1
|
Kou G, Zhou Y, Han H, Liu Z, Lai Y, Gao S. Comparative Analysis of Transcriptome Data of Wings from Different Developmental Stages of the Gynaephora qinghaiensis. Int J Mol Sci 2025; 26:3562. [PMID: 40332056 PMCID: PMC12026863 DOI: 10.3390/ijms26083562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 05/08/2025] Open
Abstract
Gynaephora qinghaiensis is a major pest in the alpine meadow regions of China. While the females are unable to fly, the males can fly and cause widespread damage. The aim of this study was to use transcriptome analysis to identify and verify genes expressed at different developmental stages of Gynaephora qinghaiensis, with particular emphasis on genes associated with wing development. High-throughput sequencing was performed on an Illumina HiSeqTM2000 platform to assess transcriptomic differences in the wings of male and female pupa and male and female adults of Gynaephora qinghaiensis, and the expression levels of the differentially expressed genes (DEGs) were verified by real-time fluorescence quantitative PCR (RT-qPCR). A total of 60,536 unigenes were identified from the transcriptome data, and 25,162 unigenes were obtained from a comparison with four major databases. Further analysis identified 18 DEGs associated with wing development in Gynaephora qinghaiensis. RT-qPCR verification of the expression levels showed consistency with the RNA sequencing results. Spatio-temporal expression profiling of the 18 genes indicated different levels of expression in the thoraces of male and female pupa, as well as between the wing buds of adult females and the wings of adult males. GO annotation analysis showed that the DEGs were associated with similar categories with no significant enrichment and were involved in cellular processes, cellular anatomical entities, and binding. KEGG analysis indicated that the DEGs were associated with endocytosis and metabolic pathways. The results of this study expand the information on genes associated with Gynaephora qinghaiensis wing development and provide support for further investigations of wing development at the molecular level.
Collapse
Affiliation(s)
- Guixiang Kou
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (G.K.); (H.H.)
- Institute of Plant Protection, Qinghai Academy of Agriculture and Forestry, Xining 810016, China
| | - Yuantao Zhou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.Z.); (Z.L.)
| | - Haibing Han
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (G.K.); (H.H.)
| | - Zhanling Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.Z.); (Z.L.)
| | - Youpeng Lai
- Institute of Plant Protection, Qinghai Academy of Agriculture and Forestry, Xining 810016, China
| | - Shujing Gao
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (G.K.); (H.H.)
| |
Collapse
|
2
|
Dou F, Ji W, Xie Q, Wang J, Cao Y, Shi J. Transcriptome analysis and temporal expression patterns of wing development-related genes in Lymantria dispar (Lepidoptera: Erebidae). ENVIRONMENTAL ENTOMOLOGY 2025:nvae111. [PMID: 40172523 DOI: 10.1093/ee/nvae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 04/04/2025]
Abstract
Spongy moth, Lymantria dispar Linnaeus (Lepidoptera: Erebidae), stands as a pervasive international threat, marked by its designation as one of the "world's 100 worst invasive species" by IUCN, owing to its voracious leaf-eating habits encompassing over 500 plant species. Its strong flight ability facilitates its spread and invasion. The present study aims to uncover differential gene expression, utilizing the Illumina Novaseq6000 sequencing platform for comprehensive transcriptome sequencing and bioinformatic analysis of total RNA extracted from larvae and pupae. Results revealed pivotal processes of protein functional structure conformation, transport, and signal transduction in functional gene annotation during the 2 developmental stages of spongy moth. 18 functional genes, namely, Distal-less (Dll), Wingless (Wg), Decapentaplegic (Dpp), Hedgehog (Hh), Cubitus interruptus (Ci), Patched (Ptc), Apterous (Ap), Serrate (Ser), Fringe (Fng), Achaete (Ac), Engrailed (En), Vestigial (Vg), Scute (Sc), Invected (Inv), Scalloped (Sd), Ultrabithorax (Ubx), Serum Response Factor (SRF), and Spalt-major, associated with wing development were identified, and their expression levels were meticulously assessed through real-time quantitative PCR (RT-qPCR) in 1st-6th instar larvae and male and female pupae wing discs. The results showed that 18 genes exhibited expression. Furthermore, the relative expression values of wing development-related genes were significantly higher in the pupae stage than in the larval stage. The relative expression values of male and female pupae were also significantly different. The RT-qPCR results were in general agreement with the results of transcriptome analysis. This study establishes a foundational understanding of the developmental mechanisms governing the formation of spongy moth wings.
Collapse
Affiliation(s)
- Fengrui Dou
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Wenzhuai Ji
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Qing Xie
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Jingyu Wang
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Yixia Cao
- Biomedical Department, China Certification & Inspection (Group) Inspection Co., Ltd. (CCIC), Beijing, People's Republic of China
| | - Juan Shi
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Karling T, Weavers H. Immune cells adapt to confined environments in vivo to optimise nuclear plasticity for migration. EMBO Rep 2025; 26:1238-1268. [PMID: 39915297 PMCID: PMC11894099 DOI: 10.1038/s44319-025-00381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 03/12/2025] Open
Abstract
Cells navigating in complex 3D microenvironments frequently encounter narrow spaces that physically challenge migration. While in vitro studies identified nuclear stiffness as a key rate-limiting factor governing the movement of many cell types through artificial constraints, how cells migrating in vivo respond dynamically to confinement imposed by local tissue architecture, and whether these encounters trigger molecular adaptations, is unclear. Here, we establish an innovative in vivo model for mechanistic analysis of nuclear plasticity as Drosophila immune cells transition into increasingly confined microenvironments. Integrating live in vivo imaging with molecular genetic analyses, we demonstrate how rapid molecular adaptation upon environmental confinement (including fine-tuning of the nuclear lamina) primes leukocytes for enhanced nuclear deformation while curbing damage (including rupture and micronucleation), ultimately accelerating movement through complex tissues. We find nuclear dynamics in vivo are further impacted by large organelles (phagosomes) and the plasticity of neighbouring cells, which themselves deform during leukocyte passage. The biomechanics of cell migration in vivo are thus shaped both by factors intrinsic to individual immune cells and the malleability of the surrounding microenvironment.
Collapse
Affiliation(s)
- Tua Karling
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
4
|
Xia J, Fei S, Huang Y, Lai W, Yu Y, Liang L, Wu H, Swevers L, Sun J, Feng M. Single-nucleus sequencing of silkworm larval midgut reveals the immune escape strategy of BmNPV in the midgut during the late stage of infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104043. [PMID: 38013005 DOI: 10.1016/j.ibmb.2023.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
The midgut is an important barrier against microorganism invasion and proliferation, yet is the first tissue encountered when a baculovirus naturally invades the host. However, only limited knowledge is available how different midgut cell types contribute to the immune response and the clearance or promotion of viral infection. Here, single-nucleus RNA sequencing (snRNA seq) was employed to analyze the responses of various cell subpopulations in the silkworm larval midgut to B. mori nucleopolyhedrovirus (BmNPV) infection. We identified 22 distinct clusters representing enteroendocrine cells (EEs), enterocytes (ECs), intestinal stem cells (ISCs), Goblet cell-like and muscle cell types in the BmNPV-infected and uninfected silkworm larvae midgut at 72 h post infection. Further, our results revealed that the strategies for immune escape of BmNPV in the midgut at the late stage of infection include (1) inhibiting the response of antiviral pathways; (2) inhibiting the expression of antiviral host factors; (3) stimulating expression levels of genes promoting BmNPV replication. These findings suggest that the midgut, as the first line of defense against the invasion of the baculovirus, has dual characteristics of "resistance" and "tolerance". Our single-cell dataset reveals the diversity of silkworm larval midgut cells, and the transcriptome analysis provides insights into the interaction between host and virus infection at the single-cell level.
Collapse
Affiliation(s)
- Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Yigui Huang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Wenxuan Lai
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Lingying Liang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Hailin Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece.
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Andrews JC, Mok JW, Kanca O, Jangam S, Tifft C, Macnamara EF, Russell BE, Wang LK, Nelson SF, Bellen HJ, Yamamoto S, Malicdan MCV, Wangler MF. De novo variants in MRTFB have gain-of-function activity in Drosophila and are associated with a novel neurodevelopmental phenotype with dysmorphic features. Genet Med 2023; 25:100833. [PMID: 37013900 PMCID: PMC11533975 DOI: 10.1016/j.gim.2023.100833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
PURPOSE Myocardin-related transcription factor B (MRTFB) is an important transcriptional regulator, which promotes the activity of an estimated 300 genes but is not known to underlie a Mendelian disorder. METHODS Probands were identified through the efforts of the Undiagnosed Disease Network. Because the MRTFB protein is highly conserved between vertebrate and invertebrate model organisms, we generated a humanized Drosophila model expressing the human MRTFB protein in the same spatial and temporal pattern as the fly gene. Actin binding assays were used to validate the effect of the variants on MRTFB. RESULTS Here, we report 2 pediatric probands with de novo variants in MRTFB (p.R104G and p.A91P) and mild dysmorphic features, intellectual disability, global developmental delays, speech apraxia, and impulse control issues. Expression of the variants within wing tissues of a fruit fly model resulted in changes in wing morphology. The MRTFBR104G and MRTFBA91P variants also display a decreased level of actin binding within critical RPEL domains, resulting in increased transcriptional activity and changes in the organization of the actin cytoskeleton. CONCLUSION The MRTFBR104G and MRTFBA91P variants affect the regulation of the protein and underlie a novel neurodevelopmental disorder. Overall, our data suggest that these variants act as a gain of function.
Collapse
Affiliation(s)
- Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Sharayu Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Cynthia Tifft
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Ellen F Macnamara
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Bianca E Russell
- Division of Genetics, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA; Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Lee-Kai Wang
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Stanley F Nelson
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - May Christine V Malicdan
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD.
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX.
| |
Collapse
|
6
|
Camilleri-Robles C, Amador R, Klein CC, Guigó R, Corominas M, Ruiz-Romero M. Genomic and functional conservation of lncRNAs: lessons from flies. Mamm Genome 2022; 33:328-342. [PMID: 35098341 PMCID: PMC9114055 DOI: 10.1007/s00335-021-09939-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Over the last decade, the increasing interest in long non-coding RNAs (lncRNAs) has led to the discovery of these transcripts in multiple organisms. LncRNAs tend to be specifically, and often lowly, expressed in certain tissues, cell types and biological contexts. Although lncRNAs participate in the regulation of a wide variety of biological processes, including development and disease, most of their functions and mechanisms of action remain unknown. Poor conservation of the DNA sequences encoding for these transcripts makes the identification of lncRNAs orthologues among different species very challenging, especially between evolutionarily distant species such as flies and humans or mice. However, the functions of lncRNAs are unexpectedly preserved among different species supporting the idea that conservation occurs beyond DNA sequences and reinforcing the potential of characterising lncRNAs in animal models. In this review, we describe the features and roles of lncRNAs in the fruit fly Drosophila melanogaster, focusing on genomic and functional comparisons with human and mouse lncRNAs. We also discuss the current state of advances and limitations in the study of lncRNA conservation and future perspectives.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Raziel Amador
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Cecilia C Klein
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marina Ruiz-Romero
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Yamaguchi N, Knaut H. Focal adhesion-mediated cell anchoring and migration: from in vitro to in vivo. Development 2022; 149:dev200647. [PMID: 35587444 PMCID: PMC9188754 DOI: 10.1242/dev.200647] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell-extracellular matrix interactions have been studied extensively using cells cultured in vitro. These studies indicate that focal adhesion (FA)-based cell-extracellular matrix interactions are essential for cell anchoring and cell migration. Whether FAs play a similarly important role in vivo is less clear. Here, we summarize the formation and function of FAs in cultured cells and review how FAs transmit and sense force in vitro. Using examples from animal studies, we also describe the role of FAs in cell anchoring during morphogenetic movements and cell migration in vivo. Finally, we conclude by discussing similarities and differences in how FAs function in vitro and in vivo.
Collapse
Affiliation(s)
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
8
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
9
|
Fisher CR, Kratovil JD, Angelini DR, Jockusch EL. Out from under the wing: reconceptualizing the insect wing gene regulatory network as a versatile, general module for body-wall lobes in arthropods. Proc Biol Sci 2021; 288:20211808. [PMID: 34933597 PMCID: PMC8692954 DOI: 10.1098/rspb.2021.1808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Body plan evolution often occurs through the differentiation of serially homologous body parts, particularly in the evolution of arthropod body plans. Recently, homeotic transformations resulting from experimental manipulation of gene expression, along with comparative data on the expression and function of genes in the wing regulatory network, have provided a new perspective on an old question in insect evolution: how did the insect wing evolve? We investigated the metamorphic roles of a suite of 10 wing- and body-wall-related genes in a hemimetabolous insect, Oncopeltus fasciatus. Our results indicate that genes involved in wing development in O. fasciatus play similar roles in the development of adult body-wall flattened cuticular evaginations. We found extensive functional similarity between the development of wings and other bilayered evaginations of the body wall. Overall, our results support the existence of a versatile development module for building bilayered cuticular epithelial structures that pre-dates the evolutionary origin of wings. We explore the consequences of reconceptualizing the canonical wing-patterning network as a bilayered body-wall patterning network, including consequences for long-standing debates about wing homology, the origin of wings and the origin of novel bilayered body-wall structures. We conclude by presenting three testable predictions that result from this reconceptualization.
Collapse
Affiliation(s)
- Cera R. Fisher
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Justin D. Kratovil
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
10
|
Schachat SR, Boyce CK, Payne JL, Lentink D. Lepidoptera demonstrate the relevance of Murray's Law to circulatory systems with tidal flow. BMC Biol 2021; 19:204. [PMID: 34526028 PMCID: PMC8444497 DOI: 10.1186/s12915-021-01130-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/20/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Murray's Law, which describes the branching architecture of bifurcating tubes, predicts the morphology of vessels in many amniotes and plants. Here, we use insects to explore the universality of Murray's Law and to evaluate its predictive power for the wing venation of Lepidoptera, one of the most diverse insect orders. Lepidoptera are particularly relevant to the universality of Murray's Law because their wing veins have tidal, or oscillatory, flow of air and hemolymph. We examined over one thousand wings representing 667 species of Lepidoptera. RESULTS We found that veins with a diameter above approximately 50 microns conform to Murray's Law, with veins below 50 microns in diameter becoming less and less likely to conform to Murray's Law as they narrow. The minute veins that are most likely to deviate from Murray's Law are also the most likely to have atrophied, which prevents efficient fluid transport regardless of branching architecture. However, the veins of many taxa continue to branch distally to the areas where they atrophied, and these too conform to Murray's Law at larger diameters (e.g., Sesiidae). CONCLUSIONS This finding suggests that conformity to Murray's Law in larger taxa may reflect requirements for structural support as much as fluid transport, or may indicate that selective pressures for fluid transport are stronger during the pupal stage-during wing development prior to vein atrophy-than the adult stage. Our results increase the taxonomic scope of Murray's Law and provide greater clarity about the relevance of body size.
Collapse
Affiliation(s)
| | - C. Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, USA
| | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, USA
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, USA
- Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Atypical laminin spots and pull-generated microtubule-actin projections mediate Drosophila wing adhesion. Cell Rep 2021; 36:109667. [PMID: 34496252 DOI: 10.1016/j.celrep.2021.109667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
During Drosophila metamorphosis, dorsal and ventral wing surfaces adhere, separate, and reappose in a paradoxical process involving cell-matrix adhesion, matrix production and degradation, and long cellular projections. The identity of the intervening matrix, the logic behind the adhesion-reapposition cycle, and the role of projections are unknown. We find that laminin matrix spots devoid of other main basement membrane components mediate wing adhesion. Through live imaging, we show that long microtubule-actin cables grow from those adhesion spots because of hydrostatic pressure that pushes wing surfaces apart. Formation of cables resistant to pressure requires spectraplakin, Patronin, septins, and Sdb, a SAXO1/2 microtubule stabilizer expressed under control of wing intervein-selector SRF. Silkworms and dead-leaf butterflies display similar dorso-ventral projections and expression of Sdb in intervein SRF-like patterns. Our study supports the morphogenetic importance of atypical basement-membrane-related matrices and dissects matrix-cytoskeleton coordination in a process of great evolutionary significance.
Collapse
|
12
|
DeAguero AA, Castillo L, Oas ST, Kiani K, Bryantsev AL, Cripps RM. Regulation of fiber-specific actin expression by the Drosophila SRF ortholog Blistered. Development 2019; 146:dev.164129. [PMID: 30872277 PMCID: PMC6467476 DOI: 10.1242/dev.164129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
Abstract
Serum response factor (SRF) has an established role in controlling actin homeostasis in mammalian cells, yet its role in non-vertebrate muscle development has remained enigmatic. Here, we demonstrate that the single Drosophila SRF ortholog, termed Blistered (Bs), is expressed in all adult muscles, but Bs is required for muscle organization only in the adult indirect flight muscles. Bs is a direct activator of the flight muscle actin gene Act88F, via a conserved promoter-proximal binding site. However, Bs only activates Act88F expression in the context of the flight muscle regulatory program provided by the Pbx and Meis orthologs Extradenticle and Homothorax, and appears to function in a similar manner to mammalian SRF in muscle maturation. These studies place Bs in a regulatory framework where it functions to sustain the flight muscle phenotype in Drosophila Our studies uncover an evolutionarily ancient role for SRF in regulating muscle actin expression, and provide a model for how SRF might function to sustain muscle fate downstream of pioneer factors.
Collapse
Affiliation(s)
- Ashley A DeAguero
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lizzet Castillo
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sandy T Oas
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Kaveh Kiani
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA .,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA .,Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
13
|
The genes expression difference between winged and wingless bird cherry-oat aphid Rhopalosiphum padi based on transcriptomic data. Sci Rep 2019; 9:4754. [PMID: 30894649 PMCID: PMC6426873 DOI: 10.1038/s41598-019-41348-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/23/2019] [Indexed: 01/05/2023] Open
Abstract
Aphids produce wing and wingless morphs, depending on the environmental conditions during their complex life cycles. Wing and wingless variations play an important role in migration and host alternation, affecting the migration and host alternation processes. Several transcriptional studies have concentrated on aphids and sought to determine how an organism perceives environmental cues and responds in a plastic manner, but the underlying mechanisms have remained unclear. Therefore, to better understand the molecular mechanisms underlying the wing polyphenism of this fascinating phenomenon, we provide the first report concerning the wing development of aphids in bird cherry-oat aphid Rhopalosiphum padi with comparative transcriptional analysis of all the developmental stages by RNA-Seq. We identified several candidate genes related to biogenic amines and hormones that may be specifically involved in wing development. Moreover, we found that the third instar stage might be a critical stage for visibility of alternative morphs as well as changes in the expression of thirty-three genes associated with wing development. Several genes, i.e., Wnt2, Fng, Uba1, Hh, Foxo, Dpp, Brk, Ap, Dll, Hth, Tsh, Nub, Scr, Antp, Ubx, Asc, Srf and Fl, had different expression levels in different developmental stages and may play important roles in regulating wing polyphenism.
Collapse
|
14
|
Li XR, Zheng YH, Wang CC, Wang ZQ. Old method not old-fashioned: parallelism between wing venation and wing-pad tracheation of cockroaches and a revision of terminology. ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0419-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
De Las Heras JM, García-Cortés C, Foronda D, Pastor-Pareja JC, Shashidhara LS, Sánchez-Herrero E. The Drosophila Hox gene Ultrabithorax controls appendage shape by regulating extracellular matrix dynamics. Development 2018; 145:dev.161844. [PMID: 29853618 DOI: 10.1242/dev.161844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/17/2018] [Indexed: 12/19/2022]
Abstract
Although the specific form of an organ is frequently important for its function, the mechanisms underlying organ shape are largely unknown. In Drosophila, the wings and halteres, homologous appendages of the second and third thoracic segments, respectively, bear different forms: wings are flat, whereas halteres are globular, and yet both characteristic shapes are essential for a normal flight. The Hox gene Ultrabithorax (Ubx) governs the difference between wing and haltere development, but how Ubx function in the appendages prevents or allows flat or globular shapes is unknown. Here, we show that Ubx downregulates Matrix metalloproteinase 1 (Mmp1) expression in the haltere pouch at early pupal stage, which in turn prevents the rapid clearance of Collagen IV compared with the wing disc. This difference is instrumental in determining cell shape changes, expansion of the disc and apposition of dorsal and ventral layers, all of these phenotypic traits being characteristic of wing pouch development. Our results suggest that Ubx regulates organ shape by controlling Mmp1 expression, and the extent and timing of extracellular matrix degradation.
Collapse
Affiliation(s)
- José M De Las Heras
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - Celia García-Cortés
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | | | - L S Shashidhara
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
16
|
Martín M, Ostalé CM, de Celis JF. Patterning of the Drosophila L2 vein is driven by regulatory interactions between region-specific transcription factors expressed in response to Dpp signalling. Development 2017; 144:3168-3176. [PMID: 28760811 DOI: 10.1242/dev.143461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 07/25/2017] [Indexed: 01/31/2023]
Abstract
Pattern formation relies on the generation of transcriptional landscapes regulated by signalling pathways. A paradigm of epithelial patterning is the distribution of vein territories in the Drosophila wing disc. In this tissue, Decapentaplegic signalling regulates its target genes at different distances from the source of the ligand. The transformation of signalling into coherent territories of gene expression requires regulatory cross-interactions between these target genes. Here, we analyse the mechanisms generating the domain of knirps expression in the presumptive L2 vein of the wing imaginal disc. We find that knirps is regulated by four Decapentaplegic target genes encoding the transcription factors aristaless, spalt major, spalt-related and optix The expression of optix is activated by Dpp and repressed by the Spalt proteins, becoming restricted to the most anterior region of the wing blade. In turn, the expression of knirps is activated by Aristaless and repressed by Optix and the Spalt proteins. In this manner, the expression of knirps becomes restricted to those cells where Spalt levels are sufficient to repress optix, but not sufficient to repress knirps.
Collapse
Affiliation(s)
- Mercedes Martín
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Cristina M Ostalé
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jose F de Celis
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
17
|
|
18
|
Klebanow LR, Peshel EC, Schuster AT, De K, Sarvepalli K, Lemieux ME, Lenoir JJ, Moore AW, McDonald JA, Longworth MS. Drosophila Condensin II subunit Chromosome-associated protein D3 regulates cell fate determination through non-cell-autonomous signaling. Development 2016; 143:2791-802. [PMID: 27317808 PMCID: PMC5004906 DOI: 10.1242/dev.133686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/03/2016] [Indexed: 12/19/2022]
Abstract
The pattern of the Drosophila melanogaster adult wing is heavily influenced by the expression of proteins that dictate cell fate decisions between intervein and vein during development. dSRF (Blistered) expression in specific regions of the larval wing disc promotes intervein cell fate, whereas EGFR activity promotes vein cell fate. Here, we report that the chromatin-organizing protein CAP-D3 acts to dampen dSRF levels at the anterior/posterior boundary in the larval wing disc, promoting differentiation of cells into the anterior crossvein. CAP-D3 represses KNOT expression in cells immediately adjacent to the anterior/posterior boundary, thus blocking KNOT-mediated repression of EGFR activity and preventing cell death. Maintenance of EGFR activity in these cells depresses dSRF levels in the neighboring anterior crossvein progenitor cells, allowing them to differentiate into vein cells. These findings uncover a novel transcriptional regulatory network influencing Drosophila wing vein development, and are the first to identify a Condensin II subunit as an important regulator of EGFR activity and cell fate determination in vivo.
Collapse
Affiliation(s)
- Lindsey R Klebanow
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Emanuela C Peshel
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Andrew T Schuster
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Kuntal De
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Kavitha Sarvepalli
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | - Jessica J Lenoir
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Adrian W Moore
- Disease Mechanism Research Core, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | - Michelle S Longworth
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
19
|
Schleede J, Blair SS. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster. PLoS Genet 2015; 11:e1005576. [PMID: 26440503 PMCID: PMC4595086 DOI: 10.1371/journal.pgen.1005576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022] Open
Abstract
The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog). However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues. Signaling between cells regulates many processes, including the choices cells make between different fates during development and regeneration, and misregulation of such signaling underlies many human pathologies. To understand how such signals control developmental decisions, it is necessary to elucidate both how cells regulate and respond to different levels of signaling, and how different types of signals combine and regulate each other. We have used genetic screening in the fruitfly Drosophila melanogaster to identify mutations that reduce or eliminate signals carried by Bone Morphogenetic Proteins (BMPs), and show that BMP signaling is sensitive Gyc76C, a peptide receptor that stimulates the production of cGMP in cells. We identify downstream intracellular effectors of this cGMP activity, but provide evidence that the effects on the BMP pathway are not mediated at the intracellular level, but rather through cGMP’s effects upon the extracellular matrix and matrix-remodeling proteinases, which in turn affects the activity of extracellular BMP-binding proteins. We discuss differences and parallels with other examples of cGMP activity in Drosophila melanogaster and mammals.
Collapse
Affiliation(s)
- Justin Schleede
- Department of Zoology, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Seth S. Blair
- Department of Zoology, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
20
|
Deconstructing the complexity of regulating common properties in different cell types: Lessons from the delilah gene. Dev Biol 2015; 403:180-91. [DOI: 10.1016/j.ydbio.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/26/2015] [Accepted: 05/10/2015] [Indexed: 11/21/2022]
|
21
|
Hall ET, Verheyen EM. Ras-activated Dsor1 promotes Wnt signaling in Drosophila development. J Cell Sci 2015; 128:4499-511. [DOI: 10.1242/jcs.175240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022] Open
Abstract
Wnt/Wingless (Wg) and Ras/MAPK signaling both play fundamental roles in growth, cell-fate determination, and when dysregulated, can lead to tumorigenesis. Several conflicting modes of interaction between Ras/MAPK and Wnt signaling have been identified in specific cellular contexts, causing synergistic or antagonistic effects on target genes. We find novel evidence that the dual specificity kinase MEK, Downstream of Raf1 (Dsor1), is required for Wnt signaling. Knockdown of Dsor1 results in loss of Wg target gene expression, as well as reductions in stabilized Armadillo (Arm; Drosophila β-catenin). We have identified a close physical interaction between Dsor1 and Arm, and find that catalytically inactive Dsor1 causes a reduction inactive Arm. These results suggest that Dsor1 normally counteracts the Axin-mediated destruction of Arm. We find that Ras-Dsor1 activity is independent of upstream activation by EGFR, rather it appears to be activated by the insulin-like growth factor receptor to promote Wg signaling. Together our results suggest novel crosstalk between Insulin and Wg signaling via Dsor1.
Collapse
Affiliation(s)
- Eric T. Hall
- Department of Molecular Biology and Biochemistry, Simon Fraser University, British Columbia, Canada
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, British Columbia, Canada
| |
Collapse
|
22
|
Bilousov O, Koval A, Keshelava A, Katanaev VL. Identification of novel elements of the Drosophila blisterome sheds light on potential pathological mechanisms of several human diseases. PLoS One 2014; 9:e101133. [PMID: 24968325 PMCID: PMC4072764 DOI: 10.1371/journal.pone.0101133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which – apposition of the dorsal and ventral wing sheets during metamorphosis – is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.
Collapse
Affiliation(s)
- Oleksii Bilousov
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Amiran Keshelava
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L. Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Valentine M, Hogan J, Collier S. The Drosophila Chmp1 protein determines wing cell fate through regulation of epidermal growth factor receptor signaling. Dev Dyn 2014; 243:977-87. [PMID: 24753138 DOI: 10.1002/dvdy.24140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Receptor down-regulation by the multivesicular body (MVB) pathway is critical for many cellular signaling events. MVB generation is mediated by the highly conserved ESCRT (0, I, II, and III) protein complexes. Chmp1 is an ESCRT-III component and a putative tumor suppressor in humans. However, published data on Chmp1 activity are conflicting and its role during tissue development is not well defined. RESULTS We investigated the function of Drosophila Chmp1 and found that it is an essential gene. In the wing, loss of Chmp1 activity causes a cell fate change from intervein to vein, and interactions between Chmp1 and Drosophila Epidermal Growth Factor Receptor (DER) regulators suggest that Chmp1 negatively regulates DER signaling. Chmp1 knockdown also decreases Blistered expression, which is repressed by DER signaling. We find that Chmp1 protein localizes to the late endosome in Drosophila embryos, which is consistent with its effects on DER signaling resulting from its function in the ESCRT-III complex. CONCLUSIONS Drosophila Chmp1 negatively regulates DER signaling, likely through its role in MVB formation. Loss of Chmp1 activity in the Drosophila wing induces a cell fate change from intervein to vein that should provide a useful tool for future studies of ESCRT protein activity.
Collapse
Affiliation(s)
- Meagan Valentine
- Department of Biomedical Sciences, Marshall University, Huntington, West Virginia
| | | | | |
Collapse
|
24
|
Rougeot J, Renard M, Randsholt NB, Peronnet F, Mouchel-Vielh E. The elongin complex antagonizes the chromatin factor Corto for vein versus intervein cell identity in Drosophila wings. PLoS One 2013; 8:e77592. [PMID: 24204884 PMCID: PMC3804554 DOI: 10.1371/journal.pone.0077592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/10/2013] [Indexed: 01/08/2023] Open
Abstract
Drosophila wings mainly consist of two cell types, vein and intervein cells. Acquisition of either fate depends on specific expression of genes that are controlled by several signaling pathways. The nuclear mechanisms that translate signaling into regulation of gene expression are not completely understood, but they involve chromatin factors from the Trithorax (TrxG) and Enhancers of Trithorax and Polycomb (ETP) families. One of these is the ETP Corto that participates in intervein fate through interaction with the Drosophila EGF Receptor--MAP kinase ERK pathway. Precise mechanisms and molecular targets of Corto in this process are not known. We show here that Corto interacts with the Elongin transcription elongation complex. This complex, that consists of three subunits (Elongin A, B, C), increases RNA polymerase II elongation rate in vitro by suppressing transient pausing. Analysis of phenotypes induced by EloA, B, or C deregulation as well as genetic interactions suggest that the Elongin complex might participate in vein vs intervein specification, and antagonizes corto as well as several TrxG genes in this process. Chromatin immunoprecipitation experiments indicate that Elongin C and Corto bind the vein-promoting gene rhomboid in wing imaginal discs. We propose that Corto and the Elongin complex participate together in vein vs intervein fate, possibly through tissue-specific transcriptional regulation of rhomboid.
Collapse
Affiliation(s)
- Julien Rougeot
- Université Pierre et Marie Curie-Paris 6, UMR7622, Paris, France ; Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Paris, France
| | | | | | | | | |
Collapse
|
25
|
O'Keefe DD, Thomas SR, Bolin K, Griggs E, Edgar BA, Buttitta LA. Combinatorial control of temporal gene expression in the Drosophila wing by enhancers and core promoters. BMC Genomics 2012; 13:498. [PMID: 22992320 PMCID: PMC3641971 DOI: 10.1186/1471-2164-13-498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 09/13/2012] [Indexed: 12/20/2022] Open
Abstract
Background The transformation of a developing epithelium into an adult structure is a complex process, which often involves coordinated changes in cell proliferation, metabolism, adhesion, and shape. To identify genetic mechanisms that control epithelial differentiation, we analyzed the temporal patterns of gene expression during metamorphosis of the Drosophila wing. Results We found that a striking number of genes, approximately 50% of the Drosophila transcriptome, exhibited changes in expression during a time course of wing development. While cis-acting enhancer sequences clearly correlated with these changes, a stronger correlation was discovered between core-promoter types and the dynamic patterns of gene expression within this differentiating tissue. In support of the hypothesis that core-promoter type influences the dynamics of expression, expression levels of several TATA-box binding protein associated factors (TAFs) and other core promoter-associated components changed during this developmental time course, and a testes-specific TAF (tTAF) played a critical role in timing cellular differentiation within the wing. Conclusions Our results suggest that the combinatorial control of gene expression via cis-acting enhancer sequences and core-promoter types, determine the complex changes in gene expression that drive morphogenesis and terminal differentiation of the Drosophila wing epithelium.
Collapse
Affiliation(s)
- David D O'Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
26
|
Spatial regulation of cell adhesion in the Drosophila wing is mediated by Delilah, a potent activator of βPS integrin expression. Dev Biol 2011; 351:99-109. [PMID: 21215259 DOI: 10.1016/j.ydbio.2010.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 01/04/2023]
Abstract
In spite of our conceptual view of how differential gene expression is used to define different cell identities, we still do not understand how different cell identities are translated into actual cell properties. The example discussed here is that of the fly wing, which is composed of two main cell types: vein and intervein cells. These two cell types differ in many features, including their adhesive properties. One of the major differences is that intervein cells express integrins, which are required for the attachment of the two wing layers to each other, whereas vein cells are devoid of integrin expression. The major signaling pathways that divide the wing to vein and intervein domains have been characterized. However, the genetic programs that execute these two alternative differentiation programs are still very roughly drawn. Here we identify the bHLH protein Delilah (Dei) as a mediator between signaling pathways that specify intervein cell-fate and one of the most significant realizators of this fate, βPS integrin. Dei's expression is restricted to intervein territories where it acts as a potent activator of βPS integrin expression. In the absence of normal Dei activity the level of βPS integrin is reduced, leading to a failure of adhesion between the dorsal and ventral wing layers and a consequent formation of wing blisters. The effect of Dei on βPS expression is not restricted to the wing, suggesting that Dei functions as a general genetic switch, which is turned on wherever a sticky cell-identity is determined and integrin-based adhesion is required.
Collapse
|
27
|
Identification of genes affecting wing patterning through a loss-of-function mutagenesis screen and characterization of med15 function during wing development. Genetics 2010; 185:671-84. [PMID: 20233856 DOI: 10.1534/genetics.109.113670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of the Drosophila melanogaster wing depends on the correct regulation of cell survival, growth, proliferation, differentiation, and pattern formation. These processes, and the genes controlling then, are common to the development of epithelia in many different organisms. To identify additional genes contributing to wing development we have carried out a genetic screen in mosaic wings carrying clones of homozygous mutant cells. We obtained 12 complementation groups corresponding to genes with a proven role in wing formation such as smoothened, thick veins, mothers against dpp, expanded, and fat and 71 new complementation groups affecting the pattern of veins and the size of wing. We mapped one of these groups to the mediator15 gene (med15), a component of the Mediator complex. We show that Med15 and other members of the Mediator complex are required, among other processes, for the transcription of decapentaplegic target genes.
Collapse
|
28
|
Tomoyasu Y, Arakane Y, Kramer KJ, Denell RE. Repeated Co-options of Exoskeleton Formation during Wing-to-Elytron Evolution in Beetles. Curr Biol 2009; 19:2057-65. [DOI: 10.1016/j.cub.2009.11.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/01/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
|
29
|
Abstract
Sleep is important for memory consolidation and is responsive to waking experience. Clock circuitry is uniquely positioned to coordinate interactions between processes underlying memory and sleep need. Flies increase sleep both after exposure to an enriched social environment and after protocols that induce long-term memory. We found that flies mutant for rutabaga, period, and blistered were deficient for experience-dependent increases in sleep. Rescue of each of these genes within the ventral lateral neurons (LNVs) restores increased sleep after social enrichment. Social experiences that induce increased sleep were associated with an increase in the number of synaptic terminals in the LNV projections into the medulla. The number of synaptic terminals was reduced during sleep and this decline was prevented by sleep deprivation.
Collapse
Affiliation(s)
- Jeffrey M. Donlea
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, Missouri, USA
| | - Narendrakumar Ramanan
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, Missouri, USA
| | - Paul J. Shaw
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Terriente-Félix A, de Celis JF. Osa, a subunit of the BAP chromatin-remodelling complex, participates in the regulation of gene expression in response to EGFR signalling in the Drosophila wing. Dev Biol 2009; 329:350-61. [PMID: 19306864 DOI: 10.1016/j.ydbio.2009.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 03/05/2009] [Accepted: 03/12/2009] [Indexed: 01/27/2023]
Abstract
Gene expression is regulated in part by protein complexes containing ATP-dependent chromatin-remodelling factors of the SWI/SNF family. In Drosophila there is only one SWI/SNF protein, named Brahma, which forms the catalytic subunit of two complexes composed of different proteins. The protein Osa defines the BAP complex, and the proteins Polybromo and Bap170 are only present in the complex named PBAP. In this work we have analysed the functional requirements of Osa during Drosophila wing development, and found that osa is needed for cell growth and survival in the wing imaginal disc, and for the correct patterning of sensory organs, veins and the wing margin. Other members of the BAP complex, such as Snr1, Bap55, Mor and Brm, also share these functions of Osa. We focused on the requirement of Osa during the formation of the wing veins. Genetic interactions between osa alleles and mutations affecting the activity of the EGFR pathway suggest that one aspect of Osa is intimately related to the response to EGFR activity. Thus, loss of osa and EGFR signalling results in similar wing vein phenotypes, and osa alleles enhance the loss of veins caused by reduced EGFR activity. In addition, Osa is required for the expression of several targets of EGFR signalling, such as Delta, rhomboid and argos. We suggest that one role of Osa and Brm in the wing is to establish a chromatin environment in the regulatory regions of EGFR target genes, making them available for both activators and repressors and facilitating transcription in response to EGFR signalling.
Collapse
Affiliation(s)
- Ana Terriente-Félix
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | |
Collapse
|
31
|
Mouchel-Vielh E, Bloyer S, Salvaing J, Randsholt NB, Peronnet F. Involvement of the MP1 scaffold protein in ERK signaling regulation during Drosophila wing development. Genes Cells 2008; 13:1099-111. [PMID: 18823331 DOI: 10.1111/j.1365-2443.2008.01231.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionary conserved transduction pathways involved in many cellular processes. Kinase modules are associated with scaffold proteins that regulate signaling by providing critical spatial and temporal specificities. Some of these scaffold proteins have been shown to be conserved, both in sequence and function. In mouse, the scaffold MP1 (MEK Partner 1) forms a signaling complex with MEK1 and ERK1. In this work, we focus on Drosophila MP1 (dMP1). We show that dMP1 is expressed ubiquitously during embryonic and larval development. By in vitro and in vivo experiments, we show that dMP1 is located in the cytoplasm and the nuclei, and that it interacts with MEK and ERK. Genetic studies with transgenic Drosophila lines allowing either dMP1 over-expression or dMP1 down-regulation by RNA interference highlight dMP1 function in the control of cell differentiation during development of the Drosophila wing.
Collapse
Affiliation(s)
- Emmanuèle Mouchel-Vielh
- UMR 7622-Biologie du Développement; CNRS-Université Pierre et Marie Curie Paris 6 (UPMC), 9, quai Saint-Bernard, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The positioning and elaboration of ectodermal veins in the wing of Drosophila melanogaster rely on widely utilized developmental signals, including those mediated by EGF, BMP, Hedgehog, Notch, and Wnt. Analysis of vein patterning mutants, using the molecular and genetic mosaic techniques available in Drosophila, has provided important insights into how a combination of short-range and long-range signaling can pattern a simple epidermal tissue. Moreover, venation has become a powerful system for isolating and analyzing novel components in these signaling pathways. I here review the basic events of vein patterning and give examples of how changes in venation have been used to identify important features of cell signaling pathways.
Collapse
Affiliation(s)
- Seth S Blair
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
33
|
Regulation of Development of Wing Venation in Drosophila melanogaster by a Network of Signalling Pathways. Russ J Dev Biol 2005. [DOI: 10.1007/s11174-005-0051-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Chen GC, Turano B, Ruest PJ, Hagel M, Settleman J, Thomas SM. Regulation of Rho and Rac signaling to the actin cytoskeleton by paxillin during Drosophila development. Mol Cell Biol 2005; 25:979-87. [PMID: 15657426 PMCID: PMC544021 DOI: 10.1128/mcb.25.3.979-987.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paxillin is a prominent focal adhesion docking protein that regulates cell adhesion and migration. Although numerous paxillin-binding proteins have been identified and paxillin is required for normal embryogenesis, the precise mechanism by which paxillin functions in vivo has not yet been determined. We identified an ortholog of mammalian paxillin in Drosophila (Dpax) and have undertaken a genetic analysis of paxillin function during development. Overexpression of Dpax disrupted leg and wing development, suggesting a role for paxillin in imaginal disc morphogenesis. These defects may reflect a function for paxillin in regulation of Rho family GTPase signaling as paxillin interacts genetically with Rac and Rho in the developing eye. Moreover, a gain-of-function suppressor screen identified a genetic interaction between Dpax and cdi in wing development. cdi belongs to the cofilin kinase family, which includes the downstream Rho target, LIM kinase (LIMK). Significantly, strong genetic interactions were detected between Dpax and Dlimk, as well as downstream effectors of Dlimk. Supporting these genetic data, biochemical studies indicate that paxillin regulates Rac and Rho activity, positively regulating Rac and negatively regulating Rho. Taken together, these data indicate the importance of paxillin modulation of Rho family GTPases during development and identify the LIMK pathway as a critical target of paxillin-mediated Rho regulation.
Collapse
Affiliation(s)
- Guang-Chao Chen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
35
|
Gómez AR, López-Varea A, Molnar C, de la Calle-Mustienes E, Ruiz-Gómez M, Gómez-Skarmeta JL, de Celis JF. Conserved cross-interactions inDrosophilaandXenopusbetween Ras/MAPK signaling and the dual-specificity phosphatase MKP3. Dev Dyn 2005; 232:695-708. [PMID: 15704110 DOI: 10.1002/dvdy.20227] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) is a key transducer of the epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) signaling pathways, and its function is required in multiple processes during animal development. The activity of ERK depends on the phosphorylation state of conserved threonine and tyrosine residues, and this state is regulated by different kinases and phosphatases. A family of phosphatases with specificity toward both threonine and tyrosine residues in ERK (dual-specificity phosphatases) play a conserved role in its dephosphorylation and consequent inactivation. Here, we characterize the function of the dual-specificity phosphatase MKP3 in Drosophila EGFR and Xenopus FGFR signaling. The function of MKP3 is required during Drosophila wing vein formation and Xenopus anteroposterior neural patterning. We find that the expression of the MKP3 gene is localized in places of high EGFR and FGFR signaling. Furthermore, this restricted expression depends on ERK function both in Drosophila and Xenopus, suggesting that MKP3 constitutes a conserved negative feedback loop on the activity of the Ras/ERK signaling pathway.
Collapse
Affiliation(s)
- Ana Ruiz Gómez
- Centro de Biologóa Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Sotillos S, De Celis JF. Interactions between the Notch, EGFR, and decapentaplegic signaling pathways regulate vein differentiation duringDrosophila pupal wing development. Dev Dyn 2005; 232:738-52. [PMID: 15704120 DOI: 10.1002/dvdy.20270] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of longitudinal veins in the Drosophila wing involves cell interactions mediated by the conserved signaling pathways Decapentaplegic (Dpp), Notch, and epidermal growth factor receptor (EGFR). Interactions between Notch and EGFR taking place in the wing disc divide each vein into a central domain, where EGFR is active, and two boundary domains where Notch is active. The expression of decapentaplegic (dpp) is activated in the veins during pupal development, and we have generated Gal4 drivers using the regulatory region that drives dpp expression at this stage. By using these drivers, we studied the relationships between the Notch, EGFR, and Dpp signaling pathways that occur during pupal development. Our results indicate that the interactions between EGFR and Notch initiated in the imaginal disc are maintained throughout pupal development and contribute to determine the places where dpp is expressed. Once dpp expression is initiated, Dpp and EGFR activities in the provein maintain each other and, in cooperation, determine vein cell differentiation.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
37
|
Marenda DR, Zraly CB, Dingwall AK. The Drosophila Brahma (SWI/SNF) chromatin remodeling complex exhibits cell-type specific activation and repression functions. Dev Biol 2004; 267:279-93. [PMID: 15013794 DOI: 10.1016/j.ydbio.2003.10.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 10/25/2003] [Indexed: 11/21/2022]
Abstract
The Brahma (Brm) complex of Drosophila melanogaster is a SWI/SNF-related chromatin remodeling complex required to correctly maintain proper states of gene expression through ATP-dependent effects on chromatin structure. The SWI/SNF complexes are comprised of 8-11 stable components, even though the SWI2/SNF2 (BRM, BRG1, hBRM) ATPase subunit alone is partially sufficient to carry out chromatin remodeling in vitro. The remaining subunits are required for stable complex assembly and/or proper promoter targeting in vivo. Our data reveals that SNR1 (SNF5-Related-1), a highly conserved subunit of the Brm complex, is required to restrict complex activity during the development of wing vein and intervein cells, illustrating a functional requirement for SNR1 in modifying whole complex activation functions. Specifically, we found that snr1 and brm exhibited opposite mutant phenotypes in the wing and differential misregulation of genes required for vein and intervein cell development, including rhomboid, decapentaplegic, thick veins, and blistered, suggesting possible regulatory targets for the Brm complex in vivo. Our genetic results suggest a novel mechanism for SWI/SNF-mediated gene repression that relies on the function of a 'core' subunit to block or shield BRM (SWI2/SNF2) activity in specific cells. The SNR1-mediated repression is dependent on cooperation with histone deacetylases (HDAC) and physical associations with NET, a localized vein repressor.
Collapse
Affiliation(s)
- Daniel R Marenda
- Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA
| | | | | |
Collapse
|
38
|
Abstract
The veins are cuticular structures that differentiate in precise patterns in insect wings. The genetic and molecular basis of vein pattern formation in Drosophila melanogaster is beginning to be unravelled with the identification and characterisation of the gene products that position the veins and direct their differentiation. Genes affecting the veins fall into two groups: transcriptional regulators that specify individual veins, and members of signalling pathways involved in patterning and differentiation of the veins. The elaboration of the vein pattern is progressive in time and requires the coordinated activities of these signalling pathways and the transcription factors regulated by them. Although the network of genetic interactions that determine vein cell fate is well understood, very little is known about the cellular biology underlying the acquisition of vein histotype.
Collapse
Affiliation(s)
- Jose F De Celis
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
39
|
Bökel C, Brown NH. Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell 2002; 3:311-21. [PMID: 12361595 DOI: 10.1016/s1534-5807(02)00265-4] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Integrins are cell surface receptors of the extracellular matrix present in all animals. Genetic analysis in worms, flies, and vertebrates has revealed integrin involvement in key developmental processes, and we focus here on examples of integrin functions that are comparable across these model organisms. Integrins contribute to cell movement by providing traction to migrating cells, through assembly of extracellular matrices that can serve as tracks for migration, and by transmitting guidance signals that direct cells or cell processes to their targets. Integrins also participate in signaling events that govern tissue differentiation and organogenesis. Finally, adhesion by integrin-mediated junctions allows tissues to withstand mechanical load and is essential for tissue integrity.
Collapse
Affiliation(s)
- Christian Bökel
- Department of Anatomy, Wellcome Trust/Cancer Research UK Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | |
Collapse
|
40
|
Johannes B, Preiss A. Wing vein formation in Drosophila melanogaster: hairless is involved in the cross-talk between Notch and EGF signaling pathways. Mech Dev 2002; 115:3-14. [PMID: 12049762 DOI: 10.1016/s0925-4773(02)00083-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Wing vein development in Drosophila is controlled by different morphogenetic pathways, including Notch. Hairless (H) antagonizes Notch target gene activation by binding to the Notch signal transducer Suppressor of Hairless [Su(H)]. Accordingly, overexpression of H phenocopies reduction of Notch activity. Deletion of the Su(H)-binding domain in H-C2 results in loss of H activity. However, overexpression of H-C2 induces formation of ectopic veins. In a screen for genetic modifiers of this phenotype, we have identified several genes involved in Notch and epidermal growth factor (EGF) signaling. Most notably veinlet, an activator of EGF signaling, acts downstream of H-C2. H-C2 positively regulates veinlet maybe through inhibition of inter-vein determinants in agreement with a model, whereby Notch and EGF signaling pathways cross-regulate vein pre-patterning.
Collapse
Affiliation(s)
- Bernd Johannes
- Institut für Genetik (240), Universität Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | |
Collapse
|
41
|
Schnorr JD, Holdcraft R, Chevalier B, Berg CA. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis. Genetics 2001; 159:609-22. [PMID: 11606538 PMCID: PMC1461825 DOI: 10.1093/genetics/159.2.609] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype.
Collapse
Affiliation(s)
- J D Schnorr
- Department of Biology, Whitman College, Walla Walla, Washington 99362, USA.
| | | | | | | |
Collapse
|
42
|
LaJeunesse DR, McCartney BM, Fehon RG. A systematic screen for dominant second-site modifiers of Merlin/NF2 phenotypes reveals an interaction with blistered/DSRF and scribbler. Genetics 2001; 158:667-79. [PMID: 11404331 PMCID: PMC1461664 DOI: 10.1093/genetics/158.2.667] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Merlin, the Drosophila homologue of the human tumor suppressor gene Neurofibromatosis 2 (NF2), is required for the regulation of cell proliferation and differentiation. To better understand the cellular functions of the NF2 gene product, Merlin, recent work has concentrated on identifying proteins with which it interacts either physically or functionally. In this article, we describe genetic screens designed to isolate second-site modifiers of Merlin phenotypes from which we have identified five multiallelic complementation groups that modify both loss-of-function and dominant-negative Merlin phenotypes. Three of these groups, Group IIa/scribbler (also known as brakeless), Group IIc/blistered, and Group IId/net, are known genes, while two appear to be novel. In addition, two genes, Group IIa/scribbler and Group IIc/blistered, alter Merlin subcellular localization in epithelial and neuronal tissues, suggesting that they regulate Merlin trafficking or function. Furthermore, we show that mutations in scribbler and blistered display second-site noncomplementation with one another. These results suggest that Merlin, blistered, and scribbler function together in a common pathway to regulate Drosophila wing epithelial development.
Collapse
Affiliation(s)
- D R LaJeunesse
- Developmental, Cell and Molecular Biology Group, Department of Biology, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | |
Collapse
|
43
|
Brentrup D, Lerch H, Jäckle H, Noll M. Regulation of Drosophila wing vein patterning: net encodes a bHLH protein repressing rhomboid and is repressed by rhomboid-dependent Egfr signalling. Development 2000; 127:4729-41. [PMID: 11023875 DOI: 10.1242/dev.127.21.4729] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stereotyped pattern of veins in the Drosophila wing is generated in response to local EGF signalling. Mutations in the rhomboid (rho) gene, which encodes a sevenpass membrane protein required to enhance signalling transmitted by the EGF receptor (Egfr), inhibit vein development and disrupt the vein pattern. By contrast, net mutations produce ectopic veins in intervein regions. We have cloned the net gene and show that it encodes a basic HLH protein that probably acts as a transcriptional repressor. net and rho are expressed in mutually exclusive patterns during the development of the wing imaginal disc. Lack of net activity causes rho expression to expand, and vice versa. Furthermore, ectopic expression of net or rho results in their mutual repression and thus suppresses vein formation or generates tube-like wings composed of vein-like tissue. Egfr signalling and net exert mutually antagonising activities during the specification of vein versus intervein fate. While Egfr signalling represses net transcription, net exhibits a two-tiered control by repressing rho transcription and interfering with Egfr signalling downstream of Rho. Our results further suggest that net is required to maintain intervein development by restricting Egfr signalling, which promotes vein development, to the Net-free vein regions of the wing disc.
Collapse
Affiliation(s)
- D Brentrup
- Institut für Molekularbiologie, Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
44
|
Firth L, Manchester J, Lorenzen JA, Baron M, Perkins LA. Identification of genomic regions that interact with a viable allele of the Drosophila protein tyrosine phosphatase corkscrew. Genetics 2000; 156:733-48. [PMID: 11014820 PMCID: PMC1461264 DOI: 10.1093/genetics/156.2.733] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Signaling by receptor tyrosine kinases (RTKs) is critical for a multitude of developmental decisions and processes. Among the molecules known to transduce the RTK-generated signal is the nonreceptor protein tyrosine phosphatase Corkscrew (Csw). Previously, Csw has been demonstrated to function throughout the Drosophila life cycle and, among the RTKs tested, Csw is essential in the Torso, Sevenless, EGF, and Breathless/FGF RTK pathways. While the biochemical function of Csw remains to be unambiguously elucidated, current evidence suggests that Csw plays more than one role during transduction of the RTK signal and, further, the molecular mechanism of Csw function differs depending upon the RTK in question. The isolation and characterization of a new, spontaneously arising, viable allele of csw, csw(lf), has allowed us to undertake a genetic approach to identify loci required for Csw function. The rough eye and wing vein gap phenotypes exhibited by adult flies homo- or hemizygous for csw(lf) has provided a sensitized background from which we have screened a collection of second and third chromosome deficiencies to identify 33 intervals that enhance and 21 intervals that suppress these phenotypes. We have identified intervals encoding known positive mediators of RTK signaling, e.g., drk, dos, Egfr, E(Egfr)B56, pnt, Ras1, rolled/MAPK, sina, spen, Src64B, Star, Su(Raf)3C, and vein, as well as known negative mediators of RTK signaling, e.g., aos, ed, net, Src42A, sty, and su(ve). Of particular interest are the 5 lethal enhancing intervals and 14 suppressing intervals for which no candidate genes have been identified.
Collapse
Affiliation(s)
- L Firth
- Department of Biological Sciences, University of Manchester, Manchester M13 9PT, England
| | | | | | | | | |
Collapse
|
45
|
Nussbaumer U, Halder G, Groppe J, Affolter M, Montagne J. Expression of the blistered/DSRF gene is controlled by different morphogens during Drosophila trachea and wing development. Mech Dev 2000; 96:27-36. [PMID: 10940622 DOI: 10.1016/s0925-4773(00)00373-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Drosophila serum response factor (DSRF) is expressed in the precursors of the terminal tracheal cells and in the future intervein territories of the third instar wing imaginal disc. Dissection of the DSRF regulatory region reveals that a single enhancer element, which is under the control of the fibroblast growth factor (FGF)-receptor signalling pathway, is sufficient to induce DSRF expression in the terminal tracheal cells. In contrast, two separate enhancers direct expression in distinct intervein sectors of the wing imaginal disc. One element is active in the central intervein sector and is induced by the Hedgehog signalling pathway. The other element is under the control of Decapentaplegic and is active in two separate territories, which roughly correspond to the intervein sectors flanking the central sector. Hence, each of the three characterized enhancers constitutes a molecular link between a specific territory induced by a morphogen signal and the localized expression of a gene required for the final differentiation of this territory.
Collapse
Affiliation(s)
- U Nussbaumer
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | | | | | | | | |
Collapse
|
46
|
de Celis JF, Barrio R. Function of the spalt/spalt-related gene complex in positioning the veins in the Drosophila wing. Mech Dev 2000; 91:31-41. [PMID: 10704828 DOI: 10.1016/s0925-4773(99)00261-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spalt and Spalt-related encode conserved Zn-finger proteins that mediate the function of the TGF-beta molecule Decapentaplegic during the positioning of veins in the Drosophila wing. Here we show that Spalt and Spalt-related regulate the vein-specific expression of the transcription factors of the knirps and iroquois gene complexes, delimiting their domains of expression in the wing pouch. The effects of spalt/spalt-related mutations on knirps and iroquois expression are cell-autonomous, suggesting that they could be direct. The regulation of iroquois involves transcriptional repression by Spalt and Spalt-related, whereas the regulation of knirps involves a combination of transcriptional activation and repression mediated by the same genes. We suggest that the regulation of the iroquois and knirps gene complexes by Spalt and Spalt-related translates the Decapentaplegic morphogenetic gradient into precisely spaced pattern elements.
Collapse
Affiliation(s)
- J F de Celis
- European Molecular Biology Laboratory, Meyerhofstrasse, 69117, Heidelberg, Germany.
| | | |
Collapse
|
47
|
Matakatsu H, Tadokoro R, Gamo S, Hayashi S. Repression of the wing vein development in Drosophila by the nuclear matrix protein plexus. Development 1999; 126:5207-16. [PMID: 10556047 DOI: 10.1242/dev.126.23.5207] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The wing of Drosophila is separated into several sectors by the wing veins. Vein primordia are specified by the positional information provided by hedgehog and decapentaplegic in the wing imaginal disc and express the key regulatory gene rhomboid. One model of this process is that boundaries of gene expression regulated by hedgehog or decapentaplegic provide reference points where rhomboid transcription is activated. We present an analysis of the gene plexus, whose loss of function causes an excess vein phenotype. Molecular cloning revealed that plexus encodes a novel 1990-amino acid protein with cysteine-rich motifs. Plexus protein was ubiquitously expressed and was tightly associated with the nuclear matrix. In plexus mutant wing imaginal discs, an anteroposterior positional coordinate was established normally as revealed by the wild-type pattern of spalt major and knirps expression. However, the expression of several vein-specific and intervein-specific genes was misregulated, as if they had neglected the positional coordinate. These results suggest that Plexus is an essential component of a global repressor of vein differentiation. Although Plexus protein was expressed in vein primordia of the wing disc, it does not appear to interfere with vein differentiation in the normal position. A genetic epistasis test between px and knirps suggests that plexus acts downstream of knirps. We propose that the vein differentiation takes place by inactivation of the plexus-mediated repression by prepattern genes such as knirps. Plexus may regulate transcription of vein-and intervein-specific genes by tethering transcriptional regulators to specific locations in the nucleus.
Collapse
Affiliation(s)
- H Matakatsu
- Genetic Strain Research Center, National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan
| | | | | | | |
Collapse
|
48
|
Vervoort M, Crozatier M, Valle D, Vincent A. The COE transcription factor Collier is a mediator of short-range Hedgehog-induced patterning of the Drosophila wing. Curr Biol 1999; 9:632-9. [PMID: 10375526 DOI: 10.1016/s0960-9822(99)80285-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND The secreted Hedgehog (Hh) proteins have been implicated as mediators of positional information in vertebrates and invertebrates. A gradient of Hh activity contributes to antero-posterior (A/P) patterning of the fly wing. In addition to inducing localised expression of Decapentaplegic (Dpp), which in turn relays patterning cues at long range, Hh directly patterns the central region of the wing. RESULTS We show that short-range, dose-dependent Hh activity is mediated by activation of the transcription factor Collier (Col). In the absence of col activity, longitudinal veins 3 and 4 (L3 and L4) are apposed and the central intervein is missing. Hh expression induces col expression in a narrow stripe of cells along the A/P boundary through a dual-input mechanism: inhibition of proteolysis of Cubitus-interruptus (Ci) and activation of the Fused (Fu) kinase. Col, in cooperation with Ci, controls the formation of the central intervein by activating the expression of blistered (bs), which encodes the Drosophila serum response factor (D-SRF), the activity of which is required for the adoption and maintenance of the intervein cell fate. Furthermore, col is allelic to knot, a gene involved in the formation of the central part of the wing. This finding completes our understanding of the sectorial organisation of the Drosophila wing. CONCLUSIONS Col, the Drosophila member of the COE family (Col/Olf-1/EBF) of non-basic, helix-loop-helix (HLH)-containing transcription factors, is a mediator of the short-range organising activity of Hh in the Drosophila wing. Our results support the idea that Hh controls target gene expression in a concentration-dependent manner and highlight the importance of the Fu kinase in this differential regulation. The high degree of evolutionary conservation of the COE proteins and the diversity of developmental processes controlled by Hh signalling raises the possibility that the specific genetic interactions depicted here may also operate in vertebrates.
Collapse
Affiliation(s)
- M Vervoort
- Centre de Biologie du Développement UMR 5547 CNRS/UPS 118 route de Narbonne, 31062, Toulouse Cedex, France
| | | | | | | |
Collapse
|
49
|
Martin D, Zusman S, Li X, Williams EL, Khare N, DaRocha S, Chiquet-Ehrismann R, Baumgartner S. wing blister, a new Drosophila laminin alpha chain required for cell adhesion and migration during embryonic and imaginal development. J Cell Biol 1999; 145:191-201. [PMID: 10189378 PMCID: PMC2148222 DOI: 10.1083/jcb.145.1.191] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We report the molecular and functional characterization of a new alpha chain of laminin in Drosophila. The new laminin chain appears to be the Drosophila counterpart of both vertebrate alpha2 (also called merosin) and alpha1 chains, with a slightly higher degree of homology to alpha2, suggesting that this chain is an ancestral version of both alpha1 and alpha2 chains. During embryogenesis, the protein is associated with basement membranes of the digestive system and muscle attachment sites, and during larval stage it is found in a specific pattern in wing and eye discs. The gene is assigned to a locus called wing blister (wb), which is essential for embryonic viability. Embryonic phenotypes include twisted germbands and fewer pericardial cells, resulting in gaps in the presumptive heart and tracheal trunks, and myotubes detached from their target muscle attachment sites. Most phenotypes are in common with those observed in Drosophila laminin alpha3, 5 mutant embryos and many are in common with those observed in integrin mutations. Adult phenotypes show blisters in the wings in viable allelic combinations, similar to phenotypes observed in integrin genes. Mutation analysis in the eye demonstrates a function in rhabdomere organization. In summary, this new laminin alpha chain is essential for embryonic viability and is involved in processes requiring cell migration and cell adhesion.
Collapse
Affiliation(s)
- D Martin
- Friedrich Miescher-Institut, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Brabant MC, Fristrom D, Bunch TA, Baker SE, Brower DL. The PS integrins are required for a regulatory event during Drosophila wing morphogenesis. Ann N Y Acad Sci 1998; 857:99-109. [PMID: 9917835 DOI: 10.1111/j.1749-6632.1998.tb10110.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The PS1 and PS2 integrins are required for morphogenesis of the adult Drosophila wing. Clonal analysis experiments have shown that both integrins are necessary to maintain adhesion between the dorsal and ventral wing epithelia. We have found that early in wing morphogenesis, the integrins are also required for a regulatory event, and this may explain why PS1 and PS2 must be expressed on opposite surfaces of the wing at the onset of pupariation. Overexpression of integrin subunits during this early phase can lead to separation of dorsal and ventral surfaces, and we present evidence here that this dominant phenotype (the Blistermaker phenotype) results from a gain of integrin function, as opposed to negative interference from free integrin subunits. A possible model for an integrin signaling requirement in the wing is discussed.
Collapse
Affiliation(s)
- M C Brabant
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | | | | | | | |
Collapse
|