1
|
Lobb-Rabe M, Nawrocka WI, Zhang R, Ashley J, Carrillo RA, Özkan E. Neuronal Wiring Receptors Dprs and DIPs Are GPI Anchored and This Modification Contributes to Their Cell Surface Organization. eNeuro 2024; 11:ENEURO.0184-23.2023. [PMID: 38233143 PMCID: PMC10863630 DOI: 10.1523/eneuro.0184-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
The Drosophila Dpr and DIP proteins belong to the immunoglobulin superfamily of cell surface proteins (CSPs). Their hetero- and homophilic interactions have been implicated in a variety of neuronal functions, including synaptic connectivity, cell survival, and axon fasciculation. However, the signaling pathways underlying these diverse functions are unknown. To gain insight into Dpr-DIP signaling, we sought to examine how these CSPs are associated with the membrane. Specifically, we asked whether Dprs and DIPs are integral membrane proteins or membrane anchored through the addition of glycosylphosphatidylinositol (GPI) linkage. We demonstrate that most Dprs and DIPs are GPI anchored to the membrane of insect cells and validate these findings for some family members in vivo using Drosophila larvae, where GPI anchor cleavage results in loss of surface labeling. Additionally, we show that GPI cleavage abrogates aggregation of insect cells expressing cognate Dpr-DIP partners. To test if the GPI anchor affects Dpr and DIP localization, we replaced it with a transmembrane domain and observed perturbation of subcellular localization on motor neurons and muscles. These data suggest that membrane anchoring of Dprs and DIPs through GPI linkage is required for localization and that Dpr-DIP intracellular signaling likely requires transmembrane coreceptors.
Collapse
Affiliation(s)
- Meike Lobb-Rabe
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Wioletta I Nawrocka
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| | - Ruiling Zhang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - James Ashley
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Robert A Carrillo
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Engin Özkan
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
2
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Tissue dissociation for single-cell and single-nuclei RNA sequencing for low amounts of input material. Front Zool 2022; 19:27. [DOI: 10.1186/s12983-022-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Recent technological advances opened the opportunity to simultaneously study gene expression for thousands of individual cells on a genome-wide scale. The experimental accessibility of such single-cell RNA sequencing (scRNAseq) approaches allowed gaining insights into the cell type composition of heterogeneous tissue samples of animal model systems and emerging models alike. A major prerequisite for a successful application of the method is the dissociation of complex tissues into individual cells, which often requires large amounts of input material and harsh mechanical, chemical and temperature conditions. However, the availability of tissue material may be limited for small animals, specific organs, certain developmental stages or if samples need to be acquired from collected specimens. Therefore, we evaluated different dissociation protocols to obtain single cells from small tissue samples of Drosophila melanogaster eye-antennal imaginal discs.
Results
We show that a combination of mechanical and chemical dissociation resulted in sufficient high-quality cells. As an alternative, we tested protocols for the isolation of single nuclei, which turned out to be highly efficient for fresh and frozen tissue samples. Eventually, we performed scRNAseq and single-nuclei RNA sequencing (snRNAseq) to show that the best protocols for both methods successfully identified relevant cell types. At the same time, snRNAseq resulted in less artificial gene expression that is caused by rather harsh dissociation conditions needed to obtain single cells for scRNAseq. A direct comparison of scRNAseq and snRNAseq data revealed that both datasets share biologically relevant genes among the most variable genes, and we showed differences in the relative contribution of the two approaches to identified cell types.
Conclusion
We present two dissociation protocols that allow isolating single cells and single nuclei, respectively, from low input material. Both protocols resulted in extraction of high-quality RNA for subsequent scRNAseq or snRNAseq applications. If tissue availability is limited, we recommend the snRNAseq procedure of fresh or frozen tissue samples as it is perfectly suited to obtain thorough insights into cellular diversity of complex tissue.
Collapse
|
4
|
Shimozono M, Osaka J, Kato Y, Araki T, Kawamura H, Takechi H, Hakeda-Suzuki S, Suzuki T. Cell surface molecule, Klingon, mediates the refinement of synaptic specificity in the Drosophila visual system. Genes Cells 2019; 24:496-510. [PMID: 31124270 DOI: 10.1111/gtc.12703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/04/2019] [Accepted: 05/19/2019] [Indexed: 11/29/2022]
Abstract
In the Drosophila brain, neurons form genetically specified synaptic connections with defined neuronal targets. It is proposed that each central nervous system neuron expresses specific cell surface proteins, which act as identification tags. Through an RNAi screen of cell surface molecules in the Drosophila visual system, we found that the cell adhesion molecule Klingon (Klg) plays an important role in repressing the ectopic formation of extended axons, preventing the formation of excessive synapses. Cell-specific manipulation of klg showed that Klg is required in both photoreceptors and the glia, suggesting that the balanced homophilic interaction between photoreceptor axons and the glia is required for normal synapse formation. Previous studies suggested that Klg binds to cDIP and our genetic analyses indicate that cDIP is required in glia for ectopic synaptic repression. These data suggest that Klg play a critical role together with cDIP in refining synaptic specificity and preventing unnecessary connections in the brain.
Collapse
Affiliation(s)
- Mai Shimozono
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Jiro Osaka
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Yuya Kato
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Tomohiro Araki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Hinata Kawamura
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Hiroki Takechi
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Satoko Hakeda-Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Takashi Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| |
Collapse
|
5
|
Cheng S, Park Y, Kurleto JD, Jeon M, Zinn K, Thornton JW, Özkan E. Family of neural wiring receptors in bilaterians defined by phylogenetic, biochemical, and structural evidence. Proc Natl Acad Sci U S A 2019; 116:9837-9842. [PMID: 31043568 PMCID: PMC6525511 DOI: 10.1073/pnas.1818631116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of complex nervous systems was accompanied by the expansion of numerous protein families, including cell-adhesion molecules, surface receptors, and their ligands. These proteins mediate axonal guidance, synapse targeting, and other neuronal wiring-related functions. Recently, 32 interacting cell surface proteins belonging to two newly defined families of the Ig superfamily (IgSF) in fruit flies were discovered to label different subsets of neurons in the brain and ventral nerve cord. They have been shown to be involved in synaptic targeting and morphogenesis, retrograde signaling, and neuronal survival. Here, we show that these proteins, Dprs and DIPs, are members of a widely distributed family of two- and three-Ig domain molecules with neuronal wiring functions, which we refer to as Wirins. Beginning from a single ancestral Wirin gene in the last common ancestor of Bilateria, numerous gene duplications produced the heterophilic Dprs and DIPs in protostomes, along with two other subfamilies that diversified independently across protostome phyla. In deuterostomes, the ancestral Wirin evolved into the IgLON subfamily of neuronal receptors. We show that IgLONs interact with each other and that their complexes can be broken by mutations designed using homology models based on Dpr and DIP structures. The nematode orthologs ZIG-8 and RIG-5 also form heterophilic and homophilic complexes, and crystal structures reveal numerous apparently ancestral features shared with Dpr-DIP complexes. The evolutionary, biochemical, and structural relationships we demonstrate here provide insights into neural development and the rise of the metazoan nervous system.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Yeonwoo Park
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
| | - Justyna D Kurleto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Mili Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Joseph W Thornton
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637;
| |
Collapse
|
6
|
Michalak P, Kang L, Schou MF, Garner HR, Loeschcke V. Genomic signatures of experimental adaptive radiation in Drosophila. Mol Ecol 2018; 28:600-614. [PMID: 30375065 DOI: 10.1111/mec.14917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Abiotic environmental factors play a fundamental role in determining the distribution, abundance and adaptive diversification of species. Empowered by new technologies enabling rapid and increasingly accurate examination of genomic variation in populations, researchers may gain new insights into the genomic background of adaptive radiation and stress resistance. We investigated genomic variation across generations of large-scale experimental selection regimes originating from a single founder population of Drosophila melanogaster, diverging in response to ecologically relevant environmental stressors: heat shock, heat knock down, cold shock, desiccation and starvation. When compared to the founder population, and to parallel unselected controls, there were more than 100,000 single nucleotide polymorphisms (SNPs) displaying consistent allelic changes in response to selective pressures across generations. These SNPs were found in both coding and noncoding sequences, with the highest density in promoter regions, and involved a broad range of functionalities, including molecular chaperoning by heat-shock proteins. The SNP patterns were highly stressor-specific despite considerable variation among line replicates within each selection regime, as reflected by a principal component analysis, and co-occurred with selective sweep regions. Only ~15% of SNPs with putatively adaptive changes were shared by at least two selective regimes, while less than 1% of SNPs diverged in opposite directions. Divergent stressors driving evolution in the experimental system of adaptive radiation left distinct genomic signatures, most pronounced in starvation and heat-shock selection regimes.
Collapse
Affiliation(s)
- Pawel Michalak
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia.,One Health Research Center, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia.,Institute of Evolution, University of Haifa, Haifa, Israel
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia
| | - Mads F Schou
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Harold R Garner
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia.,The Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA
| | | |
Collapse
|
7
|
Ozasa F, Morishita K, Dang NAS, Miyata S, Yoshida H, Yamaguchi M. Drosophila DOCK Family Protein Zizimin Involves in Pigment Cell Differentiation in Pupal Retinae. Cell Struct Funct 2017; 42:117-129. [PMID: 28701658 DOI: 10.1247/csf.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The dedicator of cytokinesis (DOCK) family proteins are known as one of guanine nucleotide exchange factors (GEFs), that contribute to cellular signaling processes by activating small G proteins. Although mammalian Zizimin is known to be a GEF for Cdc42 of Rho family small GTPase, its role in vivo is not well understood. Here we studied in vivo function of Drosophila Zizimin (Ziz). Knockdown of Ziz in eye imaginal discs induced the rough eye phenotype accompanied with fusion of ommatidia, loss of bristles and loss of pigments. Immunostaining analyses revealed that Ziz mainly localizes in the secondary pigment cells (SPCs) and tertiary pigment cells (TPCs) in pupal retinae. Ziz-knockdown induced SPC- and TPC-like cells with aberrant morphology in the pupal retina. Delta (Dl), a downstream target of EGFR signaling is known to regulate pigment cell differentiation. Loss-of-function mutation of Dl suppressed the rough eye phenotype and the defect in differentiation of SPCs and TPCs in Ziz-knockdown flies. Moreover, Ziz-knockdown increased Dl expression level especially in SPCs and TPCs. In addition, mutations of rhomboid-1 and roughoid that are activators of EGFR signaling pathway also suppressed both the rough eye phenotype and the defect in differentiation of SPCs and TPCs in Ziz-knockdown flies. Activation of EGFR signaling in Ziz-knockdown flies were further confirmed by immunostaining with anti-diphospho ERK IgG. These results indicate that Ziz negatively regulates the Dl expression in SPCs and TPCs to control differentiation of pigment cells and this regulation is mediated by EGFR signaling pathway.Key words: Zizimin, DOCK, EGFR signaling pathway, pigment cell, Drosophila.
Collapse
Affiliation(s)
- Fumito Ozasa
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology
| | - Kazushige Morishita
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology
| | - Ngoc Anh Suong Dang
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology
| | - Seiji Miyata
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology
| | - Hideki Yoshida
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology
| | - Masamitsu Yamaguchi
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology
| |
Collapse
|
8
|
Eguchi K, Yoshioka Y, Yoshida H, Morishita K, Miyata S, Hiai H, Yamaguchi M. The Drosophila DOCK family protein sponge is involved in differentiation of R7 photoreceptor cells. Exp Cell Res 2013; 319:2179-95. [DOI: 10.1016/j.yexcr.2013.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 01/17/2023]
|
9
|
Koper A, Schenck A, Prokop A. Analysis of adhesion molecules and basement membrane contributions to synaptic adhesion at the Drosophila embryonic NMJ. PLoS One 2012; 7:e36339. [PMID: 22558441 PMCID: PMC3340374 DOI: 10.1371/journal.pone.0036339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/30/2012] [Indexed: 12/12/2022] Open
Abstract
Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need to consider the important contribution made by BM-dependent mechanisms, in addition to CAM-dependent adhesion.
Collapse
Affiliation(s)
- Andre Koper
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
| | - Annette Schenck
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
| |
Collapse
|
10
|
Thao DTP, An PNT, Yamaguchi M, LinhThuoc T. Overexpression of ubiquitin carboxyl terminal hydrolase impairs multiple pathways during eye development in Drosophila melanogaster. Cell Tissue Res 2012; 348:453-63. [PMID: 22526625 DOI: 10.1007/s00441-012-1404-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/08/2012] [Indexed: 12/31/2022]
Abstract
UCH-L1 (ubiquitin carboxyl terminal hydrolase L1) is well known as an enzyme that hydrolyzes polyubiquitin at its C-terminal to release ubiquitin monomers. Although the overexpression of UCH-L1 inhibits proteasome activity in cultured cells, its biological significance in living organisms has not been clarified in detail. Here, we utilized Drosophila as a model system to examine the effects of the overexpression of dUCH, a Drosophila homologue of UCH-L1, on development. Overexpression in the eye imaginal discs induced a rough eye phenotype in the adult, at least partly resulting from the induction of caspase-dependent apoptosis followed by compensatory proliferation. Genetic crosses with enhancer trap lines marking the photoreceptor cells also revealed that the overexpression of dUCH specifically impaired R7 photoreceptor cell differentiation with a reduction in activated extracellular-signal-regulated kinase signals. Furthermore, the dUCH-induced rough eye phenotype was rescued by co-expression of the sevenless gene or the Draf gene, a downstream component of the mitogen-activated protein kinase (MAPK) cascade. These results indicate that the overexpression of dUCH impairs R7 photoreceptor cell differentiation by down-regulating the MAPK pathway. Interestingly, this process appears to be independent of its pro-apoptotic function.
Collapse
Affiliation(s)
- Dang Thi Phuong Thao
- Department of Molecular and Environmental Biotechnology, University of Science, Vietnam National University in Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | | | | | | |
Collapse
|
11
|
Jumbo-Lucioni P, Ayroles JF, Chambers MM, Jordan KW, Leips J, Mackay TF, De Luca M. Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster. BMC Genomics 2010; 11:297. [PMID: 20459830 PMCID: PMC2880307 DOI: 10.1186/1471-2164-11-297] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 05/11/2010] [Indexed: 12/30/2022] Open
Abstract
Background Obesity and phenotypic traits associated with this condition exhibit significant heritability in natural populations of most organisms. While a number of genes and genetic pathways have been implicated to play a role in obesity associated traits, the genetic architecture that underlies the natural variation in these traits is largely unknown. Here, we used 40 wild-derived inbred lines of Drosophila melanogaster to quantify genetic variation in body weight, the content of three major metabolites (glycogen, triacylglycerol, and glycerol) associated with obesity, and metabolic rate in young flies. We chose these lines because they were previously screened for variation in whole-genome transcript abundance and in several adult life-history traits, including longevity, resistance to starvation stress, chill-coma recovery, mating behavior, and competitive fitness. This enabled us not only to identify candidate genes and transcriptional networks that might explain variation for energy metabolism traits, but also to investigate the genetic interrelationships among energy metabolism, behavioral, and life-history traits that have evolved in natural populations. Results We found significant genetically based variation in all traits. Using a genome-wide association screen for single feature polymorphisms and quantitative trait transcripts, we identified 337, 211, 237, 553, and 152 novel candidate genes associated with body weight, glycogen content, triacylglycerol storage, glycerol levels, and metabolic rate, respectively. Weighted gene co-expression analyses grouped transcripts associated with each trait in significant modules of co-expressed genes and we interpreted these modules in terms of their gene enrichment based on Gene Ontology analysis. Comparison of gene co-expression modules for traits in this study with previously determined modules for life-history traits identified significant modular pleiotropy between glycogen content, body weight, competitive fitness, and starvation resistance. Conclusions Combining a large phenotypic dataset with information on variation in genome wide transcriptional profiles has provided insight into the complex genetic architecture underlying natural variation in traits that have been associated with obesity. Our findings suggest that understanding the maintenance of genetic variation in metabolic traits in natural populations may require that we understand more fully the degree to which these traits are genetically correlated with other traits, especially those directly affecting fitness.
Collapse
Affiliation(s)
- Patricia Jumbo-Lucioni
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-3360, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Siddall NA, Hime GR, Pollock JA, Batterham P. Ttk69-dependent repression of lozenge prevents the ectopic development of R7 cells in the Drosophila larval eye disc. BMC DEVELOPMENTAL BIOLOGY 2009; 9:64. [PMID: 20003234 PMCID: PMC2797499 DOI: 10.1186/1471-213x-9-64] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 12/09/2009] [Indexed: 11/18/2022]
Abstract
Background During the development of the Drosophila eye, specific cell types differentiate from an initially equipotent group of uncommitted precursor cells. The lozenge (lz) gene, which is a member of the Runt family of transcriptional regulators, plays a pivotal role in mediating this process through regulating the expression of several fate-specifying transcription factors. However, the regulation of lz, and the control of lz expression levels in different cell types is not fully understood. Results Here, we show a genetic interaction between Tramtrack69 (Ttk69) a key transcriptional repressor and an inhibitor of neuronal fate specification, and lz, the master patterning gene of cells posterior to the morphogenetic furrow in the Drosophila eye disc. Loss of Ttk69 expression causes the development of ectopic R7 cells in the third instar eye disc, with these cells being dependent upon Lz for their development. Using the binary UAS Gal4 system, we show that overexpression of Ttk69 causes the loss of lz-dependent differentiating cells, and a down-regulation of Lz expression in the developing eye. The loss of lz-dependent cells can be rescued by overexpressing lz via a GMR-lz transgene. We provide additional data showing that factors functioning upstream of Ttk69 in eye development regulate lz in a Ttk69-dependent manner. Conclusions Our results lead us to conclude that Ttk69 can either directly or indirectly repress lz gene expression to prevent the premature development of R7 precursor cells in the developing eye of Drosophila. We therefore define a mechanism for the tight regulatory control of the master pre-patterning gene, lz, in early Drosophila eye development and provide insight into how differential levels of lz expression can be achieved to effect specific cell fate outcomes.
Collapse
Affiliation(s)
- Nicole A Siddall
- Department of Genetics, University of Melbourne, Parkville, Vic 3010, Australia.
| | | | | | | |
Collapse
|
13
|
Matsuno M, Horiuchi J, Tully T, Saitoe M. The Drosophila cell adhesion molecule klingon is required for long-term memory formation and is regulated by Notch. Proc Natl Acad Sci U S A 2009; 106:310-5. [PMID: 19104051 PMCID: PMC2606903 DOI: 10.1073/pnas.0807665106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Indexed: 01/01/2023] Open
Abstract
The ruslan (rus) mutant was previously identified in a behavioral screen for mutants defective in long-lasting memory, which consists of two consolidated memory types, anesthesia-resistant memory, and protein synthesis-dependent long-term memory (LTM). We demonstrate here that rus is a new allele of klingon (klg), which encodes a homophilic cell adhesion molecule. Klg is acutely required for LTM but not anesthesia-resistant memory formation, and Klg expression increases upon LTM induction. LTM formation also requires activity of the Notch cell-surface receptor. Although defects in Notch have been implicated in memory loss because of Alzheimer's disease, downstream signaling linking Notch to memory have not been determined. Strikingly, we found that Notch activity increases upon LTM induction and regulates Klg expression. Furthermore, Notch-induced enhancement of LTM is disrupted by a klg mutation. We propose that Klg is a downstream effector of Notch signaling that links Notch activity to memory.
Collapse
Affiliation(s)
- Motomi Matsuno
- Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | - Junjiro Horiuchi
- Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
- Laboratory of Cellular Genetics, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, Japan, 192-0397; and
| | - Tim Tully
- Dart Neuroscience LLC, 7374 Lusk Boulevard, San Diego, CA 92121
| | - Minoru Saitoe
- Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| |
Collapse
|
14
|
Firth LC, Baker NE. Spitz from the retina regulates genes transcribed in the second mitotic wave, peripodial epithelium, glia and plasmatocytes of the Drosophila eye imaginal disc. Dev Biol 2007; 307:521-38. [PMID: 17553483 PMCID: PMC2140239 DOI: 10.1016/j.ydbio.2007.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/24/2007] [Accepted: 04/27/2007] [Indexed: 01/23/2023]
Abstract
Proliferation, differentiation, and other processes must be coordinated during the development of multi-cellular animals. A discrete and regulated cell division, the Second Mitotic Wave (SMW), occurs concomitantly with early cell fate decisions in the Drosophila developing retina. Signals from the Epidermal Growth Factor Receptor (EGFR) are required to promote cell cycle arrest of specified cells and antagonize S-phase entry in the SMW. Cells that do not receive any EGFR activity enter S-phase in the SMW in response to the Notch pathway. To identify genes with potential roles in the SMW, we used microarrays and genetic manipulation of the EGFR pathway to seek transcripts regulated during the SMW. RNA in situ hybridization of 126 differentially transcribed genes revealed genes that have novel expression patterns in cells closely associated with the SMW. In addition, other genes' transcripts were regulated in the differentiating photoreceptor cells, retinal basal glia, the peripodial epithelium and blood cells (plasmatocytes) associated with the developing retina. These novel targets suggest that during eye development, EGFR activity coordinates transcriptional programs in other tissues with retinal differentiation.
Collapse
Affiliation(s)
- Lucy C. Firth
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Nicholas E. Baker
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
15
|
Boulin T, Pocock R, Hobert O. A novel Eph receptor-interacting IgSF protein provides C. elegans motoneurons with midline guidepost function. Curr Biol 2006; 16:1871-83. [PMID: 17027485 DOI: 10.1016/j.cub.2006.08.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 08/07/2006] [Accepted: 08/09/2006] [Indexed: 01/23/2023]
Abstract
BACKGROUND The ventral midline is a prominent structure in vertebrate and invertebrate nervous systems that provides crucial topological information for guiding axons to their appropriate target destinations. Rather than being composed of specialized midline glia cells as in many other species, the embryonic midline of the nematode Caenorhabditis elegans is physically defined by motoneuron cell bodies that separate the left from the right ventral cord fascicles. Their function during development, if any, is not known. RESULTS We show here that besides being components of the postembryonic locomotory circuit, these embryonic motoneurons (eMNs) actively provide midline guidance information for a specific subset of ventral midline axons. This information is provided in the form of a novel, cell-surface-anchored immunoglobulin superfamily (IgSF) member, WRK-1. WRK-1 acts in eMNs to prevent follower axons from inappropriately crossing the ventral midline. We describe the function of the Eph receptor vab-1 and multiple ephrin ligands at the midline, and we show by double mutant analysis and physical interaction tests that WRK-1 functionally interacts with the Eph receptor system. This interaction appears to occur exclusively in the context of axon guidance at the ventral midline but not in other cellular contexts, thereby suggesting that Eph receptor signaling is mechanistically distinct in different tissue types. CONCLUSIONS Our studies reveal cellular and molecular components of axon midline patterning and suggest that Ephrin signaling relies on previously unknown accessory components.
Collapse
Affiliation(s)
- Thomas Boulin
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | |
Collapse
|
16
|
Shinza-Kameda M, Takasu E, Sakurai K, Hayashi S, Nose A. Regulation of layer-specific targeting by reciprocal expression of a cell adhesion molecule, capricious. Neuron 2006; 49:205-13. [PMID: 16423695 DOI: 10.1016/j.neuron.2005.11.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 10/17/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
Layer-specific innervation is a major form of synaptic targeting in the central nervous system. In the Drosophila visual system, photoreceptors R7 and R8 connect to targets in distinct layers of the medulla, a ganglion of the optic lobe. We show here that Capricious (CAPS), a transmembrane protein with leucine-rich repeats (LRRs), is a layer-specific cell adhesion molecule that regulates photoreceptor targeting in the medulla. During the period of photoreceptor targeting, caps is specifically expressed in R8 and its target layer but not in R7 or its recipient layer. caps loss-of-function mutations cause local targeting errors by R8 axons, including layer change. Conversely, ectopic expression of caps in R7 redirects R7 axons to terminate in the CAPS-positive R8 recipient layer. CAPS promotes homophilic cell adhesion in transfected S2 cells. These results suggest that CAPS regulates layer-specific targeting by mediating specific axon-target interaction.
Collapse
Affiliation(s)
- Makiko Shinza-Kameda
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
17
|
Panáková D, Sprong H, Marois E, Thiele C, Eaton S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 2005; 435:58-65. [PMID: 15875013 DOI: 10.1038/nature03504] [Citation(s) in RCA: 519] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 02/28/2005] [Indexed: 11/09/2022]
Abstract
Wnt and Hedgehog family proteins are secreted signalling molecules (morphogens) that act at both long and short range to control growth and patterning during development. Both proteins are covalently modified by lipid, and the mechanism by which such hydrophobic molecules might spread over long distances is unknown. Here we show that Wingless, Hedgehog and glycophosphatidylinositol-linked proteins copurify with lipoprotein particles, and co-localize with them in the developing wing epithelium of Drosophila. In larvae with reduced lipoprotein levels, Hedgehog accumulates near its site of production, and fails to signal over its normal range. Similarly, the range of Wingless signalling is narrowed. We propose a novel function for lipoprotein particles, in which they act as vehicles for the movement of lipid-linked morphogens and glycophosphatidylinositol-linked proteins.
Collapse
Affiliation(s)
- Daniela Panáková
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse-108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
18
|
Hirose F, Ohshima N, Shiraki M, Inoue YH, Taguchi O, Nishi Y, Matsukage A, Yamaguchi M. Ectopic expression of DREF induces DNA synthesis, apoptosis, and unusual morphogenesis in the Drosophila eye imaginal disc: possible interaction with Polycomb and trithorax group proteins. Mol Cell Biol 2001; 21:7231-42. [PMID: 11585906 PMCID: PMC99898 DOI: 10.1128/mcb.21.21.7231-7242.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The promoters of Drosophila genes encoding DNA replication-related proteins contain transcription regulatory element DRE (5'-TATCGATA) in addition to E2F recognition sites. A specific DRE-binding factor, DREF, positively regulates DRE-containing genes. In addition, it has been reported that DREF can bind to a sequence in the hsp70 scs' chromatin boundary element that is also recognized by boundary element-associated factor, and thus DREF may participate in regulating insulator activity. To examine DREF function in vivo, we established transgenic flies in which ectopic expression of DREF was targeted to the eye imaginal discs. Adult flies expressing DREF exhibited a severe rough eye phenotype. Expression of DREF induced ectopic DNA synthesis in the cells behind the morphogenetic furrow, which are normally postmitotic, and abolished photoreceptor specifications of R1, R6, and R7. Furthermore, DREF expression caused apoptosis in the imaginal disc cells in the region where commitment to R1/R6 cells takes place, suggesting that failure of differentiation of R1/R6 photoreceptor cells might cause apoptosis. The DREF-induced rough eye phenotype was suppressed by a half-dose reduction of the E2F gene, one of the genes regulated by DREF, indicating that the DREF overexpression phenotype is useful to screen for modifiers of DREF activity. Among Polycomb/trithorax group genes, we found that a half-dose reduction of some of the trithorax group genes involved in determining chromatin structure or chromatin remodeling (brahma, moira, and osa) significantly suppressed and that reduction of Distal-less enhanced the DREF-induced rough eye phenotype. The results suggest a possibility that DREF activity might be regulated by protein complexes that play a role in modulating chromatin structure. Genetic crosses of transgenic flies expressing DREF to a collection of Drosophila deficiency stocks allowed us to identify several genomic regions, deletions of which caused enhancement or suppression of the DREF-induced rough eye phenotype. These deletions should be useful to identify novel targets of DREF and its positive or negative regulators.
Collapse
Affiliation(s)
- F Hirose
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-8681, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Llano E, Pendás AM, Aza-Blanc P, Kornberg TB, López-Otín C. Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J Biol Chem 2000; 275:35978-85. [PMID: 10964925 DOI: 10.1074/jbc.m006045200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and characterized a cDNA encoding Dm1-MMP, the first matrix metalloproteinase (MMP) identified in Drosophila melanogaster. The isolated cDNA encodes a protein of 541 residues that has a domain organization identical to that of most vertebrate MMPs including a signal sequence, a prodomain with the activation locus, a catalytic domain with a zinc-binding site, and a COOH-terminal hemopexin domain. Northern blot analysis of Dm1-MMP expression in embryonic and larval adult tissues revealed a strong expression level in the developing embryo at 10-22 h, declining thereafter and being undetectable in adults. Western blot analysis confirmed the presence of pro- and active forms of Dm1-MMP in vivo during larval development. In situ hybridization experiments demonstrated that Dm1-MMP is expressed in a segmented pattern in cell clusters at the midline during embryonic stage 12-13, when neurons of the central nervous system start to arise. Recombinant Dm1-MMP produced in Escherichia coli exhibits a potent proteolytic activity against synthetic peptides used for analysis of vertebrate MMPs. This activity is inhibited by tissue inhibitors of metalloproteinases and by synthetic MMP inhibitors such as BB-94. Furthermore, Dm1-MMP is able to degrade the extracellular matrix and basement membrane proteins fibronectin and type IV collagen. On the basis of these data, together with the predominant expression of Dm1-MMP in embryonic neural cells, we propose that this enzyme may be involved in the extracellular matrix remodeling taking place during the development of the central nervous system in Drosophila.
Collapse
Affiliation(s)
- E Llano
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Instituto Universitario de Oncologia, Universidad de Oviedo, 33006-Oviedo, Spain
| | | | | | | | | |
Collapse
|
20
|
Abstract
semang (sag), a mutation isolated as a suppressor of Drosophila Src42A, has previously been shown to affect some receptor tyrosine kinase mediated embryonic processes. Here we show that sag specifically affects the development of R1, R6 and R7 photoreceptor cells in a cell-autonomous manner. These cells are absent in the mutant at the time when they normally appear in the ommatidial pre-clusters. Genetic analyses suggest that sag functions downstream of, or parallel to, Mapk and Yan in the photoreceptor differentiation pathway. The autonomous requirement of sag for R1/R6/R7 development could be explained by a selective impairment of the late, but not early, rounds of Egfr-induced precursor cell assembly by the sag mutations. Egfr signaling is highly regulated by autocrine or paracrine mechanisms in different cells. Knowing that the photoreceptor cluster formation is a complex process involving dynamic changes in cell-cell contact, our hypothesis is that the sag alleles affected certain special aspects of Egfr-signaling that are unique for the recruitment of R1/R6/R7 cells.
Collapse
Affiliation(s)
- Q Zhang
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
21
|
Abstract
The predicted proteins of the genome of Caenorhabditis elegans were analysed by various sequence comparison methods to identify the repertoire of proteins that are members of the immunoglobulin superfamily (IgSF). The IgSF is one of the largest families of protein domain in this genome and likely to be one of the major families in other multicellular eukaryotes too. This is because members of the superfamily are involved in a variety of functions including cell-cell recognition, cell-surface receptors, muscle structure and, in higher organisms, the immune system. Sixty-four proteins with 488 I set IgSF domains were identified largely by using Hidden Markov models. The domain architectures of the protein products of these 64 genes are described. Twenty-one of these had been characterised previously. We show that another 25 are related to proteins of known function. The C. elegans IgSF proteins can be classified into five broad categories: muscle proteins, protein kinases and phosphatases, three categories of proteins involved in the development of the nervous system, leucine-rich repeat containing proteins and proteins without homologues of known function, of which there are 18. The 19 proteins involved in nervous system development that are not kinases or phosphatases are homologues of neuroglian, axonin, NCAM, wrapper, klingon, ICCR and nephrin or belong to the recently identified zig gene family. Out of the set of 64 genes, 22 are on the X chromosome. This study should be seen as an initial description of the IgSF repertoire in C. elegans, because the current gene definitions may contain a number of errors, especially in the case of long sequences, and there may be IgSF genes that have not yet been detected. However, the proteins described here do provide an overview of the bulk of the repertoire of immunoglobulin superfamily members in C. elegans, a framework for refinement and extension of the repertoire as gene and protein definitions improve, and the basis for investigations of their function and for comparisons with the repertoires of other organisms.
Collapse
Affiliation(s)
- S A Teichmann
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.
| | | |
Collapse
|
22
|
Yamaguchi M, Hirose F, Inoue YH, Shiraki M, Hayashi Y, Nishi Y, Matsukage A. Ectopic expression of human p53 inhibits entry into S phase and induces apoptosis in the Drosophila eye imaginal disc. Oncogene 1999; 18:6767-75. [PMID: 10597285 DOI: 10.1038/sj.onc.1203113] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transgenic flies in which ectopic expression of human p53 was targeted to the Drosophila eye imaginal disc were established. On sectioning of adult fly eyes which displayed a severe rough eye phenotype, most ommatidia were found to be fused and irregular shapes of rabdomeres were observed. In addition, many pigment cells were lost. In the developing eye imaginal disc, photoreceptor cell differentiation was initiated normally despite the ectopic expression of p53. However, expression of p53 inhibited cell cycle progression in eye imaginal disc cells and the S phase zone (the second mitotic wave) behind the morphogenetic furrow was almost completely abolished. Furthermore, expression of p53 induced extensive apoptosis of eye imaginal disc cells, and co-expression of baculovirus P35 in the eye imaginal disc suppressed the p53-induced rough eye phenotype. These results are consistent with the known functions of human p53 and indicate the existence of signaling systems with elements corresponding to human p53 in Drosophila eye imaginal disc cells. Genetic crosses of transgenic flies expressing p53 to a collection of Drosophila deficiency stocks allowed us to identify several genomic regions, deletions of which caused enhancement or suppression of the p53-induced rough eye phenotype. The transgenic flies established in this study should be useful to identify novel targets of p53 and its positive or negative regulators in Drosophila.
Collapse
Affiliation(s)
- M Yamaguchi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Mendoza HL, Faye I. Physiological aspects of the immunoglobulin superfamily in invertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1999; 23:359-74. [PMID: 10426428 DOI: 10.1016/s0145-305x(99)00017-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- H L Mendoza
- Instituto Nacional de Salud Publica, Centro De Investigacion sobre Enfermedades Infecciosas, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
24
|
Marg A, Sirim P, Spaltmann F, Plagge A, Kauselmann G, Buck F, Rathjen FG, Brümmendorf T. Neurotractin, a novel neurite outgrowth-promoting Ig-like protein that interacts with CEPU-1 and LAMP. J Cell Biol 1999; 145:865-76. [PMID: 10330412 PMCID: PMC2133198 DOI: 10.1083/jcb.145.4.865] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/1998] [Revised: 04/07/1999] [Indexed: 11/22/2022] Open
Abstract
The formation of axon tracts in nervous system histogenesis is the result of selective axon fasciculation and specific growth cone guidance in embryonic development. One group of proteins implicated in neurite outgrowth, fasciculation, and guidance is the neural members of the Ig superfamily (IgSF). In an attempt to identify and characterize new proteins of this superfamily in the developing nervous system, we used a PCR-based strategy with degenerated primers that represent conserved sequences around the characteristic cysteine residues of Ig-like domains. Using this approach, we identified a novel neural IgSF member, termed neurotractin. This GPI-linked cell surface glycoprotein is composed of three Ig-like domains and belongs to the IgLON subgroup of neural IgSF members. It is expressed in two isoforms with apparent molecular masses of 50 and 37 kD, termed L-form and S-form, respectively. Monoclonal antibodies were used to analyze its biochemical features and histological distribution. Neurotractin is restricted to subsets of developing commissural and longitudinal axon tracts in the chick central nervous system. Recombinant neurotractin promotes neurite outgrowth of telencephalic neurons and interacts with the IgSF members CEPU-1 (KD = 3 x 10(-8) M) and LAMP. Our data suggest that neurotractin participates in the regulation of neurite outgrowth in the developing brain.
Collapse
Affiliation(s)
- A Marg
- Max-Delbrück-Center for Molecular Medicine, D-13092 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Noordermeer JN, Kopczynski CC, Fetter RD, Bland KS, Chen WY, Goodman CS. Wrapper, a novel member of the Ig superfamily, is expressed by midline glia and is required for them to ensheath commissural axons in Drosophila. Neuron 1998; 21:991-1001. [PMID: 9856456 DOI: 10.1016/s0896-6273(00)80618-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The midline glia are specialized, nonneuronal cells at the midline of the Drosophila central nervous system (CNS). During development, the midline glia provide guidance cues for extending axons. At the same time, they migrate and help separate the two axon commissures. They then wrap around and ensheath the commissural axons. In many segments, a few of the glia do not enwrap the axons, and these cells die. The wrapper gene encodes a novel member of the immunoglobulin (Ig) superfamily. Wrapper protein is expressed specifically on the surface of midline glia. In wrapper mutant embryos, the midline glia express their normal guidance cues and migrate normally. However, they do not ensheath the commissural axons, and as a result, the glia die. In the absence of Wrapper, the two axon commissures are not properly separated.
Collapse
Affiliation(s)
- J N Noordermeer
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
26
|
Speicher S, García-Alonso L, Carmena A, Martín-Bermudo MD, de la Escalera S, Jiménez F. Neurotactin functions in concert with other identified CAMs in growth cone guidance in Drosophila. Neuron 1998; 20:221-33. [PMID: 9491984 DOI: 10.1016/s0896-6273(00)80451-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have isolated and characterized mutations in Drosophila neurotactin, a gene that encodes a cell adhesion protein widely expressed during neural development. Analysis of both loss and gain of gene function conditions during embryonic and postembryonic development revealed specific requirements for neurotactin during axon outgrowth, fasciculation, and guidance. Furthermore, embryos of some double mutant combinations of neurotactin and other genes encoding adhesion/signaling molecules, including neuroglian, derailed, and kekkon1, displayed phenotypic synergy. This result provides evidence for functional cooperativity in vivo between the adhesion and signaling pathways controlled by neurotactin and the other three genes.
Collapse
Affiliation(s)
- S Speicher
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Begemann G, Paricio N, Artero R, Kiss I, Pérez-Alonso M, Mlodzik M. muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins. Development 1997; 124:4321-31. [PMID: 9334280 DOI: 10.1242/dev.124.21.4321] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated the embryonic lethal gene muscleblind (mbl) as a suppressor of the sev-svp2 eye phenotype. Analysis of clones mutant for mbl during eye development shows that it is autonomously required for photoreceptor differentiation. Mutant cells are recruited into developing ommatidia and initiate neural differentiation, but they fail to properly differentiate as photoreceptors. Molecular analysis reveals that the mbl locus is large and complex, giving rise to multiple different proteins with common 5′ sequences but different carboxy termini. Mbl proteins are nuclear and share a Cys3His zinc-finger motif which is also found in the TIS11/NUP475/TTP family of proteins and is highly conserved in vertebrates and invertebrates. Functional analysis of mbl, the observation that it also dominantly suppresses the sE-Jun(Asp) gain-of-function phenotype and the phenotypic similarity to mutants in the photoreceptor-specific glass gene suggest that mbl is a general factor required for photoreceptor differentiation.
Collapse
Affiliation(s)
- G Begemann
- Developmental Biology Programme, EMBL, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Nguyen DN, Liu Y, Litsky ML, Reinke R. The sidekick gene, a member of the immunoglobulin superfamily, is required for pattern formation in the Drosophila eye. Development 1997; 124:3303-12. [PMID: 9310325 DOI: 10.1242/dev.124.17.3303] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Drosophila eye imaginal disc the photoreceptor cells (R cells) differentiate according to a precise spatial and temporal order. The sidekick (sdk) gene is necessary to prevent extra R cells from differentiating during eye disc development. The extra cell appears between R3 and R4 early in R cell clusters and is most likely the result of the mystery cell inappropriately differentiating as an R cell. Mosaic analysis shows that sdk is required neither in the R cells nor in the extra cell, suggesting that sdk is necessary in the surrounding undifferentiated cells. The sdk gene codes for a protein that is a member of the immunoglobulin superfamily, having six immunoglobulin domains, thirteen fibronectin repeats and a transmembrane domain. The protein structure is consistent with its participation in cell-cell interaction during eye development.
Collapse
Affiliation(s)
- D N Nguyen
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|