1
|
Zhao Z, Geisbrecht ER. Stage-specific modulation of Drosophila gene expression with muscle GAL4 promoters. Fly (Austin) 2025; 19:2447617. [PMID: 39772988 PMCID: PMC11730430 DOI: 10.1080/19336934.2024.2447617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The bipartite GAL4/UAS system is the most widely used method for targeted gene expression in Drosophila melanogaster and facilitates rapid in vivo genetic experimentation. Defining precise gene expression patterns for tissues and/or cell types under GAL4 control will continue to evolve to suit experimental needs. However, the precise spatial and temporal expression patterns for some commonly used muscle tissue promoters are still unclear. This missing information limits the precise timing of experiments during development. Here, we focus on three muscle-enriched GAL4 drivers (Mef2-GAL4, C57-GAL4 and G7-GAL4) to better inform selection of the most appropriate muscle promoter for experimental needs. Specifically, C57-GAL4 and G7-GAL4 turn on in the first or second instar larval stages, respectively, and can be used to bypass myogenesis for studies of muscle function after development.
Collapse
Affiliation(s)
- Ziwei Zhao
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Angom RS, Singh M, Muhammad H, Varanasi SM, Mukhopadhyay D. Zebrafish as a Versatile Model for Cardiovascular Research: Peering into the Heart of the Matter. Cells 2025; 14:531. [PMID: 40214485 PMCID: PMC11988917 DOI: 10.3390/cells14070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. A total of 17.5 million people died of CVDs in the year 2012, accounting for 31% of all deaths globally. Vertebrate animal models have been used to understand cardiac disease biology, as the cellular, molecular, and physiological aspects of human CVDs can be replicated closely in these organisms. Zebrafish is a popular model organism offering an arsenal of genetic tools that allow the rapid in vivo analysis of vertebrate gene function and disease conditions. It has a short breeding cycle, high fecundity, optically transparent embryos, rapid internal organ development, and easy maintenance. This review aims to give readers an overview of zebrafish cardiac biology and a detailed account of heart development in zebrafish and its comparison with humans and the conserved genetic circuitry. We also discuss the contributions made in CVD research using the zebrafish model. The first part of this review focuses on detailed information on the morphogenetic and differentiation processes in early cardiac development. The overlap and divergence of the human heart's genetic circuitry, structure, and physiology are emphasized wherever applicable. In the second part of the review, we overview the molecular tools and techniques available to dissect gene function and expression in zebrafish, with special mention of the use of these tools in cardiac biology.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Meghna Singh
- Department of Pathology and Lab Medicine, University of California, Los Angeles, CA 92093, USA;
| | - Huzaifa Muhammad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| |
Collapse
|
3
|
Mukherjee A, Ashraf F, Nongthomba U. Bioinformatic meta-analysis of transcriptomics of developing Drosophila muscles identifies temporal regulatory transcription factors including a Notch effector. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195066. [PMID: 39522719 DOI: 10.1016/j.bbagrm.2024.195066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The intricate mechanism of gene regulation coordinates the precise control of when, where, and to what extent genes are activated or repressed, directing the complex processes that govern cellular functions and development. Dysregulation of gene expression can lead to diseases such as autoimmune disorders, cancer, and neurodegeneration. Transcriptional regulation, especially involving transcription factors (TFs), plays a major role in controlling gene expression. This study focuses on identifying gene regulatory mechanisms that generate distinct gene expression patterns during Drosophila muscle development. Utilising a bioinformatics approach, we analysed the developmental time-point-specific transcriptomics resource generated by Spletter et al., which includes mRNA sequencing data at eight stages of indirect flight muscle (IFM) development. They had identified 40 distinct genome-wide clusters representing various temporal expression dynamics using 'soft' clustering. Promoter sequences of genes in these clusters were analysed to predict novel motifs that act as TF binding sites. Comparative analysis with known motifs revealed significant overlaps, indicating shared transcriptional regulation. The physiological relevance of predicted TFs was confirmed by cross-referencing with experimental ChIP-seq data. We focused on Cluster 36, characterised by a unique bimodal temporal expression profile, and identified candidate genes, Rbfox1 and zfh1, for further study. Ectopic overexpression experiments revealed that the TF Enhancer of split m8 helix-loop-helix [E(spl)m8-HLH], part of the Notch signalling pathway, acts as a transcriptional repressor for Rbfox1 and zfh1. Our findings highlight the complexity of transcriptional regulation during myogenesis, and identify key TFs that could be targeted for further research in muscle development and related disorders.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India.
| | - Fathima Ashraf
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India.
| |
Collapse
|
4
|
von Saucken VE, Windner SE, Armetta G, Baylies MK. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. J Cell Biol 2025; 224:e202404052. [PMID: 39475469 PMCID: PMC11530350 DOI: 10.1083/jcb.202404052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024] Open
Abstract
The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (size scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show that local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.
Collapse
Affiliation(s)
- Victoria E. von Saucken
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Biochemistry, Cell and Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Stefanie E. Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanna Armetta
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary K. Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
5
|
Guo Y, Hartson SD, Rogers J, Brooks-Kanost L, Brooks D, Geisbrecht ER. Protocol for affinity purification-mass spectrometry interactome profiling in larvae of Drosophila melanogaster. STAR Protoc 2024; 5:103064. [PMID: 38743568 PMCID: PMC11108999 DOI: 10.1016/j.xpro.2024.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Many techniques exist for the identification of protein interaction networks. We present a protocol that relies on an affinity purification-mass spectrometry (AP-MS) approach to detect proteins that co-purify with a tagged bait of interest from Drosophila melanogaster larval muscles using the GAL4/upstream activating sequence (UAS) expression system. We also describe steps for the isolation and identification of protein complexes, followed by streamlined bioinformatics analysis for rapid and reproducible results. This protocol can be extended to investigate protein interactions in other tissues. For complete details on the use and execution of this protocol, please refer to Guo et al.1.
Collapse
Affiliation(s)
- Yungui Guo
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66503, USA.
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lillian Brooks-Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66503, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66503, USA.
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66503, USA.
| |
Collapse
|
6
|
Berger M, Fraatz M, Auweiler K, Dorn K, El Khadrawe T, Scholz H. Octopamine integrates the status of internal energy supply into the formation of food-related memories. eLife 2024; 12:RP88247. [PMID: 38655926 DOI: 10.7554/elife.88247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.
Collapse
Affiliation(s)
- Michael Berger
- Department of Biology, Institute for Zoology, University Köln, Köln, Germany
| | - Michèle Fraatz
- Department of Biology, Institute for Zoology, University Köln, Köln, Germany
| | - Katrin Auweiler
- Department of Biology, Institute for Zoology, University Köln, Köln, Germany
| | - Katharina Dorn
- Department of Biology, Institute for Zoology, University Köln, Köln, Germany
| | - Tanna El Khadrawe
- Department of Biology, Institute for Zoology, University Köln, Köln, Germany
| | - Henrike Scholz
- Department of Biology, Institute for Zoology, University Köln, Köln, Germany
| |
Collapse
|
7
|
Ruan ZR, Yu Z, Xing C, Chen EH. Inter-organ steroid hormone signaling promotes myoblast fusion via direct transcriptional regulation of a single key effector gene. Curr Biol 2024; 34:1438-1452.e6. [PMID: 38513654 PMCID: PMC11003854 DOI: 10.1016/j.cub.2024.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/24/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Steroid hormones regulate tissue development and physiology by modulating the transcription of a broad spectrum of genes. In insects, the principal steroid hormones, ecdysteroids, trigger the expression of thousands of genes through a cascade of transcription factors (TFs) to coordinate developmental transitions such as larval molting and metamorphosis. However, whether ecdysteroid signaling can bypass transcriptional hierarchies to exert its function in individual developmental processes is unclear. Here, we report that a single non-TF effector gene mediates the transcriptional output of ecdysteroid signaling in Drosophila myoblast fusion, a critical step in muscle development and differentiation. Specifically, we show that the 20-hydroxyecdysone (commonly referred to as "ecdysone") secreted from an extraembryonic tissue, amnioserosa, acts on embryonic muscle cells to directly activate the expression of antisocial (ants), which encodes an essential scaffold protein enriched at the fusogenic synapse. Not only is ants transcription directly regulated by the heterodimeric ecdysone receptor complex composed of ecdysone receptor (EcR) and ultraspiracle (USP) via ecdysone-response elements but also more strikingly, expression of ants alone is sufficient to rescue the myoblast fusion defect in ecdysone signaling-deficient mutants. We further show that EcR/USP and a muscle-specific TF Twist synergistically activate ants expression in vitro and in vivo. Taken together, our study provides the first example of a steroid hormone directly activating the expression of a single key non-TF effector gene to regulate a developmental process via inter-organ signaling and provides a new paradigm for understanding steroid hormone signaling in other developmental and physiological processes.
Collapse
Affiliation(s)
- Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ze Yu
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Lobb-Rabe M, Nawrocka WI, Zhang R, Ashley J, Carrillo RA, Özkan E. Neuronal Wiring Receptors Dprs and DIPs Are GPI Anchored and This Modification Contributes to Their Cell Surface Organization. eNeuro 2024; 11:ENEURO.0184-23.2023. [PMID: 38233143 PMCID: PMC10863630 DOI: 10.1523/eneuro.0184-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
The Drosophila Dpr and DIP proteins belong to the immunoglobulin superfamily of cell surface proteins (CSPs). Their hetero- and homophilic interactions have been implicated in a variety of neuronal functions, including synaptic connectivity, cell survival, and axon fasciculation. However, the signaling pathways underlying these diverse functions are unknown. To gain insight into Dpr-DIP signaling, we sought to examine how these CSPs are associated with the membrane. Specifically, we asked whether Dprs and DIPs are integral membrane proteins or membrane anchored through the addition of glycosylphosphatidylinositol (GPI) linkage. We demonstrate that most Dprs and DIPs are GPI anchored to the membrane of insect cells and validate these findings for some family members in vivo using Drosophila larvae, where GPI anchor cleavage results in loss of surface labeling. Additionally, we show that GPI cleavage abrogates aggregation of insect cells expressing cognate Dpr-DIP partners. To test if the GPI anchor affects Dpr and DIP localization, we replaced it with a transmembrane domain and observed perturbation of subcellular localization on motor neurons and muscles. These data suggest that membrane anchoring of Dprs and DIPs through GPI linkage is required for localization and that Dpr-DIP intracellular signaling likely requires transmembrane coreceptors.
Collapse
Affiliation(s)
- Meike Lobb-Rabe
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Wioletta I Nawrocka
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| | - Ruiling Zhang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - James Ashley
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Robert A Carrillo
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Engin Özkan
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
9
|
Richardson K, Sengupta M, Sujkowski A, Libohova K, Harris AC, Wessells R, Merry DE, Todi SV. A phenotypically robust model of spinal and bulbar muscular atrophy in Drosophila. J Neurosci Res 2024; 102:e25278. [PMID: 38284836 PMCID: PMC11237963 DOI: 10.1002/jnr.25278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/14/2023] [Accepted: 11/05/2023] [Indexed: 01/30/2024]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked disorder that affects males who inherit the androgen receptor (AR) gene with an abnormal CAG triplet repeat expansion. The resulting protein contains an elongated polyglutamine (polyQ) tract and causes motor neuron degeneration in an androgen-dependent manner. The precise molecular sequelae of SBMA are unclear. To assist with its investigation and the identification of therapeutic options, we report here a new model of SBMA in Drosophila melanogaster. We generated transgenic flies that express the full-length, human AR with a wild-type or pathogenic polyQ repeat. Each transgene is inserted into the same safe harbor site on the third chromosome of the fly as a single copy and in the same orientation. Expression of pathogenic AR, but not of its wild-type variant, in neurons or muscles leads to consistent, progressive defects in longevity and motility that are concomitant with polyQ-expanded AR protein aggregation and reduced complexity in neuromuscular junctions. Additional assays show adult fly eye abnormalities associated with the pathogenic AR species. The detrimental effects of pathogenic AR are accentuated by feeding flies the androgen, dihydrotestosterone. This new, robust SBMA model can be a valuable tool toward future investigations of this incurable disease.
Collapse
Affiliation(s)
- Kristin Richardson
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Medha Sengupta
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - Alyson Sujkowski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Autumn C. Harris
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Maximizing Access to Science Careers Program, Wayne State University, Detroit, Michigan, USA
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Maximizing Access to Science Careers Program, Wayne State University, Detroit, Michigan, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
10
|
Soukar I, Mitra A, Pile LA. Analysis of the chromatin landscape and RNA polymerase II binding at SIN3-regulated genes. Biol Open 2023; 12:bio060026. [PMID: 37850739 PMCID: PMC10651107 DOI: 10.1242/bio.060026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
The chromatin environment has a significant impact on gene expression. Chromatin structure is highly regulated by histone modifications and RNA polymerase II binding dynamics. The SIN3 histone modifying complex regulates the chromatin environment leading to changes in gene expression. In Drosophila melanogaster, the Sin3A gene is alternatively spliced to produce different protein isoforms, two of which include SIN3 220 and SIN3 187. Both SIN3 isoforms are scaffolding proteins that interact with several other factors to regulate the chromatin landscape. The mechanism through which the SIN3 isoforms regulate chromatin is not well understood. Here, we analyze publicly available data sets to allow us to ask specific questions on how SIN3 isoforms regulate chromatin and gene activity. We determined that genes repressed by the SIN3 isoforms exhibited enrichment in histone H3K4me2, H3K4me3, H3K14ac and H3K27ac near the transcription start site. We observed an increase in the amount of paused RNA polymerase II on the promoter of genes repressed by the isoforms as compared to genes that require SIN3 for maximum activation. Furthermore, we analyzed a subset of genes regulated by SIN3 187 that suggest a mechanism in which SIN3 187 might exhibit hard regulation as well as soft regulation. Data presented here expand our knowledge of how the SIN3 isoforms regulate the chromatin environment and RNA polymerase II binding dynamics.
Collapse
Affiliation(s)
- Imad Soukar
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Anindita Mitra
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Lori A. Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
11
|
Barwell T, Raina S, Page A, MacCharles H, Seroude L. Juvenile and adult expression of polyglutamine expanded huntingtin produce distinct aggregate distributions in Drosophila muscle. Hum Mol Genet 2023; 32:2656-2668. [PMID: 37369041 DOI: 10.1093/hmg/ddad098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
While Huntington's disease (HD) is widely recognized as a disease affecting the nervous system, much evidence has accumulated to suggest peripheral or non-neuronal tissues are affected as well. Here, we utilize the UAS/GAL4 system to express a pathogenic HD construct in the muscle of the fly and characterize the effects. We observe detrimental phenotypes such as a reduced lifespan, decreased locomotion and accumulation of protein aggregates. Strikingly, depending on the GAL4 driver used to express the construct, we saw different aggregate distributions and severity of phenotypes. These different aggregate distributions were found to be dependent on the expression level and the timing of expression. Hsp70, a well-documented suppressor of polyglutamine aggregates, was found to strongly reduce the accumulation of aggregates in the eye, but in the muscle, it did not prevent the reduction of the lifespan. Therefore, the molecular mechanisms underlying the detrimental effects of aggregates in the muscle are distinct from the nervous system.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Sehaj Raina
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Austin Page
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Hayley MacCharles
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Laurent Seroude
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
12
|
Poliacikova G, Barthez M, Rival T, Aouane A, Luis NM, Richard F, Daian F, Brouilly N, Schnorrer F, Maurel-Zaffran C, Graba Y, Saurin AJ. M1BP is an essential transcriptional activator of oxidative metabolism during Drosophila development. Nat Commun 2023; 14:3187. [PMID: 37268614 DOI: 10.1038/s41467-023-38986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Oxidative metabolism is the predominant energy source for aerobic muscle contraction in adult animals. How the cellular and molecular components that support aerobic muscle physiology are put in place during development through their transcriptional regulation is not well understood. Using the Drosophila flight muscle model, we show that the formation of mitochondria cristae harbouring the respiratory chain is concomitant with a large-scale transcriptional upregulation of genes linked with oxidative phosphorylation (OXPHOS) during specific stages of flight muscle development. We further demonstrate using high-resolution imaging, transcriptomic and biochemical analyses that Motif-1-binding protein (M1BP) transcriptionally regulates the expression of genes encoding critical components for OXPHOS complex assembly and integrity. In the absence of M1BP function, the quantity of assembled mitochondrial respiratory complexes is reduced and OXPHOS proteins aggregate in the mitochondrial matrix, triggering a strong protein quality control response. This results in isolation of the aggregate from the rest of the matrix by multiple layers of the inner mitochondrial membrane, representing a previously undocumented mitochondrial stress response mechanism. Together, this study provides mechanistic insight into the transcriptional regulation of oxidative metabolism during Drosophila development and identifies M1BP as a critical player in this process.
Collapse
Affiliation(s)
- Gabriela Poliacikova
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Marine Barthez
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Thomas Rival
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Aïcha Aouane
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Nuno Miguel Luis
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Fabrice Richard
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Fabrice Daian
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Nicolas Brouilly
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Frank Schnorrer
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Corinne Maurel-Zaffran
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Yacine Graba
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Andrew J Saurin
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
13
|
Balaghi N, Erdemci-Tandogan G, McFaul C, Fernandez-Gonzalez R. Myosin waves and a mechanical asymmetry guide the oscillatory migration of Drosophila cardiac progenitors. Dev Cell 2023:S1534-5807(23)00238-1. [PMID: 37295436 DOI: 10.1016/j.devcel.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Heart development begins with the formation of a tube as cardiac progenitors migrate from opposite sides of the embryo. Abnormal cardiac progenitor movements cause congenital heart defects. However, the mechanisms of cell migration during early heart development remain poorly understood. Using quantitative microscopy, we found that in Drosophila embryos, cardiac progenitors (cardioblasts) migrated through a sequence of forward and backward steps. Cardioblast steps were associated with oscillatory non-muscle myosin II waves that induced periodic shape changes and were necessary for timely heart tube formation. Mathematical modeling predicted that forward cardioblast migration required a stiff boundary at the trailing edge. Consistent with this, we found a supracellular actin cable at the trailing edge of the cardioblasts that limited the amplitude of the backward steps, thus biasing the direction of cell movement. Our results indicate that periodic shape changes coupled with a polarized actin cable produce asymmetrical forces that promote cardioblast migration.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Gonca Erdemci-Tandogan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Christopher McFaul
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
14
|
Barwell T, Geld S, Seroude L. Comparison of GAL80ts and Tet-off GAL80 transgenes. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000770. [PMID: 37033706 PMCID: PMC10080293 DOI: 10.17912/micropub.biology.000770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
The manipulation of gene expression requires complete control of space, time and level of expression. In Drosophila , the UAS/GAL4 system has been instrumental in achieving spatial control, but the pursuit for the ideal system for temporal control is ongoing. One strategy used by many groups is to use GAL80. Two different kinds of GAL80 transgenic constructs have been reported but have never been compared directly. Here, we characterize and compare the repression ability of the GAL80ts and Tet-off GAL80 transgenes by two different assays. We found that GAL80ts was generally more efficient than Tet-off GAL80 and that the level of repression was dependent on the GAL4 driver, and did not necessarily correlate with expression level. We also investigated the level of expression upon inactivation of GAL80ts. The level and kinetics of inactivation were found to differ depending on the GAL4 driver and the stage of the life cycle, and in many cases the inactivation was incomplete. These results emphasize that it is essential to measure experimentally the level of expression under repressed and unrepressed states when multiple GAL4 drivers are used with GAL80 transgenes.
Collapse
Affiliation(s)
| | - Sofia Geld
- Biology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
15
|
Karuparti S, Yeung AT, Wang B, Guicardi PF, Han C. A toolkit for converting Gal4 into LexA and Flippase transgenes in Drosophila. G3 (BETHESDA, MD.) 2023; 13:jkad003. [PMID: 36617215 PMCID: PMC9997562 DOI: 10.1093/g3journal/jkad003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/01/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Drosophila has been a powerful model system for biological studies due to the wide range of genetic tools established for it. Among these tools, Gal4 is the most abundant, offering unparalleled tissue and developmental stage specificity for gene manipulation. In comparison, other genetic reagents are far fewer in choices. Here we present a genetic toolkit for converting Gal4 strains into LexA and Flippase transgenes through simple genetic crosses and fluorescence screening. We demonstrate the proof-of-principle by converting ten Gal4 lines that exhibit diverse tissue specificities and examined the activity patterns of the converted LexA and Flippase lines. Gal4-to-LexA and Flp conversion is fast and convenient and should greatly expand the choices of LexA and Flp for binary expression and FRT-based mosaic analysis, respectively, in Drosophila.
Collapse
Affiliation(s)
- Sasidhar Karuparti
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ann T Yeung
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Pedro F Guicardi
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Lobb-Rabe M, DeLong K, Salazar RJ, Zhang R, Wang Y, Carrillo RA. Dpr10 and Nocte are required for Drosophila motor axon pathfinding. Neural Dev 2022; 17:10. [PMID: 36271407 PMCID: PMC9585758 DOI: 10.1186/s13064-022-00165-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
The paths axons travel to reach their targets and the subsequent synaptic connections they form are highly stereotyped. How cell surface proteins (CSPs) mediate these processes is not completely understood. The Drosophila neuromuscular junction (NMJ) is an ideal system to study how pathfinding and target specificity are accomplished, as the axon trajectories and innervation patterns are known and easily visualized. Dpr10 is a CSP required for synaptic partner choice in the neuromuscular and visual circuits and for axon pathfinding in olfactory neuron organization. In this study, we show that Dpr10 is also required for motor axon pathfinding. To uncover how Dpr10 mediates this process, we used immunoprecipitation followed by mass spectrometry to identify Dpr10 associated proteins. One of these, Nocte, is an unstructured, intracellular protein implicated in circadian rhythm entrainment. We mapped nocte expression in larvae and found it widely expressed in neurons, muscles, and glia. Cell-specific knockdown suggests nocte is required presynaptically to mediate motor axon pathfinding. Additionally, we found that nocte and dpr10 genetically interact to control NMJ assembly, suggesting that they function in the same molecular pathway. Overall, these data reveal novel roles for Dpr10 and its newly identified interactor, Nocte, in motor axon pathfinding and provide insight into how CSPs regulate circuit assembly.
Collapse
Affiliation(s)
- Meike Lobb-Rabe
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Katherine DeLong
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Rio J Salazar
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Ruiling Zhang
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yupu Wang
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Robert A Carrillo
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
17
|
Ajayi PT, Katti P, Zhang Y, Willingham TB, Sun Y, Bleck CKE, Glancy B. Regulation of the evolutionarily conserved muscle myofibrillar matrix by cell type dependent and independent mechanisms. Nat Commun 2022; 13:2661. [PMID: 35562354 PMCID: PMC9106682 DOI: 10.1038/s41467-022-30401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscles play a central role in human movement through forces transmitted by contraction of the sarcomere. We recently showed that mammalian sarcomeres are connected through frequent branches forming a singular, mesh-like myofibrillar matrix. However, the extent to which myofibrillar connectivity is evolutionarily conserved as well as mechanisms which regulate the specific architecture of sarcomere branching remain unclear. Here, we demonstrate the presence of a myofibrillar matrix in the tubular, but not indirect flight (IF) muscles within Drosophila melanogaster. Moreover, we find that loss of transcription factor H15 increases sarcomere branching frequency in the tubular jump muscles, and we show that sarcomere branching can be turned on in IF muscles by salm-mediated conversion to tubular muscles. Finally, we demonstrate that neurochondrin misexpression results in myofibrillar connectivity in IF muscles without conversion to tubular muscles. These data indicate an evolutionarily conserved myofibrillar matrix regulated by both cell-type dependent and independent mechanisms.
Collapse
Affiliation(s)
- Peter T Ajayi
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Yingfan Zhang
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Ye Sun
- Electron Microscopy Core, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Brian Glancy
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA.
- NIAMS, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Yang S, McAdow J, Du Y, Trigg J, Taghert PH, Johnson AN. Spatiotemporal expression of regulatory kinases directs the transition from mitosis to cellular morphogenesis in Drosophila. Nat Commun 2022; 13:772. [PMID: 35140224 PMCID: PMC8828718 DOI: 10.1038/s41467-022-28322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Embryogenesis depends on a tightly regulated balance between mitosis, differentiation, and morphogenesis. Understanding how the embryo uses a relatively small number of proteins to transition between growth and morphogenesis is a central question of developmental biology, but the mechanisms controlling mitosis and differentiation are considered to be fundamentally distinct. Here we show the mitotic kinase Polo, which regulates all steps of mitosis in Drosophila, also directs cellular morphogenesis after cell cycle exit. In mitotic cells, the Aurora kinases activate Polo to control a cytoskeletal regulatory module that directs cytokinesis. We show that in the post-mitotic mesoderm, the control of Polo activity transitions from the Aurora kinases to the uncharacterized kinase Back Seat Driver (Bsd), where Bsd and Polo cooperate to regulate muscle morphogenesis. Polo and its effectors therefore direct mitosis and cellular morphogenesis, but the transition from growth to morphogenesis is determined by the spatiotemporal expression of upstream activating kinases. The mechanisms regulating mitosis and differentiation during development are thought to be distinct. Here they show that in Drosophila the mitotic kinase Polo regulates cellular morphogenesis after cell cycle exit.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yingqiu Du
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jennifer Trigg
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul H Taghert
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aaron N Johnson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functional analysis of novel genetic variants of NKX2-5 associated with nonsyndromic congenital heart disease. Am J Med Genet A 2021; 185:3644-3663. [PMID: 34214246 DOI: 10.1002/ajmg.a.62413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
NKX2-5, a master cardiac regulatory transcription factor was the first known genetic cause of congenital heart diseases (CHDs). To further investigate its role in CHD pathogenesis, we performed mutational screening of 285 CHD probands and 200 healthy controls. Five coding sequence variants were identified in six CHD cases (2.1%), including three in the N-terminal region (p.A61G, p.R95L, and p.E131K) and one each in homeodomain (HD) (p.A148E) and tyrosine-rich domain (p.P247A). Variant-p.A148E showed tertiary structure changes and differential DNA binding affinity of mutant compared to wild type. Two N-terminal variants-p.A61G and p.E131K along with HD variant p.A148E demonstrated significantly reduced transcriptional activity of Nppa and Actc1 promoters in dual luciferase promoter assay supported by their reduced expression in qRT-PCR. Nonetheless, variant p.R95L affected the synergy of NKX2-5 with serum response factor and TBX5 leading to significantly decreased Actc1 promoter activity depicting a distinctive role of this region. The aberrant expression of other target genes-Irx4, Mef2c, Bmp10, Myh6, Myh7, and Myocd is also observed in response to NKX2-5 variants, possibly due to the defective gene regulatory network. Severely impaired downstream promoter activities and abnormal expression of target genes due to N-terminal variants supports the emerging role of this region during cardiac-developmental pathways.
Collapse
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, India
| | - Vijayalakshmi I Balekundri
- Super Speciality Hospital, Pradhan Mantri Swasthya Suraksha Yojana (PMSSY), Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Damyanti Agrawal
- Department of Cardiothoracic and Vascular Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
20
|
Ingles-Prieto A, Furthmann N, Crossman SH, Tichy AM, Hoyer N, Petersen M, Zheden V, Biebl J, Reichhart E, Gyoergy A, Siekhaus DE, Soba P, Winklhofer KF, Janovjak H. Optogenetic delivery of trophic signals in a genetic model of Parkinson's disease. PLoS Genet 2021; 17:e1009479. [PMID: 33857132 PMCID: PMC8049241 DOI: 10.1371/journal.pgen.1009479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson's disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair.
Collapse
Affiliation(s)
- Alvaro Ingles-Prieto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Nikolas Furthmann
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Samuel H. Crossman
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Australia
| | - Alexandra-Madelaine Tichy
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Australia
| | - Nina Hoyer
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Petersen
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Zheden
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Julia Biebl
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Eva Reichhart
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Australia
| | - Attila Gyoergy
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Daria E. Siekhaus
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Peter Soba
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstanze F. Winklhofer
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Harald Janovjak
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Australia
- * E-mail:
| |
Collapse
|
21
|
Abstract
Precise genetic manipulation of specific cell types or tissues to pinpoint gene function requirement is a critical step in studies aimed at unraveling the intricacies of organismal physiology. Drosophila researchers heavily rely on the UAS/Gal4/Gal80 system for tissue-specific manipulations; however, it is often unclear whether the reported Gal4 expression patterns are indeed specific to the tissue of interest such that experimental results are not confounded by secondary sites of Gal4 expression. Here, we surveyed the expression patterns of commonly used Gal4 drivers in adult Drosophila female tissues under optimal conditions and found that multiple drivers have unreported secondary sites of expression beyond their published cell type/tissue expression pattern. These results underscore the importance of thoroughly characterizing Gal4 tools as part of a rigorous experimental design that avoids potential misinterpretation of results as we strive for understanding how the function of a specific gene/pathway in one tissue contributes to whole-body physiology.
Collapse
|
22
|
Upregulated TNF/Eiger signaling mediates stem cell recovery and tissue homeostasis during nutrient resupply in Drosophila testis. Sci Rep 2020; 10:11674. [PMID: 32669615 PMCID: PMC7363678 DOI: 10.1038/s41598-020-68313-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Stem cell activity and cell differentiation is robustly influenced by the nutrient availability in the gonads. The signal that connects nutrient availability to gonadal stem cell activity remains largely unknown. In this study, we show that tumor necrosis factor Eiger (Egr) is upregulated in testicular smooth muscles as a response to prolonged protein starvation in Drosophila testis. While Egr is not essential for starvation-induced changes in germline and somatic stem cell numbers, Egr and its receptor Grindelwald influence the recovery dynamics of somatic cyst stem cells (CySCs) upon protein refeeding. Moreover, Egr is also involved in the refeeding-induced, ectopic expression of the CySC self-renewal protein and the accumulation of early germ cells. Egr primarily acts through the Jun N-terminal kinase (JNK) signaling in Drosophila. We show that inhibition of JNK signaling in cyst cells suppresses the refeeding-induced abnormality in both somatic and germ cells. In conclusion, our study reveals both beneficial and detrimental effects of Egr upregulation in the recovery of stem cells and spermatogenesis from prolonged protein starvation.
Collapse
|
23
|
Das Ghosh L, Hasan J, Jain A, Sundaresan NR, Chatterjee K. A nanopillar array on black titanium prepared by reactive ion etching augments cardiomyogenic commitment of stem cells. NANOSCALE 2019; 11:20766-20776. [PMID: 31651003 DOI: 10.1039/c9nr03424b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A major impediment in the clinical translation of stem cell therapy has been the inability to efficiently and reproducibly direct differentiation of a large population of stem cells. Thus, we aimed to engineer a substrate for culturing stem cells to efficiently induce cardiomyogenic lineage commitment. In this work, we present a nanopillar array on the surface of titanium that was prepared by mask-less reactive ion etching. Scanning electron and atomic force microscopy revealed that the surface was covered by vertically aligned nanopillars each of ≈1 μm with a diameter of ≈80 nm. The nanopillars supported the attachment and proliferation of human mesenchymal stem cells (hMSCs). Cardiomyogenic lineage commitment of the stem cells was more enhanced on the nanopillars than on the smooth surface. When co-cultured with neonatal rat cardiomyocytes, the cyclic pattern of calcium transport observed distinctly in cells differentiated on the arrays compared to the cells cultured on the smooth surface was the functional validation of differentiation. The use of small molecule inhibitors revealed that integrins namely, α2β1 and αvβ3, are essential for cardiomyogenesis on the nanostructured surface, which is further mediated by FAK, Erk and Akt cell signaling pathways. This study demonstrates that the nanopillar array efficiently promotes the cardiomyogenic lineage commitment of stem cells via integrin-mediated signaling and can potentially serve as a platform for the ex vivo differentiation of stem cells toward cell therapy in cardiac tissue repair and regeneration.
Collapse
Affiliation(s)
- Lopamudra Das Ghosh
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Jafar Hasan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Aditi Jain
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Nagalingam R Sundaresan
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India. and Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India. and Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
24
|
George J, Tuomela T, Kemppainen E, Nurminen A, Braun S, Yalgin C, Jacobs HT. Mitochondrial dysfunction generates a growth-restraining signal linked to pyruvate in Drosophila larvae. Fly (Austin) 2019; 13:12-28. [PMID: 31526131 PMCID: PMC6988875 DOI: 10.1080/19336934.2019.1662266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Drosophila bang-sensitive mutant tko25t, manifesting a global deficiency in oxidative phosphorylation due to a mitochondrial protein synthesis defect, exhibits a pronounced delay in larval development. We previously identified a number of metabolic abnormalities in tko25t larvae, including elevated pyruvate and lactate, and found the larval gut to be a crucial tissue for the regulation of larval growth in the mutant. Here we established that expression of wild-type tko in any of several other tissues of tko25t also partially alleviates developmental delay. The effects appeared to be additive, whilst knockdown of tko in a variety of specific tissues phenocopied tko25t, producing developmental delay and bang-sensitivity. These findings imply the existence of a systemic signal regulating growth in response to mitochondrial dysfunction. Drugs and RNAi-targeted on pyruvate metabolism interacted with tko25t in ways that implicated pyruvate or one of its metabolic derivatives in playing a central role in generating such a signal. RNA-seq revealed that dietary pyruvate-induced changes in transcript representation were mostly non-coherent with those produced by tko25t or high-sugar, consistent with the idea that growth regulation operates primarily at the translational and/or metabolic level.
Collapse
Affiliation(s)
- Jack George
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tea Tuomela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Esko Kemppainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samuel Braun
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Cagri Yalgin
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Domsch K, Carnesecchi J, Disela V, Friedrich J, Trost N, Ermakova O, Polychronidou M, Lohmann I. The Hox transcription factor Ubx stabilizes lineage commitment by suppressing cellular plasticity in Drosophila. eLife 2019; 8:42675. [PMID: 31050646 PMCID: PMC6513553 DOI: 10.7554/elife.42675] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
During development cells become restricted in their differentiation potential by repressing alternative cell fates, and the Polycomb complex plays a crucial role in this process. However, how alternative fate genes are lineage-specifically silenced is unclear. We studied Ultrabithorax (Ubx), a multi-lineage transcription factor of the Hox class, in two tissue lineages using sorted nuclei and interfered with Ubx in mesodermal cells. We find that depletion of Ubx leads to the de-repression of genes normally expressed in other lineages. Ubx silences expression of alternative fate genes by retaining the Polycomb Group protein Pleiohomeotic at Ubx targeted genomic regions, thereby stabilizing repressive chromatin marks in a lineage-dependent manner. Our study demonstrates that Ubx stabilizes lineage choice by suppressing the multipotency encoded in the genome via its interaction with Pho. This mechanism may explain why the Hox code is maintained throughout the lifecycle, since it could set a block to transdifferentiation in adult cells.
Collapse
Affiliation(s)
- Katrin Domsch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Vanessa Disela
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Jana Friedrich
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Nils Trost
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Olga Ermakova
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
RNAi Screen in Tribolium Reveals Involvement of F-BAR Proteins in Myoblast Fusion and Visceral Muscle Morphogenesis in Insects. G3-GENES GENOMES GENETICS 2019; 9:1141-1151. [PMID: 30733382 PMCID: PMC6469413 DOI: 10.1534/g3.118.200996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a large-scale RNAi screen in Tribolium castaneum for genes with knock-down phenotypes in the larval somatic musculature, one recurring phenotype was the appearance of larval muscle fibers that were significantly thinner than those in control animals. Several of the genes producing this knock-down phenotype corresponded to orthologs of Drosophila genes that are known to participate in myoblast fusion, particularly via their effects on actin polymerization. A new gene previously not implicated in myoblast fusion but displaying a similar thin-muscle knock-down phenotype was the Tribolium ortholog of Nostrin, which encodes an F-BAR and SH3 domain protein. Our genetic studies of Nostrin and Cip4, a gene encoding a structurally related protein, in Drosophila show that the encoded F-BAR proteins jointly contribute to efficient myoblast fusion during larval muscle development. Together with the F-Bar protein Syndapin they are also required for normal embryonic midgut morphogenesis. In addition, Cip4 is required together with Nostrin during the profound remodeling of the midgut visceral musculature during metamorphosis. We propose that these F-Bar proteins help govern proper morphogenesis particularly of the longitudinal midgut muscles during metamorphosis.
Collapse
|
27
|
DeAguero AA, Castillo L, Oas ST, Kiani K, Bryantsev AL, Cripps RM. Regulation of fiber-specific actin expression by the Drosophila SRF ortholog Blistered. Development 2019; 146:dev.164129. [PMID: 30872277 PMCID: PMC6467476 DOI: 10.1242/dev.164129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
Abstract
Serum response factor (SRF) has an established role in controlling actin homeostasis in mammalian cells, yet its role in non-vertebrate muscle development has remained enigmatic. Here, we demonstrate that the single Drosophila SRF ortholog, termed Blistered (Bs), is expressed in all adult muscles, but Bs is required for muscle organization only in the adult indirect flight muscles. Bs is a direct activator of the flight muscle actin gene Act88F, via a conserved promoter-proximal binding site. However, Bs only activates Act88F expression in the context of the flight muscle regulatory program provided by the Pbx and Meis orthologs Extradenticle and Homothorax, and appears to function in a similar manner to mammalian SRF in muscle maturation. These studies place Bs in a regulatory framework where it functions to sustain the flight muscle phenotype in Drosophila Our studies uncover an evolutionarily ancient role for SRF in regulating muscle actin expression, and provide a model for how SRF might function to sustain muscle fate downstream of pioneer factors.
Collapse
Affiliation(s)
- Ashley A DeAguero
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lizzet Castillo
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sandy T Oas
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Kaveh Kiani
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA .,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA .,Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
28
|
Nuclear Scaling Is Coordinated among Individual Nuclei in Multinucleated Muscle Fibers. Dev Cell 2019; 49:48-62.e3. [PMID: 30905770 DOI: 10.1016/j.devcel.2019.02.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/28/2018] [Accepted: 02/22/2019] [Indexed: 12/22/2022]
Abstract
Optimal cell performance depends on cell size and the appropriate relative size, i.e., scaling, of the nucleus. How nuclear scaling is regulated and contributes to cell function is poorly understood, especially in skeletal muscle fibers, which are among the largest cells, containing hundreds of nuclei. Here, we present a Drosophila in vivo system to analyze nuclear scaling in whole multinucleated muscle fibers, genetically manipulate individual components, and assess muscle function. Despite precise global coordination, we find that individual nuclei within a myofiber establish different local scaling relationships by adjusting their size and synthetic activity in correlation with positional or spatial cues. While myonuclei exhibit compensatory potential, even minor changes in global nuclear size scaling correlate with reduced muscle function. Our study provides the first comprehensive approach to unraveling the intrinsic regulation of size in multinucleated muscle fibers. These insights to muscle cell biology will accelerate the development of interventions for muscle diseases.
Collapse
|
29
|
Rosen JN, Azevedo M, Soffar DB, Boyko VP, Brendel MB, Schulman VK, Baylies MK. The Drosophila Ninein homologue Bsg25D cooperates with Ensconsin in myonuclear positioning. J Cell Biol 2019; 218:524-540. [PMID: 30626718 PMCID: PMC6363458 DOI: 10.1083/jcb.201808176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023] Open
Abstract
Rosen et al. identify a role for the centrosomal protein Bsg25D/Ninein in nuclear positioning and microtubule organization in Drosophila muscle fibers. Genetic, cell biological, and atomic force microscopy analyses demonstrate that complex interactions between Bsg25D and the microtubule-associated protein Ensconsin govern myonuclear positioning in Drosophila. Skeletal muscle consists of multinucleated cells in which the myonuclei are evenly spaced throughout the cell. In Drosophila, this pattern is established in embryonic myotubes, where myonuclei move via microtubules (MTs) and the MT-associated protein Ensconsin (Ens)/MAP7, to achieve their distribution. Ens regulates multiple aspects of MT biology, but little is known about how Ens itself is regulated. We find that Ens physically interacts and colocalizes with Bsg25D, the Drosophila homologue of the centrosomal protein Ninein. Bsg25D loss enhances myonuclear positioning defects in embryos sensitized by partial Ens loss. Bsg25D overexpression causes severe positioning defects in immature myotubes and fully differentiated myofibers, where it forms ectopic MT organizing centers, disrupts perinuclear MT arrays, reduces muscle stiffness, and decreases larval crawling velocity. These studies define a novel relationship between Ens and Bsg25D. At endogenous levels, Bsg25D positively regulates Ens activity during myonuclear positioning, but excess Bsg25D disrupts Ens localization and MT organization, with disastrous consequences for myonuclear positioning and muscle function.
Collapse
Affiliation(s)
- Jonathan N Rosen
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mafalda Azevedo
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - David B Soffar
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vitaly P Boyko
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Molecular Cytology Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew B Brendel
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Molecular Cytology Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Victoria K Schulman
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY
| | - Mary K Baylies
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY .,Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY
| |
Collapse
|
30
|
Dissection of Nidogen function in Drosophila reveals tissue-specific mechanisms of basement membrane assembly. PLoS Genet 2018; 14:e1007483. [PMID: 30260959 PMCID: PMC6177204 DOI: 10.1371/journal.pgen.1007483] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
Basement membranes (BMs) are thin sheet-like specialized extracellular matrices found at the basal surface of epithelia and endothelial tissues. They have been conserved across evolution and are required for proper tissue growth, organization, differentiation and maintenance. The major constituents of BMs are two independent networks of Laminin and Type IV Collagen in addition to the proteoglycan Perlecan and the glycoprotein Nidogen/entactin (Ndg). The ability of Ndg to bind in vitro Collagen IV and Laminin, both with key functions during embryogenesis, anticipated an essential role for Ndg in morphogenesis linking the Laminin and Collagen IV networks. This was supported by results from cultured embryonic tissue experiments. However, the fact that elimination of Ndg in C. elegans and mice did not affect survival strongly questioned this proposed linking role. Here, we have isolated mutations in the only Ndg gene present in Drosophila. We find that while, similar to C.elegans and mice, Ndg is not essential for overall organogenesis or viability, it is required for appropriate fertility. We also find, alike in mice, tissue-specific requirements of Ndg for proper assembly and maintenance of certain BMs, namely those of the adipose tissue and flight muscles. In addition, we have performed a thorough functional analysis of the different Ndg domains in vivo. Our results support an essential requirement of the G3 domain for Ndg function and unravel a new key role for the Rod domain in regulating Ndg incorporation into BMs. Furthermore, uncoupling of the Laminin and Collagen IV networks is clearly observed in the larval adipose tissue in the absence of Ndg, indeed supporting a linking role. In light of our findings, we propose that BM assembly and/or maintenance is tissue-specific, which could explain the diverse requirements of a ubiquitous conserved BM component like Nidogen. Basement membranes (BMs) are thin layers of specialized extracellular matrices present in every tissue of the human body. Its main constituents are two networks of laminin and Type IV Collagen linked by Nidogen (Ndg) and proteoglycans. They form an organized scaffold that regulates organ morphogenesis and function. Mutations affecting BM components are associated with organ dysfunction and several congenital diseases. Thus, a better comprehension of BM assembly and maintenance will not only help to learn more about organogenesis but also to a better understanding and, hopefully, treatment of these diseases. Here, we have used the fruit fly Drosophila to analyse the role of Ndg in BM formation in vivo. Elimination of Ndg in worms and mice does not affect survival, strongly questioning its proposed linking role, derived from in vitro experiments. Here, we show that in the fly, Ndg is dispensable for BM assembly and preservation in many tissues, but absolutely required in others. Furthermore, our functional study of the different Ndg domains challenges the significance of some interactions between BM components derived from in vitro experiments, while confirming others, and reveals a new key requirement for the Rod domain in Ndg function and incorporation into BMs.
Collapse
|
31
|
Mechanical positioning of multiple nuclei in muscle cells. PLoS Comput Biol 2018; 14:e1006208. [PMID: 29889846 PMCID: PMC6013246 DOI: 10.1371/journal.pcbi.1006208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/21/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022] Open
Abstract
Many types of large cells have multiple nuclei. In skeletal muscle fibers, the nuclei are distributed along the cell to maximize their internuclear distances. This myonuclear positioning is crucial for cell function. Although microtubules, microtubule associated proteins, and motors have been implicated, mechanisms responsible for myonuclear positioning remain unclear. We used a combination of rough interacting particle and detailed agent-based modeling to examine computationally the hypothesis that a force balance generated by microtubules positions the muscle nuclei. Rather than assuming the nature and identity of the forces, we simulated various types of forces between the pairs of nuclei and between the nuclei and cell boundary to position the myonuclei according to the laws of mechanics. We started with a large number of potential interacting particle models and computationally screened these models for their ability to fit biological data on nuclear positions in hundreds of Drosophila larval muscle cells. This reverse engineering approach resulted in a small number of feasible models, the one with the best fit suggests that the nuclei repel each other and the cell boundary with forces that decrease with distance. The model makes nontrivial predictions about the increased nuclear density near the cell poles, the zigzag patterns of the nuclear positions in wider cells, and about correlations between the cell width and elongated nuclear shapes, all of which we confirm by image analysis of the biological data. We support the predictions of the interacting particle model with simulations of an agent-based mechanical model. Taken together, our data suggest that microtubules growing from nuclear envelopes push on the neighboring nuclei and the cell boundaries, which is sufficient to establish the nearly-uniform nuclear spreading observed in muscle fibers. How the cell organizes its interior is one of the fundamental biological questions, but the principles of organelles’ positioning remains largely unclear. In this study we use computational modeling and image analysis to elucidate mechanisms of positioning of multiple nuclei in muscle cells. We start with the general hypothesis, supported by published data, that a force balance generated by microtubule asters growing from the nuclei envelopes are responsible for pushing or pulling neighboring nuclei and cell boundaries, and that these forces position the nuclei. Instead of assuming what these forces are, we computationally screen all possible forces by comparing predictions of hundreds simple mechanical models to experimentally measured nuclear positions and shapes in hundreds of Drosophila muscle cells. This screening results in the model, according to which microtubules from one nucleus push away both neighboring nuclei and cell boundaries. We also perform detailed stochastic simulations of the only surviving model with individual growing, pushing and bending microtubules. This model predicts subtle features of nuclear patterns, all of which we confirm experimentally. Our study sheds light on general principles of organelle positioning.
Collapse
|
32
|
The Drosophila homologue of MEGF8 is essential for early development. Sci Rep 2018; 8:8790. [PMID: 29884872 PMCID: PMC5993795 DOI: 10.1038/s41598-018-27076-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
Mutations of the gene MEGF8 cause Carpenter syndrome in humans, and the mouse orthologue has been functionally associated with Nodal and Bmp4 signalling. Here, we have investigated the phenotype associated with loss-of-function of CG7466, a gene that encodes the Drosophila homologue of MEGF8. We generated three different frame-shift null mutations in CG7466 using CRISPR/Cas9 gene editing. Heterozygous flies appeared normal, but homozygous animals had disorganised denticle belts and died as 2nd or 3rd instar larvae. Larvae were delayed in transition to 3rd instars and showed arrested growth, which was associated with abnormal feeding behaviour and prolonged survival when yeast food was supplemented with sucrose. RNAi-mediated knockdown using the Gal4-UAS system resulted in lethality with ubiquitous and tissue-specific Gal4 drivers, and growth defects including abnormal bristle number and orientation in a subset of escapers. We conclude that CG7466 is essential for larval development and that diminished function perturbs denticle and bristle formation.
Collapse
|
33
|
Välimäki MJ, Tölli MA, Kinnunen SM, Aro J, Serpi R, Pohjolainen L, Talman V, Poso A, Ruskoaho HJ. Discovery of Small Molecules Targeting the Synergy of Cardiac Transcription Factors GATA4 and NKX2-5. J Med Chem 2017; 60:7781-7798. [PMID: 28858485 DOI: 10.1021/acs.jmedchem.7b00816] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription factors are pivotal regulators of gene transcription, and many diseases are associated with the deregulation of transcriptional networks. In the heart, the transcription factors GATA4 and NKX2-5 are required for cardiogenesis. GATA4 and NKX2-5 interact physically, and the activation of GATA4, in cooperation with NKX2-5, is essential for stretch-induced cardiomyocyte hypertrophy. Here, we report the identification of four small molecule families that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. A fragment-based screening, reporter gene assay, and pharmacophore search were utilized for the small molecule screening, identification, and optimization. The compounds modulated the hypertrophic agonist-induced cardiac gene expression. The most potent hit compound, N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide (3, IC50 = 3 μM), exhibited no activity on the protein kinases involved in the regulation of GATA4 phosphorylation. The identified and chemically and biologically characterized active compound, and its derivatives may provide a novel class of small molecules for modulating heart regeneration.
Collapse
Affiliation(s)
- Mika J Välimäki
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland.,Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Marja A Tölli
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Sini M Kinnunen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland.,Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Jani Aro
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Raisa Serpi
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Lotta Pohjolainen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| | - Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| | - Antti Poso
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland , Kuopio FI-70211, Finland
| | - Heikki J Ruskoaho
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland.,Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| |
Collapse
|
34
|
Abstract
The generation and propagation of the cardiac impulse is the central function of the cardiac conduction system (CCS). Impulse initiation occurs in nodal tissues that have high levels of automaticity, but slow conduction properties. Rapid impulse propagation is a feature of the ventricular conduction system, which is essential for synchronized contraction of the ventricular chambers. When functioning properly, the CCS produces ~2.4 billion heartbeats during a human lifetime and orchestrates the flow of cardiac impulses, designed to maximize cardiac output. Abnormal impulse initiation or propagation can result in brady- and tachy-arrhythmias, producing an array of symptoms, including syncope, heart failure or sudden cardiac death. Underlying the functional diversity of the CCS are gene regulatory networks that direct cell fate towards a nodal or a fast conduction gene program. In this review, we will discuss our current understanding of the transcriptional networks that dictate the components of the CCS, the growth factor-dependent signaling pathways that orchestrate some of these transcriptional hierarchies and the effect of aberrant transcription factor expression on mammalian conduction disease.
Collapse
|
35
|
Dissecting the Role of the Extracellular Matrix in Heart Disease: Lessons from the Drosophila Genetic Model. Vet Sci 2017; 4:vetsci4020024. [PMID: 29056683 PMCID: PMC5606597 DOI: 10.3390/vetsci4020024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix (ECM) is a dynamic scaffold within organs and tissues that enables cell morphogenesis and provides structural support. Changes in the composition and organisation of the cardiac ECM are required for normal development. Congenital and age-related cardiac diseases can arise from mis-regulation of structural ECM proteins (Collagen, Laminin) or their receptors (Integrin). Key regulators of ECM turnover include matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMPs). MMP expression is increased in mice, pigs, and dogs with cardiomyopathy. The complexity and longevity of vertebrate animals makes a short-lived, genetically tractable model organism, such as Drosophila melanogaster, an attractive candidate for study. We survey ECM macromolecules and their role in heart development and growth, which are conserved between Drosophila and vertebrates, with focus upon the consequences of altered expression or distribution. The Drosophila heart resembles that of vertebrates during early development, and is amenable to in vivo analysis. Experimental manipulation of gene function in a tissue- or temporally-regulated manner can reveal the function of adhesion or ECM genes in the heart. Perturbation of the function of ECM proteins, or of the MMPs that facilitate ECM remodelling, induces cardiomyopathies in Drosophila, including cardiodilation, arrhythmia, and cardia bifida, that provide mechanistic insight into cardiac disease in mammals.
Collapse
|
36
|
Lavergne G, Soler C, Zmojdzian M, Jagla K. Characterization of Drosophila Muscle Stem Cell-Like Adult Muscle Precursors. Methods Mol Biol 2017; 1556:103-116. [PMID: 28247346 DOI: 10.1007/978-1-4939-6771-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Uncovering how muscle stem cells behave in quiescent and activated states is central to understand the basic rules governing normal muscle development and regeneration in pathological conditions. Specification of mesodermal lineages including muscle stemlike adult muscle precursors (AMPs) has been extensively studied in Drosophila providing an attractive framework for investigating muscle stem cell properties. Restricted number of AMP cells, relative ease in following their behavior, and large number of genetic tools available make fruit fly an attractive model system for studying muscle stem cells. In this chapter, we describe the recently developed tools to visualize and target the body wall and imaginal AMPs.
Collapse
Affiliation(s)
- Guillaume Lavergne
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Cedric Soler
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Monika Zmojdzian
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
37
|
Niwa H, Nakamura A, Urata M, Shirae-Kurabayashi M, Kuraku S, Russell S, Ohtsuka S. The evolutionally-conserved function of group B1 Sox family members confers the unique role of Sox2 in mouse ES cells. BMC Evol Biol 2016; 16:173. [PMID: 27582319 PMCID: PMC5007870 DOI: 10.1186/s12862-016-0755-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In mouse ES cells, the function of Sox2 is essential for the maintenance of pluripotency. Since the Sox-family of transcription factors are well conserved in the animal kingdom, addressing the evolutionary origin of Sox2 function in pluripotent stem cells is intriguing from the perspective of understanding the origin of pluripotency. RESULTS Here we approach this question using a functional complementation assay in inducible Sox2-null ES cells. Assaying mouse Sox proteins from different Groups, we found that only Group B1 and Group G proteins were able to support pluripotency. Interestingly, invertebrate homologs of mammalian Group B1 Sox proteins were able to replace the pluripotency-associated function of mouse Sox2. Moreover, the mouse ES cells rescued by the Drosophila SoxNeuro protein are able to contribute to chimeric embryos. CONCLUSIONS These data indicate that the function of mouse Sox2 supporting pluripotency is based on an evolutionally conserved activity of the Group B1 Sox family. Since pluripotent stem cell population in developmental process could be regarded as the evolutional novelty in vertebrates, it could be regarded as a co-optional use of their evolutionally conserved function.
Collapse
Affiliation(s)
- Hitoshi Niwa
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Makoto Urata
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi 34-11, Noto-cho, Hohsu, Ishikawa, 927-0553, Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima-cho 429-63, Toba C, Mie, 517-0004, Japan
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Satoshi Ohtsuka
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Present address: Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, kahoku, Ishikawa, 920-0293, Japan
| |
Collapse
|
38
|
A Derived Allosteric Switch Underlies the Evolution of Conditional Cooperativity between HOXA11 and FOXO1. Cell Rep 2016; 15:2097-2108. [DOI: 10.1016/j.celrep.2016.04.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/23/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
|
39
|
Andersen D, Horne-Badovinac S. Influence of ovarian muscle contraction and oocyte growth on egg chamber elongation in Drosophila. Development 2016; 143:1375-87. [PMID: 26952985 DOI: 10.1242/dev.131276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/18/2016] [Indexed: 01/05/2023]
Abstract
Organs are formed from multiple cell types that make distinct contributions to their shape. The Drosophila egg chamber provides a tractable model to dissect such contributions during morphogenesis. Egg chambers consist of 16 germ cells (GCs) surrounded by a somatic epithelium. Initially spherical, these structures elongate as they mature. This morphogenesis is thought to occur through a 'molecular corset' mechanism, whereby structural elements within the epithelium become circumferentially organized perpendicular to the elongation axis and resist the expansive growth of the GCs to promote elongation. Whether this epithelial organization provides the hypothesized constraining force has been difficult to discern, however, and a role for GC growth has not been demonstrated. Here, we provide evidence for this mechanism by altering the contractile activity of the tubular muscle sheath that surrounds developing egg chambers. Muscle hypo-contraction indirectly reduces GC growth and shortens the egg, which demonstrates the necessity of GC growth for elongation. Conversely, muscle hyper-contraction enhances the elongation program. Although this is an abnormal function for this muscle, this observation suggests that a corset-like force from the egg chamber's exterior could promote its lengthening. These findings highlight how physical contributions from several cell types are integrated to shape an organ.
Collapse
Affiliation(s)
- Darcy Andersen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
40
|
Azevedo M, Schulman VK, Folker E, Balakrishnan M, Baylies M. Imaging Approaches to Investigate Myonuclear Positioning in Drosophila. Methods Mol Biol 2016; 1411:291-312. [PMID: 27147050 DOI: 10.1007/978-1-4939-3530-7_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the skeletal muscle, nuclei are positioned at the periphery of each myofiber and are evenly distributed along its length. Improper positioning of myonuclei has been correlated with muscle disease and decreased muscle function. Several mechanisms required for regulating nuclear position have been identified using the fruit fly, Drosophila melanogaster. The conservation of the myofiber between the fly and vertebrates, the availability of advanced genetic tools, and the ability to visualize dynamic processes using fluorescent proteins in vivo makes the fly an excellent system to study myonuclear positioning. This chapter describes time-lapse and fixed imaging methodologies using both the Drosophila embryo and the larva to investigate mechanisms of myonuclear positioning.
Collapse
Affiliation(s)
- Mafalda Azevedo
- Graduate Program in Basic and Applied Biology (GABBA), Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Program in Developmental Biology, Sloan Kettering Institute, Baylies Lab, Box 310, 1275 York Avenue, New York, NY, 10065, USA
| | - Victoria K Schulman
- Program in Developmental Biology, Sloan Kettering Institute, Baylies Lab, Box 310, 1275 York Avenue, New York, NY, 10065, USA.,Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Eric Folker
- Program in Developmental Biology, Sloan Kettering Institute, Baylies Lab, Box 310, 1275 York Avenue, New York, NY, 10065, USA.,Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467, USA
| | - Mridula Balakrishnan
- Program in Developmental Biology, Sloan Kettering Institute, Baylies Lab, Box 310, 1275 York Avenue, New York, NY, 10065, USA.,Weill Graduate School at Cornell Medical College, 430 East 67th Street, New York, NY, 10021, USA
| | - Mary Baylies
- Program in Developmental Biology, Sloan Kettering Institute, Baylies Lab, Box 310, 1275 York Avenue, New York, NY, 10065, USA. .,Weill Graduate School at Cornell Medical College, 430 East 67th Street, New York, NY, 10021, USA.
| |
Collapse
|
41
|
Kinnunen S, Välimäki M, Tölli M, Wohlfahrt G, Darwich R, Komati H, Nemer M, Ruskoaho H. Nuclear Receptor-Like Structure and Interaction of Congenital Heart Disease-Associated Factors GATA4 and NKX2-5. PLoS One 2015; 10:e0144145. [PMID: 26642209 PMCID: PMC4671672 DOI: 10.1371/journal.pone.0144145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023] Open
Abstract
AIMS Transcription factor GATA4 is a dosage sensitive regulator of heart development and alterations in its level or activity lead to congenital heart disease (CHD). GATA4 has also been implicated in cardiac regeneration and repair. GATA4 action involves combinatorial interaction with other cofactors such as NKX2-5, another critical cardiac regulator whose mutations also cause CHD. Despite its critical importance to the heart and its evolutionary conservation across species, the structural basis of the GATA4-NKX2-5 interaction remains incompletely understood. METHODS AND RESULTS A homology model was constructed and used to identify surface amino acids important for the interaction of GATA4 and NKX2-5. These residues were subjected to site-directed mutagenesis, and the mutant proteins were characterized for their ability to bind DNA and to physically and functionally interact with NKX2-5. The studies identify 5 highly conserved amino acids in the second zinc finger (N272, R283, Q274, K299) and its C-terminal extension (R319) that are critical for physical and functional interaction with the third alpha helix of NKX2-5 homeodomain. Integration of the experimental data with computational modeling suggests that the structural arrangement of the zinc finger-homeodomain resembles the architecture of the conserved DNA binding domain of nuclear receptors. CONCLUSIONS The results provide novel insight into the structural basis for protein-protein interactions between two important classes of transcription factors. The model proposed will help to elucidate the molecular basis for disease causing mutations in GATA4 and NKX2-5 and may be relevant to other members of the GATA and NK classes of transcription factors.
Collapse
Affiliation(s)
- Sini Kinnunen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Mika Välimäki
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Marja Tölli
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Gerd Wohlfahrt
- Orion Pharma, Computer-Aided Drug Design, Espoo, Finland
| | - Rami Darwich
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
| | - Hiba Komati
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
| | - Mona Nemer
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
- * E-mail: (HR); (MN)
| | - Heikki Ruskoaho
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- * E-mail: (HR); (MN)
| |
Collapse
|
42
|
Beck K, Ehmann N, Andlauer TFM, Ljaschenko D, Strecker K, Fischer M, Kittel RJ, Raabe T. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons. Dis Model Mech 2015; 8:1389-400. [PMID: 26398944 PMCID: PMC4631788 DOI: 10.1242/dmm.021246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/27/2015] [Indexed: 01/06/2023] Open
Abstract
Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling.
Collapse
Affiliation(s)
- Katherina Beck
- University of Würzburg, Institute of Medical Radiation and Cell Research, Versbacherstraße 5, Würzburg D-97078, Germany
| | - Nadine Ehmann
- University of Würzburg, Institute of Physiology, Department of Neurophysiology, Röntgenring 9, Würzburg D-97070, Germany
| | - Till F M Andlauer
- University of Würzburg, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Josef-Schneider-Straße 2, Würzburg D-97080, Germany Freie Universität Berlin, Institute of Biology, Takusstraße 6, Berlin D-14195, Germany Max Planck Institute of Colloidals and Interfaces, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Dmitrij Ljaschenko
- University of Würzburg, Institute of Physiology, Department of Neurophysiology, Röntgenring 9, Würzburg D-97070, Germany
| | - Katrin Strecker
- University of Würzburg, Institute of Medical Radiation and Cell Research, Versbacherstraße 5, Würzburg D-97078, Germany
| | - Matthias Fischer
- University Hospital Würzburg, Department of Psychiatry, Psychosomatics and Psychotherapy, Füchsleinstraße 15, Würzburg 97080, Germany
| | - Robert J Kittel
- University of Würzburg, Institute of Physiology, Department of Neurophysiology, Röntgenring 9, Würzburg D-97070, Germany
| | - Thomas Raabe
- University of Würzburg, Institute of Medical Radiation and Cell Research, Versbacherstraße 5, Würzburg D-97078, Germany
| |
Collapse
|
43
|
Polak GL, Pasqualino A, Docherty JEB, Beck SJ, DiAngelo JR. The Regulation of Muscle Structure and Metabolism by Mio/dChREBP in Drosophila. PLoS One 2015; 10:e0136504. [PMID: 26305467 PMCID: PMC4549115 DOI: 10.1371/journal.pone.0136504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022] Open
Abstract
All cells require energy to perform their specialized functions. Muscle is particularly sensitive to the availability of nutrients due to the high-energy requirement for muscle contraction. Therefore the ability of muscle cells to obtain, store and utilize energy is essential for the function of these cells. Mio, the Drosophila homolog of carbohydrate response element binding protein (ChREBP), has recently been identified as a nutrient responsive transcription factor important for triglyceride storage in the fly fat body. However, the function of Mio in muscle is unknown. In this study, we characterized the role of Mio in controlling muscle function and metabolism. Decreasing Mio levels using RNAi specifically in muscle results in increased thorax glycogen storage. Adult Mio-RNAi flies also have a flight defect due to altered myofibril shape and size in the indirect flight muscles as shown by electron microscopy. Myofibril size is also decreased in flies just before emerging from their pupal cases, suggesting a role for Mio in myofibril development. Together, these data indicate a novel role for Mio in controlling muscle structure and metabolism and may provide a molecular link between nutrient availability and muscle function.
Collapse
Affiliation(s)
- Grzegorz L. Polak
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
| | - Anthony Pasqualino
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
| | - James E. B. Docherty
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
| | - Stephen J. Beck
- Department of Biology, Nassau Community College, Garden City, NY, 11530, United States of America
| | - Justin R. DiAngelo
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
- Division of Science, Penn State Berks, Reading, PA, 19610, United States of America
- * E-mail:
| |
Collapse
|
44
|
Deng S, Bothe I, Baylies MK. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation. PLoS Genet 2015; 11:e1005381. [PMID: 26295716 PMCID: PMC4546610 DOI: 10.1371/journal.pgen.1005381] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 06/23/2015] [Indexed: 11/19/2022] Open
Abstract
The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.
Collapse
Affiliation(s)
- Su Deng
- Graduate Program in Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Ingo Bothe
- Program in Developmental Biology, Sloan Kettering Institute, New York, New York, United States of America
| | - Mary K. Baylies
- Graduate Program in Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
- Program in Developmental Biology, Sloan Kettering Institute, New York, New York, United States of America
| |
Collapse
|
45
|
Brunetti TM, Fremin BJ, Cripps RM. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion. Dev Biol 2015; 401:299-309. [PMID: 25797154 PMCID: PMC4424145 DOI: 10.1016/j.ydbio.2015.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/29/2015] [Accepted: 02/14/2015] [Indexed: 11/17/2022]
Abstract
In Drosophila, myoblast fusion is a conserved process in which founder cells (FCs) and fusion competent myoblasts (FCMs) fuse to form a syncytial muscle fiber. Mutants for the myogenic regulator Myocyte enhancer factor-2 (MEF2) show a failure of myoblast fusion, indicating that MEF2 regulates the fusion process. Indeed, chromatin immunoprecipitation studies show that several genes involved in myoblast fusion are bound by MEF2 during embryogenesis. Of these, the MARVEL domain gene singles bar (sing), is down-regulated in MEF2 knockdown pupae, and has five consensus MEF2 binding sites within a 9000-bp region. To determine if MEF2 is an essential and direct regulator of sing during pupal muscle development, we identified a 315-bp myoblast enhancer of sing. This enhancer was active during myoblast fusion, and mutation of two MEF2 sites significantly decreased enhancer activity. We show that lack of sing expression resulted in adult lethality and muscle loss, due to a failure of fusion during the pupal stage. Additionally, we sought to determine if sing was required in either FCs or FCMs to support fusion. Interestingly, knockdown of sing in either population did not significantly affect fusion, however, knockdown in both FCs and FCMs resulted in muscles with significantly reduced nuclei numbers, provisionally indicating that sing function is required in either cell type, but not both. Finally, we found that MEF2 regulated sing expression at the embryonic stage through the same 315-bp enhancer, indicating that sing is a MEF2 target at both critical stages of myoblast fusion. Our studies define for the first time how MEF2 directly controls fusion at multiple stages of the life cycle, and provide further evidence that the mechanisms of fusion characterized in Drosophila embryos is also used in the formation of the more complex adult muscles.
Collapse
Affiliation(s)
- Tonya M Brunetti
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Brayon J Fremin
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
46
|
Haralalka S, Abmayr SM. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes. Methods Mol Biol 2015; 1313:149-64. [PMID: 25947663 DOI: 10.1007/978-1-4939-2703-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Myoblast fusion in the Drosophila embryo is a highly elaborate process that is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs). It occurs through an asymmetric event in which actin foci assemble in the FCMs at points of cell-cell contact and direct the formation of membrane protrusions that drive fusion. Herein, we describe the approach that we have used to image in living embryos the highly dynamic actin foci and actin-rich projections that precede myoblast fusion. We discuss resources currently available for imaging actin and myogenesis, and our experience with these resources if available. This technical report is not intended to be comprehensive on providing instruction on standard microscopy practices or software utilization. However, we discuss microscope parameters that we have used in data collection, and our experience with image processing tools in data analysis.
Collapse
Affiliation(s)
- Shruti Haralalka
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | | |
Collapse
|
47
|
Abstract
Transcriptional regulation of thousands of genes instructs complex morphogenetic and molecular events for heart development. Cardiac transcription factors choreograph gene expression at each stage of differentiation by interacting with cofactors, including chromatin-modifying enzymes, and by binding to a constellation of regulatory DNA elements. Here, we present salient examples relevant to cardiovascular development and heart disease, and review techniques that can sharpen our understanding of cardiovascular biology. We discuss the interplay between cardiac transcription factors, cis-regulatory elements, and chromatin as dynamic regulatory networks, to orchestrate sequential deployment of the cardiac gene expression program.
Collapse
Affiliation(s)
- Irfan S Kathiriya
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| | - Elphège P Nora
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| | - Benoit G Bruneau
- From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.
| |
Collapse
|
48
|
Chen Z, Qi Y, French S, Zhang G, Covian Garcia R, Balaban R, Xu H. Genetic mosaic analysis of a deleterious mitochondrial DNA mutation in Drosophila reveals novel aspects of mitochondrial regulation and function. Mol Biol Cell 2014; 26:674-84. [PMID: 25501370 PMCID: PMC4325838 DOI: 10.1091/mbc.e14-11-1513] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A lethal mtDNA mutation affecting COX is fully rescued by AOX. The mutant genome level remains constant in the somatic tissues along the aging process in heteroplasmic flies. A genetic scheme creates tissue-specific heteroplasmy in otherwise heteroplasmic background and reveals that Ca2+ mishandling contributes to the neurodegeneration. Various human diseases are associated with mitochondrial DNA (mtDNA) mutations, but heteroplasmy—the coexistence of mutant and wild-type mtDNA—complicates their study. We previously isolated a temperature-lethal mtDNA mutation in Drosophila, mt:CoIT300I, which affects the cytochrome c oxidase subunit I (CoI) locus. In the present study, we found that the decrease in cytochrome c oxidase (COX) activity was ascribable to a temperature-dependent destabilization of cytochrome a heme. Consistently, the viability of homoplasmic flies at 29°C was fully restored by expressing an alternative oxidase, which specifically bypasses the cytochrome chains. Heteroplasmic flies are fully viable and were used to explore the age-related and tissue-specific phenotypes of mt:CoIT300I. The proportion of mt:CoIT300I genome remained constant in somatic tissues along the aging process, suggesting a lack of quality control mechanism to remove defective mitochondria containing a deleterious mtDNA mutation. Using a genetic scheme that expresses a mitochondrially targeted restriction enzyme to induce tissue-specific homoplasmy in heteroplasmic flies, we found that mt:CoIT300I homoplasmy in the eye caused severe neurodegeneration at 29°C. Degeneration was suppressed by improving mitochondrial Ca2+ uptake, suggesting that Ca2+ mishandling contributed to mt:CoIT300I pathogenesis. Our results demonstrate a novel approach for Drosophila mtDNA genetics and its application in modeling mtDNA diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Laboratory of Molecular Genetics, National Institutes of Health, Bethesda, MD 20892
| | - Yun Qi
- Laboratory of Molecular Genetics, National Institutes of Health, Bethesda, MD 20892
| | - Stephanie French
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Guofeng Zhang
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Raúl Covian Garcia
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Robert Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Hong Xu
- Laboratory of Molecular Genetics, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
49
|
Haralalka S, Shelton C, Cartwright HN, Guo F, Trimble R, Kumar RP, Abmayr SM. Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila. PLoS One 2014; 9:e114126. [PMID: 25474591 PMCID: PMC4256407 DOI: 10.1371/journal.pone.0114126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/28/2014] [Indexed: 11/29/2022] Open
Abstract
The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs), and cell adhesion molecules Kin-of-IrreC (Kirre) and Sticks-and-stones (Sns) on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia) and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and lysosomes in the myotube.
Collapse
Affiliation(s)
- Shruti Haralalka
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Claude Shelton
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Heather N. Cartwright
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Rhonda Trimble
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Ram P. Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Susan M. Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, 66160, United States of America
- * E-mail:
| |
Collapse
|
50
|
Oas ST, Bryantsev AL, Cripps RM. Arrest is a regulator of fiber-specific alternative splicing in the indirect flight muscles of Drosophila. ACTA ACUST UNITED AC 2014; 206:895-908. [PMID: 25246617 PMCID: PMC4178973 DOI: 10.1083/jcb.201405058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RNA-binding protein Arrest occupies a novel intranuclear domain and directs flight muscle–specific patterns of alternative splicing in flies. Drosophila melanogaster flight muscles are distinct from other skeletal muscles, such as jump muscles, and express several uniquely spliced muscle-associated transcripts. We sought to identify factors mediating splicing differences between the flight and jump muscle fiber types. We found that the ribonucleic acid–binding protein Arrest (Aret) is expressed in flight muscles: in founder cells, Aret accumulates in a novel intranuclear compartment that we termed the Bruno body, and after the onset of muscle differentiation, Aret disperses in the nucleus. Down-regulation of the aret gene led to ultrastructural changes and functional impairment of flight muscles, and transcripts of structural genes expressed in the flight muscles became spliced in a manner characteristic of jump muscles. Aret also potently promoted flight muscle splicing patterns when ectopically expressed in jump muscles or tissue culture cells. Genetically, aret is located downstream of exd (extradenticle), hth (homothorax), and salm (spalt major), transcription factors that control fiber identity. Our observations provide insight into a transcriptional and splicing regulatory network for muscle fiber specification.
Collapse
Affiliation(s)
- Sandy T Oas
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|