dramatic changes in tissue tension. We found that increased tissue compression when perlecan was knocked down did not affect adult wing size. BM elimination, decreasing compression, reduced wing size but did not visibly affect Hippo signaling, widely postulated to mediate growth mechanoregulation. BM elimination, in contrast, attenuated signaling by bone morphogenetic protein/transforming growth factor β ligand Dpp, which was not efficiently retained within the tissue and escaped to the body cavity. Our results challenge mechanoregulation of wing growth, while uncovering a function of BMs in preserving a growth-promoting tissue environment.
Collapse
Affiliation(s)
- Mengqi Ma
- School of Life Sciences, Tsinghua University, Medical Science Building, D224, Beijing 100084, China
| | - Xueya Cao
- School of Life Sciences, Tsinghua University, Medical Science Building, D224, Beijing 100084, China
| | - Jianli Dai
- School of Life Sciences, Tsinghua University, Medical Science Building, D224, Beijing 100084, China
| | - José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Medical Science Building, D224, Beijing 100084, China.
| |
Collapse
|
36
|
Hall ET, Pradhan-Sundd T, Samnani F, Verheyen EM. The protein phosphatase 4 complex promotes the Notch pathway and wingless transcription. Biol Open 2017; 6:1165-1173. [PMID: 28652317 PMCID: PMC5576076 DOI: 10.1242/bio.025221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Wnt/Wingless (Wg) pathway controls cell fate specification, tissue differentiation and organ development across organisms. Using an in vivo RNAi screen to identify novel kinase and phosphatase regulators of the Wg pathway, we identified subunits of the serine threonine phosphatase Protein Phosphatase 4 (PP4). Knockdown of the catalytic and regulatory subunits of PP4 cause reductions in the Wg pathway targets Senseless and Distal-less. We find that PP4 regulates the Wg pathway by controlling Notch-driven wg transcription. Genetic interaction experiments identified that PP4 likely promotes Notch signaling within the nucleus of the Notch-receiving cell. Although the PP4 complex is implicated in various cellular processes, its role in the regulation of Wg and Notch pathways was previously uncharacterized. Our study identifies a novel role of PP4 in regulating Notch pathway, resulting in aberrations in Notch-mediated transcriptional regulation of the Wingless ligand. Furthermore, we show that PP4 regulates proliferation independent of its interaction with Notch. Summary: The protein phosphatase 4 complex promotes Notch signaling and target gene expression during Drosophila wing development.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Faaria Samnani
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| |
Collapse
|
37
|
Bosch PS, Ziukaite R, Alexandre C, Basler K, Vincent JP. Dpp controls growth and patterning in Drosophila wing precursors through distinct modes of action. eLife 2017; 6:22546. [PMID: 28675374 PMCID: PMC5560859 DOI: 10.7554/elife.22546] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/04/2017] [Indexed: 11/13/2022] Open
Abstract
Dpp, a member of the BMP family, is a morphogen that specifies positional information in Drosophila wing precursors. In this tissue, Dpp expressed along the anterior-posterior boundary forms a concentration gradient that controls the expression domains of target genes, which in turn specify the position of wing veins. Dpp also promotes growth in this tissue. The relationship between the spatio-temporal profile of Dpp signalling and growth has been the subject of debate, which has intensified recently with the suggestion that the stripe of Dpp is dispensable for growth. With two independent conditional alleles of dpp, we find that the stripe of Dpp is essential for wing growth. We then show that this requirement, but not patterning, can be fulfilled by uniform, low level, Dpp expression. Thus, the stripe of Dpp ensures that signalling remains above a pro-growth threshold, while at the same time generating a gradient that patterns cell fates. DOI:http://dx.doi.org/10.7554/eLife.22546.001 From the wings of a butterfly to the fingers of a human hand, living tissues often have complex and intricate patterns. Developmental biologists have long been fascinated by the signals – called morphogens – that guide how these kinds of pattern develop. Morphogens are substances that are produced by groups of cells and spread to the rest of the tissue to form a gradient. Depending on where they sit along this gradient, cells in the tissue activate different sets of genes, and the resulting pattern of gene activity ultimately defines the position of the different parts of the tissue. Decades worth of studies into how limbs develop in animals from mice to fruit flies have revealed common principles of morphogen gradients that regulate the development of tissue patterns. Morphogens have been shown to help regulate the growth of tissues in a number of different animals as well. However, how the morphogens regulate tissue size and what role their gradients play in this process remain topics of intense debate in the field of developmental biology. In the developing wing of a fruit fly, a morphogen called Dpp is expressed in a thin stripe located in the centre and spreads to the rest of the tissue to form a gradient. Bosch, Ziukaite, Alexandre et al. have now characterised where and when the Dpp morphogen must be produced to regulate both the final size of the fly’s wing and the number of cells the wing eventually contains. The experiments involved preventing the production of Dpp in the developing wing in specific cells and at specific stages of development. This approach confirmed that Dpp must be produced in the central stripe for the wing to grow. Matsuda and Affolter and, independently, Barrio and Milán report the same findings in two related studies. Moreover, Bosch et al. and Barrio and Milán also conclude that the gradient of Dpp throughout the wing is not required for growth. Further work will be needed to explain how the Dpp signal regulates the growth of the wing. The answer to this question will contribute to a better understanding of the role of morphogens in regulating the size of human organs and how a failure to do so might cause developmental disorders. DOI:http://dx.doi.org/10.7554/eLife.22546.002
Collapse
Affiliation(s)
- Pablo Sanchez Bosch
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
38
|
Özsu N, Chan QY, Chen B, Gupta MD, Monteiro A. Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies. Dev Biol 2017; 429:177-185. [PMID: 28668322 DOI: 10.1016/j.ydbio.2017.06.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022]
Abstract
Eyespot patterns of nymphalid butterflies are an example of a novel trait yet, the developmental origin of eyespots is still not well understood. Several genes have been associated with eyespot development but few have been tested for function. One of these genes is the signaling ligand, wingless, which is expressed in the eyespot centers during early pupation and may function in eyespot signaling and color ring differentiation. Here we tested the function of wingless in wing and eyespot development by down-regulating it in transgenic Bicyclus anynana butterflies via RNAi driven by an inducible heat-shock promoter. Heat-shocks applied during larval and early pupal development led to significant decreases in wingless mRNA levels and to decreases in eyespot size and wing size in adult butterflies. We conclude that wingless is a positive regulator of eyespot and wing development in B. anynana butterflies.
Collapse
Affiliation(s)
- Nesibe Özsu
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Qian Yi Chan
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Bin Chen
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Shapingba, 400047 Chongqing, China
| | - Mainak Das Gupta
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Yale-NUS College, Singapore 138614, Singapore.
| |
Collapse
|
39
|
Pflugfelder G, Eichinger F, Shen J. T-Box Genes in Drosophila Limb Development. Curr Top Dev Biol 2017; 122:313-354. [DOI: 10.1016/bs.ctdb.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
A Comparative Perspective on Wnt/β-Catenin Signalling in Cell Fate Determination. Results Probl Cell Differ 2017; 61:323-350. [PMID: 28409312 DOI: 10.1007/978-3-319-53150-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin pathway is an ancient and highly conserved signalling pathway that plays fundamental roles in the regulation of embryonic development and adult homeostasis. This pathway has been implicated in numerous cellular processes, including cell proliferation, differentiation, migration, morphological changes and apoptosis. In this chapter, we aim to illustrate with specific examples the involvement of Wnt/β-catenin signalling in cell fate determination. We discuss the roles of the Wnt/β-catenin pathway in specifying cell fate throughout evolution, how its function in patterning during development is often reactivated during regeneration and how perturbation of this pathway has negative consequences for the control of cell fate.The origin of all life was a single cell that had the capacity to respond to cues from the environment. With evolution, multicellular organisms emerged, and as a result, subsets of cells arose to form tissues able to respond to specific instructive signals and perform specialised functions. This complexity and specialisation required two types of messages to direct cell fate: intra- and intercellular. A fundamental question in developmental biology is to understand the underlying mechanisms of cell fate choice. Amongst the numerous external cues involved in the generation of cellular diversity, a prominent pathway is the Wnt signalling pathway in all its forms.
Collapse
|
41
|
Weber U, Mlodzik M. APC/C Fzr/Cdh1-Dependent Regulation of Planar Cell Polarity Establishment via Nek2 Kinase Acting on Dishevelled. Dev Cell 2016; 40:53-66. [PMID: 28041906 DOI: 10.1016/j.devcel.2016.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/04/2016] [Accepted: 12/02/2016] [Indexed: 02/04/2023]
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) is an E3 ubiquitin ligase, well known for its role in cell-cycle progression. However, it has been linked to additional functions, mainly in neuronal contexts, when using the co-activator Cdh1/Fzr. Here, our data indicate a post-mitotic requirement for the APC/CFzr/Cdh1 in epithelial cell patterning and planar cell polarity (PCP) in Drosophila. PCP signaling is critical for development by establishing cellular asymmetries and orientation within the plane of an epithelium, via differential localization of distinct complexes of core PCP factors. Loss of APC/C function leads to reduced levels of Dishevelled (Dsh), a core PCP factor. The effect of APC/C on Dsh is mediated by Nek2 kinase, which can phosphorylate Dsh and is a direct APC/CFzr/Cdh1 substrate. We have thus uncovered a pathway of regulation whereby APC/CFzr/Cdh1 negatively regulates Nek2, which negatively regulates Dsh, to ensure its proper stoichiometric requirement and localization during PCP establishment.
Collapse
Affiliation(s)
- Ursula Weber
- Department of Cell, Developmental & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
42
|
Fu CL, Wang XF, Cheng Q, Wang D, Hirose S, Liu QX. The T-box transcription factor Midline regulates wing development by repressing wingless and hedgehog in Drosophila. Sci Rep 2016; 6:27981. [PMID: 27301278 PMCID: PMC4908378 DOI: 10.1038/srep27981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022] Open
Abstract
Wingless (Wg) and Hedgehog (Hh) signaling pathways are key players in animal development. However, regulation of the expression of wg and hh are not well understood. Here, we show that Midline (Mid), an evolutionarily conserved transcription factor, expresses in the wing disc of Drosophila and plays a vital role in wing development. Loss or knock down of mid in the wing disc induced hyper-expression of wingless (wg) and yielded cocked and non-flat wings. Over-expression of mid in the wing disc markedly repressed the expression of wg, DE-Cadherin (DE-Cad) and armadillo (arm), and resulted in a small and blistered wing. In addition, a reduction in the dose of mid enhanced phenotypes of a gain-of-function mutant of hedgehog (hh). We also observed repression of hh upon overexpression of mid in the wing disc. Taken together, we propose that Mid regulates wing development by repressing wg and hh in Drosophila.
Collapse
Affiliation(s)
- Chong-Lei Fu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xian-Feng Wang
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qian Cheng
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Dan Wang
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Susumu Hirose
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Qing-Xin Liu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
43
|
Norman M, Vuilleumier R, Springhorn A, Gawlik J, Pyrowolakis G. Pentagone internalises glypicans to fine-tune multiple signalling pathways. eLife 2016; 5. [PMID: 27269283 PMCID: PMC4924993 DOI: 10.7554/elife.13301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated.
Collapse
Affiliation(s)
- Mark Norman
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Robin Vuilleumier
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Alexander Springhorn
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Jennifer Gawlik
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - George Pyrowolakis
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| |
Collapse
|
44
|
Raad H, Ferveur JF, Ledger N, Capovilla M, Robichon A. Functional Gustatory Role of Chemoreceptors in Drosophila Wings. Cell Rep 2016; 15:1442-1454. [PMID: 27160896 DOI: 10.1016/j.celrep.2016.04.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 12/19/2022] Open
Abstract
Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches.
Collapse
Affiliation(s)
- Hussein Raad
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06900 Sophia Antipolis. 400 route des Chappes, P.O. Box 167, 06903 Sophia Antipolis, France
| | - Jean-François Ferveur
- UMR CNRS 6265/INRA 1324/Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Neil Ledger
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06900 Sophia Antipolis. 400 route des Chappes, P.O. Box 167, 06903 Sophia Antipolis, France
| | - Maria Capovilla
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06900 Sophia Antipolis. 400 route des Chappes, P.O. Box 167, 06903 Sophia Antipolis, France
| | - Alain Robichon
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06900 Sophia Antipolis. 400 route des Chappes, P.O. Box 167, 06903 Sophia Antipolis, France.
| |
Collapse
|
45
|
Li X, Wang Y, Wang H, Liu T, Guo J, Yi W, Li Y. Epithelia-derived wingless regulates dendrite directional growth of drosophila ddaE neuron through the Fz-Fmi-Dsh-Rac1 pathway. Mol Brain 2016; 9:46. [PMID: 27129721 PMCID: PMC4850637 DOI: 10.1186/s13041-016-0228-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/21/2016] [Indexed: 11/23/2022] Open
Abstract
Background Proper dendrite patterning is critical for the receiving and processing of information in the nervous system. Cell-autonomous molecules have been extensively studied in dendrite morphogenesis; however, the regulatory mechanisms of environmental factors in dendrite growth remain to be elucidated. Results By evaluating the angle between two primary dendrites (PD-Angle), we found that the directional growth of the primary dendrites of a Drosophila periphery sensory neuron ddaE is regulated by the morphogen molecule Wingless (Wg). During the early stage of dendrite growth, Wg is expressed in a group of epithelial cells posteriorly adjacent to ddaE. When Wg expression is reduced or shifted anteriorly, the PD-Angle is markedly decreased. Furthermore, Wg receptor Frizzled functions together with Flamingo and Dishevelled in transducing the Wg signal into ddaE neuron, and the downstream signal is mediated by non-canonical Wnt pathway through Rac1. Conclusions In conclusion, we reveal that epithelia-derived Wg plays a repulsive role in regulating the directional growth of dendrites through the non-canonical Wnt pathway. Thus, our findings provide strong in vivo evidence on how environmental signals serve as spatial cues for dendrite patterning. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0228-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoting Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongtong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Yi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
46
|
Yamazaki Y, Palmer L, Alexandre C, Kakugawa S, Beckett K, Gaugue I, Palmer RH, Vincent JP. Godzilla-dependent transcytosis promotes Wingless signalling in Drosophila wing imaginal discs. Nat Cell Biol 2016; 18:451-7. [PMID: 26974662 PMCID: PMC4817240 DOI: 10.1038/ncb3325] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
The apical and basolateral membranes of epithelia are insulated from each other, preventing the transfer of extracellular proteins from one side to the other. Thus, a signalling protein produced apically is not expected to reach basolateral receptors. Evidence suggests that Wingless, the main Drosophila Wnt, is secreted apically in the embryonic epidermis. However, in the wing imaginal disc epithelium, Wingless is mostly seen on the basolateral membrane where it spreads from secreting to receiving cells. Here we examine the apico-basal movement of Wingless in Wingless-producing cells of wing imaginal discs. We find that it is presented first on the apical surface before making its way to the basolateral surface, where it is released and allowed to interact with signalling receptors. We show that Wingless transcytosis involves dynamin-dependent endocytosis from the apical surface. Subsequent trafficking from early apical endosomes to the basolateral surface requires Godzilla, a member of the RNF family of membrane-anchored E3 ubiquitin ligases. Without such transport, Wingless signalling is strongly reduced in this tissue.
Collapse
Affiliation(s)
- Yasuo Yamazaki
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 9A, 40539 Gothenburg, Sweden
| | - Lucy Palmer
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Cyrille Alexandre
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Satoshi Kakugawa
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Karen Beckett
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Isabelle Gaugue
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 9A, 40539 Gothenburg, Sweden
| | - Jean-Paul Vincent
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
47
|
Wnt/Wingless Pathway Activation Is Promoted by a Critical Threshold of Axin Maintained by the Tumor Suppressor APC and the ADP-Ribose Polymerase Tankyrase. Genetics 2016; 203:269-81. [PMID: 26975665 DOI: 10.1534/genetics.115.183244] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/18/2016] [Indexed: 01/20/2023] Open
Abstract
Wnt/β-catenin signal transduction directs metazoan development and is deregulated in numerous human congenital disorders and cancers. In the absence of Wnt stimulation, a multiprotein "destruction complex," assembled by the scaffold protein Axin, targets the key transcriptional activator β-catenin for proteolysis. Axin is maintained at very low levels that limit destruction complex activity, a property that is currently being exploited in the development of novel therapeutics for Wnt-driven cancers. Here, we use an in vivo approach in Drosophila to determine how tightly basal Axin levels must be controlled for Wnt/Wingless pathway activation, and how Axin stability is regulated. We find that for nearly all Wingless-driven developmental processes, a three- to fourfold increase in Axin is insufficient to inhibit signaling, setting a lower-limit for the threshold level of Axin in the majority of in vivo contexts. Further, we find that both the tumor suppressor adenomatous polyposis coli (APC) and the ADP-ribose polymerase Tankyrase (Tnks) have evolutionarily conserved roles in maintaining basal Axin levels below this in vivo threshold, and we define separable domains in Axin that are important for APC- or Tnks-dependent destabilization. Together, these findings reveal that both APC and Tnks maintain basal Axin levels below a critical in vivo threshold to promote robust pathway activation following Wnt stimulation.
Collapse
|
48
|
Abstract
The Wnt/β-catenin signaling is an evolutionarily conserved pathway that regulates a wide range of physiological functions, including embryogenesis, organ maintenance, cell proliferation and cell fate decision. Dysregulation of Wnt/β-catenin signaling has been implicated in various cancers, but its role in cell death has not yet been fully elucidated. Here we show that activation of Wg signaling induces cell death in Drosophila eyes and wings, which depends on dFoxO, a transcription factor known to be involved in cell death. In addition, dFoxO is required for ectopic and endogenous Wg signaling to regulate wing patterning. Moreover, dFoxO is necessary for activated Wg signaling-induced target genes expression. Furthermore, Arm is reciprocally required for dFoxO-induced cell death. Finally, dFoxO physically interacts with Arm both in vitro and in vivo. Thus, we have characterized a previously unknown role of dFoxO in promoting Wg signaling, and that a dFoxO-Arm complex is likely involved in their mutual functions, e.g. cell death.
Collapse
|
49
|
Linneweber GA, Winking M, Fischbach KF. The Cell Adhesion Molecules Roughest, Hibris, Kin of Irre and Sticks and Stones Are Required for Long Range Spacing of the Drosophila Wing Disc Sensory Sensilla. PLoS One 2015; 10:e0128490. [PMID: 26053791 PMCID: PMC4459997 DOI: 10.1371/journal.pone.0128490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
Most animal tissues and organ systems are comprised of highly ordered arrays of varying cell types. The development of external sensory organs requires complex cell-cell communication in order to give each cell a specific identity and to ensure a regular distributed pattern of the sensory bristles. This involves both long and short range signaling mediated by either diffusible or cell anchored factors. In a variety of processes the heterophilic Irre Cell Recognition Module, consisting of the Neph-like proteins: Roughest, Kin of irre and of the Nephrin-like proteins: Sticks and Stones, Hibris, plays key roles in the recognition events of different cell types throughout development. In the present study these proteins are apically expressed in the adhesive belt of epithelial cells participating in sense organ development in a partially exclusive and asymmetric manner. Using mutant analysis the GAL4/UAS system, RNAi and gain of function we found an involvement of all four Irre Cell Recognition Module-proteins in the development of a highly structured array of sensory organs in the wing disc. The proteins secure the regular spacing of sensory organs showing partial redundancy and may function in early lateral inhibition events as well as in cell sorting processes. Comparisons with other systems suggest that the Irre Cell Recognition module is a key organizer of highly repetitive structures.
Collapse
Affiliation(s)
- Gerit Arne Linneweber
- Department of Neurobiology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Mathis Winking
- Department of Neurobiology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Karl-Friedrich Fischbach
- Department of Neurobiology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| |
Collapse
|
50
|
Swarup S, Pradhan-Sundd T, Verheyen EM. Genome-wide identification of phospho-regulators of Wnt signaling in Drosophila. Development 2015; 142:1502-15. [DOI: 10.1242/dev.116715] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evolutionarily conserved intercellular signaling pathways regulate embryonic development and adult tissue homeostasis in metazoans. The precise control of the state and amplitude of signaling pathways is achieved in part through the kinase- and phosphatase-mediated reversible phosphorylation of proteins. In this study, we performed a genome-wide in vivo RNAi screen for kinases and phosphatases that regulate the Wnt pathway under physiological conditions in the Drosophila wing disc. Our analyses have identified 54 high-confidence kinases and phosphatases capable of modulating the Wnt pathway, including 22 novel regulators. These candidates were also assayed for a role in the Notch pathway, and numerous phospho-regulators were identified. Additionally, each regulator of the Wnt pathway was evaluated in the wing disc for its ability to affect the mechanistically similar Hedgehog pathway. We identified 29 dual regulators that have the same effect on the Wnt and Hedgehog pathways. As proof of principle, we established that Cdc37 and Gilgamesh/CK1γ inhibit and promote signaling, respectively, by functioning at analogous levels of these pathways in both Drosophila and mammalian cells. The Wnt and Hedgehog pathways function in tandem in multiple developmental contexts, and the identification of several shared phospho-regulators serve as potential nodes of control under conditions of aberrant signaling and disease.
Collapse
Affiliation(s)
- Sharan Swarup
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| | - Tirthadipa Pradhan-Sundd
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| | - Esther M. Verheyen
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| |
Collapse
|