1
|
Angom RS, Singh M, Muhammad H, Varanasi SM, Mukhopadhyay D. Zebrafish as a Versatile Model for Cardiovascular Research: Peering into the Heart of the Matter. Cells 2025; 14:531. [PMID: 40214485 PMCID: PMC11988917 DOI: 10.3390/cells14070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. A total of 17.5 million people died of CVDs in the year 2012, accounting for 31% of all deaths globally. Vertebrate animal models have been used to understand cardiac disease biology, as the cellular, molecular, and physiological aspects of human CVDs can be replicated closely in these organisms. Zebrafish is a popular model organism offering an arsenal of genetic tools that allow the rapid in vivo analysis of vertebrate gene function and disease conditions. It has a short breeding cycle, high fecundity, optically transparent embryos, rapid internal organ development, and easy maintenance. This review aims to give readers an overview of zebrafish cardiac biology and a detailed account of heart development in zebrafish and its comparison with humans and the conserved genetic circuitry. We also discuss the contributions made in CVD research using the zebrafish model. The first part of this review focuses on detailed information on the morphogenetic and differentiation processes in early cardiac development. The overlap and divergence of the human heart's genetic circuitry, structure, and physiology are emphasized wherever applicable. In the second part of the review, we overview the molecular tools and techniques available to dissect gene function and expression in zebrafish, with special mention of the use of these tools in cardiac biology.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Meghna Singh
- Department of Pathology and Lab Medicine, University of California, Los Angeles, CA 92093, USA;
| | - Huzaifa Muhammad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| |
Collapse
|
2
|
Sun J, Chen X, Ruan Y, Xu J, Xu H. MEF2A promoter methylation negatively regulates mRNA transcription and affects myoblast physiological function in cattle. Genomics 2025; 117:111016. [PMID: 40024578 DOI: 10.1016/j.ygeno.2025.111016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
This study investigates the regulatory effects of methylation in the promoter region of the bovine MEF2A gene on its transcription levels and the impact on bovine myoblasts. Transcription levels and promoter methylation status of MEF2A in the same tissues of calves and adult cattle were assessed using qRT-PCR and BSP methods. The results indicated that MEF2A expression levels in calves were significantly lower than those in adult cattle (P < 0.05), while the methylation rate of MEF2A was significantly higher in calves (P < 0.05), suggesting a correlation between high methylation levels and reduced gene expression. Subsequently, MEF2A overexpression and interference vectors were transfected into bovine myoblasts to examine the effects of altered MEF2A expression on its promoter methylation status. The findings revealed that MEF2A overexpression significantly reduced the methylation rate (P < 0.01), whereas MEF2A interference increased the methylation rate (P < 0.01), aligning with the expression trends of DNMT1. Furthermore, bovine myoblasts were treated with varying concentrations of the methylation inhibitor 5-Aza-dC to evaluate changes in MEF2A promoter methylation and mRNA levels. The effects on cell cycle progression, apoptosis, and other growth parameters were assessed using flow cytometry, ELISA, and qRT-PCR. Results showed that a concentration of 1 μM 5-Aza-dC effectively reduced MEF2A promoter methylation and significantly upregulated MEF2A expression, leading to accelerated cell cycle progression and increased secretion levels of GH and INS, all differences being statistically significant (P < 0.01). Additionally, 1 μM of 5-Aza-dC promoted apoptosis, with qRT-PCR results for relevant genes supporting this finding. In conclusion, methylation of the MEF2A promoter negatively regulates its mRNA transcription levels, thereby impacting the growth and development of Guanling cattle myoblasts. These results provide valuable insights for the genetic improvement of cattle through marker-assisted selection.
Collapse
Affiliation(s)
- Jinkui Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
3
|
Shen H, Nie J, Wang X, Li G, Zhao L, Jin Y, Jin L. MOTS-c relieves hepatocellular carcinoma resistance to TRAIL-induced apoptosis under hypoxic conditions by activating MEF2A. Exp Cell Res 2025; 444:114354. [PMID: 39581216 DOI: 10.1016/j.yexcr.2024.114354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Mitochondrial ORF of the 12S rRNA type-c (MOTS-c) as an AMPK agonist can regulate the expression of adaptive nuclear genes to promote cell homeostasis. However, the investigation of MOTS-c in hepatocellular carcinoma (HCC) is insufficient. This study aims to reveal the role of MOTS-c on HCC cell apoptosis. METHODS Huh7 and HCCLM3 cells were incubated with MOTS-c under a hypoxic condition. MOTS-c levels were quantified by enzyme-linked immunosorbent assay in the peripheral blood of HCC patients and healthy controls. Cell viability was detected by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell apoptosis was investigated by flow cytometry and Tunel assay. Protein expression was detected by western blotting or immunohistochemistry assay. Dual-luciferase reporter assay and chromatin immunoprecipitation assay were performed to identify the association among myocyte enhancer factor 2A (MEF2A), death receptor 4 (DR4) and DR5. A tumor-bearing nude mouse model was conducted to assess the effect of MOTS-c on HCC tumor formation in vivo. RESULTS MOTS-c levels in the peripheral blood of HCC patients were significantly lower compared to healthy individuals. MOTS-c promoted HCC cell apoptosis under hypoxia conditions. Hypoxia stimulation decreased the protein expression of MEF2A, DR4, DR5, fas-associating via death domain (FADD) and caspase-8, while these effects were attenuated after MOTS-c treatment. MOTS-c induced TRAIL-induced apoptosis of HCC cells by activating MEF2A through the phosphorylation of AMPK under hypoxia treatment. In addition, MEF2A transcriptionally up-regulated DR4 and DR5. MOTS-c activated MEF2A to regulate DR4 and DR5 expression, further mediating TRAIL-induced apoptosis. Further, MOTS-c treatment relieved hypoxia-induced tumor growth in vivo. CONCLUSION MOTS-c relieved hypoxia-induced HCC cell resistance to TRAIL-caused apoptosis by activating MEF2A.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Apoptosis/drug effects
- Animals
- Mice
- TNF-Related Apoptosis-Inducing Ligand/metabolism
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
- MEF2 Transcription Factors/metabolism
- MEF2 Transcription Factors/genetics
- Mice, Nude
- Cell Line, Tumor
- Male
- Female
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Inbred BALB C
- Xenograft Model Antitumor Assays
- Middle Aged
- Cell Hypoxia/drug effects
Collapse
Affiliation(s)
- Haiying Shen
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin 132013, Jilin Province, PR China.
| | - Junjie Nie
- Department of Nuclear Medicine, Jilin People's Hospital, Jilin 132001, Jilin Province, PR China
| | - Xiaojun Wang
- School of Public Health, Jilin Medical University, Jilin 132013, Jilin Province, PR China
| | - Guangqing Li
- Department of Computer Application, School of Biomedical Engineering, Jilin Medical University, Jilin 132013, Jilin Province, PR China
| | - Liwei Zhao
- Department of Pathology, School of Basic Medicine, Jilin Medical University, Jilin 132013, Jilin Province, PR China
| | - Yuji Jin
- Department of Medical Genetics, School of Basic Medicine, Jilin Medical University, Jilin 132013, Jilin Province, PR China
| | - Lianhai Jin
- Hypoxia and Health Medicine Research Center, Jilin Medical University, Jilin 132013, Jilin Province, PR China.
| |
Collapse
|
4
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Caño-Carrillo S, Garcia-Padilla C, Aranega AE, Lozano-Velasco E, Franco D. Mef2c- and Nkx2-5-Divergent Transcriptional Regulation of Chick WT1_76127 and Mouse Gm14014 lncRNAs and Their Implication in Epicardial Cell Migration. Int J Mol Sci 2024; 25:12904. [PMID: 39684625 DOI: 10.3390/ijms252312904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium. A subset of these embryonic epicardial cells migrate and colonize the embryonic myocardium, contributing to the formation of distinct cell types. In recent years, our understanding of the molecular mechanisms that govern proepicardium and embryonic epicardium formation has greatly increased. We have recently witnessed the discovery of a novel layer of complexity governing gene regulation with the discovery of non-coding RNAs. Our laboratory recently identified three distinct lncRNAs, adjacent to the Wt1, Bmp4 and Fgf8 chicken gene loci, with enhanced expression in the proepicardium that are distinctly regulated by Bmp, Fgf and thymosin β4, providing support for their plausible implication in epicardial formation. The expression of lncRNAs was analyzed in different chicken and mouse tissues as well as their subcellular distribution in chicken proepicardial, epicardial, ventricle explants and in different murine cardiac cell types. lncRNA transcriptional regulation was analyzed by using siRNAs and expression vectors of different transcription factors in chicken and mouse models, whereas antisense oligonucleotides were used to inhibit Gm14014 expression. Furthermore, RT-qPCR, immunocytochemistry, RNA pulldown, Western blot, viability and cell migration assays were conducted to investigate the biological functions of Wt1_76127 and Gm14014. We demonstrated that Wt1_76127 in chicken and its putative conserved homologue Gm14014 in mice are widely distributed in different embryonic and adult tissues and distinctly regulated by cardiac-enriched transcription factors, particularly Mef2c and Nkx2.5. Furthermore, silencing assays demonstrated that mouse Gm14014, but not chicken Wt1_76127, is essential for epicardial, but not endocardial or myocardial, cell migration. Such processes are governed by partnering with Myl9, promoting cytoskeletal remodeling. Our data show that Gm14014 plays a pivotal role in epicardial cell migration essential for heart regeneration under these experimental conditions.
Collapse
Affiliation(s)
- Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
6
|
Wu J, Liu S, Jiang D, Zhou Y, Jiang H, Xiao X, Zha B, Fang Y, Huang J, Hu X, Mao H, Liu S, Chen B. Exploring Gene Expression and Alternative Splicing in Duck Embryonic Myoblasts via Full-Length Transcriptome Sequencing. Vet Sci 2024; 11:601. [PMID: 39728941 DOI: 10.3390/vetsci11120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024] Open
Abstract
The duck industry is vital for supplying high-quality protein, making research into the development of duck skeletal muscle critical for improving meat and egg production. In this study, we leveraged Oxford Nanopore Technologies (ONT) sequencing to perform full-length transcriptome sequencing of myoblasts harvested from the leg muscles of duck embryos at embryonic day 13 (E13), specifically examining both the proliferative (GM) and differentiation (DM) phases. Our analysis identified a total of 5797 novel transcripts along with 2332 long non-coding RNAs (lncRNAs), revealing substantial changes in gene expression linked to muscle development. We detected 3653 differentially expressed genes and 2246 instances of alternative splicing, with key genes involved in essential pathways, such as ECM-receptor interaction and Notch signaling, prominently featured. Additionally, we constructed a protein-protein interaction network that highlighted critical regulators-MYOM3, MYL2, MYL1, TNNI2, and ACTN2-associated with the processes of proliferation and differentiation in myoblasts. This extensive transcriptomic investigation not only sheds light on the intricate molecular mechanisms driving skeletal muscle development in ducks but also provides significant insights for future breeding strategies aimed at enhancing the efficiency of duck production. The results emphasize the efficacy of ONT sequencing in uncovering complex regulatory networks within avian species, ultimately contributing to progress in animal husbandry.
Collapse
Affiliation(s)
- Jintao Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuibing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dongcheng Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ya'nan Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyun Xiao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Boqian Zha
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yukai Fang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jie Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Holman AR, Tran S, Destici E, Farah EN, Li T, Nelson AC, Engler AJ, Chi NC. Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. CELL GENOMICS 2024; 4:100680. [PMID: 39437788 PMCID: PMC11605693 DOI: 10.1016/j.xgen.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.
Collapse
Affiliation(s)
- Alyssa R Holman
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaina Tran
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugin Destici
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aileena C Nelson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Shi F. Understanding the roles of salt-inducible kinases in cardiometabolic disease. Front Physiol 2024; 15:1426244. [PMID: 39081779 PMCID: PMC11286596 DOI: 10.3389/fphys.2024.1426244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Salt-inducible kinases (SIKs) are serine/threonine kinases of the adenosine monophosphate-activated protein kinase family. Acting as mediators of a broad array of neuronal and hormonal signaling pathways, SIKs play diverse roles in many physiological and pathological processes. Phosphorylation by the upstream kinase liver kinase B1 is required for SIK activation, while phosphorylation by protein kinase A induces the binding of 14-3-3 protein and leads to SIK inhibition. SIKs are subjected to auto-phosphorylation regulation and their activity can also be modulated by Ca2+/calmodulin-dependent protein kinase in response to cellular calcium influx. SIKs regulate the physiological processes through direct phosphorylation on various substrates, which include class IIa histone deacetylases, cAMP-regulated transcriptional coactivators, phosphatase methylesterase-1, among others. Accumulative body of studies have demonstrated that SIKs are important regulators of the cardiovascular system, including early works establishing their roles in sodium sensing and vascular homeostasis and recent progress in pulmonary arterial hypertension and pathological cardiac remodeling. SIKs also regulate inflammation, fibrosis, and metabolic homeostasis, which are essential pathological underpinnings of cardiovascular disease. The development of small molecule SIK inhibitors provides the translational opportunity to explore their potential as therapeutic targets for treating cardiometabolic disease in the future.
Collapse
Affiliation(s)
- Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
9
|
Sun K, Liu X, Lan X. A single-cell atlas of chromatin accessibility in mouse organogenesis. Nat Cell Biol 2024; 26:1200-1211. [PMID: 38977846 DOI: 10.1038/s41556-024-01435-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/29/2024] [Indexed: 07/10/2024]
Abstract
Organogenesis is a highly complex and precisely regulated process. Here we profiled the chromatin accessibility in >350,000 cells derived from 13 mouse embryos at four developmental stages from embryonic day (E) 10.5 to E13.5 by SPATAC-seq in a single experiment. The resulting atlas revealed the status of 830,873 candidate cis-regulatory elements in 43 major cell types. By integrating the chromatin accessibility atlas with the previous transcriptomic dataset, we characterized cis-regulatory sequences and transcription factors associated with cell fate commitment, such as Nr5a2 in the development of gastrointestinal tract, which was preliminarily supported by the in vivo experiment in zebrafish. Finally, we integrated this atlas with the previous single-cell chromatin accessibility dataset from 13 adult mouse tissues to delineate the developmental stage-specific gene regulatory programmes within and across different cell types and identify potential molecular switches throughout lineage development. This comprehensive dataset provides a foundation for exploring transcriptional regulation in organogenesis.
Collapse
Affiliation(s)
- Keyong Sun
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua-NIBS Joint Graduate Program, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xin Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xun Lan
- School of Medicine, Tsinghua University, Beijing, China.
- Peking-Tsinghua-NIBS Joint Graduate Program, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Mensah IK, Gowher H. Epigenetic Regulation of Mammalian Cardiomyocyte Development. EPIGENOMES 2024; 8:25. [PMID: 39051183 PMCID: PMC11270418 DOI: 10.3390/epigenomes8030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the heart. The successful differentiation of cardiomyocytes during early development is under tight regulation by physical and molecular factors. We have reviewed current studies on epigenetic factors critical for cardiomyocyte differentiation, including DNA methylation, histone modifications, chromatin remodelers, and noncoding RNAs. This review also provides comprehensive details on structural and morphological changes associated with the differentiation of fetal and postnatal cardiomyocytes and highlights their differences. A holistic understanding of all aspects of cardiomyocyte development is critical for the successful in vitro differentiation of cardiomyocytes for therapeutic purposes.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
García-Padilla C, Lozano-Velasco E, García-López V, Aránega A, Franco D, García-Martínez V, López-Sánchez C. miR-1 as a Key Epigenetic Regulator in Early Differentiation of Cardiac Sinoatrial Region. Int J Mol Sci 2024; 25:6608. [PMID: 38928314 PMCID: PMC11204236 DOI: 10.3390/ijms25126608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
A large diversity of epigenetic factors, such as microRNAs and histones modifications, are known to be capable of regulating gene expression without altering DNA sequence itself. In particular, miR-1 is considered the first essential microRNA in cardiac development. In this study, miR-1 potential role in early cardiac chamber differentiation was analyzed through specific signaling pathways. For this, we performed in chick embryos functional experiments by means of miR-1 microinjections into the posterior cardiac precursors-of both primitive endocardial tubes-committed to sinoatrial region fates. Subsequently, embryos were subjected to whole mount in situ hybridization, immunohistochemistry and RT-qPCR analysis. As a relevant novelty, our results revealed that miR-1 increased Amhc1, Tbx5 and Gata4, while this microRNA diminished Mef2c and Cripto expressions during early differentiation of the cardiac sinoatrial region. Furthermore, we observed in this developmental context that miR-1 upregulated CrabpII and Rarß and downregulated CrabpI, which are three crucial factors in the retinoic acid signaling pathway. Interestingly, we also noticed that miR-1 directly interacted with Hdac4 and Calm1/Calmodulin, as well as with Erk2/Mapk1, which are three key factors actively involved in Mef2c regulation. Our study shows, for the first time, a key role of miR-1 as an epigenetic regulator in the early differentiation of the cardiac sinoatrial region through orchestrating opposite actions between retinoic acid and Mef2c, fundamental to properly assign cardiac cells to their respective heart chambers. A better understanding of those molecular mechanisms modulated by miR-1 will definitely help in fields applied to therapy and cardiac regeneration and repair.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
| | - Estefanía Lozano-Velasco
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-Martínez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
12
|
Nair VD, Pincas H, Smith GR, Zaslavsky E, Ge Y, Amper MAS, Vasoya M, Chikina M, Sun Y, Raja AN, Mao W, Gay NR, Esser KA, Smith KS, Zhao B, Wiel L, Singh A, Lindholm ME, Amar D, Montgomery S, Snyder MP, Walsh MJ, Sealfon SC. Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures. CELL GENOMICS 2024; 4:100421. [PMID: 38697122 PMCID: PMC11228891 DOI: 10.1016/j.xgen.2023.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 05/04/2024]
Abstract
Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hanna Pincas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gregory R Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Anne S Amper
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mital Vasoya
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Weiguang Mao
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole R Gay
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Kevin S Smith
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Bingqing Zhao
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Laurens Wiel
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Aditya Singh
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Malene E Lindholm
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - David Amar
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Stephen Montgomery
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
13
|
Chen B, Zhang Y, Niu Y, Wang Y, Liu Y, Ji H, Han R, Tian Y, Liu X, Kang X, Li Z. RRM2 promotes the proliferation of chicken myoblasts, inhibits their differentiation and muscle regeneration. Poult Sci 2024; 103:103407. [PMID: 38198913 PMCID: PMC10825555 DOI: 10.1016/j.psj.2023.103407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
During myogenesis and regeneration, the proliferation and differentiation of myoblasts play key regulatory roles and may be regulated by many genes. In this study, we analyzed the transcriptomic data of chicken primary myoblasts at different periods of proliferation and differentiation with protein‒protein interaction network, and the results indicated that there was an interaction between cyclin-dependent kinase 1 (CDK1) and ribonucleotide reductase regulatory subunit M2 (RRM2). Previous studies in mammals have a role for RRM2 in skeletal muscle development as well as cell growth, but the role of RRM2 in chicken is unclear. In this study, we investigated the effects of RRM2 on skeletal muscle development and regeneration in chickens in vitro and in vivo. The interaction between RRM2 and CDK1 was initially identified by co-immunoprecipitation and mass spectrometry. Through a dual luciferase reporter assay and quantitative real-time PCR, we identified the core promoter region of RRM2, which is regulated by the SP1 transcription factor. In this study, through cell counting kit-8 assays, 5-ethynyl-2'-deoxyuridine incorporation assays, flow cytometry, immunofluorescence staining, and Western blot analysis, we demonstrated that RRM2 promoted the proliferation and inhibited the differentiation of myoblasts. In vivo studies showed that RRM2 reduced the diameter of muscle fibers and slowed skeletal muscle regeneration. In conclusion, these data provide preliminary insights into the biological functions of RRM2 in chicken muscle development and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yushi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Haigang Ji
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
14
|
Chen SL, Wu CC, Li N, Weng TH. Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis. J Muscle Res Cell Motil 2024; 45:21-39. [PMID: 38206489 DOI: 10.1007/s10974-023-09663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The transcriptional regulation of skeletal muscle (SKM) development (myogenesis) has been documented for over 3 decades and served as a paradigm for tissue-specific cell type determination and differentiation. Myogenic stem cells (MuSC) in embryos and adult SKM are regulated by the transcription factors Pax3 and Pax7 for their stem cell characteristics, while their lineage determination and terminal differentiation are both dictated by the myogenic regulatory factors (MRF) that comprise Mrf4, Myf5, Myogenin, and MyoD. The myocyte enhancer factor Mef2c is activated by MRF during terminal differentiation and collaborates with them to promote myoblast fusion and differentiation. Recent studies have found critical regulation of these myogenic transcription factors at mRNA level, including subcellular localization, stability, and translational regulation. Therefore, the regulation of Pax3/7, MRFs and Mef2c mRNAs by RNA-binding factors and non-coding RNAs (ncRNA), including microRNAs and long non-coding RNAs (lncRNA), will be the focus of this review and the impact of this regulation on myogenesis will be further addressed. Interestingly, the stem cell characteristics of MuSC has been found to be critically regulated by ncRNAs, implying the involvement of ncRNAs in SKM homeostasis and regeneration. Current studies have further identified that some ncRNAs are implicated in the etiology of some SKM diseases and can serve as valuable tools/indicators for prediction of prognosis. The roles of ncRNAs in the MuSC biology and SKM disease etiology will also be discussed in this review.
Collapse
Affiliation(s)
- Shen-Liang Chen
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan.
| | - Chuan-Che Wu
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| | - Ning Li
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| | - Tzu-Han Weng
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| |
Collapse
|
15
|
Sun J, Ruan Y, Xu J, Shi P, Xu H. Effect of Bovine MEF2A Gene Expression on Proliferation and Apoptosis of Myoblast Cells. Genes (Basel) 2023; 14:1498. [PMID: 37510401 PMCID: PMC10379155 DOI: 10.3390/genes14071498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Myocyte enhancer factor 2A (MEF2A) is a member of the myocyte enhancer factor 2 family. MEF2A is widely distributed in various tissues and organs and participates in various physiological processes. This study aimed to investigate the effect of MEF2A expression on the proliferation and apoptosis of bovine myoblasts. CCK8, ELISA, cell cycle, and apoptosis analyses were conducted to assess cell status. In addition, the mRNA expression levels of genes associated with bovine myoblast proliferation and apoptosis were evaluated using RT-qPCR. The results showed that the upregulation of MEF2A mRNA promoted the proliferation rate of myoblasts, shortened the cycle process, and increased the anti-apoptotic rate. Furthermore, the RT-qPCR results showed that the upregulation of MEF2A mRNA significantly increased the cell proliferation factors MyoD1 and IGF1, cell cycle factors CDK2 and CCNA2, and the apoptotic factors Bcl2 and BAD (p < 0.01). These results show that the MEF2A gene can positively regulate myoblast proliferation and anti-apoptosis, providing a basis for the analysis of the regulatory mechanism of the MEF2A gene on bovine growth and development.
Collapse
Affiliation(s)
- Jinkui Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Pengfei Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
16
|
Li C, Zhang Z, Wei Y, Qi K, Dou Y, Song C, Liu Y, Li X, Li X, Wang K, Qiao R, Yang F, Han X. Genome-Wide Analysis of MAMSTR Transcription Factor-Binding Sites via ChIP-Seq in Porcine Skeletal Muscle Fibroblasts. Animals (Basel) 2023; 13:1731. [PMID: 37889674 PMCID: PMC10252000 DOI: 10.3390/ani13111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 10/29/2023] Open
Abstract
Myocyte enhancer factor-2-activating motif and SAP domain-containing transcriptional regulator (MAMSTR) regulates its downstream through binding in its promoter regions. However, its molecular mechanism, particularly the DNA-binding sites, and coregulatory genes are quite unexplored. Therefore, to identify the genome-wide binding sites of the MAMSTR transcription factors and their coregulatory genes, chromatin immunoprecipitation sequencing was carried out. The results showed that MAMSTR was associated with 1506 peaks, which were annotated as 962 different genes. Most of these genes were involved in transcriptional regulation, metabolic pathways, and cell development and differentiation, such as AMPK signaling pathway, TGF-beta signaling pathway, transcription coactivator activity, transcription coactivator binding, adipocytokine signaling pathway, fat digestion and absorption, skeletal muscle fiber development, and skeletal muscle cell differentiation. Lastly, the expression levels and transcriptional activities of PID1, VTI1B, PRKAG1, ACSS2, and SLC28A3 were screened and verified via functional markers and analysis. Overall, this study has increased our understanding of the regulatory mechanism of MAMSTR during skeletal muscle fibroblast development and provided a reference for analyzing muscle development mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
17
|
Smallwood K, Watt KEN, Ide S, Baltrunaite K, Brunswick C, Inskeep K, Capannari C, Adam MP, Begtrup A, Bertola DR, Demmer L, Demo E, Devinsky O, Gallagher ER, Guillen Sacoto MJ, Jech R, Keren B, Kussmann J, Ladda R, Lansdon LA, Lunke S, Mardy A, McWalters K, Person R, Raiti L, Saitoh N, Saunders CJ, Schnur R, Skorvanek M, Sell SL, Slavotinek A, Sullivan BR, Stark Z, Symonds JD, Wenger T, Weber S, Whalen S, White SM, Winkelmann J, Zech M, Zeidler S, Maeshima K, Stottmann RW, Trainor PA, Weaver KN. POLR1A variants underlie phenotypic heterogeneity in craniofacial, neural, and cardiac anomalies. Am J Hum Genet 2023; 110:809-825. [PMID: 37075751 PMCID: PMC10183370 DOI: 10.1016/j.ajhg.2023.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023] Open
Abstract
Heterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects. To understand the pathogenesis of this pleiotropy, we modeled an allelic series of POLR1A variants in vitro and in vivo. In vitro assessments demonstrate variable effects of individual pathogenic variants on ribosomal RNA synthesis and nucleolar morphology, which supports the possibility of variant-specific phenotypic effects in affected individuals. To further explore variant-specific effects in vivo, we used CRISPR-Cas9 gene editing to recapitulate two human variants in mice. Additionally, spatiotemporal requirements for Polr1a in developmental lineages contributing to congenital anomalies in affected individuals were examined via conditional mutagenesis in neural crest cells (face and heart), the second heart field (cardiac outflow tract and right ventricle), and forebrain precursors in mice. Consistent with its ubiquitous role in the essential function of ribosome biogenesis, we observed that loss of Polr1a in any of these lineages causes cell-autonomous apoptosis resulting in embryonic malformations. Altogether, our work greatly expands the phenotype of human POLR1A-related disorders and demonstrates variant-specific effects that provide insights into the underlying pathogenesis of ribosomopathies.
Collapse
Affiliation(s)
- Kelly Smallwood
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Kristina Baltrunaite
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chad Brunswick
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine Inskeep
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Corrine Capannari
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Margaret P Adam
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | | | - Laurie Demmer
- Atrium Health's Levine Children's Hospital, Charlotte, NC, USA
| | - Erin Demo
- Sibley Heart Center, Atlanta, GA, USA
| | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Emily R Gallagher
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Boris Keren
- Genetic Department, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - Jennifer Kussmann
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Roger Ladda
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Lisa A Lansdon
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA; Genomic Medicine Center, Children's Mercy Research Institute, 2401 Gillham Road, Kansas City, MO, USA; School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, USA
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia
| | - Anne Mardy
- Department of Women's Health, University of Texas Austin Dell Medical Center, Austin, TX, USA
| | | | | | - Laura Raiti
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, VIC, Australia
| | | | - Carol J Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA; Genomic Medicine Center, Children's Mercy Research Institute, 2401 Gillham Road, Kansas City, MO, USA; School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, USA
| | | | - Matej Skorvanek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic; Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Susan L Sell
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia
| | - Joseph D Symonds
- Paediatric Neuroscience Research Group, Royal Hospital for Children, Glasgow G667AB, UK
| | - Tara Wenger
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sacha Weber
- CCA-AHU de génétique clinique et de neurogénétique, Service de Génétique et de Neurologie, CHU de Caen, Caen, France
| | - Sandra Whalen
- Genetic Department, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Rolf W Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Moustafa A, Hashemi S, Brar G, Grigull J, Ng SHS, Williams D, Schmitt-Ulms G, McDermott JC. The MEF2A transcription factor interactome in cardiomyocytes. Cell Death Dis 2023; 14:240. [PMID: 37019881 PMCID: PMC10076289 DOI: 10.1038/s41419-023-05665-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023]
Abstract
Transcriptional regulators encoded by the Myocyte Enhancer Factor 2 (MEF2) gene family play a fundamental role in cardiac development, homeostasis and pathology. Previous studies indicate that MEF2A protein-protein interactions serve as a network hub in several cardiomyocyte cellular processes. Based on the idea that interactions with regulatory protein partners underly the diverse roles of MEF2A in cardiomyocyte gene expression, we undertook a systematic unbiased screen of the MEF2A protein interactome in primary cardiomyocytes using an affinity purification-based quantitative mass spectrometry approach. Bioinformatic processing of the MEF2A interactome revealed protein networks involved in the regulation of programmed cell death, inflammatory responses, actin dynamics and stress signaling in primary cardiomyocytes. Further biochemical and functional confirmation of specific protein-protein interactions documented a dynamic interaction between MEF2A and STAT3 proteins. Integration of transcriptome level data from MEF2A and STAT3-depleted cardiomyocytes reveals that the balance between MEF2A and STAT3 activity exerts a level of executive control over the inflammatory response and cardiomyocyte cell survival and experimentally ameliorates Phenylephrine induced cardiomyocyte hypertrophy. Lastly, we identified several MEF2A/STAT3 co-regulated genes, including the MMP9 gene. Herein, we document the cardiomyocyte MEF2A interactome, which furthers our understanding of protein networks involved in the hierarchical control of normal and pathophysiological cardiomyocyte gene expression in the mammalian heart.
Collapse
Affiliation(s)
- Amira Moustafa
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Sara Hashemi
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Seneca College, School of Health Sciences, King City, ON, L7B 1B3, Canada
| | - Gurnoor Brar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J1P3, Canada
| | - Siemon H S Ng
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Analytical Development, Notch Therapeutics, Toronto, ON, M5G 1M1, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
19
|
The Exciting Realities and Possibilities of iPS-Derived Cardiomyocytes. Bioengineering (Basel) 2023; 10:bioengineering10020237. [PMID: 36829731 PMCID: PMC9952364 DOI: 10.3390/bioengineering10020237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have become a prevalent topic after their discovery, advertised as an ethical alternative to embryonic stem cells (ESCs). Due to their ability to differentiate into several kinds of cells, including cardiomyocytes, researchers quickly realized the potential for differentiated cardiomyocytes to be used in the treatment of heart failure, a research area with few alternatives. This paper discusses the differentiation process for human iPSC-derived cardiomyocytes and the possible applications of said cells while answering some questions regarding ethical issues.
Collapse
|
20
|
Tian S, Song Y, Song J, Guo L, Peng M, Wu X, Qiao J, Bai M, Miao M. Postmenopausal osteoporosis: a bioinformatics-integrated experimental study the pathogenesis. Biotechnol Genet Eng Rev 2023:1-19. [PMID: 36641599 DOI: 10.1080/02648725.2023.2167764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a chronic bone metabolic disease, which often causes fractures and various complications, it causes a great social and economic burden, and it is urgent to use modern research techniques to elucidate the pathogenesis of PMOP. At the same time, because of the complex physiological and pathological interaction mechanism between osteoporosis and sarcopenia, the correlation research has become a hot topic. Ovary removal is a commonly used experimental method to study the endocrine system of female animals, and it is also the best animal model to study PMOP. In this study, the preparation of the ovariectomized rat was confirmed through the detection of vaginal smear, the level of bone formation markers, and the analysis of bone tissue morphology. Transcriptome sequencing was used to analyze the molecular mechanism of PMOP in ovariectomized rats, qRT-PCR was used to verify the key targets. Results of Micro-CT and scanning electron microscopy (SEM) showed that the trabecular structure was disorganized and the symptoms of osteoporosis appeared, this indicating that the ovariectomized rats model was successfully prepared. Transcriptional sequencing results of femur tissue showed that 452 differentially expressed genes (DEGs) were screened. Bioinformatics analysis results showed that the osteoporosis caused by ovariectomized rats was mainly related to muscle contraction, calcium signaling pathway, etc. Results of qRT-PCR were consistent with transcriptome analysis. These results reveal the pathogenesis of PMOP in ovariectomized rats and also offer a possibility for elucidating the relevance of action between PMOP and sarcopenia.
Collapse
Affiliation(s)
- Shuo Tian
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yagang Song
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinping Song
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lin Guo
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mengfan Peng
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiangxiang Wu
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingyi Qiao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ming Bai
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingsan Miao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
21
|
Pan P, Qin Z, Xie W, Chen B, Guan Z, Xie B. Identification of Differentially Expressed Genes in the Longissimus Dorsi Muscle of Luchuan and Duroc Pigs by Transcriptome Sequencing. Genes (Basel) 2023; 14:132. [PMID: 36672873 PMCID: PMC9859529 DOI: 10.3390/genes14010132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
The Duroc pig originated in the United States and is a typical lean-meat pig. The breed grows fast, and the body size is large, but the meat quality is poor. The Luchuan pig is one of eight excellent local breeds in China; it has tender meat but is small in size. To study the factors that determine growth, we selected the longissimus dorsi muscle of Luchuan and Duroc pigs for transcriptome sequencing. The results of the transcriptome showed that 3682 genes were differentially expressed (DEGs) in the longissimus dorsi muscle of Duroc and Luchuan pigs. We screened out genes related to muscle development and selected the MYL2 (Myosin light chain-2) gene to perform preliminary research. Gene Ontology (GO) enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene products were mainly involved in the Akt/FoxO signaling pathway, fatty acid metabolism, arachidonic acid metabolism and glycine, serine and threonine metabolism. Such pathways contributed to skeletal muscle growth, fatty acid metabolism and intramuscular fat deposition. These results provide insight into the mechanisms underlying the formation of skeletal muscle and provide candidate genes to improve growth traits, as well as contribute to improving the growth and development traits of pigs through molecular breeding.
Collapse
Affiliation(s)
- Pengcheng Pan
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Agricultural Vocational and Technical University, Nanning 530001, China
| | - Zhaoxian Qin
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Agricultural Vocational and Technical University, Nanning 530001, China
| | - Wan Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Baojian Chen
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Agricultural Vocational and Technical University, Nanning 530001, China
| | - Zhihui Guan
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Agricultural Vocational and Technical University, Nanning 530001, China
| | - Bingkun Xie
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Agricultural Vocational and Technical University, Nanning 530001, China
| |
Collapse
|
22
|
Bayraktar M, Durmuş M, Al-Shuhaib MBS. Identification of two novel SNPs in the myocyte enhancer factor 2B (MEF2B) gene and its association with growth traits in two breeds of Turkish sheep. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Sladeček S, Radaszkiewicz KA, Bőhmová M, Gybeľ T, Radaszkiewicz TW, Pacherník J. Dual specificity phosphatase 7 drives the formation of cardiac mesoderm in mouse embryonic stem cells. PLoS One 2022; 17:e0275860. [PMID: 36227898 PMCID: PMC9560500 DOI: 10.1371/journal.pone.0275860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Dual specificity phosphatase 7 (DUSP7) is a protein belonging to a broad group of phosphatases that can dephosphorylate phosphoserine/phosphothreonine as well as phosphotyrosine residues within the same substrate. DUSP7 has been linked to the negative regulation of mitogen activated protein kinases (MAPK), and in particular to the regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). MAPKs play an important role in embryonic development, where their duration, magnitude, and spatiotemporal activity must be strictly controlled by other proteins, among others by DUSPs. In this study, we focused on the effect of DUSP7 depletion on the in vitro differentiation of mouse embryonic stem (ES) cells. We showed that even though DUSP7 knock-out ES cells do retain some of their basic characteristics, when it comes to differentiation, they preferentially differentiate towards neural cells, while the formation of early cardiac mesoderm is repressed. Therefore, our data indicate that DUSP7 is necessary for the correct formation of neuroectoderm and cardiac mesoderm during the in vitro differentiation of ES cells.
Collapse
Affiliation(s)
- Stanislava Sladeček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Bőhmová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
24
|
Hildyard JC, Riddell DO, Harron RC, Rawson F, Foster EM, Massey C, Taylor-Brown F, Wells DJ, Piercy RJ. The skeletal muscle phenotype of the DE50-MD dog model of Duchenne muscular dystrophy. Wellcome Open Res 2022; 7:238. [PMID: 36865375 PMCID: PMC9971692 DOI: 10.12688/wellcomeopenres.18251.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Animal models of Duchenne muscular dystrophy (DMD) are essential to study disease progression and assess efficacy of therapeutic intervention, however dystrophic mice fail to display a clinically relevant phenotype, limiting translational utility. Dystrophin-deficient dogs exhibit disease similar to humans, making them increasingly important for late-stage preclinical evaluation of candidate therapeutics. The DE50-MD canine model of DMD carries a mutation within a human 'hotspot' region of the dystrophin gene, amenable to exon-skipping and gene editing strategies. As part of a large natural history study of disease progression, we have characterised the DE50-MD skeletal muscle phenotype to identify parameters that could serve as efficacy biomarkers in future preclinical trials. Methods: Vastus lateralis muscles were biopsied from a large cohort of DE50-MD dogs and healthy male littermates at 3-monthly intervals (3-18 months) for longitudinal analysis, with multiple muscles collected post-mortem to evaluate body-wide changes. Pathology was characterised quantitatively using histology and measurement of gene expression to determine statistical power and sample sizes appropriate for future work. Results: DE50-MD skeletal muscle exhibits widespread degeneration/regeneration, fibrosis, atrophy and inflammation. Degenerative/inflammatory changes peak during the first year of life, while fibrotic remodelling appears more gradual. Pathology is similar in most skeletal muscles, but in the diaphragm, fibrosis is more prominent, associated with fibre splitting and pathological hypertrophy. Picrosirius red and acid phosphatase staining represent useful quantitative histological biomarkers for fibrosis and inflammation respectively, while qPCR can be used to measure regeneration ( MYH3, MYH8), fibrosis ( COL1A1), inflammation ( SPP1), and stability of DE50-MD dp427 transcripts. Conclusion: The DE50-MD dog is a valuable model of DMD, with pathological features similar to young, ambulant human patients. Sample size and power calculations show that our panel of muscle biomarkers are of strong pre-clinical value, able to detect therapeutic improvements of even 25%, using trials with only six animals per group.
Collapse
Affiliation(s)
- John C.W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Dominique O. Riddell
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Rachel C.M. Harron
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Faye Rawson
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
- Langford Veterinary Services, University of Bristol, Langford, UK
| | - Emma M.A. Foster
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Claire Massey
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Frances Taylor-Brown
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
- Cave Veterinary Specialists, George's Farm, West Buckland, UK
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, London, UK
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| |
Collapse
|
25
|
Wu X, Chu M, Ma X, Pei J, Xiong L, Guo X, Liang C, Yan P. Genome-Wide Identification of RNA Editing Sites Affecting Muscle Development in Yak. Front Vet Sci 2022; 9:871814. [PMID: 35836505 PMCID: PMC9274240 DOI: 10.3389/fvets.2022.871814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle growth and development is a complicated process that is regulated at multiple steps and by numerous myogenesis genes. RNA editing represents one of the events at the post-transcriptional level, which contributes to the diversity of transcriptome and proteome by altering the nucleotides of RNAs. However, RNA editing events in the skeletal muscle of yaks are still not well defined. This study conducted whole-genome RNA-editing identification in skeletal muscle of yaks at embryonic stage (ES) and adult stage (AS). We found a total of 11,168 unique RNA editing sites, most of which were detected in the intergenic region. After annotation, we totally identified 2,718 editing sites within coding regions, among which 858 were missense changes. Moreover, totally 322 editing sites in the 3′ untranslated regions (UTR) were also predicted to alter the set of miRNA target sites, indicating that RNA editing may be involved in translational repression or mRNA degradation. We found 838 RNA editing sites (involving 244 common genes) that are edited differentially in ES as compared to AS. According to the KEGG enrichment analysis, these differentially edited genes were mainly involved in pathways highly related to skeletal muscle development and myogenesis, including MAPK, AMPK, Wnt, and PI3K-Akt signaling pathways. Altogether, our work presents the first characterization of RNA editing sites within yak skeletal muscles on a genome-wide scale and enhances our understanding of the mechanism of skeletal muscle development and myogenesis.
Collapse
|
26
|
Zhang S, Zhang Y, Chen C, Hu Q, Fu Y, Xu L, Wang C, Liu Y. Identification of Robust and Key Differentially Expressed Genes during C2C12 Cell Myogenesis Based on Multiomics Data. Int J Mol Sci 2022; 23:ijms23116002. [PMID: 35682680 PMCID: PMC9180599 DOI: 10.3390/ijms23116002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Myogenesis is a central step in prenatal myofiber formation, postnatal myofiber hypertrophy, and muscle damage repair in adulthood. RNA-Seq technology has greatly helped reveal the molecular mechanism of myogenesis, but batch effects in different experiments inevitably lead to misinterpretation of differentially expressed genes (DEGs). We previously applied the robust rank aggregation (RRA) method to effectively circumvent batch effects across multiple RNA-Seq datasets from 3T3-L1 cells. Here, we also used the RRA method to integrate nine RNA-Seq datasets from C2C12 cells and obtained 3140 robust DEGs between myoblasts and myotubes, which were then validated with array expression profiles and H3K27ac signals. The upregulated robust DEGs were highly enriched in gene ontology (GO) terms related to muscle cell differentiation and development. Considering that the cooperative binding of transcription factors (TFs) to enhancers to regulate downstream gene expression is a classical epigenetic mechanism, differentially expressed TFs (DETFs) were screened, and potential novel myogenic factors (MAF, BCL6, and ESR1) with high connection degree in protein-protein interaction (PPI) network were presented. Moreover, KLF5 cooperatively binds with the three key myogenic factors (MYOD, MYOG, and MEF2D) in C2C12 cells. Motif analysis speculates that the binding of MYOD and MYOG is KLF5-independent, while MEF2D is KLF5-dependent. It was revealed that KLF5-binding sites could be exploited to filter redundant MYOD-, MYOG-, and MEF2D-binding sites to focus on key enhancers for myogenesis. Further functional annotation of KLF5-binding sites suggested that KLF5 may regulate myogenesis through the PI3K-AKt signaling pathway, Rap1 signaling pathway, and the Hippo signaling pathway. In general, our study provides a wealth of untapped candidate targets for myogenesis and contributes new insights into the core regulatory mechanisms of myogenesis relying on KLF5-binding signal.
Collapse
Affiliation(s)
- Song Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuanyuan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Choulin Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Hu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Fu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Chao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Correspondence:
| |
Collapse
|
27
|
Canté-Barrett K, Meijer MT, Cordo' V, Hagelaar R, Yang W, Yu J, Smits WK, Nulle ME, Jansen JP, Pieters R, Yang JJ, Haigh JJ, Goossens S, Meijerink JP. MEF2C opposes Notch in lymphoid lineage decision and drives leukemia in the thymus. JCI Insight 2022; 7:150363. [PMID: 35536646 PMCID: PMC9310523 DOI: 10.1172/jci.insight.150363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Rearrangements that drive ectopic MEF2C expression have recurrently been found in patients with human early thymocyte progenitor acute lymphoblastic leukemia (ETP-ALL). Here, we show high levels of MEF2C expression in patients with ETP-ALL. Using both in vivo and in vitro models of ETP-ALL, we demonstrate that elevated MEF2C expression blocks NOTCH-induced T cell differentiation while promoting a B-lineage program. MEF2C activates a B cell transcriptional program in addition to RUNX1, GATA3, and LMO2; upregulates the IL-7R; and boosts cell survival by upregulation of BCL2. MEF2C and the Notch pathway, therefore, demarcate opposite regulators of B- or T-lineage choices, respectively. Enforced MEF2C expression in mouse or human progenitor cells effectively blocks early T cell differentiation and promotes the development of biphenotypic lymphoid tumors that coexpress CD3 and CD19, resembling human mixed phenotype acute leukemia. Salt-inducible kinase (SIK) inhibitors impair MEF2C activity and alleviate the T cell developmental block. Importantly, this sensitizes cells to prednisolone treatment. Therefore, SIK-inhibiting compounds such as dasatinib are potentially valuable additions to standard chemotherapy for human ETP-ALL.
Collapse
Affiliation(s)
| | - Mariska T Meijer
- Princess Máxima Center for pediatric oncology, Utrecht, Netherlands
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Wentao Yang
- Department of Pharmaceutical Sciences, St. Jude Childen's Research Hospital, Memphis, United States of America
| | - Jiyang Yu
- Computational Biology Department, St. Jude Childen's Research Hospital, Memphis, United States of America
| | - Willem K Smits
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marloes E Nulle
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Joris P Jansen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rob Pieters
- Pieters Group, Princess Máxima Center for pediatric oncology, Utrecht, Netherlands
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, United States of America
| | - Jody J Haigh
- Research Institute of Oncology and Hematology, University of Manitoba, Manitoba, Canada
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jules Pp Meijerink
- Meijerink Group, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
28
|
Fu X, Li S, Jia M, Xu B, Yang L, Ma R, Cheng H, Yang W, Hu P. Myogenesis controlled by a long non-coding RNA 1700113A16RIK and post-transcriptional regulation. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:13. [PMID: 35366685 PMCID: PMC8977255 DOI: 10.1186/s13619-022-00114-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/22/2022] [Indexed: 01/05/2023]
Abstract
Long non-coding (lnc) RNA plays important roles in many cellular processes. The function of the vast majority of lncRNAs remains unknown. Here we identified that lncRNA-1700113A16RIK existed in skeletal muscle stem cells (MuSCs) and was significantly elevated during MuSC differentiation. Knockdown of 1700113A16RIK inhibits the differentiation of muscle stem cells. In contrast, overexpression of 1700113A16RIK promotes the differentiation of muscle stem cells. Further study shows the muscle specific transcription factor Myogenin (MyoG) positively regulates the expression of 1700113A16RIK by binding to the promoter region of 1700113A16RIK. Mechanistically, 1700113A16RIK may regulate the expression of myogenic genes by directly binding to 3'UTR of an important myogenic transcription factor MEF2D, which in turn promotes the translation of MEF2D. Taken together, our results defined 1700113A16RIK as a positive regulator of MuSC differentiation and elucidated a mechanism as to how 1700113A16RIK regulated MuSC differentiation.
Collapse
Affiliation(s)
- Xin Fu
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Sheng Li
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Minzhi Jia
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bo Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lele Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruimiao Ma
- Guangzhou Laboratory, Guangzhou, 510700, Guangdong, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenjun Yang
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China.
| | - Ping Hu
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China. .,Guangzhou Laboratory, Guangzhou, 510700, Guangdong, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
29
|
Xiong Z, Wang M, You S, Chen X, Lin J, Wu J, Shi X. Transcription Regulation of Tceal7 by the Triple Complex of Mef2c, Creb1 and Myod. BIOLOGY 2022; 11:biology11030446. [PMID: 35336819 PMCID: PMC8945367 DOI: 10.3390/biology11030446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary We have previously reported a striated muscle-specific gene during embryogenesis, Tceal7. Our studies have characterized the 0.7 kb promoter of the Tceal7 gene, which harbors important E-box motifs driving the LacZ reporter in the myogenic lineage. However, the underlying mechanism regulating the dynamic expression of Tceal7 during skeletal muscle regeneration is still elusive. In the present work, we have defined a cluster of Mef2#3–CRE#3–E#4 motifs through bioinformatic analysis and transcription assays. Our studies suggested that the triple complex of Mef2c, Creb1 and Myod binds to the Mef2#3–CRE#3–E#4 cluster region, therefore driving the dynamic expression of Tceal7 during skeletal muscle regeneration. The novel mechanism may throw new light on understanding transcription regulation in skeletal muscle myogenesis. Abstract Tceal7 has been identified as a direct, downstream target gene of MRF in the skeletal muscle. The overexpression of Tceal7 represses myogenic proliferation and promotes cell differentiation. Previous studies have defined the 0.7 kb upstream fragment of the Tceal7 gene. In the present study, we have further determined two clusters of transcription factor-binding motifs in the 0.7 kb promoter: CRE#2–E#1–CRE#1 in the proximal region and Mef2#3–CRE#3–E#4 in the distal region. Utilizing transcription assays, we have also shown that the reporter containing the Mef2#3–CRE#3–E#4 motifs is synergistically transactivated by Mef2c and Creb1. Further studies have mapped out the protein–protein interaction between Mef2c and Creb1. In summary, our present studies support the notion that the triple complex of Mef2c, Creb1 and Myod interacts with the Mef2#3–CRE#3–E#4 motifs in the distal region of the Tceal7 promoter, thereby driving Tceal7 expression during skeletal muscle development and regeneration.
Collapse
Affiliation(s)
- Zhenzhen Xiong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Mengni Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Shanshan You
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Xiaoyan Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jianhua Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Xiaozhong Shi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
- Correspondence: ; Tel.: +86-20-39380620
| |
Collapse
|
30
|
Sawada H, Katsumata Y, Higashi H, Zhang C, Li Y, Morgan S, Lee LH, Singh SA, Chen JZ, Franklin MK, Moorleghen JJ, Howatt DA, Rateri DL, Shen YH, LeMaire SA, Aikawa M, Majesky MW, Lu HS, Daugherty A. Second Heart Field-derived Cells Contribute to Angiotensin II-mediated Ascending Aortopathies. Circulation 2022; 145:987-1001. [PMID: 35143327 PMCID: PMC9008740 DOI: 10.1161/circulationaha.121.058173] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The ascending aorta is a common location for aneurysm and dissection. This aortic region is populated by a mosaic of medial and adventitial cells that are embryonically derived from either the second heart field (SHF) or the cardiac neural crest. SHF-derived cells populate areas that coincide with the spatial specificity of thoracic aortopathies. The purpose of this study was to determine whether and how SHF-derived cells contribute to ascending aortopathies. Methods: Ascending aortic pathologies were examined in patients with sporadic thoracic aortopathies and angiotensin II (AngII)-infused mice. Ascending aortas without overt pathology from AngII-infused mice were subjected to mass spectrometry assisted proteomics, and molecular features of SHF-derived cells were determined by single cell transcriptomic analyses. Genetic deletion of either low-density lipoprotein receptor-related protein 1 (Lrp1) or transforming growth factor-β receptor 2 (Tgfbr2) in SHF-derived cells was conducted to examine the impact of SHF-derived cells on vascular integrity. Results: Pathologies in human ascending aortic aneurysmal tissues were predominant in outer medial layers and adventitia. This gradient was mimicked in mouse aortas following AngII infusion that was coincident with the distribution of SHF-derived cells. Proteomics indicated that brief AngII infusion, prior to overt pathology, evoked downregulation of SMC proteins and differential expression of extracellular matrix proteins, including several LRP1 ligands. LRP1 deletion in SHF-derived cells augmented AngII-induced ascending aortic aneurysm and rupture. Single cell transcriptomic analysis revealed that brief AngII infusion decreased Lrp1 and Tgfbr2 mRNA abundance in SHF-derived cells and induced a unique fibroblast population with low abundance of Tgfbr2 mRNA. SHF-specific Tgfbr2 deletion led to embryonic lethality at E12.5 with dilatation of the outflow tract and retroperitoneal hemorrhage. Integration of proteomic and single cell transcriptomics results identified plasminogen activator inhibitor 1 (PAI1) as the most increased protein in SHF-derived SMCs and fibroblasts during AngII infusion. Immunostaining revealed a transmural gradient of PAI1 in both ascending aortas of AngII-infused mice and human ascending aneurysmal aortas that mimicked the gradient of medial and adventitial pathologies. Conclusions: SHF-derived cells exert a critical role in maintaining vascular integrity through LRP1 and TGF-β signaling associated with increases of aortic PAI1.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY; Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX
| | - Stephanie Morgan
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lang H Lee
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jeff Z Chen
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Michael K Franklin
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY
| | - Jessica J Moorleghen
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY
| | - Deborah A Howatt
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY
| | - Debra L Rateri
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mark W Majesky
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA; Department of Pediatrics, University of Washington, Seattle, WA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA
| | - Hong S Lu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY; Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY; Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
31
|
Liu B, Ou WC, Fang L, Tian CW, Xiong Y. Myocyte Enhancer Factor 2A Plays a Central Role in the Regulatory Networks of Cellular Physiopathology. Aging Dis 2022; 14:331-349. [PMID: 37008050 PMCID: PMC10017154 DOI: 10.14336/ad.2022.0825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Cell regulatory networks are the determinants of cellular homeostasis. Any alteration to these networks results in the disturbance of cellular homeostasis and induces cells towards different fates. Myocyte enhancer factor 2A (MEF2A) is one of four members of the MEF2 family of transcription factors (MEF2A-D). MEF2A is highly expressed in all tissues and is involved in many cell regulatory networks including growth, differentiation, survival and death. It is also necessary for heart development, myogenesis, neuronal development and differentiation. In addition, many other important functions of MEF2A have been reported. Recent studies have shown that MEF2A can regulate different, and sometimes even mutually exclusive cellular events. How MEF2A regulates opposing cellular life processes is an interesting topic and worthy of further exploration. Here, we reviewed almost all MEF2A research papers published in English and summarized them into three main sections: 1) the association of genetic variants in MEF2A with cardiovascular disease, 2) the physiopathological functions of MEF2A, and 3) the regulation of MEF2A activity and its regulatory targets. In summary, multiple regulatory patterns for MEF2A activity and a variety of co-factors cause its transcriptional activity to switch to different target genes, thereby regulating opposing cell life processes. The association of MEF2A with numerous signaling molecules establishes a central role for MEF2A in the regulatory network of cellular physiopathology.
Collapse
Affiliation(s)
- Benrong Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- Correspondence should be addressed to: Dr. Benrong Liu, the Second Affiliated Hospital, Guangzhou Medical University, Guangdong, China. E-mail: ; or Yujuan Xiong, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, China. .
| | - Wen-Chao Ou
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Lei Fang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Chao-Wei Tian
- General Practice, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yujuan Xiong
- Department of Laboratory Medicine, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Correspondence should be addressed to: Dr. Benrong Liu, the Second Affiliated Hospital, Guangzhou Medical University, Guangdong, China. E-mail: ; or Yujuan Xiong, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, China. .
| |
Collapse
|
32
|
Wang E, Fan X, Nie Y, Zheng Z, Hu S. Single-Nucleotide Polymorphisms in Exonic and Promoter Regions of Transcription Factors of Second Heart Field Associated with Sporadic Congenital Cardiac Anomalies. Balkan J Med Genet 2021; 24:39-47. [PMID: 36249516 PMCID: PMC9524169 DOI: 10.2478/bjmg-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple second heart field (SHF) transcription factors are involved in cardiac development. In this article we evaluate the relationship between SHF transcription factor polymorphisms and congenital heart disease (CHD). Ten polymorphisms were used for genotyping, and three of these were used for the luciferase assay. The risk of CHD was increased 4.31 times and 1.54 times in the C allele of GATA5: rs6061243 G>C and G allele of TBX20: rs336283 A>G, respectively. The minor alleles of SMYD1: rs1542088 T>G, MEF2C: rs80043958 A>G and GATA5: rs6587239 T>C increased the risk of the simple types of CHD. The minor alleles of GATA5: rs41305803 G>A and MEF2C: rs304154 A>G increased the risk of tetralogy of Fallot (TOF). The minor alleles of TBX20: rs336284 A>G and SMYD1: rs88387557 T>G only increased the risk of a single ventricle (SV). Luciferase assays revealed that the minor alleles of rs304154 and rs336284 decreased the transcriptional levels of MEF2C and TBX20, respectively (p<0.01). When combined with HLTF, the G promoter showed a higher expression level than the A promoter in rs80043958 (p<0.01). Our findings suggest that minor alleles of SNPs in the exonic and promoter regions of transcription factors in the SHF can increase the risks of sporadic CHD.
Collapse
Affiliation(s)
- E Wang
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - X Fan
- Clinical Laboratory Center, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing, 100029, China
| | - Y Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Z Zheng
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - S Hu
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
33
|
Yang C, Croteau S, Hardy P. Histone deacetylase (HDAC) 9: versatile biological functions and emerging roles in human cancer. Cell Oncol (Dordr) 2021; 44:997-1017. [PMID: 34318404 PMCID: PMC8516780 DOI: 10.1007/s13402-021-00626-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HDAC9 (histone deacetylase 9) belongs to the class IIa family of histone deacetylases. This enzyme can shuttle freely between the nucleus and cytoplasm and promotes tissue-specific transcriptional regulation by interacting with histone and non-histone substrates. HDAC9 plays an essential role in diverse physiological processes including cardiac muscle development, bone formation, adipocyte differentiation and innate immunity. HDAC9 inhibition or activation is therefore a promising avenue for therapeutic intervention in several diseases. HDAC9 overexpression is also common in cancer cells, where HDAC9 alters the expression and activity of numerous relevant proteins involved in carcinogenesis. CONCLUSIONS This review summarizes the most recent discoveries regarding HDAC9 as a crucial regulator of specific physiological systems and, more importantly, highlights the diverse spectrum of HDAC9-mediated posttranslational modifications and their contributions to cancer pathogenesis. HDAC9 is a potential novel therapeutic target, and the restoration of aberrant expression patterns observed among HDAC9 target genes and their related signaling pathways may provide opportunities to the design of novel anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec H3T 1C5 Canada
| | - Stéphane Croteau
- Departments of Medicine, Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, QC Canada
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec H3T 1C5 Canada
- Departments of Medicine, Pediatrics, Pharmacology and Physiology, University of Montréal, Montréal, QC Canada
| |
Collapse
|
34
|
Sun Q, Guo W, Wang P, Chang Z, Xia X, Du Q. Toxicity of 2-methyl-4-chlorophenoxy acetic acid alone and in combination with cyhalofop-butyl to Cyprinus carpio embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103697. [PMID: 34216793 DOI: 10.1016/j.etap.2021.103697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Herbicides may pose considerable danger to non-target aquatic organisms and further threaten human health. The present investigation was aimed to assess the effects of 2-methyl-4-chlorophenoxy acetic acid (MCPA-Na) on Cyprinus carpio embryos. Embryos were exposed to six concentrations of MCPA-Na (0, 52, 54, 56, 58 and 60 mg/L) for 96 h. A series of symptoms were observed in developmental embryos during MCPA-Na exposure, including increased death, hatching inhibited and morphological deformities. Further, MCPA-Na exposure leading to a series of morphological changes (pericardial edema, tail deformation, and spine deformation) in embryos, which were consistent with modifications in the associated genes. In this work, we also investigated the joint toxicity of herbicides (MCPA-Na and cyhalofop-butyl) commonly used in paddy fields on carp embryos, using the 96 h-LC50 of herbicides (59.784 mg/L MCPA-Na and 1.472 mg/L cyhalofop-butyl) and confirmed that a synergistic effect existing in the binary mixtures.
Collapse
Affiliation(s)
- Qingyu Sun
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Wanwan Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Basic Medical, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453007, People's Republic of China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|
35
|
Wang Y, Wang J, Hu H, Wang H, Wang C, Lin H, Zhao X. Dynamic transcriptome profiles of postnatal porcine skeletal muscle growth and development. BMC Genom Data 2021; 22:32. [PMID: 34488628 PMCID: PMC8419915 DOI: 10.1186/s12863-021-00984-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Skeletal muscle growth and development are closely associated with the quantity and quality of pork production. We performed a transcriptomic analysis of 12 Longissimus dorsi muscle samples from Tibetan piglets at four postnatal stages of 0, 14, 30, and 60 days using RNA sequencing. RESULTS According to the pairwise comparisons between the libraries of the muscle samples at the four postnatal stages, a total of 4115 differentially expressed genes (DEGs) were identified in terms of |log2(fold change)| ≥ 1 and an adjusted P value < 0.01. Short-time series expression miner (STEM) analysis of the DEGs identified eight significantly different expression profiles, which were divided into two clusters based on the expression pattern. DEGs in cluster I displayed a pattern of decreasing to a nadir, and then a rise, and the significantly enriched gene ontology (GO) terms detected using them were involved in multiple processes, of which the cell cycle, immunocyte activation and proliferation, as well as actin cytoskeleton organization, were the top three overrepresented processes based on the GO terms functional classification. DEGs in cluster II displayed a pattern of increasing to a peak, then declining, which mainly contributed to protein metabolism. Furthermore, besides the pathways related to immune system, a few diseases, and protein metabolism, the DEGs in clusters I and II were significantly enriched in pathways related to muscle growth and development, such as the Rap1, PI3K-Akt, AMPK, and mTOR signaling pathways. CONCLUSIONS This study revealed GO terms and pathways that could affect the postnatal muscle growth and development in piglets. In addition, this study provides crucial information concerning the molecular mechanisms of muscle growth and development as well as an overview of the piglet transcriptome dynamics throughout the postnatal period in terms of growth and development.
Collapse
Affiliation(s)
- Yanping Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong Province, China
| | - Jiying Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong Province, China
| | - Hongmei Hu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong Province, China
| | - Huaizhong Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong Province, China
| | - Cheng Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong Province, China
| | - Haichao Lin
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong Province, China
| | - Xueyan Zhao
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong Province, China.
| |
Collapse
|
36
|
An Evaluation of Human Induced Pluripotent Stem Cells to Test for Cardiac Developmental Toxicity. Int J Mol Sci 2021; 22:ijms22158114. [PMID: 34360880 PMCID: PMC8347148 DOI: 10.3390/ijms22158114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
To prevent congenital defects arising from maternal exposure, safety regulations require pre-market developmental toxicity screens for industrial chemicals and pharmaceuticals. Traditional embryotoxicity approaches depend heavily on the use of low-throughput animal models which may not adequately predict human risk. The validated embryonic stem cell test (EST) developed in murine embryonic stem cells addressed the former problem over 15 years ago. Here, we present a proof-of-concept study to address the latter challenge by updating all three endpoints of the classic mouse EST with endpoints derived from human induced pluripotent stem cells (hiPSCs) and human fibroblasts. Exposure of hiPSCs to selected test chemicals inhibited differentiation at lower concentrations than observed in the mouse EST. The hiPSC-EST also discerned adverse developmental outcomes driven by novel environmental toxicants. Evaluation of the early cardiac gene TBX5 yielded similar toxicity patterns as the full-length hiPSC-EST. Together, these findings support the further development of hiPSCs and early molecular endpoints as a biologically relevant embryotoxicity screening approach for individual chemicals and mixtures.
Collapse
|
37
|
Gao Y, Liang X, Tian Z, Ma Y, Sun C. Betalain exerts cardioprotective and anti-inflammatory effects against the experimental model of heart failure. Hum Exp Toxicol 2021; 40:S16-S28. [PMID: 34189972 DOI: 10.1177/09603271211027933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Betalain is a natural plant pigment known to elicit various biological activities. However, studies on the protective effect of betalain against heart failure have not reported yet. The experimental model of heart failure was created in Wistar rats using isoproterenol (ISO). The animals were randomly assigned into four groups such as sham-control, ISO-induced heart failure, betalain pretreated before ISO induction (50 mg/kg/day), and betalain drug control group were maintained for 6 weeks. At the end of the experimental period, anti-oxidant enzymes, inflammatory markers, matrix proteins, cardiac-specific markers, and micro RNAs were elucidated using RT-PCR, and ELISA analysis. The results demonstrated that the rats induced with ISO displayed an abnormality in cardiac functions, increased oxidative stress markers (p < 0.01), inflammatory cytokines (p < 0.01) while abrogated the expression of miR-18a, and increased miR-199a. While betalain pre-treated rats prevented the cardiac failure significantly (p < 0.01) with improved anti-oxidant enzymes, abrogated the inflammatory signals with restored matrix proteins, cardiac biomarker genes, and attenuated miR-423 and miR-27 compared to heart failure rats. The results of the study suggest that the betalain treatment protected the hearts from failing via microRNA mediated activation the anti-inflammatory signaling and restoring the matrix protein modulation.
Collapse
Affiliation(s)
- Y Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - X Liang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Z Tian
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Y Ma
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - C Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
38
|
Integrated transcriptomics and epigenomics reveal chamber-specific and species-specific characteristics of human and mouse hearts. PLoS Biol 2021; 19:e3001229. [PMID: 34003819 PMCID: PMC8130971 DOI: 10.1371/journal.pbio.3001229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
DNA methylation, chromatin accessibility, and gene expression represent different levels information in biological process, but a comprehensive multiomics analysis of the mammalian heart is lacking. Here, we applied nucleosome occupancy and methylome sequencing, which detected DNA methylation and chromatin accessibility simultaneously, as well as RNA-seq, for multiomics analysis of the 4 chambers of adult and fetal human hearts, and adult mouse hearts. Our results showed conserved region-specific patterns in the mammalian heart at transcriptome and DNA methylation level. Adult and fetal human hearts showed distinct features in DNA methylome, chromatin accessibility, and transcriptome. Novel long noncoding RNAs were identified in the human heart, and the gene expression profiles of major cardiovascular diseases associated genes were displayed. Furthermore, cross-species comparisons revealed human-specific and mouse-specific differentially expressed genes between the atria and ventricles. We also reported the relationship among multiomics and found there was a bell-shaped relationship between gene-body methylation and expression in the human heart. In general, our study provided comprehensive spatiotemporal and evolutionary insights into the regulation of gene expression in the heart. Multi-omic analyses of the four chambers of the human and mouse heart, including transcriptome, DNA methylation and chromatin accessibility, reveals characteristic patterns of gene regulation at the level of heart regions.
Collapse
|
39
|
Adrião A, Santana I, Ribeiro C, Cancela ML, Conceição N, Grazina M. Identification of a novel mutation in MEF2C gene in an atypical patient with frontotemporal lobar degeneration. Neurol Sci 2021; 43:319-326. [PMID: 33999292 DOI: 10.1007/s10072-021-05269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
The MEF2C gene encodes a transcription factor known to play a crucial role in molecular pathways affecting neuronal development. MEF2C mutations were described as a genetic cause of developmental disease (MRD20), and several reports sustain its involvement in dementia-related conditions, such as Alzheimer's disease and amyotrophic lateral sclerosis. These pathologies and frontotemporal degeneration (FTLD) are thought to share common physiopathological pathways. In this exploratory study, we searched for alterations in the DNA sequence of exons and boundaries, including 5'- and 3'-untranslated regions (5'UTR, 3'UTR), of MEF2C gene in 11 patients with clinical phenotypes related with MRD20 or FTLD. We identified a heterozygous deletion of 13 nucleotides in the 5'UTR region of a 69 years old FTLD patient. This alteration was absent in 200 healthy controls, suggesting a contribution to this patient's disease phenotype. In silico analysis of the mutated sequence indicated changes in mRNA secondary structure and stability, thus potentially affecting MEF2C protein levels. Furthermore, in vitro functional analysis of this mutation revealed that the presence of this deletion abolished the transcriptional activity of the gene in human embryonic cells and rat brain neurons, probably by modifying MEF2C expression. Altogether, our results provide evidence for the involvement of MEF2C in FTLD manifesting with seizures.
Collapse
Affiliation(s)
- Andreia Adrião
- Centre of Marine Sciences/CCMAR, University of Algarve, Faro, Portugal.,PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Isabel Santana
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Pólo III - Subunit I, Azinhaga de Sta. Comba Celas PT, 3000-548, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Carolina Ribeiro
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra - Laboratory of Mitochondrial BioMedicine and Theranostics, Coimbra, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences/CCMAR, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences and Algarve Biomedical Centre, University of Algarve, Campus de Gambelas PT, 8005-139, Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences/CCMAR, University of Algarve, Faro, Portugal. .,Faculty of Medicine and Biomedical Sciences and Algarve Biomedical Centre, University of Algarve, Campus de Gambelas PT, 8005-139, Faro, Portugal.
| | - Manuela Grazina
- Faculty of Medicine, University of Coimbra, Pólo III - Subunit I, Azinhaga de Sta. Comba Celas PT, 3000-548, Coimbra, Portugal. .,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal. .,CNC- Center for Neuroscience and Cell Biology, University of Coimbra - Laboratory of Mitochondrial BioMedicine and Theranostics, Coimbra, Portugal.
| |
Collapse
|
40
|
Massadeh S, Albeladi M, Albesher N, Alhabshan F, Kampe KD, Chaikhouni F, Kabbani MS, Beetz C, Alaamery M. Novel Autosomal Recessive Splice-Altering Variant in PRKD1 Is Associated with Congenital Heart Disease. Genes (Basel) 2021; 12:genes12050612. [PMID: 33919081 PMCID: PMC8143129 DOI: 10.3390/genes12050612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Congenital heart defects (CHDs) are the most common types of birth defects, and global incidence of CHDs is on the rise. Despite the prevalence of CHDs, the genetic determinants of the defects are still in the process of being identified. Herein, we report a consanguineous Saudi family with three CHD affected daughters. We used whole exome sequencing (WES) to investigate the genetic cause of CHDs in the affected daughters. We found that all affected individuals were homozygous for a novel splice-altering variant (NM_001330069.1: c.265-1G>T) of PRKD1, which encodes a calcium/calmodulin-dependent protein kinase in the heart. The homozygous variant was found in the affected patients with Pulmonary Stenosis (PS), Truncus Arteriosis (TA), and Atrial Septal Defect (ASD). Based on the family’s pedigree, the variant acts in an autosomal recessive manner, which makes it the second autosomal recessive variant of PRKD1 to be identified with a link to CHDs, while all other previously described variants act dominantly. Interestingly, the father of the affected daughters was also homozygous for the variant, though he was asymptomatic of CHDs himself. Since both of his sisters had CHDs as well, this raises the possibility that the novel PRKD1 variant may undergo autosomal recessive inheritance mode with gender limitation. This finding confirms that CHD can be associated with both dominant and recessive mutations of the PRKD1 gene, and it provides a new insight to genotype–phenotype association between PRKD1 and CHDs. To our knowledge, this is the first report of this specific PRKD1 mutation associated with CHDs.
Collapse
Affiliation(s)
- Salam Massadeh
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia; (S.M.); (M.A.); (N.A.)
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
- Saudi Human Genome Project (SHGP), King Abdulaziz City for Science and Technology (KACST), Satellite Lab at King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
| | - Maha Albeladi
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia; (S.M.); (M.A.); (N.A.)
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Nour Albesher
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia; (S.M.); (M.A.); (N.A.)
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad Alhabshan
- Department of Cardiac Sciences, Ministry of the National Guard—Health Affairs, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (F.A.); (F.C.); (M.S.K.)
| | | | - Farah Chaikhouni
- Department of Cardiac Sciences, Ministry of the National Guard—Health Affairs, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (F.A.); (F.C.); (M.S.K.)
| | - Mohamed S. Kabbani
- Department of Cardiac Sciences, Ministry of the National Guard—Health Affairs, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (F.A.); (F.C.); (M.S.K.)
| | | | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard- Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia; (S.M.); (M.A.); (N.A.)
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
- Saudi Human Genome Project (SHGP), King Abdulaziz City for Science and Technology (KACST), Satellite Lab at King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Correspondence:
| |
Collapse
|
41
|
Chaudhary R, Agarwal V, Kaushik AS, Rehman M. Involvement of myocyte enhancer factor 2c in the pathogenesis of autism spectrum disorder. Heliyon 2021; 7:e06854. [PMID: 33981903 PMCID: PMC8082549 DOI: 10.1016/j.heliyon.2021.e06854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2), a family of transcription factor of MADS (minichromosome maintenance 1, agamous, deficiens and serum response factor)-box family needed in the growth and differentiation of a variety of human cells, such as neural, immune, endothelial, and muscles. As per existing literature, MEF2 transcription factors have also been associated with synaptic plasticity, the developmental mechanisms governing memory and learning, and several neurologic conditions, like autism spectrum disorders (ASDs). Recent genomic findings have ascertained a link between MEF2 defects, particularly in the MEF2C isoform and the ASD. In this review, we summarized a concise overview of the general regulation, structure and functional roles of the MEF2C transcription factor. We further outlined the potential role of MEF2C as a risk factor for various neurodevelopmental disorders, such as ASD, MEF2C Haploinsufficiency Syndrome and Fragile X syndrome.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
42
|
Zhang G, Wu P, Zhou K, He M, Zhang X, Qiu C, Li T, Zhang T, Xie K, Dai G, Wang J. Study on the transcriptome for breast muscle of chickens and the function of key gene RAC2 on fibroblasts proliferation. BMC Genomics 2021; 22:157. [PMID: 33676413 PMCID: PMC7937270 DOI: 10.1186/s12864-021-07453-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/19/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Growth performance is significant in broiler production. In the growth process of broilers, gene expression varies at different growth stages. However, limited research has been conducted on the molecular mechanisms of muscle growth and development in yellow-feathered male chickens. RESULTS In the study, we used RNA-seq to study the transcriptome of the breast muscle of male Jinghai yellow chickens at 4 (M4F), 8 (M8F) and 12 weeks (M12F) of age. The results showed that 4608 differentially expressed genes (DEGs) were obtained by comparison in pairs of the three groups with Fold Change (FC) ≥ 2 and False Discovery Rate (FDR) ≤ 0.05, and 83, 3445 and 3903 DEGs were obtained separately from M4FvsM8F, M4FvsM12F and M8FvsM12F. Six genes were found as co-differentially expressed in the three age groups, namely SNCG, MYH1A, ARHGDIB, ENSGALG00000031598, ENSGALG00000035660 and ENSGALG00000030559. The GO analysis showed that 0, 304 and 408 biological process (BP) were significantly enriched in M4FvsM8F, M4FvsM12F and M8FvsM12F groups, respectively. KEGG pathway enrichment showed that 1, 2, 4 and 4 pathways were significantly enriched in M4FvsM8F, M4FvsM12F, M8FvsM12F and all DEGs, respectively. They were steroid biosynthesis, carbon metabolism, focal adhesion, cytokine-cytokine receptor interaction, biosynthesis of amino acids and salmonella infection. We constructed short hairpin RNA (shRNA) to interfere the differentially expressed gene RAC2 in DF-1 cells and detected mRNA and protein expression of the downstream genes PAK1 and MAPK8. Results of qPCR showed that RAC2, PAK1 and MAPK8 mRNA expression significantly decreased in the shRAC2-2 group compared with the negative control (NC) group. Western Blot (WB) results showed that the proteins of RAC2, PAK1 and MAPK8 also decreased in the shRAC2-2 group. Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (EdU) assay both showed that the proliferation of DF-1 cells was significantly inhibited after transfection of shRAC2-2. CONCLUSIONS The results of RNA-seq revealed genes, BP terms and KEGG pathways related to growth and development of male Jinghai yellow chickens, and they would have important guiding significance to our production practice. Further research suggested that RAC2 might regulate cell proliferation by regulating PAKs/MAPK8 pathway and affect growth of chickens.
Collapse
Affiliation(s)
- Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China.
| | - Kaizhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Xinchao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Cong Qiu
- Jiangsu Jinghai Poultry Group Co. Ltd., Nantong, 226100, China
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
43
|
Yang YJ, Kim DJ. An Overview of the Molecular Mechanisms Contributing to Musculoskeletal Disorders in Chronic Liver Disease: Osteoporosis, Sarcopenia, and Osteoporotic Sarcopenia. Int J Mol Sci 2021; 22:2604. [PMID: 33807573 PMCID: PMC7961345 DOI: 10.3390/ijms22052604] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of osteoporosis and sarcopenia is significantly higher in patients with liver disease than in those without liver disease and osteoporosis and sarcopenia negatively influence morbidity and mortality in liver disease, yet these musculoskeletal disorders are frequently overlooked in clinical practice for patients with chronic liver disease. The objective of this review is to provide a comprehensive understanding of the molecular mechanisms of musculoskeletal disorders accompanying the pathogenesis of liver disease. The increased bone resorption through the receptor activator of nuclear factor kappa (RANK)-RANK ligand (RANKL)-osteoprotegerin (OPG) system and upregulation of inflammatory cytokines and decreased bone formation through increased bilirubin and sclerostin and lower insulin-like growth factor-1 are important mechanisms for osteoporosis in patients with liver disease. Sarcopenia is associated with insulin resistance and obesity in non-alcoholic fatty liver disease, whereas hyperammonemia, low amount of branched chain amino acids, and hypogonadism contributes to sarcopenia in liver cirrhosis. The bidirectional crosstalk between muscle and bone through myostatin, irisin, β-aminoisobutyric acid (BAIBA), osteocalcin, as well as the activation of the RANK and the Wnt/β-catenin pathways are associated with osteosarcopenia. The increased understandings for these musculoskeletal disorders would be contributes to the development of effective therapies targeting the pathophysiological mechanism involved.
Collapse
Affiliation(s)
- Young Joo Yang
- Department of Internal Medicine, Hallym University College of Medicine, Gangwon-do, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Gangwon-do, Chuncheon 24253, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Gangwon-do, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Gangwon-do, Chuncheon 24253, Korea
| |
Collapse
|
44
|
MEF2A transcriptionally upregulates the expression of ZEB2 and CTNNB1 in colorectal cancer to promote tumor progression. Oncogene 2021; 40:3364-3377. [PMID: 33863999 PMCID: PMC8116210 DOI: 10.1038/s41388-021-01774-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Colorectal cancer (CRC) is one of the leading cancers worldwide, accounting for high morbidity and mortality. The mechanisms governing tumor growth and metastasis in CRC require detailed investigation. The results of the present study indicated that the transcription factor (TF) myocyte enhancer factor 2A (MEF2A) plays a dual role in promoting proliferation and metastasis of CRC by inducing the epithelial-mesenchymal transition (EMT) and activation of WNT/β-catenin signaling. Aberrant expression of MEF2A in CRC clinical specimens was significantly associated with poor prognosis and metastasis. Functionally, MEF2A directly binds to the promoter region to initiate the transcription of ZEB2 and CTNNB1. Simultaneous activation of the expression of EMT-related TFs and Wnt/β-catenin signaling by MEF2A overexpression induced the EMT and increased the frequency of tumor formation and metastasis. The present study identified a new critical oncogene involved in the growth and metastasis of CRC, providing a potential novel therapeutic target for CRC intervention.
Collapse
|
45
|
Sitbon YH, Yadav S, Kazmierczak K, Szczesna-Cordary D. Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease. J Muscle Res Cell Motil 2020; 41:313-327. [PMID: 31131433 PMCID: PMC6879809 DOI: 10.1007/s10974-019-09517-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
The activity of cardiac and skeletal muscles depends upon the ATP-coupled actin-myosin interactions to execute the power stroke and muscle contraction. The goal of this review article is to provide insight into the function of myosin II, the molecular motor of the heart and skeletal muscles, with a special focus on the role of myosin II light chain (MLC) components. Specifically, we focus on the involvement of myosin regulatory (RLC) and essential (ELC) light chains in striated muscle development, isoform appearance and their function in normal and diseased muscle. We review the consequences of isoform switching and knockout of specific MLC isoforms on cardiac and skeletal muscle function in various animal models. Finally, we discuss how dysregulation of specific RLC/ELC isoforms can lead to cardiac and skeletal muscle diseases and summarize the effects of most studied mutations leading to cardiac or skeletal myopathies.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
46
|
D'haene E, Bar-Yaacov R, Bariah I, Vantomme L, Van Loo S, Cobos FA, Verboom K, Eshel R, Alatawna R, Menten B, Birnbaum RY, Vergult S. A neuronal enhancer network upstream of MEF2C is compromised in patients with Rett-like characteristics. Hum Mol Genet 2020; 28:818-827. [PMID: 30445463 PMCID: PMC6381311 DOI: 10.1093/hmg/ddy393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023] Open
Abstract
Mutations in myocyte enhancer factor 2C (MEF2C), an important transcription factor in neurodevelopment, are associated with a Rett-like syndrome. Structural variants (SVs) upstream of MEF2C, which do not disrupt the gene itself, have also been found in patients with a similar phenotype, suggesting that disruption of MEF2C regulatory elements can also cause a Rett-like phenotype. To characterize those elements that regulate MEF2C during neural development and that are affected by these SVs, we used genomic tools coupled with both in vitro and in vivo functional assays. Through circularized chromosome conformation capture sequencing
(4C-seq) and the assay for transposase-accessible chromatin using sequencing
(ATAC-seq), we revealed a complex interaction network in which the MEF2C promoter physically contacts several distal enhancers that are deleted or translocated by disease-associated SVs. A total of 16 selected candidate regulatory sequences were tested for enhancer activity in vitro, with 14 found to be functional enhancers. Further analyses of their in vivo activity in zebrafish showed that each of these enhancers has a distinct activity pattern during development, with eight enhancers displaying neuronal activity. In summary, our results disentangle a complex regulatory network governing neuronal MEF2C expression that involves multiple distal enhancers. In addition, the characterized neuronal enhancers pose as novel candidates to screen for mutations in neurodevelopmental disorders, such as Rett-like syndrome.
Collapse
Affiliation(s)
- Eva D'haene
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Reut Bar-Yaacov
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Inbar Bariah
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Lies Vantomme
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Sien Van Loo
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Francisco Avila Cobos
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.,Bioinformatics Institute Ghent from Nucleotides to Networks (BIG N2N), Ghent, Belgium
| | - Karen Verboom
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Reut Eshel
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Rawan Alatawna
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Björn Menten
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Ramon Y Birnbaum
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
47
|
Huang H, Zhao Y, Shang X, Ren H, Zhao Y, Liu X. CAIII expression in skeletal muscle is regulated by Ca2+–CaMKII–MEF2C signaling. Exp Cell Res 2019; 385:111672. [DOI: 10.1016/j.yexcr.2019.111672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
|
48
|
Mouse HSA+ immature cardiomyocytes persist in the adult heart and expand after ischemic injury. PLoS Biol 2019; 17:e3000335. [PMID: 31246945 PMCID: PMC6619826 DOI: 10.1371/journal.pbio.3000335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/10/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
The assessment of the regenerative capacity of the heart has been compromised by the lack of surface signatures to characterize cardiomyocytes (CMs). Here, combined multiparametric surface marker analysis with single-cell transcriptional profiling and in vivo transplantation identify the main mouse fetal cardiac populations and their progenitors (PRGs). We found that CMs at different stages of differentiation coexist during development. We identified a population of immature heat stable antigen (HSA)/ cluster of differentiation 24 (CD24)+ CMs that persists throughout life and that, unlike other CM subsets, actively proliferates up to 1 week of age and engrafts cardiac tissue upon transplantation. In the adult heart, a discrete population of HSA/CD24+ CMs appears as mononucleated cells that increase in frequency after infarction. Our work identified cell surface signatures that allow the prospective isolation of CMs at all developmental stages and the detection of a subset of immature CMs throughout life that, although at reduced frequencies, are poised for activation in response to ischemic stimuli. This work opens new perspectives in the understanding and treatment of heart pathologies.
Collapse
|
49
|
Chen HP, Wen J, Tan SR, Kang LM, Zhu GC. MiR-199a-3p inhibition facilitates cardiomyocyte differentiation of embryonic stem cell through promotion of MEF2C. J Cell Physiol 2019; 234:23315-23325. [PMID: 31140610 DOI: 10.1002/jcp.28899] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) is a small molecule (19-25 nucleotide) noncoding RNA that inhibits the expression of target messenger RNA (mRNA) at the posttranscriptional level as an endogenous regulator. There is an increasing evidence that miR-199a-3p has a significant effect on the development of multiple tumors. However, the specific roles of miR-199a-3p in myocardial differentiation of embryonic stem cell still need to be investigated. Method of the hanging drop was used to build the model of cardiomyocyte differentiation of stem cell and beating rate of embryoid bodies (EBs) was calculated. The levels of intracellular MEF2C, a-MHC, GATA4, Nkx2.5, and cTnT mRNA were measured by real-time quantitative polymerase chain reaction, while the expressions of miR-199a-3p were detected simultaneously. Protein levels of MEF2C, a-MHC, GATA4, Nkx2.5, and cTnT were quantified by western blot analysis. Immunoreactivities of MEF2C and cTnT were analyzed by immunofluorescence. The interaction between miR-199a-3p and its predicted target (3'-untranslated region of MEF2C mRNA) was verified by luciferase assay. MiR-199a-3p levels increased during cardiogenesis. MiR-199a-3p inhibitor increased the beating rate of EBs and promoted expressions of cardiac-specific markers (GATA4, Nkx2.5, cTnT, and a-MHC). Notably, miR-199a-3p inhibition brought upregulation of MEF2C, which is the target of miR-199a-3p that we predicted and verified experimentally. In addition, MEF2C siRNA decreased miR-199a-3p inhibitor promoted EBs beating and attenuated miR-199a-3p inhibitor-induced cTnT and MEF2C expressions. The results above showed that MEF2C was involved in the process of promoting the differentiation of stem cells into cardiac myocytes by miR-199a-3p inhibitors.
Collapse
Affiliation(s)
- Hong-Ping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Tumor Pathogen's and Molecular Pathology, Nanchang University, Nanchang, China
| | - Jing Wen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Si-Rui Tan
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Lu-Mei Kang
- Department of Animal Science, Medical College, Nanchang University, Nanchang, China
| | - Gao-Chun Zhu
- Department of Anatomy of the Human Body, Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
50
|
Della Gaspera B, Mateus A, Andéol Y, Weill L, Charbonnier F, Chanoine C. Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier. Dev Biol 2019; 453:11-18. [PMID: 31128088 DOI: 10.1016/j.ydbio.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/18/2019] [Accepted: 05/21/2019] [Indexed: 11/29/2022]
Abstract
The two somite compartments, dorso-lateral dermomyotome and medio-ventral sclerotome are major vertebrate novelties, but little is known about their evolutionary origin. We determined that sclerotome cells in Xenopus come from lateral somitic frontier (LSF) by lineage tracing, ablation experiments and histological analysis. We identified Twist1 as marker of migrating sclerotome progenitors in two amphibians, Xenopus and axolotl. From these results, three conclusions can be drawn. First, LSF is made up of multipotent somitic cells (MSCs) since LSF gives rise to sclerotome but also to dermomytome as already shown in Xenopus. Second, the basic scheme of somite compartmentalization is conserved from cephalochordates to anamniotes since in both cases, lateral cells envelop dorsally and ventrally the ancestral myotome, suggesting that lateral MSCs should already exist in cephalochordates. Third, the transition from anamniote to amniote vertebrates is characterized by extension of the MSCs domain to the entire somite at the expense of ancestral myotome since amniote somite is a naive tissue that subdivides into sclerotome and dermomyotome. Like neural crest pluripotent cells, MSCs are at the origin of major vertebrate novelties, namely hypaxial region of the somite, dermomyotome and sclerotome compartments. Hence, change in MSCs properties and location is involved in somite evolution.
Collapse
Affiliation(s)
- Bruno Della Gaspera
- UMR INSERM 1124, Université de Paris, Faculté des sciences biomédicales et fondamentales, 45 rue des Saints-Pères, F-75270, Paris Cedex 06, France.
| | - Alice Mateus
- UMR INSERM 1124, Université de Paris, Faculté des sciences biomédicales et fondamentales, 45 rue des Saints-Pères, F-75270, Paris Cedex 06, France
| | - Yannick Andéol
- Equipe UR6, Enzymologie de l'ARN, Sorbonne Université, Faculté des Sciences et Technologies, 9 quai St Bernard, 75251, Paris Cedex 05, France
| | - Laure Weill
- UMR INSERM 1124, Université de Paris, Faculté des sciences biomédicales et fondamentales, 45 rue des Saints-Pères, F-75270, Paris Cedex 06, France
| | - Frédéric Charbonnier
- UMR INSERM 1124, Université de Paris, Faculté des sciences biomédicales et fondamentales, 45 rue des Saints-Pères, F-75270, Paris Cedex 06, France
| | - Christophe Chanoine
- UMR INSERM 1124, Université de Paris, Faculté des sciences biomédicales et fondamentales, 45 rue des Saints-Pères, F-75270, Paris Cedex 06, France.
| |
Collapse
|