1
|
Tani-Matsuhana S, Kusakabe R, Inoue K. Developmental mechanisms of migratory muscle precursors in medaka pectoral fin formation. Dev Genes Evol 2018; 228:189-196. [PMID: 30008036 DOI: 10.1007/s00427-018-0616-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/04/2018] [Indexed: 01/27/2023]
Abstract
Limb muscles are formed from migratory muscle precursor cells (MMPs) that delaminate from the ventral region of dermomyotomes and migrate into the limb bud. MMPs remain undifferentiated during migration, commencing differentiation into skeletal muscle after arrival in the limb. However, it is still unclear whether the developmental mechanisms of MMPs are conserved in teleost fishes. Here, we investigate the development of pectoral fin muscles in the teleost medaka Oryzias latipes. Expression of the MMP marker lbx1 is first observed in several somites prior to the appearance of fin buds. lbx1-positive cells subsequently move anteriorly and localize in the prospective fin bud region to differentiate into skeletal muscle cells. To address the developmental mechanisms underlying fin muscle formation, we knocked down tbx5, a gene that is required for fin bud formation. tbx5 morphants showed loss of fin buds, whereas lbx1 expression initiated normally in anterior somites. Unlike in normal embryos, expression of lbx1 was not maintained in migrating fin MMPs or within the fin buds. We suggest that fin MMPs appear to undergo two phases in their development, with an initial specification of MMPs occurring independent of fin buds and a second fin bud-dependent phase of MMP migration and proliferation. Our results showed that medaka fin muscle is composed of MMPs. It is suggested that the developmental mechanism of fin muscle formation is conserved in teleost fishes including medaka. Through this study, we also propose new insights into the developmental mechanisms of MMPs in fin bud formation.
Collapse
Affiliation(s)
- Saori Tani-Matsuhana
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.
| | - Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minami, Chuo-Ku, Kobe, 650-0047, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
2
|
Deries M, Thorsteinsdóttir S. Axial and limb muscle development: dialogue with the neighbourhood. Cell Mol Life Sci 2016; 73:4415-4431. [PMID: 27344602 PMCID: PMC11108464 DOI: 10.1007/s00018-016-2298-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Skeletal muscles are part of the musculoskeletal system which also includes nerves, tendons, connective tissue, bones and blood vessels. Here we review the development of axial and limb muscles in amniotes within the context of their surrounding tissues in vivo. We highlight the reciprocal dialogue mediated by signalling factors between cells of these adjacent tissues and developing muscles and also demonstrate its importance from the onset of muscle cell differentiation well into foetal development. Early embryonic tissues secrete factors which are important regulators of myogenesis. However, later muscle development relies on other tissue collaborators, such as developing nerves and connective tissue, which are in turn influenced by the developing muscles themselves. We conclude that skeletal muscle development in vivo is a compelling example of the importance of reciprocal interactions between developing tissues for the complete and coordinated development of a functional system.
Collapse
Affiliation(s)
- Marianne Deries
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Sólveig Thorsteinsdóttir
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Mok GF, Cardenas R, Anderton H, Campbell KHS, Sweetman D. Interactions between FGF18 and retinoic acid regulate differentiation of chick embryo limb myoblasts. Dev Biol 2014; 396:214-23. [PMID: 25446536 DOI: 10.1016/j.ydbio.2014.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/25/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
During limb development Pax3 positive myoblasts delaminate from the hypaxial dermomyotome of limb level somites and migrate into the limb bud where they form the dorsal and ventral muscle masses. Only then do they begin to differentiate and express markers of myogenic commitment and determination such as Myf5 and MyoD. However the signals regulating this process remain poorly characterised. We show that FGF18, which is expressed in the distal mesenchyme of the limb bud, induces premature expression of both Myf5 and MyoD and that blocking FGF signalling also inhibits endogenous MyoD expression. This expression is mediated by ERK MAP kinase but not PI3K signalling. We also show that retinoic acid (RA) can inhibit the myogenic activity of FGF18 and that blocking RA signalling allows premature induction of MyoD by FGF18 at HH19. We propose a model where interactions between FGF18 in the distal limb and retinoic acid in the proximal limb regulate the timing of myogenic gene expression during limb bud development.
Collapse
Affiliation(s)
- Gi Fay Mok
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Ryan Cardenas
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Helen Anderton
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Keith H S Campbell
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Dylan Sweetman
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|
4
|
Biressi S, Molinaro M, Cossu G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 2007; 308:281-93. [PMID: 17612520 DOI: 10.1016/j.ydbio.2007.06.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/03/2007] [Accepted: 06/08/2007] [Indexed: 12/29/2022]
Abstract
Although skeletal muscles appear superficially alike at different anatomical locations, in reality there is considerably more diversity than previously anticipated. Heterogeneity is not only restricted to completely developed fibers, but is clearly apparent during development at the molecular, cellular and anatomical level. Multiple waves of muscle precursors with different features appear before birth and contribute to muscular diversification. Recent cell lineage and gene expression studies have expanded our knowledge on how skeletal muscle is formed and how its heterogeneity is generated. This review will present a comprehensive view of relevant findings in this field.
Collapse
Affiliation(s)
- Stefano Biressi
- Stem Cell Research Institute, DiBiT, San Raffaele Scientific Institute, 58 via Olgettina, 20132 Milan, Italy.
| | | | | |
Collapse
|
5
|
Abstract
A spike, a resultant regenerate made after amputation of a Xenopus froglet limb, has no muscle tissue. This muscle-less phenotype was analyzed by molecular approaches, and the results of analysis revealed that the spike expresses no myosin heavy chain or Pax7, suggesting that neither mature muscle tissue nor satellite cells exist in the spike. The regenerating blastema in the froglet limb lacked some myogenesis-related marker genes, myoD and myf5, but allowed implanted muscle precursor cells to survive and differentiate into myofiber. Implantation of hepatocyte growth factor (HGF) -releasing cell aggregates rescued this muscle-less phenotype and induced muscle regeneration in Xenopus froglet limb regenerates. These results suggest that failure of regeneration of muscle is due to a disturbance of the early steps of myogenesis under a molecular cascade mediated by HGF/c-met. Improvement of muscle regeneration in the Xenopus adult limb that we report here for the first time will give us important insights into epimorphic tissue regeneration in amphibians and other vertebrates.
Collapse
Affiliation(s)
- Akira Satoh
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, Japan
| | | | | |
Collapse
|
6
|
Ehler E, Fowler VM, Perriard JC. Myofibrillogenesis in the developing chicken heart: Role of actin isoforms and of the pointed end actin capping protein tropomodulin during thin filament assembly. Dev Dyn 2004; 229:745-55. [PMID: 15042698 DOI: 10.1002/dvdy.10482] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Recently, important differences between myofibrillogenesis in cultured cardiomyocytes vs. the three-dimensional setting in situ could be determined. We investigated thin filament assembly in situ by confocal microscopy of whole-mount preparations of immunostained embryonic chicken hearts. Of interest, a distinct localisation of different actin isoforms was observed in immature thin filaments. Cardiac alpha-actin is restricted to filaments with a length comparable to mature thin filaments as soon as the first contractions occur, while vascular alpha-actin makes up filaments that extend toward the M-band. The pointed-end actin filament capping protein tropomodulin can be found initially in close association with the plasma membrane, but attains its mature localisation pattern at the ends of the thin filaments only comparatively late during myofibrillogenesis. Thus tropomodulin acts as a length stabilising element of actin filaments also in developing cardiomyocytes in situ, but plays an additional role together with membrane-associated actin filaments in the earliest steps of myofibril assembly.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Institute of Cell Biology, ETH-Zürich Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|
7
|
Kardon G, Harfe BD, Tabin CJ. A Tcf4-Positive Mesodermal Population Provides a Prepattern for Vertebrate Limb Muscle Patterning. Dev Cell 2003; 5:937-44. [PMID: 14667415 DOI: 10.1016/s1534-5807(03)00360-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nai;ve myogenic cells migrate from the somites into the developing vertebrate limb, where they simultaneously differentiate into myotubes and form distinct anatomical muscles. Limb signals have been hypothesized to direct the pattern of muscles formed, but the molecular nature of these signals and the identity of the cells that produce them have remained unclear. We have identified a population of lateral plate-derived limb mesodermal cells in both chick and mouse that expresses the transcription factor Tcf4 in a muscle-specific pattern independently of the muscle cells themselves. Functional experiments in the chick demonstrate that TCF4 and the Wnt-beta-catenin pathway in these limb mesodermal cells are critical for muscle patterning. We propose that Tcf4-expressing cells establish a prepattern in the limb mesoderm that determines the sites of myogenic differentiation and thus establishes the basic pattern of limb muscles.
Collapse
Affiliation(s)
- Gabrielle Kardon
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
8
|
Alvares LE, Schubert FR, Thorpe C, Mootoosamy RC, Cheng L, Parkyn G, Lumsden A, Dietrich S. Intrinsic, Hox-dependent cues determine the fate of skeletal muscle precursors. Dev Cell 2003; 5:379-90. [PMID: 12967558 DOI: 10.1016/s1534-5807(03)00263-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is generally held that vertebrate muscle precursors depend totally on environmental cues for their development. We show that instead, somites are predisposed toward a particular myogenic program. This predisposition depends on the somite's axial identity: when flank somites are transformed into limb-level somites, either by shifting somitic boundaries with FGF8 or by overexpressing posterior Hox genes, they readily activate the program typical for migratory limb muscle precursors. The intrinsic control over myogenic programs can only be overridden by FGF4 signals provided by the apical ectodermal ridge of a developing limb.
Collapse
Affiliation(s)
- Lúcia E Alvares
- Department of Craniofacial Development, Floor 27 Guy's Tower, King's College London, Guy's Hospital, SE1 9RT, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Cell fate selection and cell cycle exit are fundamental features of differentiation during animal development. Accumulating data suggest that these processes are more readily reversible than previously supposed and are beginning to point at the underlying molecular mechanisms.
Collapse
Affiliation(s)
- S M Hughes
- MRC Muscle and Cell Motility Unit and MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, London, UK.
| |
Collapse
|
10
|
Rosania GR, Chang YT, Perez O, Sutherlin D, Dong H, Lockhart DJ, Schultz PG. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol 2000; 18:304-8. [PMID: 10700146 DOI: 10.1038/73753] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new microtubule-binding molecule, myoseverin, was identified from a library of 2,6,9-trisubstituted purines in a morphological differentiation screen. Myoseverin induces the reversible fission of multinucleated myotubes into mononucleated fragments. Myotube fission promotes DNA synthesis and cell proliferation after removal of the compound and transfer of the cells to fresh growth medium. Transcriptional profiling and biochemical analysis indicate that myoseverin alone does not reverse the biochemical differentiation process. Instead, myoseverin affects the expression of a variety of growth factor, immunomodulatory, extracellular matrix-remodeling, and stress response genes, consistent with the activation of pathways involved in wound healing and tissue regeneration.
Collapse
Affiliation(s)
- G R Rosania
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., San Diego, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Robson LG, Hughes SM. Local signals in the chick limb bud can override myoblast lineage commitment: induction of slow myosin heavy chain in fast myoblasts. Mech Dev 1999; 85:59-71. [PMID: 10415347 DOI: 10.1016/s0925-4773(99)00060-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Patterning of fast and slow muscle fibres in limbs is regulated by signals from non-muscle cells. Myoblast lineage has, however, also been implicated in fibre type patterning. Here we test a founder cell hypothesis for the role of myoblast lineage, by implanting characterized fast and slow mouse myoblast clones into chick limb buds. In culture, late foetal mouse myoblast clones are committed to a probability (range 0-0.92) of slow myosin heavy chain (MyHC) expression. In contrast, when implanted into chick limbs, fast mouse myoblast clones express myosin characteristic of their new environment, without fusion to chick muscle cells and in the absence of innervation. Therefore, local signals exist within the chick limb bud during primary myogenesis that can override intrinsic commitment of at least some myoblasts, and induce slow MyHC.
Collapse
Affiliation(s)
- L G Robson
- Neuroscience section, Division of Biomedical Sciences, Queen Mary and Westfield College, Mile End Road, London, E1 4NS, UK
| | | |
Collapse
|
12
|
Houzelstein D, Auda-Boucher G, Chéraud Y, Rouaud T, Blanc I, Tajbakhsh S, Buckingham ME, Fontaine-Pérus J, Robert B. The homeobox gene Msx1 is expressed in a subset of somites, and in muscle progenitor cells migrating into the forelimb. Development 1999; 126:2689-701. [PMID: 10331980 DOI: 10.1242/dev.126.12.2689] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In myoblast cell cultures, the Msx1 protein is able to repress myogenesis and maintain cells in an undifferentiated and proliferative state. However, there has been no evidence that Msx1 is expressed in muscle or its precursors in vivo. Using mice with the nlacZ gene integrated into the Msx1 locus, we show that the reporter gene is expressed in the lateral dermomyotome of brachial and thoracic somites. Cells from this region will subsequently contribute to forelimb and intercostal muscles. Using Pax3 gene transcripts as a marker of limb muscle progenitor cells as they migrate from the somites, we have defined precisely the somitic origin and timing of cell migration from somites to limb buds in the mouse. Differences in the timing of migration between chick and mouse are discussed. Somites that label for Msx1(nlacZ)transgene expression in the forelimb region partially overlap with those that contribute Pax3-expressing cells to the forelimb. In order to see whether Msx1 is expressed in this migrating population, we have grafted somites from the forelimb level of Msx1(nlacZ)mouse embryos into a chick host embryo. We show that most cells migrating into the wing field express the Msx1(nlacZ)transgene, together with Pax3. In these experiments, Msx1 expression in the somite depends on the axial position of the graft. Wing mesenchyme is capable of inducing Msx1 transcription in somites that normally would not express the gene; chick hindlimb mesenchyme, while permissive for this expression, does not induce it. In the mouse limb bud, the Msx1(nlacZ)transgene is downregulated prior to the activation of the Myf5 gene, an early marker of myogenic differentiation. These observations are consistent with the proposal that Msx1 is involved in the repression of muscle differentiation in the lateral half of the somite and in limb muscle progenitor cells during their migration.
Collapse
Affiliation(s)
- D Houzelstein
- Laboratoire de Génétique Moléculaire de la Morphogenèse, CNRS URA 1947, Département de Biologie Moléculaire, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ehler E, Rothen BM, Hämmerle SP, Komiyama M, Perriard JC. Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci 1999; 112 ( Pt 10):1529-39. [PMID: 10212147 DOI: 10.1242/jcs.112.10.1529] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Myofibrillogenesis in situ was investigated by confocal microscopy of immunofluorescently labelled whole mount preparations of early embryonic chicken heart rudiments. The time-course of incorporation of several components into myofibrils was compared in triple-stained specimens, taken around the time when beating starts. All sarcomeric proteins investigated so far were already expressed before the first contractions and myofibril assembly happened within a few hours. No typical stress fibre-like structures or premyofibrils, structures observed in cultured cardiomyocytes, could be detected during myofibrillogenesis in the heart. Sarcomeric proteins like (α)-actinin, titin and actin were found in a defined localisation pattern even in cardiomyocytes that did not yet contain myofibrils, making up dense body-like structures. As soon as the heart started to beat, all myofibrillar proteins were already located at their exact position in the sarcomere. The maturation of the sarcomeres was characterised by a short delay in the establishment of the pattern for M-line epitopes of titin with respect to Z-disk epitopes and the incorporation of the M-line component myomesin, which preceded that of myosin binding protein-C. Thus dense body-like structures, made up of titin, (α)-actinin and actin filaments serve as the first organised complexes also during myofibrillogenesis in situ and titin functions as a ruler for sarcomere assembly as soon as its C termini have become localised. We suggest that assembly of thin and thick filament occurs independently during myofibrillogenesis in situ and that myomesin might be important for integrating thick filaments with the M-line end of titin.
Collapse
Affiliation(s)
- E Ehler
- Institute of Cell Biology, ETH-Zürich Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Bollag RJ, Crawford KB, Stadt H, Kumiski D, Zdanowicz M, Baptista C, Herlea V, Kirby ML. Use of a repetitive mouse B2 element to identify transplanted mouse cells in mouse-chick chimeras. Exp Cell Res 1999; 248:75-8. [PMID: 10094814 DOI: 10.1006/excr.1999.4401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monitoring the migrations of cells during embryonic development requires a system in which cells can be identified in situ during locomotion. One promising system involves the generation of chimeras by transplanting mouse cells into chick embryos in ovo to exploit the wealth of mouse genetic variants. The success of this technique relies on the ability to detect individual mouse cells in a chick environment with high specificity. The murine B2 family of short interspersed elements is present in the mouse genome at copy numbers in excess of 10(5), whereas this sequence is absent in the chick genome based on hybridization techniques. This differential of five orders of magnitude produces signals in mouse cells that are easily identified, even in an environment that is predominantly chick. Thus, the B2 repeat probe is highly effective for the purpose of identifying mouse cells in mouse-chick chimeras.
Collapse
Affiliation(s)
- R J Bollag
- Developmental Biology Program, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, 30912, USA.
| | | | | | | | | | | | | | | |
Collapse
|