1
|
Ansari SS, Dillard ME, Ghonim M, Zhang Y, Stewart DP, Canac R, Moskowitz IP, Wright WC, Daly CA, Pruett-Miller SM, Steinberg J, Wang YD, Chen T, Thomas PG, Bridges JP, Ogden SK. Receptor Allostery Promotes Context-Dependent Sonic Hedgehog Signaling During Embryonic Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635336. [PMID: 39975106 PMCID: PMC11838287 DOI: 10.1101/2025.01.28.635336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sonic Hedgehog (SHH) signaling functions in temporal- and context-dependent manners to pattern diverse tissues during embryogenesis. The signal transducer Smoothened (SMO) is activated by sterols, oxysterols, and arachidonic acid (AA) through binding pockets in its extracellular cysteine-rich domain (CRD) and 7-transmembrane (7TM) bundle. In vitro analyses suggest SMO signaling is allosterically enhanced by combinatorial ligand binding to these pockets but in vivo evidence of SMO allostery is lacking. Herein, we map an AA binding pocket at the top of the 7TM bundle and show that its disruption attenuates SHH and sterol-stimulated SMO induction. A knockin mouse model of compromised AA binding reveals that homozygous mutant mice are cyanotic, exhibit high perinatal lethality, and show congenital heart disease. Surviving mutants demonstrate pulmonary maldevelopment and fail to thrive. Neurodevelopment is unaltered in these mice, suggesting that context-dependent allosteric regulation of SMO signaling allows for precise tuning of pathway activity during cardiopulmonary development.
Collapse
Affiliation(s)
- Shariq S. Ansari
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Miriam E. Dillard
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mohamed Ghonim
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Daniel P. Stewart
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robin Canac
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Ivan P. Moskowitz
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christina A. Daly
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Paul G. Thomas
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - James P. Bridges
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Stacey K. Ogden
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Ngu MS, Vanselow DJ, Zaino CR, Lin AY, Copper JE, Beaton MJ, Orsini L, Colbourne JK, Cheng KC, Ang KC. A web-based histology atlas for the freshwater sentinel species Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177930. [PMID: 39671929 PMCID: PMC11736674 DOI: 10.1016/j.scitotenv.2024.177930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Daphnia are keystone species of freshwater habitats used as model organisms in ecology and evolutionary biology. Their small size, wide geographic distribution, and sensitivity to chemicals make them useful as environmental sentinels in regulatory toxicology and chemical risk assessment. Biomolecular (-omic) assessments of responses to chemical toxicity, which reveal detailed molecular signatures, become more powerful when correlated with other phenotypic outcomes (such as behavioral, physiological, or histopathological) for comparative validation and regulatory relevance. However, the lack of histopathology or tissue phenotype characterization of this species presently limits our ability to assess cellular mechanisms of toxicity. Here, we address the central concept that interpreting aberrant tissue phenotypes requires a basic understanding of species normal microanatomy. We introduce the female and male DaphniaHistology Reference Atlas (DaHRA) for the baseline knowledge of Daphnia magna microanatomy. We also include developmental stages of female D. magna in the atlas. This interactive web-based resource of adult D. magna features overlaid vectorized demarcation of anatomical structures whose labels comply with an anatomical ontology created for this atlas. We demonstrate the potential utility of DaHRA for toxicological investigations by presenting aberrant phenotypes of acetaminophen-exposed D. magna. We envision DaHRA to facilitate the future integration of molecular and phenotypic data from the scientific community as we seek to understand how genes, chemicals, and environment interactions determine organismal phenotype.
Collapse
Affiliation(s)
- Mee S Ngu
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA
| | - Daniel J Vanselow
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA
| | - Carolyn R Zaino
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA
| | - Alex Y Lin
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA
| | - Jean E Copper
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA
| | | | - Luisa Orsini
- Centre for Environmental Research and Justice, The University of Birmingham, Birmingham, UK
| | - John K Colbourne
- Centre for Environmental Research and Justice, The University of Birmingham, Birmingham, UK
| | - Keith C Cheng
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA; Institute for Computational and Data Sciences, Pennsylvania State University, State College, PA, USA; Molecular and Precision Medicine Program, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Khai C Ang
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA.
| |
Collapse
|
3
|
Standley A, Xie J, Lau AW, Grote L, Gifford AJ. Working with Miraculous Mice: Mus musculus as a Model Organism. Curr Protoc 2024; 4:e70021. [PMID: 39435766 DOI: 10.1002/cpz1.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The laboratory mouse has been described as a "miracle" model organism, providing a window by which we may gain an understanding of ourselves. Since the first recorded mouse experiment in 1664, the mouse has become the most used animal model in biomedical research. Mice are ideally suited as a model organism because of their small size, short gestation period, large litter size, and genetic similarity to humans. This article provides a broad overview of the laboratory mouse as a model organism and is intended for undergraduates and those new to working with mice. We delve into the history of the laboratory mouse and outline important terminology to accurately describe research mice. The types of laboratory mice available to researchers are reviewed, including outbred stocks, inbred strains, immunocompromised mice, and genetically engineered mice. The critical role mice have played in advancing knowledge in the areas of oncology, immunology, and pharmacology is highlighted by examining the significant contribution of mice to Nobel Prize winning research. International mouse mutagenesis programs and accurate phenotyping of mouse models are outlined. We also explain important considerations for working with mice, including animal ethics; the welfare principles of replacement, refinement, and reduction; and the choice of mouse model in experimental design. Finally, we present practical advice for maintaining a mouse colony, which involves adequate training of staff, the logistics of mouse housing, monitoring colony health, and breeding strategies. Useful resources for working with mice are also listed. The aim of this overview is to equip the reader with a broad appreciation of the enormous potential and some of the complexities of working with the laboratory mouse in a quest to improve human health. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Anick Standley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Angelica Wy Lau
- Garvan Institute of Medical Research, St Vincent's Clinical School, Darlinghurst, NSW, Australia
| | - Lauren Grote
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Anatomical Pathology, NSW Heath Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Garside GB, Sandoval M, Beronja S, Rudolph KL. Lentiviral in situ targeting of stem cells in unperturbed intestinal epithelium. BMC Biol 2023; 21:6. [PMID: 36627630 PMCID: PMC9832770 DOI: 10.1186/s12915-022-01466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/16/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Methods for the long-term in situ transduction of the unperturbed murine intestinal epithelium have not been developed in past research. Such a method could speed up functional studies and screens to identify genetic factors influencing intestinal epithelium biology. Here, we developed an efficient method achieving this long-sought goal. RESULTS We used ultrasound-guided microinjections to transduce the embryonic endoderm at day 8 (E8.0) in utero. The injection procedure can be completed in 20 min and had a 100% survival rate. By injecting a small volume (0.1-0.2 μl) of concentrated virus, single shRNA constructs as well as lentiviral libraries can successfully be transduced. The new method stably and reproducibly targets adult intestinal epithelium, as well as other endoderm-derived organs such as the lungs, pancreas, liver, stomach, and bladder. Postnatal analysis of young adult mice indicates that single transduced cells at E8.0 gave rise to crypt fields that were comprised of 20-30 neighbouring crypts per crypt-field at 90 days after birth. Lentiviral targeting of ApcMin/+ mutant and wildtype mice revealed that heterozygous loss of Apc function suppresses the developmental normal growth pattern of intestinal crypt fields. This suppression of crypt field sizes did not involve a reduction of the crypt number per field, indicating that heterozygous Apc loss impaired the growth of individual crypts within the fields. Lentiviral-mediated shRNA knockdown of p53 led to an approximately 20% increase of individual crypts per field in both Apc+/+ and ApcMin/+ mice, associating with an increase in crypt size in ApcMin/+ mice but a slight reduction in crypt size in Apc+/+ mice. Overall, p53 knockdown rescued the reduction in crypt field size in Apc-mutant mice but had no effect on crypt field size in wildtype mice. CONCLUSIONS This study develops a novel technique enabling robust and reproducible in vivo targeting of intestinal stem cells in situ in the unperturbed intestinal epithelium across different regions of the intestine. In vivo somatic gene editing and genetic screening of lentiviral libraries has the potential to speed up discoveries and mechanistic understanding of genetic pathways controlling the biology of the intestinal epithelium during development and postnatal life. The here developed method enables such approaches.
Collapse
Affiliation(s)
- George B. Garside
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
- National Center for Tumor Diseases, 01307 Dresden, Germany
| | - Madeline Sandoval
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109 USA
| | - Slobodan Beronja
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109 USA
| | - K. Lenhard Rudolph
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| |
Collapse
|
5
|
Azar A, Bhutta MF, Del-Pozo J, Milne E, Cheeseman M. Trans-cortical vessels in the mouse temporal bulla bone are a means to recruit myeloid cells in chronic otitis media and limit peripheral leukogram changes. Front Genet 2022; 13:985214. [PMID: 36246635 PMCID: PMC9555619 DOI: 10.3389/fgene.2022.985214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic otitis media, inflammation of the middle ear, is a sequel to acute otitis media in ∼8% of children. Chronic otitis media with effusion is the most common cause of childhood deafness and is characterised by effusion of white blood cells into the auditory bulla cavity. Skull flat bones have trans-cortical vessels which are responsible for the majority of blood flow in and out of the bone. In experimental models of stroke and aseptic meningitis there is preferential recruitment of myeloid cells (neutrophils and monocytes) from the marrow in skull flat bones. We report trans-cortical vessels in the mouse temporal bone connect to the bulla mucosal vasculature and potentially represent a means to recruit myeloid cells directly into the inflamed bulla. The mutant mouse strains Junbo (MecomJbo/+) and Jeff (Fbxo11Jf/+) develop chronic otitis spontaneously; MecomJbo/+ mice have highly cellular neutrophil (90%) rich bulla exudates whereas Fbxo11Jf/+ mice have low cellularity serous effusions (5% neutrophils) indicating differing demand for neutrophil recruitment. However we found peripheral leukograms of MecomJbo/+ and Fbxo11Jf/+ mice are similar to their respective wild-type littermate controls with healthy bullae and infer preferential mobilization of myeloid cells from temporal bulla bone marrow may mitigate the need for a systemic inflammatory reaction. The cytokines, chemokines and haematopoietic factors found in the inflamed bulla represent candidate signalling molecules for myeloid cell mobilization from temporal bone marrow. The density of white blood cells in the bulla cavity is positively correlated with extent of mucosal thickening in MecomJbo/+, Fbxo11Jf/+, and EdaTa mice and is accompanied by changes in epithelial populations and bone remodelling. In MecomJbo/+ mice there was a positive correlation between bulla cavity WBC numbers and total bacterial load. The degree of inflammation varies between contralateral bullae and between mutant mice of different ages suggesting inflammation may wax and wane and may be re-initiated by a new wave of bacterial infection. Clearance of white blood cells and inflammatory stimuli from the bulla cavity is impaired and this may create a pro-inflammatory feedback loop which further exacerbates otitis media and delays its resolution.
Collapse
Affiliation(s)
- Ali Azar
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mahmood F. Bhutta
- Brighton and Sussex Medical School, Brighton, United Kingdom
- Department of ENT, Royal Sussex County Hospital, Brighton, United Kingdom
| | - Jorge Del-Pozo
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Elspeth Milne
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Michael Cheeseman
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Comparative Pathology, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- *Correspondence: Michael Cheeseman,
| |
Collapse
|
6
|
Handschuh S, Glösmann M. Mouse embryo phenotyping using X-ray microCT. Front Cell Dev Biol 2022; 10:949184. [PMID: 36187491 PMCID: PMC9523164 DOI: 10.3389/fcell.2022.949184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Microscopic X-ray computed tomography (microCT) is a structural ex vivo imaging technique providing genuine isotropic 3D images from biological samples at micron resolution. MicroCT imaging is non-destructive and combines well with other modalities such as light and electron microscopy in correlative imaging workflows. Protocols for staining embryos with X-ray dense contrast agents enable the acquisition of high-contrast and high-resolution datasets of whole embryos and specific organ systems. High sample throughput is achieved with dedicated setups. Consequently, microCT has gained enormous importance for both qualitative and quantitative phenotyping of mouse development. We here summarize state-of-the-art protocols of sample preparation and imaging procedures, showcase contemporary applications, and discuss possible pitfalls and sources for artefacts. In addition, we give an outlook on phenotyping workflows using microscopic dual energy CT (microDECT) and tissue-specific contrast agents.
Collapse
|
7
|
Paternal age impairs in vitro embryo and in vivo fetal development in murine. Sci Rep 2022; 12:13031. [PMID: 35906367 PMCID: PMC9338298 DOI: 10.1038/s41598-022-16469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The association between advanced paternal age and impaired reproductive outcomes is still controversial. Several studies relate decrease in semen quality, impaired embryo/fetal development and offspring health to increased paternal age. However, some retrospective studies observed no alterations on both seminal status and reproductive outcomes in older men. Such inconsistency may be due to the influence of intrinsic and external factors, such as genetics, race, diet, social class, lifestyle and obvious ethical issues that may bias the assessment of reproductive status in humans. The use of the murine model enables prospective study and owes the establishment of homogeneous and controlled groups. This study aimed to evaluate the effect of paternal age on in vitro embryo development at 4.5 day post conception and on in vivo fetal development at 16 days of gestation. Murine females (2–4 months of age) were mated with young (4–6 months of age) or senile (18–24 months of age) males. We observed decreased in vitro cleavage, blastocyst, and embryo development rates; lighter and shorter fetuses in the senile compared to the young group. This study indicated that advanced paternal age negatively impacts subsequent embryo and fetal development.
Collapse
|
8
|
Ambekar YS, Singh M, Schill AW, Zhang J, Zevallos-Delgado C, Khajavi B, Aglyamov SR, Finnell RH, Scarcelli G, Larin KV. Multimodal imaging system combining optical coherence tomography and Brillouin microscopy for neural tube imaging. OPTICS LETTERS 2022; 47:1347-1350. [PMID: 35290310 PMCID: PMC9088521 DOI: 10.1364/ol.453996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
To understand the dynamics of tissue stiffness during neural tube formation and closure in a murine model, we have developed a multimodal, coaligned imaging system combining optical coherence tomography (OCT) and Brillouin microscopy. Brillouin microscopy can map the longitudinal modulus of tissue but cannot provide structural images. Thus, it is limited for imaging dynamic processes such as neural tube formation and closure. To overcome this limitation, we have combined Brillouin microscopy and OCT in one coaligned instrument. OCT provided depth-resolved structural imaging with a micrometer-scale spatial resolution to guide stiffness mapping by Brillouin modality. 2D structural and Brillouin frequency shift maps were acquired of mouse embryos at gestational day (GD) 8.5, 9.5, and 10.5 with the multimodal system. The results demonstrate the capability of the system to obtain structural and stiffness information simultaneously.
Collapse
Affiliation(s)
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Alexander W. Schill
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | | | - Behzad Khajavi
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas, USA
| | - Richard H. Finnell
- Departments of Molecular and Cell Biology, Molecular and Human Genetics, and Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Chan ME, Bhamidipati PS, Goldsby HJ, Hintze A, Hofmann HA, Young RL. Comparative Transcriptomics Reveals Distinct Patterns of Gene Expression Conservation through Vertebrate Embryogenesis. Genome Biol Evol 2021; 13:6319027. [PMID: 34247223 PMCID: PMC8358226 DOI: 10.1093/gbe/evab160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Despite life's diversity, studies of variation often remind us of our shared evolutionary past. Abundant genome sequencing and analyses of gene regulatory networks illustrate that genes and entire pathways are conserved, reused, and elaborated in the evolution of diversity. Predating these discoveries, 19th-century embryologists observed that though morphology at birth varies tremendously, certain stages of vertebrate embryogenesis appear remarkably similar across vertebrates. In the mid to late 20th century, anatomical variability of early and late-stage embryos and conservation of mid-stages embryos (the "phylotypic" stage) was named the hourglass model of diversification. This model has found mixed support in recent analyses comparing gene expression across species possibly owing to differences in species, embryonic stages, and gene sets compared. We compare 186 microarray and RNA-seq data sets covering embryogenesis in six vertebrate species. We use an unbiased clustering approach to group stages of embryogenesis by transcriptomic similarity and ask whether gene expression similarity of clustered embryonic stages deviates from a null expectation. We characterize expression conservation patterns of each gene at each evolutionary node after correcting for phylogenetic nonindependence. We find significant enrichment of genes exhibiting early conservation, hourglass, late conservation patterns in both microarray and RNA-seq data sets. Enrichment of genes showing patterned conservation through embryogenesis indicates diversification of embryogenesis may be temporally constrained. However, the circumstances under which each pattern emerges remain unknown and require both broad evolutionary sampling and systematic examination of embryogenesis across species.
Collapse
Affiliation(s)
- Megan E Chan
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| | - Pranav S Bhamidipati
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| | - Heather J Goldsby
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Arend Hintze
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA.,Institute for Cellular and Molecular Biology, Institute for Neuroscience, The University of Texas at Austin, Texas, USA
| | - Rebecca L Young
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| |
Collapse
|
10
|
Xu Z, Liu M, Gao C, Kuang W, Chen X, Liu F, Ge B, Yan X, Zhou T, Xie S. Centrosomal protein FOR20 knockout mice display embryonic lethality and left-right patterning defects. FEBS Lett 2021; 595:1462-1472. [PMID: 33686659 DOI: 10.1002/1873-3468.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022]
Abstract
Centrosomal protein FOR20 has been reported to be crucial for essential cellular processes, including ciliogenesis, cell migration, and cell cycle in vertebrates. However, the function of FOR20 during mammalian embryonic development remains unknown. To investigate the in vivo function of the For20 gene in mammals, we generated For20 homozygous knockout mice by gene targeting. Our data reveal that homozygous knockout of For20 results in significant embryonic growth arrest and lethality during gestation, while the heterozygotes show no obvious defects. The absence of For20 leads to impaired left-right patterning of embryos and reduced cilia in the embryonic node. Deletion of For20 also disrupts angiogenesis in yolk sacs and embryos. These results highlight a critical role of For20 in early mammalian embryogenesis.
Collapse
Affiliation(s)
- Zhangqi Xu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Gao
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Kuang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiying Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Feifei Liu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China
| | - Bai Ge
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyi Yan
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Molecular Genetics, University of Toronto, Canada
| | - Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Horner NR, Venkataraman S, Armit C, Casero R, Brown JM, Wong MD, van Eede MC, Henkelman RM, Johnson S, Teboul L, Wells S, Brown SD, Westerberg H, Mallon AM. LAMA: automated image analysis for the developmental phenotyping of mouse embryos. Development 2021; 148:dev192955. [PMID: 33574040 PMCID: PMC8015254 DOI: 10.1242/dev.192955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
Advanced 3D imaging modalities, such as micro-computed tomography (micro-CT), have been incorporated into the high-throughput embryo pipeline of the International Mouse Phenotyping Consortium (IMPC). This project generates large volumes of raw data that cannot be immediately exploited without significant resources of personnel and expertise. Thus, rapid automated annotation is crucial to ensure that 3D imaging data can be integrated with other multi-dimensional phenotyping data. We present an automated computational mouse embryo phenotyping pipeline that harnesses the large amount of wild-type control data available in the IMPC embryo pipeline in order to address issues of low mutant sample number as well as incomplete penetrance and variable expressivity. We also investigate the effect of developmental substage on automated phenotyping results. Designed primarily for developmental biologists, our software performs image pre-processing, registration, statistical analysis and segmentation of embryo images. We also present a novel anatomical E14.5 embryo atlas average and, using it with LAMA, show that we can uncover known and novel dysmorphology from two IMPC knockout lines.
Collapse
Affiliation(s)
- Neil R Horner
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Shanmugasundaram Venkataraman
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Chris Armit
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh EH4 2XU, UK
- BGI Hong Kong, 26/F, Kings Wing Plaza 2, 1 On Kwan Street, Shek Mun, New Territories, Hong Kong
| | - Ramón Casero
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - James M Brown
- School of Computer Science, University of Lincoln, Lincoln LN6 7TS
| | - Michael D Wong
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - Matthijs C van Eede
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - Sara Johnson
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Lydia Teboul
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Sara Wells
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Steve D Brown
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | | | - Ann-Marie Mallon
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| |
Collapse
|
12
|
Ginzel M, Martynov I, Haak R, Lacher M, Kluth D. Midgut development in rat embryos using microcomputed tomography. Commun Biol 2021; 4:190. [PMID: 33580156 PMCID: PMC7881192 DOI: 10.1038/s42003-021-01702-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/05/2021] [Indexed: 11/08/2022] Open
Abstract
The development of the mammalian gut was first described more than a century ago. Since then, it has been believed that a series of highly orchestrated developmental processes occur before the intestine achieves its final formation. The key steps include the formation of the umbilicus, the so-called "physiological herniation" of the midgut into the umbilical cord, an intestinal "rotation", and the "return of the gut" into the abdominal cavity. However, this sequence of events is predominantly based on histological sections of dissected embryos, a 2D technique with methodological limitations. For a better understanding of spatial relationships in the embryo, we utilized microcomputed tomography (µCT), a nondestructive 3D imaging method. Here, we show the detailed processes and mechanisms of intestinal development in rat embryos, including the development of the umbilicus, the formation of loops inside the umbilical coelom, and the subsequent shift of these loops into the abdominal cavity. Our 3D datasets of developing intestines will substantially advance the understanding of normal mammalian midgut embryology and offer new possibilities to reveal unknown mechanisms in the pathogenesis of congenital disorders.
Collapse
Affiliation(s)
- Marco Ginzel
- Department of Neonatology, University Children's Hospital Tuebingen, Tuebingen, Germany.
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany.
| | - Illya Martynov
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Dietrich Kluth
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Metscher B. A simple nuclear contrast staining method for microCT-based 3D histology using lead(II) acetate. J Anat 2020; 238:1036-1041. [PMID: 33140846 PMCID: PMC7930760 DOI: 10.1111/joa.13351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 10/29/2022] Open
Abstract
X-ray microtomography (microCT) enables histological-scale 3D imaging of many types of biological samples, but it has yet to rival traditional histology for differentiation of tissue types and cell components. This report presents prima facie results indicating that a simple lead(II) acetate staining solution can impart preferential X-ray contrast to cell nuclei. While not strictly selective for nuclei, the staining reflects local cell-density differences. It can be applied in a single overnight treatment and does not require hematoxylin staining or drying of the sample. The stain is removable with EDTA, and it may enhance early calcifications. A basic protocol is given as a guide for further testing and optimization.
Collapse
Affiliation(s)
- Brian Metscher
- Department of Evolutionary Biology, Theoretical Biology Unit, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Zhao Y, Shan T, Chi Z, Jiang H. Thermoacoustic tomography of germinal matrix hemorrhage in neonatal mouse cerebrum. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:83-93. [PMID: 31771088 DOI: 10.3233/xst-190599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Microwave-induced thermoacoustic tomography (TAT) has potential for detecting germinal matrix hemorrhage (GMH). However, it has not been demonstrated in vivo. OBJECTIVE To demonstrate the feasibility of TAT for in vivo detecting GMH by using neonatal mouse. METHODS A cylindrical-scanning TAT system was developed with optimized microwave irradiation and ultrasound detection for neonatal mouse imaging. Neonatal mice were used to develop GMH model by injection of autologous blood into the periventricular region. After TAT experiments, the animals were sacrificed, frozen and excised to validate the TAT findings. The detailed comparative analyses of the TAT images and corresponding photographs of the excised brain tissues were conducted. RESULTS Satisfactory matches are identified between the TAT images and corresponding histological sections, in terms of the shape and size of the brain tissues. Some organs and tissues were also identified. Particularly, comparing to the corresponding histological sections, using TAT enables to more accurately detect the hematoma region at different depths in the neonatal mouse brain. CONCLUSIONS This study demonstrates for the first time that TAT can detect GMH in neonatal mouse cerebrum in vivo. This represents the first important step towards the in vivo diagnosis and grading of hemorrhage in the infant human brain.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, China
| | - Tianqi Shan
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Zihui Chi
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, China
| | - Huabei Jiang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, China
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
15
|
Baldock RA, Armit C. eHistology image and annotation data from the Kaufman Atlas of Mouse Development. Gigascience 2018; 7:4768197. [PMID: 29272399 PMCID: PMC5827353 DOI: 10.1093/gigascience/gix131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/13/2017] [Indexed: 01/15/2023] Open
Abstract
“The Atlas of Mouse Development” by Kaufman is a classic paper atlas that is the de facto standard for the definition of mouse embryo anatomy in the context of standard histological images. We have redigitized the original haematoxylin and eosin–stained tissue sections used for the book at high resolution and transferred the hand-drawn annotations to digital form. We have augmented the annotations with standard ontological assignments (EMAPA anatomy) and made the data freely available via an online viewer (eHistology) and from the University of Edinburgh DataShare archive. The dataset captures and preserves the definitive anatomical knowledge of the original atlas, provides a core image set for deeper community annotation and teaching, and delivers a unique high-quality set of high-resolution histological images through mammalian development for manual and automated analysis.
Collapse
Affiliation(s)
- Richard A Baldock
- MRC Human Genetics Unit, Institute of Genomic and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Chris Armit
- MRC Human Genetics Unit, Institute of Genomic and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
16
|
Rich CA, Perera SN, Andratschke J, Stolt CC, Buehler DP, Southard-Smith EM, Wegner M, Britsch S, Baker CVH. Olfactory ensheathing cells abutting the embryonic olfactory bulb express Frzb, whose deletion disrupts olfactory axon targeting. Glia 2018; 66:2617-2631. [PMID: 30256452 PMCID: PMC6517278 DOI: 10.1002/glia.23515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
We and others previously showed that in mouse embryos lacking the transcription factor Sox10, olfactory ensheathing cell (OEC) differentiation is disrupted, resulting in defective olfactory axon targeting and fewer gonadotropin‐releasing hormone (GnRH) neurons entering the embryonic forebrain. The underlying mechanisms are unclear. Here, we report that OECs in the olfactory nerve layer express Frzb—encoding a secreted Wnt inhibitor with roles in axon targeting and basement membrane breakdown—from embryonic day (E)12.5, when GnRH neurons first enter the forebrain, until E16.5, the latest stage examined. The highest levels of Frzb expression are seen in OECs in the inner olfactory nerve layer, abutting the embryonic olfactory bulb. We find that Sox10 is required for Frzb expression in OECs, suggesting that loss of Frzb could explain the olfactory axon targeting and/or GnRH neuron migration defects seen in Sox10‐null mice. At E16.5, Frzb‐null embryos show significant reductions in both the volume of the olfactory nerve layer expressing the maturation marker Omp and the number of Omp‐positive olfactory receptor neurons in the olfactory epithelium. As Omp upregulation correlates with synapse formation, this suggests that Frzb deletion indeed disrupts olfactory axon targeting. In contrast, GnRH neuron entry into the forebrain is not significantly affected. Hence, loss of Frzb may contribute to the olfactory axon targeting phenotype, but not the GnRH neuron phenotype, of Sox10‐null mice. Overall, our results suggest that Frzb secreted from OECs in the olfactory nerve layer is important for olfactory axon targeting. Frzb is expressed by olfactory ensheathing cells abutting the embryonic mouse olfactory bulb. Frzb expression requires Sox10. Deletion of Frzb disrupts olfactory receptor neuron maturation, likely reflecting a defect in olfactory axon targeting.
Collapse
Affiliation(s)
- Constance A Rich
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Surangi N Perera
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | - C Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Clare V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Chen VS, Morrison JP, Southwell MF, Foley JF, Bolon B, Elmore SA. Histology Atlas of the Developing Prenatal and Postnatal Mouse Central Nervous System, with Emphasis on Prenatal Days E7.5 to E18.5. Toxicol Pathol 2017; 45:705-744. [PMID: 28891434 DOI: 10.1177/0192623317728134] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evaluation of the central nervous system (CNS) in the developing mouse presents unique challenges, given the complexity of ontogenesis, marked structural reorganization over very short distances in 3 dimensions each hour, and numerous developmental events susceptible to genetic and environmental influences. Developmental defects affecting the brain and spinal cord arise frequently both in utero and perinatally as spontaneous events, following teratogen exposure, and as sequelae to induced mutations and thus are a common factor in embryonic and perinatal lethality in many mouse models. Knowledge of normal organ and cellular architecture and differentiation throughout the mouse's life span is crucial to identify and characterize neurodevelopmental lesions. By providing a well-illustrated overview summarizing major events of normal in utero and perinatal mouse CNS development with examples of common developmental abnormalities, this annotated, color atlas can be used to identify normal structure and histology when phenotyping genetically engineered mice and will enhance efforts to describe and interpret brain and spinal cord malformations as causes of mouse embryonic and perinatal lethal phenotypes. The schematics and images in this atlas illustrate major developmental events during gestation from embryonic day (E)7.5 to E18.5 and after birth from postnatal day (P)1 to P21.
Collapse
Affiliation(s)
- Vivian S Chen
- 1 Charles River Laboratories Inc., Durham, North Carolina, USA.,Authors contributed equally
| | - James P Morrison
- 2 Charles River Laboratories Inc., Shrewsbury, Massachusetts, USA.,Authors contributed equally
| | - Myra F Southwell
- 3 Cellular Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Julie F Foley
- 4 Bio-Molecular Screening Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Susan A Elmore
- 3 Cellular Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
18
|
Zdora MC, Vila-Comamala J, Schulz G, Khimchenko A, Hipp A, Cook AC, Dilg D, David C, Grünzweig C, Rau C, Thibault P, Zanette I. X-ray phase microtomography with a single grating for high-throughput investigations of biological tissue. BIOMEDICAL OPTICS EXPRESS 2017; 8:1257-1270. [PMID: 28271016 PMCID: PMC5330582 DOI: 10.1364/boe.8.001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 05/23/2023]
Abstract
The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM.
Collapse
Affiliation(s)
- Marie-Christine Zdora
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT,
UK
| | - Joan Vila-Comamala
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,
Switzerland
| | - Georg Schulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil,
Switzerland
| | - Anna Khimchenko
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil,
Switzerland
| | | | - Andrew C. Cook
- University College London Institute of Cardiovascular Science, London WC1E 6BT,
UK
| | - Daniel Dilg
- University College London Institute of Cardiovascular Science, London WC1E 6BT,
UK
| | | | | | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
- School of Materials, University of Manchester, Manchester M1 7HS,
UK
- Department of Otolaryngology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611,
USA
| | - Pierre Thibault
- Department of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ,
UK
| | - Irene Zanette
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
| |
Collapse
|
19
|
Wilson R, McGuire C, Mohun T. Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines. Nucleic Acids Res 2015; 44:D855-61. [PMID: 26519470 PMCID: PMC4702824 DOI: 10.1093/nar/gkv1138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/18/2015] [Indexed: 01/09/2023] Open
Abstract
The Deciphering the Mechanisms of Developmental Disorders (DMDD) consortium is a research programme set up to identify genes in the mouse, which if mutated (or knocked-out) result in embryonic lethality when homozygous, and initiate the study of why disruption of their function has such profound effects on embryo development and survival. The project uses a combination of comprehensive high resolution 3D imaging and tissue histology to identify abnormalities in embryo and placental structures of embryonic lethal lines. The image data we have collected and the phenotypes scored are freely available through the project website (http://dmdd.org.uk). In this article we describe the web interface to the images that allows the embryo data to be viewed at full resolution in different planes, discuss how to search the database for a phenotype, and our approach to organising the data for an embryo and a mutant line so it is easy to comprehend and intuitive to navigate.
Collapse
Affiliation(s)
- Robert Wilson
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Christina McGuire
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Timothy Mohun
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
20
|
Richardson L, Graham L, Moss J, Burton N, Roochun Y, Armit C, Baldock RA. Developing the eHistology Atlas. Database (Oxford) 2015; 2015:bav105. [PMID: 26500249 PMCID: PMC4618478 DOI: 10.1093/database/bav105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/17/2015] [Accepted: 09/30/2015] [Indexed: 01/03/2023]
Abstract
The eMouseAtlas project has undertaken to generate a new resource providing access to high-resolution colour images of the slides used in the renowned textbook 'The Atlas of Mouse Development' by Matthew H. Kaufman. The original histology slides were digitized, and the associated anatomy annotations captured for display in the new resource. These annotations were assigned to objects in the standard reference anatomy ontology, allowing the eHistology resource to be linked to other data resources including the Edinburgh Mouse Atlas Gene-Expression database (EMAGE) an the Mouse Genome Informatics (MGI) gene-expression database (GXD). The provision of the eHistology Atlas resource was assisted greatly by the expertise of the eMouseAtlas project in delivering large image datasets within a web environment, using IIP3D technology. This technology also permits future extensions to the resource through the addition of further layers of data and annotations to the resource. Database URL: www.emouseatlas.org/emap/eHistology/index.php.
Collapse
Affiliation(s)
- Lorna Richardson
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Liz Graham
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Julie Moss
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Nick Burton
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Yogmatee Roochun
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Chris Armit
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Richard A Baldock
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| |
Collapse
|