1
|
Ratnam S, Bozek G, Martin T, Gallagher SJ, Payne CJ, Storb U. Ssm1b expression and function in germ cells of adult mice and in early embryos. Mol Reprod Dev 2017; 84:596-613. [PMID: 28464323 DOI: 10.1002/mrd.22826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 04/13/2017] [Indexed: 12/17/2022]
Abstract
Ssm1b (Strain-specific modifier of DNA methylation 1b) is a Krüppel-associated box (KRAB) zinc finger gene that promotes CpG methylation in the mouse transgene HRD (Heavy chain enhancer, rearrangement by deletion). We report here that Ssm1b expression and concomitant HRD methylation are also present in the male and female germ cells of adult mice. Ssm1b is expressed in both diploid (2N) and haploid (1N) oocytes, as well as in 1N spermatids and spermatozoa, but not in 2N spermatogonia. Interestingly, Ssm1b mRNA is not detected in any other adult mouse organ examined, although Ssm1-family mRNAs are highly expressed in the heart. Reflecting strain specificity, Ssm1b expression and HRD methylation are not observed in early-stage C3H/HeJ mouse embryos; however, an Ssm1b-like gene that closely resembles an Ssm1b-like gene previously found in wild-derived mice is expressed in cultured embryonic stem cells derived from C3H/HeJ embryos, suggesting that culture conditions affect its expression. Collectively, this work demonstrates that HRD methylation by Ssm1b is more temporally restricted during spermatogenesis compared to oogenesis, and is altered when embryonic stem cells are cultured from C3H/HeJ inner cell mass cells.
Collapse
Affiliation(s)
- Sarayu Ratnam
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| | - Grazyna Bozek
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| | - Terence Martin
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| | - Shannon J Gallagher
- Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Christopher J Payne
- Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Departments of Pediatrics and Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ursula Storb
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Wolf G, Greenberg D, Macfarlan TS. Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family. Mob DNA 2015; 6:17. [PMID: 26435754 PMCID: PMC4592553 DOI: 10.1186/s13100-015-0050-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
Tandem C2H2-type zinc finger proteins (ZFPs) constitute the largest transcription factor family in animals. Tandem-ZFPs bind DNA in a sequence-specific manner through arrays of multiple zinc finger domains that allow high flexibility and specificity in target recognition. In tetrapods, a large proportion of tandem-ZFPs contain Krüppel-associated-box (KRAB) repression domains, which are able to induce epigenetic silencing through the KAP1 corepressor. The KRAB-ZFP family continuously amplified in tetrapods through segmental gene duplications, often accompanied by deletions, duplications, and mutations of the zinc finger domains. As a result, tetrapod genomes contain unique sets of KRAB-ZFP genes, consisting of ancient and recently evolved family members. Although several hundred human and mouse KRAB-ZFPs have been identified or predicted, the biological functions of most KRAB-ZFP family members have gone unexplored. Furthermore, the evolutionary forces driving the extraordinary KRAB-ZFP expansion and diversification have remained mysterious for decades. In this review, we highlight recent studies that associate KRAB-ZFPs with the repression of parasitic DNA elements in the mammalian germ line and discuss the hypothesis that the KRAB-ZFP family primarily evolved as an adaptive genomic surveillance system against foreign DNA. Finally, we comment on the computational, genetic, and biochemical challenges of studying KRAB-ZFPs and attempt to predict how these challenges may be soon overcome.
Collapse
Affiliation(s)
- Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| | - David Greenberg
- The Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158 USA ; Present address: Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025 USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
3
|
Goldowitz D, Lussier AA, Boyle JK, Wong K, Lattimer SL, Dubose C, Lu L, Kobor MS, Hamre KM. Molecular pathways underpinning ethanol-induced neurodegeneration. Front Genet 2014; 5:203. [PMID: 25076964 PMCID: PMC4097813 DOI: 10.3389/fgene.2014.00203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022] Open
Abstract
While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses). Tissue was collected 7 h after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, γH2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in γH2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol-induced neurodegeneration.
Collapse
Affiliation(s)
- Dan Goldowitz
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute - Department of Medical Genetics, University of British Columbia Vancouver, BC, Canada
| | - Alexandre A Lussier
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute - Department of Medical Genetics, University of British Columbia Vancouver, BC, Canada
| | - Julia K Boyle
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute - Department of Medical Genetics, University of British Columbia Vancouver, BC, Canada
| | - Kaelan Wong
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute - Department of Medical Genetics, University of British Columbia Vancouver, BC, Canada
| | - Scott L Lattimer
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Candis Dubose
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Lu Lu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute - Department of Medical Genetics, University of British Columbia Vancouver, BC, Canada ; Human Early Learning Partnership, School of Population and Public Health, University of British Columbia Vancouver, BC, Canada
| | - Kristin M Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
4
|
Ratnam S, Engler P, Bozek G, Mao L, Podlutsky A, Austad S, Martin T, Storb U. Identification of Ssm1b, a novel modifier of DNA methylation, and its expression during mouse embryogenesis. Development 2014; 141:2024-34. [PMID: 24803651 DOI: 10.1242/dev.105726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The strain-specific modifier Ssm1 is responsible for the strain-dependent methylation of particular E. coli gpt-containing transgenic sequences. Here, we identify Ssm1 as the KRAB-zinc finger (ZF) gene 2610305D13Rik located on distal chromosome 4. Ssm1b is a member of a gene family with an unusual array of three ZFs. Ssm1 family members in C57BL/6 (B6) and DBA/2 (D2) mice have various amino acid changes in their ZF domain and in the linker between the KRAB and ZF domains. Ssm1b is expressed up to E8.5; its target transgene gains partial methylation by this stage as well. At E9.5, Ssm1b mRNA is no longer expressed but by then its target has become completely methylated. By contrast, in D2 embryos the transgene is essentially unmethylated. Methylation during B6 embryonic development depends on Dnmt3b but not Mecp2. In differentiating B6 embryonic stem cells methylation spreads from gpt to a co-integrated neo gene that has a similarly high CpG content as gpt, but neo alone is not methylated. In adult B6 mice, Ssm1b is expressed in ovaries, but in other organs only other members of the Ssm1 family are expressed. Interestingly, the transgene becomes methylated when crossed into some, but not other, wild mice that were kept outbred in the laboratory. Thus, polymorphisms for the methylation patterns seen among laboratory inbred strains are also found in a free-living population. This may imply that mice that do not have the Ssm1b gene may use another member of the Ssm1 family to control the potentially harmful expression of certain endogenous or exogenous genes.
Collapse
Affiliation(s)
- Sarayu Ratnam
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ciaudo C, Jay F, Okamoto I, Chen CJ, Sarazin A, Servant N, Barillot E, Heard E, Voinnet O. RNAi-dependent and independent control of LINE1 accumulation and mobility in mouse embryonic stem cells. PLoS Genet 2013; 9:e1003791. [PMID: 24244175 PMCID: PMC3820764 DOI: 10.1371/journal.pgen.1003791] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/29/2013] [Indexed: 01/04/2023] Open
Abstract
In most mouse tissues, long-interspersed elements-1 (L1s) are silenced via methylation of their 5'-untranslated regions (5'-UTR). A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, we show that Dicer- and Ago2-dependent RNAi restricts L1 accumulation and retrotransposition in undifferentiated mouse embryonic stem cells (mESCs), derived from blastocysts. RNAi correlates with production of Dicer-dependent 22-nt small RNAs mapping to overlapping sense/antisense transcripts produced from the L1 5'-UTR. However, RNA-surveillance pathways simultaneously degrade these transcripts and, consequently, confound the anti-L1 RNAi response. In Dicer(-/-) mESC complementation experiments involving ectopic Dicer expression, L1 silencing was rescued in cells in which microRNAs remained strongly depleted. Furthermore, these cells proliferated and differentiated normally, unlike their non-complemented counterparts. These results shed new light on L1 biology, uncover defensive, in addition to regulatory roles for RNAi, and raise questions on the differentiation defects of Dicer(-/-) mESCs.
Collapse
Affiliation(s)
- Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Department of Biology, Chair of RNA biology, Zurich, Switzerland
- Institut Curie, CNRS UMR3215, Paris, France
| | - Florence Jay
- Swiss Federal Institute of Technology Zurich, Department of Biology, Chair of RNA biology, Zurich, Switzerland
- Life Science Zurich Graduate School, Plant Sciences program, University of Zurich, Zurich, Switzerland
| | | | - Chong-Jian Chen
- Institut Curie, CNRS UMR3215, Paris, France
- Institut Curie, Paris, France
| | - Alexis Sarazin
- Swiss Federal Institute of Technology Zurich, Department of Biology, Chair of RNA biology, Zurich, Switzerland
| | - Nicolas Servant
- Institut Curie, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Emmanuel Barillot
- Institut Curie, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Fontainebleau, France
| | | | - Olivier Voinnet
- Swiss Federal Institute of Technology Zurich, Department of Biology, Chair of RNA biology, Zurich, Switzerland
- Life Science Zurich Graduate School, Plant Sciences program, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Abstract
Genomic imprinting is an epigenetic phenomenon in which either the paternal or the maternal allele of imprinted genes is expressed in somatic cells. It is unique to eutherian mammals, marsupials, and flowering plants. It is absolutely required for normal mammalian development. Dysregulation of genomic imprinting can cause a variety of human diseases. About 150 imprinted genes have been identified so far in mammals and many of them are clustered such that they are coregulated by a cis-acting imprinting control region, called the ICR. One hallmark of the ICR is that it contains a germ line-derived differentially methylated region that is methylated on the paternal chromosome or on the maternal chromosome. The DNA methylation imprint is reset in the germ line and differential methylation at an ICR is restored upon fertilization. The DNA methylation imprint is resistant to a genome-wide demethylation process in early embryos and is stably maintained in postimplantation embryos. Maintenance of the DNA methylation imprint is dependent on two distinct maternal effect genes (Zfp57 and PGC7/Stella). In germ cells, around midgestation, the DNA methylation imprint is erased and undergoes another round of the DNA methylation imprint cycle that includes erasure, resetting, restoration, and maintenance of differential DNA methylation.
Collapse
Affiliation(s)
- Xiajun Li
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
| |
Collapse
|
7
|
Ahrens RNM, Devlin RH. Standing genetic variation and compensatory evolution in transgenic organisms: a growth-enhanced salmon simulation. Transgenic Res 2010; 20:583-97. [PMID: 20878546 PMCID: PMC3090570 DOI: 10.1007/s11248-010-9443-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/09/2010] [Indexed: 11/30/2022]
Abstract
Genetically modified strains usually are generated within defined genetic backgrounds to minimize variation for the engineered characteristic in order to facilitate basic research investigations or for commercial application. However, interactions between transgenes and genetic background have been documented in both model and commercial agricultural species, indicating that allelic variation at transgene-modifying loci are not uncommon in genomes. Engineered organisms that have the potential to allow entry of transgenes into natural populations may cause changes to ecosystems via the interaction of their specific phenotypes with ecosystem components and services. A transgene introgressing through natural populations is likely to encounter a range of natural genetic variation (among individuals or sub-populations) that could result in changes in phenotype, concomitant with effects on fitness and ecosystem consequences that differ from that seen in the progenitor transgenic strain. In the present study, using a growth hormone transgenic salmon example, we have modeled selection of modifier loci (single and multiple) in the presence of a transgene and have found that accounting for genetic background can significantly affect the persistence of transgenes in populations, potentially reducing or reversing a "Trojan gene" effect. Influences from altered life history characteristics (e.g., developmental timing, age of maturation) and compensatory demographic/ecosystem controls (e.g., density dependence) also were found to have a strong influence on transgene effects. Further, with the presence of a transgene in a population, genetic backgrounds were found to shift in non-transgenic individuals as well, an effect expected to direct phenotypes away from naturally selected optima. The present model has revealed the importance of understanding effects of selection for background genetics on the evolution of phenotypes in populations harbouring transgenes.
Collapse
Affiliation(s)
- Robert N M Ahrens
- Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | | |
Collapse
|
8
|
Abstract
Since the early 1980s, when the first transgenic mice were generated, thousands of genetically modified mouse lines have been created. Early on, Jaenisch established proof of principle, showing that viral integration into the mouse genome and germline transmission of those exogenous sequences were possible (Proc Natl Acad Sci USA 71:1250-1254, 1974). Gordon et al. (Proc Natl Acad Sci USA 77:7380-7384, 1980) and Brinster et al. (Cell 27:223-231, 1981) subsequently used cloned genes to create "transgenic constructs" in which the exogenous DNA was randomly inserted into different sites in the mouse genome, stably maintained, and transmitted through the germline to the progeny. The utility of the process quickly became apparent when a transgene carrying the metallothionein-1 (Mt-1) promoter linked to thymidine kinase was able to drive expression in the mouse liver when promoter activity was induced by administration of metals. In an attempt to find stronger and more reliable promoters, viral promoter elements from SV40 or cytomegalovirus were incorporated. However, while these promoters were able to drive high levels of expression, for many applications they proved to be too blunt an instrument as they drove ubiquitous expression in many, if not all cell types, making it very hard to discern organ-specific or cell-type-specific effects due to transgene expression. Thus the need to find cell-type-specific promoters that could reproducibly drive high levels of transgene expression in a particular cell type, e.g., cardiomyocyte, became apparent. One such example is the alpha myosin heavy-chain (MHC) promoter, which has been used extensively to drive transgene expression in a cardiomyocyte-specific manner in the mouse. This chapter, while not written as a typical methods section, will describe the necessary components of the alpha myosin promoter. In addition, common problems associated with transgenic mouse lines will be addressed.
Collapse
Affiliation(s)
- James Gulick
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
9
|
Padjen K, Ratnam S, Storb U. DNA methylation precedes chromatin modifications under the influence of the strain-specific modifier Ssm1. Mol Cell Biol 2005; 25:4782-91. [PMID: 15899878 PMCID: PMC1140615 DOI: 10.1128/mcb.25.11.4782-4791.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ssm1 is responsible for the mouse strain-specific DNA methylation of the transgene HRD. In adult mice of the C57BL/6 (B6) strain, the transgene is methylated at essentially all CpGs. However, when the transgene is bred into the DBA/2 (D2) strain, it is almost completely unmethylated. Strain-specific methylation arises during differentiation of embryonic stem (ES) cells. Here we show that Ssm1 causes striking chromatin changes during the development of the early embryo in both strains. In undifferentiated ES cells of both strains, the transgene is in a chromatin state between active and inactive. These states are still observed 1 week after beginning ES cell differentiation. However, 4 weeks after initiating differentiation, in B6, the transgene has become heterochromatic, and in D2, the transgene has become euchromatic. HRD is always expressed in D2, but in B6, it is expressed only in early embryos. The transgene is already more methylated in B6 ES cells than in D2 ES cells and becomes increasingly methylated during development in B6, until essentially all CpGs in the critical guanosine phosphoribosyl transferase core are methylated. Clearly, DNA methylation of HRD precedes chromatin compaction and loss of expression, suggesting that the B6 form of Ssm1 interacts with DNA to cause strain-specific methylation that ultimately results in inactive chromatin.
Collapse
Affiliation(s)
- Kristoffer Padjen
- University of Chicago, Department of Molecular Genetics and Cell Biology, 920 E. 58th St., Chicago, IL 60637, USA
| | | | | |
Collapse
|
10
|
Lee JH, Hart SRL, Skalnik DG. Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 2004; 38:32-8. [PMID: 14755802 DOI: 10.1002/gene.10250] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammalian development requires commitment of cells to restricted lineages, which requires epigenetic regulation of chromatin structure. Epigenetic modifications were examined during in vitro differentiation of murine embryonic stem (ES) cells. Global histone acetylation, a euchromatin marker, declines dramatically within 1 day of differentiation induction and partially rebounds by day 2. Histone H3-Lys9 methylation, a heterochromatin marker, increases during in vitro differentiation. Conversely, the euchromatin marker H3-Lys4 methylation transiently decreases, then increases to undifferentiated levels by day 4, and decreases by day 6. Global cytosine methylation, another heterochromatin marker, increases slightly during ES cell differentiation. Chromatin structure of the Oct4 and Brachyury gene promoters is modulated in concert with their pattern of expression during ES cell differentiation. Importantly, prevention of global histone deacetylation by treatment with trichostatin A prevents ES cell differentiation. Hence, ES cells undergo functionally important global and gene-specific remodeling of chromatin structure during in vitro differentiation. genesis 38:32-38, 2004.
Collapse
Affiliation(s)
- Jeong-Heon Lee
- Herman B Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Department of Pediatrics and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
11
|
Affiliation(s)
- Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
12
|
Pickard B, Dean W, Engemann S, Bergmann K, Fuermann M, Jung M, Reis A, Allen N, Reik W, Walter J. Epigenetic targeting in the mouse zygote marks DNA for later methylation: a mechanism for maternal effects in development. Mech Dev 2001; 103:35-47. [PMID: 11335110 DOI: 10.1016/s0925-4773(01)00329-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transgenic sequences in the mouse line TKZ751 are demethylated on a DBA/2 inbred strain background but become highly methylated at postimplantation stages in offspring of a cross with a BALB/c female. In the reciprocal cross the transgene remains demethylated suggesting that imprinted BALB/c methylation modifiers or egg cytoplasmic factors are responsible for this striking maternal effect on de novo methylation. Reciprocal pronuclear transplantation experiments were carried out to distinguish between these mechanisms. The results indicate that a maternally-derived oocyte cytoplasmic factor from BALB/c marks the TKZ751 sequences at fertilization; this mark and postzygotic BALB/c modifiers are both required for de novo methylation of the target sequences at postimplantation stages. Using genetic linkage analyses we mapped the maternal effect to a locus on chromosome 17. Moreover, seven postzygotic modifier loci were identified that increase the postimplantation level of methylation. Analysis of interactions between the maternal and the postzygotic loci shows that both are needed for de novo methylation in the offspring. The combined experiments thus reveal a novel epigenetic marking process at fertilization which targets DNA for later methylation in the foetus. The most significant consequence is that the genotype of the mother can influence the epigenotype of the offspring by this marking process. A number of parental and imprinting effects may be explained by this epigenetic marking.
Collapse
Affiliation(s)
- B Pickard
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Mammalian genomes are in constant jeopardy of invasion by prokaryotic DNA sequences because of their extensive exposure to bacteria; however, mammalian genomes appear to be protected from horizontal transmission of bacterial DNA. Transgenic mice provide a convenient model system for investigating the capacity of mammalian genomes in vivo to retain, silence, and/or reject foreign DNAs. We have previously reported that bacterial genes encoding the Lac repressor (lacI) are subject to sequence-dependent methylation and silencing in the transgenic mouse. In this paper, we report that bacterially derived lacI transgenes, but not their mammalian counterparts, can also be eliminated from the somatic cell DNA of affected animals. This somatic instability is heritable, strain-dependent, and conferred in cis. Our data are consistent with a model of genome surveillance in the mouse which can lead to loss of foreign DNA and which may be analogous to restriction-modification systems that maintain the integrity of the bacterial genome.
Collapse
Affiliation(s)
- H Scrable
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
14
|
Sprung CN, Reynolds GE, Jasin M, Murnane JP. Chromosome healing in mouse embryonic stem cells. Proc Natl Acad Sci U S A 1999; 96:6781-6. [PMID: 10359789 PMCID: PMC21992 DOI: 10.1073/pnas.96.12.6781] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The addition of new telomeres to the ends of broken chromosomes, termed chromosome healing, has been extensively studied in unicellular organisms; however, its role in the mammalian cell response to double-strand breaks is unknown. A system for analysis of chromosome healing, which involves the integration of plasmid sequences immediately adjacent to a telomere, has been established in mouse embryonic stem cells. This "marked" telomere contains a neo gene for positive selection in G418, an I-SceI endonuclease recognition sequence for introducing double-strand breaks, and a herpes simplex virus thymidine kinase gene for negative selection with ganciclovir for cells that have lost the telomere. Transient expression of the I-SceI endonuclease results in terminal deletions involving telomeric repeat sequences added directly onto the end of the broken chromosome. The sites of addition of the new telomeres contain short regions of complementarity to telomeric repeat sequences. The most common site of addition is the last A of the ATAA 3' overhang generated by the I-SceI endonuclease, without the loss of a single nucleotide from the end of the chromosome. The next most frequent site involved 5 bp of complementarity, which occurred after the loss of four nucleotides from the end of the chromosome. The new telomeres are generally much shorter than in the parental cell line, and most increase in size with time in culture. These results demonstrate that chromosome healing is a mechanism for repair of chromosome breaks in mammalian cells.
Collapse
Affiliation(s)
- C N Sprung
- Radiation Oncology Research Laboratory, University of California, San Francisco, 1855 Folsom Street, MCB 200, San Francisco, CA 94103, USA
| | | | | | | |
Collapse
|
15
|
Engler P, Doglio LT, Bozek G, Storb U. A cis-acting element that directs the activity of the murine methylation modifier locus Ssm1. Proc Natl Acad Sci U S A 1998; 95:10763-8. [PMID: 9724778 PMCID: PMC27969 DOI: 10.1073/pnas.95.18.10763] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Silencing of chromosomal domains has been described in diverse systems such as position effect variegation in insects, silencing near yeast telomeres, and mammalian X chromosome inactivation. In mammals, silencing is associated with methylation at CpG dinucleotides, but little is known about how methylation patterns are established or altered during development. We previously described a strain-specific modifier locus, Ssm1, that controls the methylation of a complex transgene. In this study we address the questions of the nature of Ssm1's targets and whether its effect extends into adjacent sequences. By examining the inheritance of methylation patterns in a series of mice harboring deletion derivatives of the original transgene, we have identified a discrete segment, derived from the gpt gene of Escherichia coli, that is a major determinant for Ssm1-mediated methylation. Methylation analysis of sequences adjacent to a transgenic target indicates that the influence of this modifier extends into the surrounding chromosome in a strain-dependent fashion. Implications for the mechanism of Ssm1 action are discussed.
Collapse
Affiliation(s)
- P Engler
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
16
|
Schweizer J, Valenza-Schaerly P, Goret F, Pourcel C. Control of expression and methylation of a hepatitis B virus transgene by strain-specific modifiers. DNA Cell Biol 1998; 17:427-35. [PMID: 9628586 DOI: 10.1089/dna.1998.17.427] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In transgenic animals, genotype-specific modifiers exert a control over transgene methylation and expression that may or may not be position dependent. These factors belong to different classes, some of them possibly related to modifiers of position-effect variegation in Drosophila. The study of hepatitis B virus (HBV) gene expression in transgenic mice has revealed the existence of many factors influencing transcription, including hormones and tissue-specific transcription factors. We now report the effect of genotype-specific modifiers on HBV surface antigen (HBsAg) expression and transgene methylation. Compared with the C57BL/6 background, the DBA/2 and 129sv backgrounds cause enhancement of HBsAg expression, with little or not effect on transgene methylation or transcription. In contrast, a single cross with a BALB/c mouse is responsible for de novo methylation and silencing of the transgene in all offspring. Several modifiers appear to segregate in the progeny of a transgenic E36 male mouse crossed with (C57BL/6 x BALB/c) F1 females, with the emergence of a high-expressor group. Our observations suggest that different modifiers act cooperatively, at both the transcriptional and post-transcriptional levels, as part of a complex system regulating transgene expression. This transgenic model provides a system to genetically map new mouse strain-specific modifiers, some of them involved in epigenetic modification and transcription control.
Collapse
|
17
|
Abstract
Cytosine methylation in mammals is an epigenetic modification required for viability of the developing embryo. It has been suggested that DNA methylation plays important roles in X-chromosome inactivation, imprinting, protection of the genome from invasive DNA sequences, and compartmentalization of the genome into active and condensed regions. Despite the significance of DNA methylation in mammalian cells, the mechanisms used to establish methylation patterns during development are not understood. This review will summarize the current state of knowledge about potential roles for cis- and trans-acting factors in the formation of methylation patterns in the mammalian genome.
Collapse
Affiliation(s)
- M S Turker
- Department of Pathology, Markey Cancer Center, University of Kentucky, Lexington 40536, USA
| | | |
Collapse
|
18
|
Reid LM. Stem cell-fed maturational lineages and gradients in signals: relevance to differentiation of epithelia. Mol Biol Rep 1996; 23:21-33. [PMID: 8983016 DOI: 10.1007/bf00357070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- L M Reid
- Department of Physiology, University of North Carolina School of Medicine, Chapel Hill 27514, USA
| |
Collapse
|