1
|
Doe CQ, Thor S. 40 years of homeodomain transcription factors in the Drosophila nervous system. Development 2024; 151:dev202910. [PMID: 38819456 PMCID: PMC11190446 DOI: 10.1242/dev.202910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.
Collapse
Affiliation(s)
- Chris Q. Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
González YR, Kamkar F, Jafar-Nejad P, Wang S, Qu D, Alvarez LS, Hawari D, Sonnenfeld M, Slack RS, Albert PR, Park DS, Joselin A. PFTK1 kinase regulates axogenesis during development via RhoA activation. BMC Biol 2023; 21:240. [PMID: 37907898 PMCID: PMC10617079 DOI: 10.1186/s12915-023-01732-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development. RESULTS Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity. CONCLUSIONS In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.
Collapse
Affiliation(s)
| | - Fatemeh Kamkar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Paymaan Jafar-Nejad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Present Address: Ionis Pharmaceuticals Inc., Carlsbad, CA, 92010, USA
| | - Suzi Wang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dianbo Qu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Leticia Sanchez Alvarez
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dina Hawari
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Margaret Sonnenfeld
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute and Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - David S Park
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Alvin Joselin
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
3
|
Zang Y, Chaudhari K, Bashaw GJ. Tace/ADAM17 is a bi-directional regulator of axon guidance that coordinates distinct Frazzled and Dcc receptor signaling outputs. Cell Rep 2022; 41:111785. [PMID: 36476876 DOI: 10.1016/j.celrep.2022.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/07/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Frazzled (Fra) and deleted in colorectal cancer (Dcc) are homologous receptors that promote axon attraction in response to netrin. In Drosophila, Fra also acts independently of netrin by releasing an intracellular domain (ICD) that activates gene transcription. How neurons coordinate these pathways to make accurate guidance decisions is unclear. Here we show that the ADAM metalloprotease Tace cleaves Fra, and this instructs the switch between the two pathways. Genetic manipulations that either increase or decrease Tace levels disrupt midline crossing of commissural axons. These conflicting phenotypes reflect Tace's function as a bi-directional regulator of axon guidance, a function conserved in its vertebrate homolog ADAM17: while Tace induces the formation of the Fra ICD to activate transcription, excessive Tace cleavage of Fra and Dcc suppresses the response to netrin. We propose that Tace and ADAM17 are key regulators of midline axon guidance by establishing the balance between netrin-dependent and netrin-independent signaling.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Rubio-Ferrera I, Baladrón-de-Juan P, Clarembaux-Badell L, Truchado-Garcia M, Jordán-Álvarez S, Thor S, Benito-Sipos J, Monedero Cobeta I. Selective role of the DNA helicase Mcm5 in BMP retrograde signaling during Drosophila neuronal differentiation. PLoS Genet 2022; 18:e1010255. [PMID: 35737938 PMCID: PMC9258838 DOI: 10.1371/journal.pgen.1010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/06/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The MCM2-7 complex is a highly conserved hetero-hexameric protein complex, critical for DNA unwinding at the replicative fork during DNA replication. Overexpression or mutation in MCM2-7 genes is linked to and may drive several cancer types in humans. In mice, mutations in MCM2-7 genes result in growth retardation and mortality. All six MCM2-7 genes are also expressed in the developing mouse CNS, but their role in the CNS is not clear. Here, we use the central nervous system (CNS) of Drosophila melanogaster to begin addressing the role of the MCM complex during development, focusing on the specification of a well-studied neuropeptide expressing neuron: the Tv4/FMRFa neuron. In a search for genes involved in the specification of the Tv4/FMRFa neuron we identified Mcm5 and find that it plays a highly specific role in the specification of the Tv4/FMRFa neuron. We find that other components of the MCM2-7 complex phenocopies Mcm5, indicating that the role of Mcm5 in neuronal subtype specification involves the MCM2-7 complex. Surprisingly, we find no evidence of reduced progenitor proliferation, and instead find that Mcm5 is required for the expression of the type I BMP receptor Tkv, which is critical for the FMRFa expression. These results suggest that the MCM2-7 complex may play roles during CNS development outside of its well-established role during DNA replication. The MCM2-7 complex plays a critical role in the DNA replication allowing cells to progress throughout the cell cycle and divide. Overexpression or mutation in MCM2-7 genes is linked to and may drive several cancer types in humans. While MCM2-7 complex is widely expressed in the central nervous system (CNS) during development, its role is not yet clear. Here, we use the CNS of Drosophila melanogaster to address the role of the MCM complex, focusing on the specification of a well-studied neuropeptide expressing neuron: the Tv4/FMRFa neuron. We identified that Mcm5 plays a highly specific role in the specification of this neuron, and it involves other components of the MCM2-7 complex. Despite the described importance of this complex on DNA replication, we find no evidence of reduced progenitor proliferation, and instead we find that Mcm5 is required for the expression of the type I BMP receptor Tkv, which is critical for the specification of the Tv4/FMRFa neuron. These results suggest that the MCM2-7 complex may play roles during CNS development outside of its well-established role during DNA replication.
Collapse
Affiliation(s)
- Irene Rubio-Ferrera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Pablo Baladrón-de-Juan
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Luis Clarembaux-Badell
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | - Sheila Jordán-Álvarez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Jonathan Benito-Sipos
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- * E-mail: (JB-S); (IMC)
| | - Ignacio Monedero Cobeta
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- * E-mail: (JB-S); (IMC)
| |
Collapse
|
5
|
Consolidation and maintenance of long-term memory involve dual functions of the developmental regulator Apterous in clock neurons and mushroom bodies in the Drosophila brain. PLoS Biol 2021; 19:e3001459. [PMID: 34860826 PMCID: PMC8641882 DOI: 10.1371/journal.pbio.3001459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Memory is initially labile but can be consolidated into stable long-term memory (LTM) that is stored in the brain for extended periods. Despite recent progress, the molecular and cellular mechanisms underlying the intriguing neurobiological processes of LTM remain incompletely understood. Using the Drosophila courtship conditioning assay as a memory paradigm, here, we show that the LIM homeodomain (LIM-HD) transcription factor Apterous (Ap), which is known to regulate various developmental events, is required for both the consolidation and maintenance of LTM. Interestingly, Ap is involved in these 2 memory processes through distinct mechanisms in different neuronal subsets in the adult brain. Ap and its cofactor Chip (Chi) are indispensable for LTM maintenance in the Drosophila memory center, the mushroom bodies (MBs). On the other hand, Ap plays a crucial role in memory consolidation in a Chi-independent manner in pigment dispersing factor (Pdf)-containing large ventral–lateral clock neurons (l-LNvs) that modulate behavioral arousal and sleep. Since disrupted neurotransmission and electrical silencing in clock neurons impair memory consolidation, Ap is suggested to contribute to the stabilization of memory by ensuring the excitability of l-LNvs. Indeed, ex vivo imaging revealed that a reduced function of Ap, but not Chi, results in exaggerated Cl− responses to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in l-LNvs, indicating that wild-type (WT) Ap maintains high l-LNv excitability by suppressing the GABA response. Consistently, enhancing the excitability of l-LNvs by knocking down GABAA receptors compensates for the impaired memory consolidation in ap null mutants. Overall, our results revealed unique dual functions of the developmental regulator Ap for LTM consolidation in clock neurons and LTM maintenance in MBs. A neurogenetic study using Drosophila reveals that the centrally expressed LIM-homeodomain transcription factor Apterous plays a crucial neuron-type-dependent role in two different memory processes - consolidation and maintenance of long-term memory.
Collapse
|
6
|
Vuilleumier R, Lian T, Flibotte S, Khan ZN, Fuchs A, Pyrowolakis G, Allan DW. Retrograde BMP signaling activates neuronal gene expression through widespread deployment of a conserved BMP-responsive cis-regulatory activation element. Nucleic Acids Res 2019; 47:679-699. [PMID: 30476189 PMCID: PMC6344883 DOI: 10.1093/nar/gky1135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/25/2018] [Indexed: 12/29/2022] Open
Abstract
Retrograde Bone Morphogenetic Protein (BMP) signaling in neurons is essential for the differentiation and synaptic function of many neuronal subtypes. BMP signaling regulates these processes via Smad transcription factor activity, yet the scope and nature of Smad-dependent gene regulation in neurons are mostly unknown. Here, we applied a computational approach to predict Smad-binding cis-regulatory BMP-Activating Elements (BMP-AEs) in Drosophila, followed by transgenic in vivo reporter analysis to test their neuronal subtype enhancer activity in the larval central nervous system (CNS). We identified 34 BMP-AE-containing genomic fragments that are responsive to BMP signaling in neurons, and showed that the embedded BMP-AEs are required for this activity. RNA-seq analysis identified BMP-responsive genes in the CNS and revealed that BMP-AEs selectively enrich near BMP-activated genes. These data suggest that functional BMP-AEs control nearby BMP-activated genes, which we validated experimentally. Finally, we demonstrated that the BMP-AE motif mediates a conserved Smad-responsive function in the Drosophila and vertebrate CNS. Our results provide evidence that BMP signaling controls neuronal function by directly coordinating the expression of a battery of genes through widespread deployment of a conserved Smad-responsive cis-regulatory motif.
Collapse
Affiliation(s)
- Robin Vuilleumier
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zaynah N Khan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alisa Fuchs
- BIOSS, Centre for Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - George Pyrowolakis
- BIOSS, Centre for Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Aranha MM, Herrmann D, Cachitas H, Neto-Silva RM, Dias S, Vasconcelos ML. apterous Brain Neurons Control Receptivity to Male Courtship in Drosophila Melanogaster Females. Sci Rep 2017; 7:46242. [PMID: 28401905 PMCID: PMC5388873 DOI: 10.1038/srep46242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/07/2017] [Indexed: 11/26/2022] Open
Abstract
Courtship behaviours allow animals to interact and display their qualities before committing to reproduction. In fly courtship, the female decides whether or not to mate and is thought to display receptivity by slowing down to accept the male. Very little is known on the neuronal brain circuitry controlling female receptivity. Here we use genetic manipulation and behavioural studies to identify a novel set of neurons in the brain that controls sexual receptivity in the female without triggering the postmating response. We show that these neurons, defined by the expression of the transcription factor apterous, affect the modulation of female walking speed during courtship. Interestingly, we found that the apterous neurons required for female receptivity are neither doublesex nor fruitless positive suggesting that apterous neurons are not specified by the sex-determination cascade. Overall, these findings identify a neuronal substrate underlying female response to courtship and highlight the central role of walking speed in the receptivity behaviour.
Collapse
Affiliation(s)
- Márcia M Aranha
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Dennis Herrmann
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Hugo Cachitas
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ricardo M Neto-Silva
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Sophie Dias
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Maria Luísa Vasconcelos
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
8
|
Modulation of light-driven arousal by LIM-homeodomain transcription factor Apterous in large PDF-positive lateral neurons of the Drosophila brain. Sci Rep 2016; 6:37255. [PMID: 27853240 PMCID: PMC5112534 DOI: 10.1038/srep37255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022] Open
Abstract
Apterous (Ap), the best studied LIM-homeodomain transcription factor in Drosophila, cooperates with the cofactor Chip (Chi) to regulate transcription of specific target genes. Although Ap regulates various developmental processes, its function in the adult brain remains unclear. Here, we report that Ap and Chi in the neurons expressing PDF, a neuropeptide, play important roles in proper sleep/wake regulation in adult flies. PDF-expressing neurons consist of two neuronal clusters: small ventral-lateral neurons (s-LNvs) acting as the circadian pacemaker and large ventral-lateral neurons (l-LNvs) regulating light-driven arousal. We identified that Ap localizes to the nuclei of s-LNvs and l-LNvs. In light-dark (LD) cycles, RNAi knockdown or the targeted expression of dominant-negative forms of Ap or Chi in PDF-expressing neurons or l-LNvs promoted arousal. In contrast, in constant darkness, knockdown of Ap in PDF-expressing neurons did not promote arousal, indicating that a reduced Ap function in PDF-expressing neurons promotes light-driven arousal. Furthermore, Ap expression in l-LNvs showed daily rhythms (peaking at midnight), which are generated by a direct light-dependent mechanism rather than by the endogenous clock. These results raise the possibility that the daily oscillation of Ap expression in l-LNvs may contribute to the buffering of light-driven arousal in wild-type flies.
Collapse
|
9
|
Stratmann J, Gabilondo H, Benito-Sipos J, Thor S. Neuronal cell fate diversification controlled by sub-temporal action of Kruppel. eLife 2016; 5. [PMID: 27740908 PMCID: PMC5065313 DOI: 10.7554/elife.19311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/09/2016] [Indexed: 01/09/2023] Open
Abstract
During Drosophila embryonic nervous system development, neuroblasts express a programmed cascade of five temporal transcription factors that govern the identity of cells generated at different time-points. However, these five temporal genes fall short of accounting for the many distinct cell types generated in large lineages. Here, we find that the late temporal gene castor sub-divides its large window in neuroblast 5–6 by simultaneously activating two cell fate determination cascades and a sub-temporal regulatory program. The sub-temporal program acts both upon itself and upon the determination cascades to diversify the castor window. Surprisingly, the early temporal gene Kruppel acts as one of the sub-temporal genes within the late castor window. Intriguingly, while the temporal gene castor activates the two determination cascades and the sub-temporal program, spatial cues controlling cell fate in the latter part of the 5–6 lineage exclusively act upon the determination cascades. DOI:http://dx.doi.org/10.7554/eLife.19311.001 As a nervous system develops, stem cells generate different types of nerve cells at different times. This series of events follows a fixed schedule in developing embryos, and even a single stem cell that is removed and then grown outside the body will follow the same schedule. This strongly suggests that stem cells have a built-in clock that controls their development. Studies of the developing nervous system of fruit flies reveal that this clock works by switching genes on in specific sequences, which defines which nerve cells are produced at different stages of development. However, a clock built from the genes that are currently known to be involved in the process is simply not fine-tuned enough to explain how so many different types of nerve cell develop at such precise times. This implies that scientists do not yet know all of the genes that are involved. Using genetic experiments in stem cells from fruit flies, Stratmann, Gabilondo et al. now identify additional clock genes that act to divide broad windows of time during development into smaller, more precise ones. Genes that define broad windows of time switch on the “small window” genes at specific times – a bit like large cogs turning small cogs in a clock. One small window gene, called Kruppel, works at different stages of development and it is possible that other small window genes multi-task in similar ways in other developmental clocks, such as those found in more complex organisms like humans. It is clear that many genes work in sequence in the developing nervous system to ensure that developmental stages happen at precise times. Stratmann, Gabilondo et al. will next investigate the molecular details of this timing, specifically how genes in sequential time windows connect together like cogs in the developmental clock. DOI:http://dx.doi.org/10.7554/eLife.19311.002
Collapse
Affiliation(s)
- Johannes Stratmann
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Hugo Gabilondo
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Neuronal Cell Fate Specification by the Convergence of Different Spatiotemporal Cues on a Common Terminal Selector Cascade. PLoS Biol 2016; 14:e1002450. [PMID: 27148744 PMCID: PMC4858240 DOI: 10.1371/journal.pbio.1002450] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/01/2016] [Indexed: 01/26/2023] Open
Abstract
Specification of the myriad of unique neuronal subtypes found in the nervous system depends upon spatiotemporal cues and terminal selector gene cascades, often acting in sequential combinatorial codes to determine final cell fate. However, a specific neuronal cell subtype can often be generated in different parts of the nervous system and at different stages, indicating that different spatiotemporal cues can converge on the same terminal selectors to thereby generate a similar cell fate. However, the regulatory mechanisms underlying such convergence are poorly understood. The Nplp1 neuropeptide neurons in the Drosophila ventral nerve cord can be subdivided into the thoracic-ventral Tv1 neurons and the dorsal-medial dAp neurons. The activation of Nplp1 in Tv1 and dAp neurons depends upon the same terminal selector cascade: col>ap/eya>dimm>Nplp1. However, Tv1 and dAp neurons are generated by different neural progenitors (neuroblasts) with different spatiotemporal appearance. Here, we find that the same terminal selector cascade is triggered by Kr/pdm>grn in dAp neurons, but by Antp/hth/exd/lbe/cas in Tv1 neurons. Hence, two different spatiotemporal combinations can funnel into a common downstream terminal selector cascade to determine a highly related cell fate. A study of neuropeptide neurons in the Drosophila nervous system reveals that two different combinations of spatiotemporal cues—active in different progenitors—converge on a common terminal selector gene to trigger a similar neuronal subtype identity. A fundamental challenge in developmental neurobiology is to understand how the great diversity of neuronal subtypes is generated during nervous system development. Neuronal subtype cell fate is established in a stepwise manner, starting with spatial and temporal cues that confer distinct identities to neural progenitors and trigger expression of terminal selector genes in the early-born neurons. Terminal selectors are those that determine the final neuronal subtype cell fate. Intriguingly, similar neuronal subtypes can be generated by different progenitors and under the control of different spatiotemporal cues; thus, we wondered how such convergence is achieved. To address this issue, we have decoded the specification of two highly related neuropeptide neurons, which are generated at different locations and time-points in the Drosophila nervous system. We find that two different combinations of spatiotemporal cues, in two different neural progenitors, funnel onto the same terminal selector gene, which in turn activates a shared regulatory cascade, ultimately resulting in the specification of a similar neuronal cell subtype identity.
Collapse
|
11
|
Berndt AJE, Tang JCY, Ridyard MS, Lian T, Keatings K, Allan DW. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons. PLoS Genet 2015; 11:e1005754. [PMID: 26713626 PMCID: PMC4694770 DOI: 10.1371/journal.pgen.1005754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/30/2015] [Indexed: 11/18/2022] Open
Abstract
Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE) that binds BMP-activated pMad, and a homeodomain-response element (HD-RE) that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp), as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP signaling directly activates FMRFa gene expression through an atypical gene regulatory mechanism.
Collapse
Affiliation(s)
- Anthony J. E. Berndt
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan C. Y. Tang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States America
| | - Marc S. Ridyard
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathleen Keatings
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas W. Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
12
|
Novel Genes Involved in Controlling Specification of Drosophila FMRFamide Neuropeptide Cells. Genetics 2015; 200:1229-44. [PMID: 26092715 DOI: 10.1534/genetics.115.178483] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023] Open
Abstract
The expression of neuropeptides is often extremely restricted in the nervous system, making them powerful markers for addressing cell specification . In the developing Drosophila ventral nerve cord, only six cells, the Ap4 neurons, of some 10,000 neurons, express the neuropeptide FMRFamide (FMRFa). Each Ap4/FMRFa neuron is the last-born cell generated by an identifiable and well-studied progenitor cell, neuroblast 5-6 (NB5-6T). The restricted expression of FMRFa and the wealth of information regarding its gene regulation and Ap4 neuron specification makes FMRFa a valuable readout for addressing many aspects of neural development, i.e., spatial and temporal patterning cues, cell cycle control, cell specification, axon transport, and retrograde signaling. To this end, we have conducted a forward genetic screen utilizing an Ap4-specific FMRFa-eGFP transgenic reporter as our readout. A total of 9781 EMS-mutated chromosomes were screened for perturbations in FMRFa-eGFP expression, and 611 mutants were identified. Seventy-nine of the strongest mutants were mapped down to the affected gene by deficiency mapping or whole-genome sequencing. We isolated novel alleles for previously known FMRFa regulators, confirming the validity of the screen. In addition, we identified novel essential genes, including several with previously undefined functions in neural development. Our identification of genes affecting most major steps required for successful terminal differentiation of Ap4 neurons provides a comprehensive view of the genetic flow controlling the generation of highly unique neuronal cell types in the developing nervous system.
Collapse
|
13
|
Allan DW, Thor S. Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:505-28. [PMID: 25855098 PMCID: PMC4672696 DOI: 10.1002/wdev.191] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
Abstract
The broad range of tissue and cellular diversity of animals is generated to a large extent by the hierarchical deployment of sequence-specific transcription factors and co-factors (collectively referred to as TF's herein) during development. Our understanding of these developmental processes has been facilitated by the recognition that the activities of many TF's can be meaningfully described by a few functional categories that usefully convey a sense for how the TF's function, and also provides a sense for the regulatory organization of the developmental processes in which they participate. Here, we draw on examples from studies in Caenorhabditis elegans, Drosophila melanogaster, and vertebrates to discuss how the terms spatial selector, temporal selector, tissue/cell type selector, terminal selector and combinatorial code may be usefully applied to categorize the activities of TF's at critical steps of nervous system construction. While we believe that these functional categories are useful for understanding the organizational principles by which TF's direct nervous system construction, we however caution against the assumption that a TF's function can be solely or fully defined by any single functional category. Indeed, most TF's play diverse roles within different functional categories, and their roles can blur the lines we draw between these categories. Regardless, it is our belief that the concepts discussed here are helpful in clarifying the regulatory complexities of nervous system development, and hope they prove useful when interpreting mutant phenotypes, designing future experiments, and programming specific neuronal cell types for use in therapies. WIREs Dev Biol 2015, 4:505–528. doi: 10.1002/wdev.191 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Douglas W Allan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| |
Collapse
|
14
|
Heckscher ES, Long F, Layden MJ, Chuang CH, Manning L, Richart J, Pearson JC, Crews ST, Peng H, Myers E, Doe CQ. Atlas-builder software and the eNeuro atlas: resources for developmental biology and neuroscience. Development 2014; 141:2524-32. [PMID: 24917506 DOI: 10.1242/dev.108720] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A major limitation in understanding embryonic development is the lack of cell type-specific markers. Existing gene expression and marker atlases provide valuable tools, but they typically have one or more limitations: a lack of single-cell resolution; an inability to register multiple expression patterns to determine their precise relationship; an inability to be upgraded by users; an inability to compare novel patterns with the database patterns; and a lack of three-dimensional images. Here, we develop new 'atlas-builder' software that overcomes each of these limitations. A newly generated atlas is three-dimensional, allows the precise registration of an infinite number of cell type-specific markers, is searchable and is open-ended. Our software can be used to create an atlas of any tissue in any organism that contains stereotyped cell positions. We used the software to generate an 'eNeuro' atlas of the Drosophila embryonic CNS containing eight transcription factors that mark the major CNS cell types (motor neurons, glia, neurosecretory cells and interneurons). We found neuronal, but not glial, nuclei occupied stereotyped locations. We added 75 new Gal4 markers to the atlas to identify over 50% of all interneurons in the ventral CNS, and these lines allowed functional access to those interneurons for the first time. We expect the atlas-builder software to benefit a large proportion of the developmental biology community, and the eNeuro atlas to serve as a publicly accessible hub for integrating neuronal attributes - cell lineage, gene expression patterns, axon/dendrite projections, neurotransmitters--and linking them to individual neurons.
Collapse
Affiliation(s)
- Ellie S Heckscher
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Fuhui Long
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Michael J Layden
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Chein-Hui Chuang
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Laurina Manning
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Jourdain Richart
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Joseph C Pearson
- Program in Molecular Biology and Biophysics, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 275995, USA
| | - Stephen T Crews
- Program in Molecular Biology and Biophysics, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 275995, USA
| | - Hanchuan Peng
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Eugene Myers
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
15
|
Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals. Proc Natl Acad Sci U S A 2014; 111:3597-601. [PMID: 24550480 DOI: 10.1073/pnas.1322170111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurons vary in their capacity to produce, store, and release neuropeptides packaged in dense-core vesicles (DCVs). Specifically, neurons used for cotransmission have terminals that contain few DCVs and many small synaptic vesicles, whereas neuroendocrine neuron terminals contain many DCVs. Although the mechanistic basis for presynaptic variation is unknown, past research demonstrated transcriptional control of neuropeptide synthesis suggesting that supply from the soma limits presynaptic neuropeptide accumulation. Here neuropeptide release is shown to scale with presynaptic neuropeptide stores in identified Drosophila cotransmitting and neuroendocrine terminals. However, the dramatic difference in DCV number in these terminals occurs with similar anterograde axonal transport and DCV half-lives. Thus, differences in presynaptic neuropeptide stores are not explained by DCV delivery from the soma or turnover. Instead, greater neuropeptide accumulation in neuroendocrine terminals is promoted by dramatically more efficient presynaptic DCV capture. Greater capture comes with tradeoffs, however, as fewer uncaptured DCVs are available to populate distal boutons and replenish neuropeptide stores following release. Finally, expression of the Dimmed transcription factor in cotransmitting neurons increases presynaptic DCV capture. Therefore, DCV capture in the terminal is genetically controlled and determines neuron-specific variation in peptidergic function.
Collapse
|
16
|
Gu T, Zhao T, Hewes RS. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling. Biol Open 2014; 3:81-93. [PMID: 24357229 PMCID: PMC3892163 DOI: 10.1242/bio.20136437] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation.
Collapse
Affiliation(s)
- Tingting Gu
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | | | | |
Collapse
|
17
|
Losada-Pérez M, Gabilondo H, Molina I, Turiegano E, Torroja L, Thor S, Benito-Sipos J. Klumpfuss controls FMRFamide expression by enabling BMP signaling within the NB5-6 lineage. Development 2013; 140:2181-9. [DOI: 10.1242/dev.089748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of transcription factors that are expressed within most, if not all, embryonic neuroblast (NB) lineages participate in neural subtype specification. Some have been extensively studied in several NB lineages (e.g. components of the temporal gene cascade) whereas others only within specific NB lineages. To what extent they function in other lineages remains unknown. Klumpfuss (Klu), the Drosophila ortholog of the mammalian Wilms tumor 1 (WT1) protein, is one such transcription factor. Studies in the NB4-2 lineage have suggested that Klu functions to ensure that the two ganglion mother cells (GMCs) in this embryonic NB lineage acquire different fates. Owing to limited lineage marker availability, these observations were made only for the NB4-2 lineage. Recent findings reveal that Klu is necessary for larval neuroblast growth and self-renewal. We have extended the study of Klu to the well-known embryonic NB5-6T lineage and describe a novel role for Klu in the Drosophila embryonic CNS. Our results demonstrate that Klu is expressed specifically in the postmitotic Ap4/FMRFa neuron, promoting its differentiation through the initiation of BMP signaling. Our findings indicate a pleiotropic function of Klu in Ap cluster specification in general and particularly in Ap4 neuron differentiation, indicating that Klu is a multitasking transcription factor. Finally, our studies indicate that a transitory downregulation of klu is crucial for the specification of the Ap4/FMRFa neuron. Similar to WT1, klu seems to have either self-renewal or differentiation-promoting functions, depending on the developmental context.
Collapse
Affiliation(s)
- María Losada-Pérez
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E 28049 Madrid, Spain
| | - Hugo Gabilondo
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E 28049 Madrid, Spain
| | - Isabel Molina
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E 28049 Madrid, Spain
| | - Enrique Turiegano
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E 28049 Madrid, Spain
| | - Laura Torroja
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E 28049 Madrid, Spain
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
| | - Jonathan Benito-Sipos
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E 28049 Madrid, Spain
| |
Collapse
|
18
|
Abstract
Drosophila has recently become a powerful model system to understand the mechanisms of temporal patterning of neural progenitors called neuroblasts (NBs). Two different temporal sequences of transcription factors (TFs) have been found to be sequentially expressed in NBs of two different systems: the Hunchback, Krüppel, Pdm1/Pdm2, Castor, and Grainyhead sequence in the Drosophila ventral nerve cord; and the Homothorax, Klumpfuss, Eyeless, Sloppy-paired, Dichaete, and Tailless sequence that patterns medulla NBs. In addition, the intermediate neural progenitors of type II NB lineages are patterned by a different sequence: Dichaete, Grainyhead, and Eyeless. These three examples suggest that temporal patterning of neural precursors by sequences of TFs is a common theme to generate neural diversity. Cross-regulations, including negative feedback regulation and positive feedforward regulation among the temporal factors, can facilitate the progression of the sequence. However, there are many remaining questions to understand the mechanism of temporal transitions. The temporal sequence progression is intimately linked to the progressive restriction of NB competence, and eventually determines the end of neurogenesis. Temporal identity has to be integrated with spatial identity information, as well as with the Notch-dependent binary fate choices, in order to generate specific neuron fates.
Collapse
Affiliation(s)
- Xin Li
- Department of Biology, New York University, New York, New York, USA
| | | | | |
Collapse
|
19
|
González-Rodríguez A, Más-Gutierrez JA, Mirasierra M, Fernandez-Pérez A, Lee YJ, Ko HJ, Kim JK, Romanos E, Carrascosa JM, Ros M, Vallejo M, Rondinone CM, Valverde AM. Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging. Aging Cell 2012; 11:284-96. [PMID: 22221695 DOI: 10.1111/j.1474-9726.2011.00786.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes (T2DM). In this study, we have evaluated the role of PTP1B in the development of aging-associated obesity, inflammation, and peripheral insulin resistance by assessing metabolic parameters at 3 and 16 months in PTP1B(-/-) mice maintained on mixed genetic background (C57Bl/6J × 129Sv/J). Whereas fat mass and adipocyte size were increased in wild-type control mice at 16 months, these parameters did not change with aging in PTP1B(-/-) mice. Increased levels of pro-inflammatory cytokines, crown-like structures, and hypoxia-inducible factor (HIF)-1α were observed only in adipose tissue from 16-month-old wild-type mice. Similarly, islet hyperplasia and hyperinsulinemia were observed in wild-type mice with aging-associated obesity, but not in PTP1B(-/-) animals. Leanness in 16-month-old PTP1B(-/-) mice was associated with increased energy expenditure. Whole-body insulin sensitivity decreased in 16-month-old control mice; however, studies with the hyperinsulinemic-euglycemic clamp revealed that PTP1B deficiency prevented this obesity-related decreased peripheral insulin sensitivity. At a molecular level, PTP1B expression and enzymatic activity were up-regulated in liver and muscle of 16-month-old wild-type mice as were the activation of stress kinases and the expression of p53. Conversely, insulin receptor-mediated Akt/Foxo1 signaling was attenuated in these aged control mice. Collectively, these data implicate PTP1B in the development of inflammation and insulin resistance associated with obesity during aging and suggest that inhibition of this phosphatase by therapeutic strategies might protect against age-dependent T2DM.
Collapse
|
20
|
Rőszer T, Bánfalvi G. FMRFamide-related peptides: anti-opiate transmitters acting in apoptosis. Peptides 2012; 34:177-85. [PMID: 21524675 DOI: 10.1016/j.peptides.2011.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 01/10/2023]
Abstract
Members of the FMRFamide-related peptide (FaRP) family are neurotransmitters, hormone-like substances and tumor suppressor peptides. In mammals, FaRPs are considered as anti-opiate peptides due to their ability to inhibit opioid signaling. Some FaRPs are asserted to attenuate opiate tolerance. A recently developed chimeric FaRP (Met-enkephalin-FMRFa) mimics the analgesic effects of opiates without the development of opiate-dependence, displaying a future therapeutical potential in pain reduction. In this review we support the notion, that opiates and representative members of the FaRP family show overlapping effects on apoptosis. Binding of FaRPs to opioid receptors or to their own receptors (G-protein linked membrane receptors and acid-sensing ion channels) evokes or suppresses cell death, in a cell- and receptor-type manner. With the dramatically increasing incidence of opiate abuse and addiction, understanding of opioid-induced cell death, and in this context FaRPs will deserve growing attention.
Collapse
Affiliation(s)
- Tamás Rőszer
- Department of Microbial Biotechnology & Cell Biology, University of Debrecen, Debrecen, Hungary.
| | | |
Collapse
|
21
|
Eade KT, Fancher HA, Ridyard MS, Allan DW. Developmental transcriptional networks are required to maintain neuronal subtype identity in the mature nervous system. PLoS Genet 2012; 8:e1002501. [PMID: 22383890 PMCID: PMC3285578 DOI: 10.1371/journal.pgen.1002501] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022] Open
Abstract
During neurogenesis, transcription factors combinatorially specify neuronal fates and then differentiate subtype identities by inducing subtype-specific gene expression profiles. But how is neuronal subtype identity maintained in mature neurons? Modeling this question in two Drosophila neuronal subtypes (Tv1 and Tv4), we test whether the subtype transcription factor networks that direct differentiation during development are required persistently for long-term maintenance of subtype identity. By conditional transcription factor knockdown in adult Tv neurons after normal development, we find that most transcription factors within the Tv1/Tv4 subtype transcription networks are indeed required to maintain Tv1/Tv4 subtype-specific gene expression in adults. Thus, gene expression profiles are not simply “locked-in,” but must be actively maintained by persistent developmental transcription factor networks. We also examined the cross-regulatory relationships between all transcription factors that persisted in adult Tv1/Tv4 neurons. We show that certain critical cross-regulatory relationships that had existed between these transcription factors during development were no longer present in the mature adult neuron. This points to key differences between developmental and maintenance transcriptional regulatory networks in individual neurons. Together, our results provide novel insight showing that the maintenance of subtype identity is an active process underpinned by persistently active, combinatorially-acting, developmental transcription factors. These findings have implications for understanding the maintenance of all long-lived cell types and the functional degeneration of neurons in the aging brain. For neurons to function properly, they must establish and then maintain their unique, subtype-specific gene expression profiles. These unique gene expression profiles are established during development by networks of DNA–binding proteins, termed transcription factors (TFs). However, how neurons maintain their unique gene expression profiles in the mature and aging brain is largely unknown. Recent advances in inducible genetic technologies now allow us to manipulate gene expression in adult neurons, after normal development. Applying such techniques, we examined the effect of knocking down TF expression in two adult neuronal subtypes. We show that the TF networks that establish unique gene expression profiles during development are then required to maintain them thereafter. Thus, gene expression profiles are not simply “locked-in,” but must be actively maintained by persistent developmental TF networks. However, we found that critical cross-regulatory relationships that had existed between TFs during development were not present in the adult, even between persisting TFs. This highlights important differences between developmental and maintenance transcriptional networks in individual neurons. The dependence of subtype gene expression on active mechanisms represents a potential Achilles heel for long-lived cells, as deterioration of those active mechanisms could lead to functional degeneration of neurons with advancing age.
Collapse
Affiliation(s)
- Kevin T. Eade
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Hailey A. Fancher
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Marc S. Ridyard
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Douglas W. Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
22
|
Ulvklo C, MacDonald R, Bivik C, Baumgardt M, Karlsson D, Thor S. Control of neuronal cell fate and number by integration of distinct daughter cell proliferation modes with temporal progression. Development 2012; 139:678-89. [DOI: 10.1242/dev.074500] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During neural lineage progression, differences in daughter cell proliferation can generate different lineage topologies. This is apparent in the Drosophila neuroblast 5-6 lineage (NB5-6T), which undergoes a daughter cell proliferation switch from generating daughter cells that divide once to generating neurons directly. Simultaneously, neural lineages, e.g. NB5-6T, undergo temporal changes in competence, as evidenced by the generation of different neural subtypes at distinct time points. When daughter proliferation is altered against a backdrop of temporal competence changes, it may create an integrative mechanism for simultaneously controlling cell fate and number. Here, we identify two independent pathways, Prospero and Notch, which act in concert to control the different daughter cell proliferation modes in NB5-6T. Altering daughter cell proliferation and temporal progression, individually and simultaneously, results in predictable changes in cell fate and number. This demonstrates that different daughter cell proliferation modes can be integrated with temporal competence changes, and suggests a novel mechanism for coordinately controlling neuronal subtype numbers.
Collapse
Affiliation(s)
- Carina Ulvklo
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Ryan MacDonald
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Caroline Bivik
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Magnus Baumgardt
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Daniel Karlsson
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| |
Collapse
|
23
|
Simmons DK, Pang K, Martindale MQ. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification. EvoDevo 2012; 3:2. [PMID: 22239757 PMCID: PMC3283466 DOI: 10.1186/2041-9139-3-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/13/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx), which have highly conserved functions in neural specification in bilaterian animals. RESULTS Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8, and LMO) of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx, and Islet). Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons) than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells. CONCLUSION This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more diversified complements of neural and non-neural cell types in later evolving animals.
Collapse
Affiliation(s)
- David K Simmons
- Kewalo Marine Laboratory, Department of Zoology, University of Hawaii at Manoa, Honolulu, HI, USA, 96813
| | - Kevin Pang
- Sars, International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Mark Q Martindale
- Kewalo Marine Laboratory, Department of Zoology, University of Hawaii at Manoa, Honolulu, HI, USA, 96813
| |
Collapse
|
24
|
Benito-Sipos J, Ulvklo C, Gabilondo H, Baumgardt M, Angel A, Torroja L, Thor S. Seven up acts as a temporal factor during two different stages of neuroblast 5-6 development. Development 2011; 138:5311-20. [DOI: 10.1242/dev.070946] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Drosophila embryonic neuroblasts generate different cell types at different time points. This is controlled by a temporal cascade of Hb→Kr→Pdm→Cas→Grh, which acts to dictate distinct competence windows sequentially. In addition, Seven up (Svp), a member of the nuclear hormone receptor family, acts early in the temporal cascade, to ensure the transition from Hb to Kr, and has been referred to as a ‘switching factor’. However, Svp is also expressed in a second wave within the developing CNS, but here, the possible role of Svp has not been previously addressed. In a genetic screen for mutants affecting the last-born cell in the embryonic NB5-6T lineage, the Ap4/FMRFamide neuron, we have isolated a novel allele of svp. Expression analysis shows that Svp is expressed in two distinct pulses in NB5-6T, and mutant analysis reveals that svp plays two distinct roles. In the first pulse, svp acts to ensure proper downregulation of Hb. In the second pulse, which occurs in a Cas/Grh double-positive window, svp acts to ensure proper sub-division of this window. These studies show that a temporal factor may play dual roles, acting at two different stages during the development of one neural lineage.
Collapse
Affiliation(s)
| | - Carina Ulvklo
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Hugo Gabilondo
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Magnus Baumgardt
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Anna Angel
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| | - Laura Torroja
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85, Linkoping, Sweden
| |
Collapse
|
25
|
Lin S, Lee T. Generating neuronal diversity in the Drosophila central nervous system. Dev Dyn 2011; 241:57-68. [PMID: 21932323 DOI: 10.1002/dvdy.22739] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2011] [Indexed: 11/07/2022] Open
Abstract
Generating diverse neurons in the central nervous system involves three major steps. First, heterogeneous neural progenitors are specified by positional cues at early embryonic stages. Second, neural progenitors sequentially produce neurons or intermediate precursors that acquire different temporal identities based on their birth-order. Third, sister neurons produced during asymmetrical terminal mitoses are given distinct fates. Determining the molecular mechanisms underlying each of these three steps of cellular diversification will unravel brain development and evolution. Drosophila has a relatively simple and tractable CNS, and previous studies on Drosophila CNS development have greatly advanced our understanding of neuron fate specification. Here we review those studies and discuss how the lessons we have learned from fly teach us the process of neuronal diversification in general.
Collapse
Affiliation(s)
- Suewei Lin
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147, USA
| | | |
Collapse
|
26
|
Transcription factor Lhx2 is necessary and sufficient to suppress astrogliogenesis and promote neurogenesis in the developing hippocampus. Proc Natl Acad Sci U S A 2011; 108:E265-74. [PMID: 21690374 DOI: 10.1073/pnas.1101109108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sequential production of neurons and astrocytes from neuroepithelial precursors is a fundamental feature of central nervous system development. We report that LIM-homeodomain (LIM-HD) transcription factor Lhx2 regulates this transition in the developing hippocampus. Disrupting Lhx2 function in the embryonic hippocampus by in utero electroporation and in organotypic slice culture caused the premature production of astrocytes at stages when neurons are normally generated. Lhx2 function is therefore necessary to suppress astrogliogenesis during the neurogenic period. Furthermore, Lhx2 overexpression was sufficient to suppress astrogliogenesis and prolong the neurogenic period. We provide evidence that Lhx2 overexpression can counteract the instructive astrogliogenic effect of Notch activation. Lhx2 overexpression was also able to override and suppress the activation of the GFAP promoter by Nfia, a Notch-regulated transcription factor that is required for gliogenesis. Thus, Lhx2 appears to act as a "brake" on Notch/Nfia-mediated astrogliogenesis. This critical role for Lhx2 is spatially restricted to the hippocampus, because loss of Lhx2 function in the neocortex did not result in premature astrogliogenesis at the expense of neurogenesis. Our results therefore place Lhx2 as a central regulator of the neuron-glia cell fate decision in the hippocampus and reveal a striking regional specificity of this fundamental function within the dorsal telencephalon.
Collapse
|
27
|
Ellis LL, Carney GE. Socially-responsive gene expression in male Drosophila melanogaster is influenced by the sex of the interacting partner. Genetics 2011; 187:157-69. [PMID: 20980240 PMCID: PMC3018301 DOI: 10.1534/genetics.110.122754] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/20/2010] [Indexed: 11/18/2022] Open
Abstract
Behavior is influenced by an organism's genes and environment, including its interactions with same or opposite sex individuals. Drosophila melanogaster perform innate, yet socially modifiable, courtship behaviors that are sex specific and require rapid integration and response to multiple sensory cues. Furthermore, males must recognize and distinguish other males from female courtship objects. It is likely that perception, integration, and response to sex-specific cues is partially mediated by changes in gene expression. Reasoning that social interactions with members of either sex would impact gene expression, we compared expression profiles in heads of males that courted females, males that interacted with other males, or males that did not interact with another fly. Expression of 281 loci changes when males interact with females, whereas 505 changes occur in response to male-male interactions. Of these genes, 265 are responsive to encounters with either sex and 240 respond specifically to male-male interactions. Interestingly, 16 genes change expression only when a male courts a female, suggesting that these changes are a specific response to male-female courtship interactions. We supported our hypothesis that socially-responsive genes can function in behavior by showing that egghead (egh) expression, which increases during social interactions, is required for robust male-to-female courtship. We predict that analyzing additional socially-responsive genes will give us insight into genes and neural signaling pathways that influence reproductive and other behavioral interactions.
Collapse
Affiliation(s)
| | - Ginger E. Carney
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| |
Collapse
|
28
|
Losada-Pérez M, Gabilondo H, del Saz D, Baumgardt M, Molina I, León Y, Monedero I, Díaz-Benjumea F, Torroja L, Benito-Sipos J. Lineage-unrelated neurons generated in different temporal windows and expressing different combinatorial codes can converge in the activation of the same terminal differentiation gene. Mech Dev 2010; 127:458-71. [DOI: 10.1016/j.mod.2010.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 01/12/2023]
|
29
|
Karlsson D, Baumgardt M, Thor S. Segment-specific neuronal subtype specification by the integration of anteroposterior and temporal cues. PLoS Biol 2010; 8:e1000368. [PMID: 20485487 PMCID: PMC2867937 DOI: 10.1371/journal.pbio.1000368] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 04/01/2010] [Indexed: 11/18/2022] Open
Abstract
To address the question of how neuronal diversity is achieved throughout the CNS, this study provides evidence of modulation of neural progenitor cell “output” along the body axis by integration of local anteroposterior and temporal cues. The generation of distinct neuronal subtypes at different axial levels relies upon both anteroposterior and temporal cues. However, the integration between these cues is poorly understood. In the Drosophila central nervous system, the segmentally repeated neuroblast 5–6 generates a unique group of neurons, the Apterous (Ap) cluster, only in thoracic segments. Recent studies have identified elaborate genetic pathways acting to control the generation of these neurons. These insights, combined with novel markers, provide a unique opportunity for addressing how anteroposterior and temporal cues are integrated to generate segment-specific neuronal subtypes. We find that Pbx/Meis, Hox, and temporal genes act in three different ways. Posteriorly, Pbx/Meis and posterior Hox genes block lineage progression within an early temporal window, by triggering cell cycle exit. Because Ap neurons are generated late in the thoracic 5–6 lineage, this prevents generation of Ap cluster cells in the abdomen. Thoracically, Pbx/Meis and anterior Hox genes integrate with late temporal genes to specify Ap clusters, via activation of a specific feed-forward loop. In brain segments, “Ap cluster cells” are present but lack both proper Hox and temporal coding. Only by simultaneously altering Hox and temporal gene activity in all segments can Ap clusters be generated throughout the neuroaxis. This study provides the first detailed analysis, to our knowledge, of an identified neuroblast lineage along the entire neuroaxis, and confirms the concept that lineal homologs of truncal neuroblasts exist throughout the developing brain. We furthermore provide the first insight into how Hox/Pbx/Meis anteroposterior and temporal cues are integrated within a defined lineage, to specify unique neuronal identities only in thoracic segments. This study reveals a surprisingly restricted, yet multifaceted, function of both anteroposterior and temporal cues with respect to lineage control and cell fate specification. An animal's nervous system contains a wide variety of neuronal subtypes generated from neural progenitor (“stem”) cells, which generate different types of neurons at different axial positions and time points. Hence, the generation and specification of unique neuronal subtypes is dependent upon the integration of both spatial and temporal cues within distinct stem cells. The nature of this integration is poorly understood. We have addressed this issue in the Drosophila neuroblast 5–6 lineage. This stem cell is generated in all 18 segments of the central nervous system, stretching from the brain down to the abdomen of the fly, but a larger lineage containing a well-defined set of cells—the Apterous (Ap) cluster—is generated only in thoracic segments. We show that segment-specific generation of the Ap cluster neurons is achieved by the integration of the anteroposterior and temporal cues in several different ways. Generation of the Ap neurons in abdominal segments is prevented by anteroposterior cues stopping the cell cycle in the stem cell at an early stage. In brain segments, late-born neurons are generated, but are differently specified due to the presence of different anteroposterior and temporal cues. Finally, in thoracic segments, the temporal and spatial cues integrate on a highly limited set of target genes to specify the Ap cluster neurons.
Collapse
Affiliation(s)
- Daniel Karlsson
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Magnus Baumgardt
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
- * E-mail:
| |
Collapse
|
30
|
Hamanaka Y, Park D, Yin P, Annangudi SP, Edwards TN, Sweedler J, Meinertzhagen IA, Taghert PH. Transcriptional orchestration of the regulated secretory pathway in neurons by the bHLH protein DIMM. Curr Biol 2009; 20:9-18. [PMID: 20045330 DOI: 10.1016/j.cub.2009.11.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/19/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND The Drosophila basic helix-loop-helix (bHLH) gene dimmed (dimm) promotes a neurosecretory/neuroendocrine phenotype in cells but is not associated with specific neuropeptides or neurohormones. Rather, it is expressed by those peptidergic neurons that project long axons and appear to produce large amounts of secretory peptides. Here, we genetically transform nonpeptidergic neurons in Drosophila to study DIMM's action mechanisms. RESULTS Nonpeptidergic neurons normally fail to accumulate ectopic neuropeptides. We now show that they will do so when they are also forced to express ectopic DIMM. Furthermore, mass spectrometry shows that photoreceptors, which are normally nonpeptidergic, fail to process an ectopic neuropeptide precursor to make bioactive peptides but will do so efficiently when DIMM is co-misexpressed. Likewise, photoreceptors, which normally package the fast neurotransmitter histamine within small clear synaptic vesicles, produce numerous large dense-core vesicles (LDCVs) when they misexpress DIMM. These novel LDCVs accumulate ectopic neuropeptide when photoreceptors co-misexpress a neuropeptide transgene. DIMM-expressing photoreceptors no longer accumulate histamine and lose synaptic organelles critical to their normal physiology. CONCLUSIONS These findings indicate that DIMM suppresses conventional fast neurotransmission and promotes peptidergic neurosecretory properties. We conclude that DIMM normally provides a comprehensive transcriptional control to direct the differentiation of dedicated neuroendocrine neurons.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4J1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Baumgardt M, Karlsson D, Terriente J, Díaz-Benjumea FJ, Thor S. Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 2009; 139:969-82. [PMID: 19945380 DOI: 10.1016/j.cell.2009.10.032] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/27/2009] [Accepted: 10/01/2009] [Indexed: 11/29/2022]
Abstract
Neural progenitors generate distinct cell types at different stages, but the mechanisms controlling these temporal transitions are poorly understood. In the Drosophila CNS, a cascade of transcription factors, the "temporal gene cascade," has been identified that acts to alter progenitor competence over time. However, many CNS lineages display broad temporal windows, and it is unclear how broad windows progress into subwindows that generate unique cell types. We have addressed this issue in an identifiable Drosophila CNS lineage and find that a broad castor temporal window is subdivided by two different feed-forward loops, both of which are triggered by castor itself. The first loop acts to specify a unique cell fate, whereas the second loop suppresses the first loop, thereby allowing for the generation of alternate cell fates. This mechanism of temporal and "subtemporal" genes acting in opposing feed-forward loops may be used by many stem cell lineages to generate diversity.
Collapse
Affiliation(s)
- Magnus Baumgardt
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-581 85, Sweden
| | | | | | | | | |
Collapse
|
32
|
Fassunke J, Majores M, Tresch A, Niehusmann P, Grote A, Schoch S, Becker AJ. Array analysis of epilepsy-associated gangliogliomas reveals expression patterns related to aberrant development of neuronal precursors. ACTA ACUST UNITED AC 2008; 131:3034-50. [PMID: 18819986 DOI: 10.1093/brain/awn233] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gangliogliomas, the most frequent neoplasms in patients with pharmacoresistant focal epilepsies, are characterized by histological combinations of glial and dysplastic neuronal elements, a highly differentiated phenotype and rare gene mutations. Their molecular basis and relationship to other low-grade brain tumours are not completely understood. Systematic investigations of altered gene expression in gangliogliomas have been hampered by their cellular complexity, the lack of suitable control tissue and of sensitive expression profiling approaches. Here, we have used discrete microdissected ganglioglioma and adjacent control brain tissue obtained from the neurosurgical access to the tumour of identical patients (n = 6) carefully matched for equivalent glial and neuronal elements in an amount sufficient for oligonucleotide microarray hybridization without repetitive amplification. Multivariate statistical analysis identified a rich profile of genes with altered expression in gangliogliomas. Many differentially expressed transcripts related to intra- and intercellular signalling including protein kinase C and its target NELL2 in identical ganglioglioma cell components as determined by real-time quantitative RT-PCR (qRT-PCR) and in situ hybridization. We observed the LIM-domain-binding 2 (LDB2) transcript, critical for brain development during embryogenesis, as one of the strongest reduced mRNAs in gangliogliomas. Subsequent qRT-PCR in dysembryoplastic neuroepithelial tumours (n = 7) revealed partial expression similarities as well as marked differences from gangliogliomas. The demonstrated gene expression profile differentiates gangliogliomas from other low-grade primary brain tumours. shRNA-mediated silencing of LDB2 resulted in substantially aberrant dendritic arborization in cultured developing primary hippocampal neurons. The present data characterize novel molecular mechanisms operating in gangliogliomas that contribute to the development of dysplastic neurons and an aberrant neuronal network.
Collapse
Affiliation(s)
- Jana Fassunke
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci 2008; 9:90. [PMID: 18803813 PMCID: PMC2569041 DOI: 10.1186/1471-2202-9-90] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 09/19/2008] [Indexed: 01/02/2023] Open
Abstract
Background Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, snpf, encodes the precursor of short neuropeptide F (sNPF). To unravel possible functional diversity we have mapped the distribution of transcript of the snpf gene and its peptide products in the central nervous system (CNS) of Drosophila in relation to other neuronal markers. Results There are several hundreds of neurons in the larval CNS and several thousands in the adult Drosophila brain expressing snpf transcript and sNPF peptide. Most of these neurons are intrinsic interneurons of the mushroom bodies. Additionally, sNPF is expressed in numerous small interneurons of the CNS, olfactory receptor neurons (ORNs) of the antennae, and in a small set of possibly neurosecretory cells innervating the corpora cardiaca and aorta. A sNPF-Gal4 line confirms most of the expression pattern. None of the sNPF immunoreactive neurons co-express a marker for the transcription factor DIMMED, suggesting that the majority are not neurosecretory cells or large interneurons involved in episodic bulk transmission. Instead a portion of the sNPF producing neurons co-express markers for classical neurotransmitters such as acetylcholine, GABA and glutamate, suggesting that sNPF is a co-transmitter or local neuromodulator in ORNs and many interneurons. Interestingly, sNPF is coexpressed both with presumed excitatory and inhibitory neurotransmitters. A few sNPF expressing neurons in the brain colocalize the peptide corazonin and a pair of dorsal neurons in the first abdominal neuromere coexpresses sNPF and insulin-like peptide 7 (ILP7). Conclusion It is likely that sNPF has multiple functions as neurohormone as well as local neuromodulator/co-transmitter in various CNS circuits, including olfactory circuits both at the level of the first synapse and at the mushroom body output level. Some of the sNPF immunoreactive axons terminate in close proximity to neurosecretory cells producing ILPs and adipokinetic hormone, indicating that sNPF also might regulate hormone production or release.
Collapse
|
34
|
Vogler G, Urban J. The transcription factor Zfh1 is involved in the regulation of neuropeptide expression and growth of larval neuromuscular junctions in Drosophila melanogaster. Dev Biol 2008; 319:78-85. [DOI: 10.1016/j.ydbio.2008.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/28/2008] [Accepted: 04/07/2008] [Indexed: 11/30/2022]
|
35
|
Choi SH, Lee G, Monahan P, Park JH. Spatial regulation of Corazonin neuropeptide expression requires multiple cis-acting elements in Drosophila melanogaster. J Comp Neurol 2008; 507:1184-95. [PMID: 18181151 DOI: 10.1002/cne.21594] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although most invertebrate neuropeptide-encoding genes display distinct expression patterns in the central nervous system (CNS), the molecular mechanisms underlying spatial regulation of the neuropeptide genes are largely unknown. Expression of the neuropeptide Corazonin (Crz) is limited to only 24 neurons in the larval CNS of Drosophila melanogaster, and these neurons have been categorized into three groups, namely, DL, DM, and vCrz. To identify cis-regulatory elements that control transcription of Crz in each neuronal group, reporter gene expression patterns driven by various 5' flanking sequences of Crz were analyzed to assess their promoter activities in the CNS. We show that the 504-bp 5' upstream sequence is the shortest promoter directing reporter activities in all Crz neurons. Further dissection of this sequence revealed two important regions responsible for group specificity: -504::-419 for DM expression and -380::-241 for DL and vCrz expression. The latter region is further subdivided into three sites (proximal, center, and distal), in which any combinations of the two are sufficient for DL expression, whereas both proximal and distal sites are required for vCrz expression. Interestingly, the TATA box does not play a role in Crz transcription in most neurons. We also show that a 434-bp 5' upstream sequence of the D. virilis Crz gene, when introduced into the D. melanogaster genome, drives reporter expression in the DL and vCrz neurons, suggesting that regulatory mechanisms for Crz expression in at least two such neuronal groups are conserved between the two species.
Collapse
Affiliation(s)
- Seung-Hoon Choi
- Laboratory of Neurogenetics, Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
36
|
The Drosophila basic helix-loop-helix protein DIMMED directly activates PHM, a gene encoding a neuropeptide-amidating enzyme. Mol Cell Biol 2007; 28:410-21. [PMID: 17967878 DOI: 10.1128/mcb.01104-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basic helix-loop-helix (bHLH) protein DIMMED (DIMM) supports the differentiation of secretory properties in numerous peptidergic cells of Drosophila melanogaster. DIMM is coexpressed with diverse amidated neuropeptides and with the amidating enzyme peptidylglycine alpha-hydroxylating monooxygenase (PHM) in approximately 300 cells of the late embryo. Here we confirm that DIMM has transcription factor activity in transfected HEK 293 cells and that the PHM gene is a direct target. The mammalian DIMM orthologue MIST1 also transactivated the PHM gene. DIMM activity was dependent on the basic region of the protein and on the sequences of three E-box sites within PHM's first intron; the sites make different contributions to the total activity. These data suggest a model whereby the three E boxes interact cooperatively and independently to produce high PHM transcriptional activation. This DIMM-controlled PHM regulatory region displayed similar properties in vivo. Spatially, its expression mirrored that of the DIMM protein, and its activity was largely dependent on dimm. Further, in vivo expression was highly dependent on the sequences of the same three E boxes. This study supports the hypothesis that DIMM is a master regulator of a peptidergic cell fate in Drosophila and provides a detailed transcriptional mechanism of DIMM action on a defined target gene.
Collapse
|
37
|
Draper I, Kurshan PT, McBride E, Jackson FR, Kopin AS. Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 2007; 67:378-93. [PMID: 17443795 DOI: 10.1002/dneu.20355] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, dopamine 2-like receptors are expressed in distinct pathways within the central nervous system, as well as in peripheral tissues. Selected neuronal D2-like receptors play a critical role in modulating locomotor activity and, as such, represent an important therapeutic target (e.g. in Parkinson's disease). Previous studies have established that proteins required for dopamine (DA) neurotransmission are highly conserved between mammals and the fruit fly Drosophila melanogaster. These include a fly dopamine 2-like receptor (DD2R; Hearn et al. PNAS 2002 99(22):14554) that has structural and pharmacologic similarity to the human D2-like (D2R). In the current study, we define the spatial expression pattern of DD2R, and functionally characterize flies with reduced DD2 receptor levels. We show that DD2R is expressed in the larval and adult nervous systems, in cell groups that include the Ap-let cohort of peptidergic neurons, as well as in peripheral tissues including the gut and Malpighian tubules. To examine DD2R function in vivo, we generated RNA-interference (RNAi) flies with reduced DD2R expression. Behavioral analysis revealed that these flies show significantly decreased locomotor activity, similar to the phenotype observed in mammals with reduced D2R expression. The fly RNAi phenotype can be rescued by administration of the DD2R synthetic agonist bromocriptine, indicating specificity for the RNAi effect. These results suggest Drosophila as a useful system for future studies aimed at identifying modifiers of dopaminergic signaling/locomotor function.
Collapse
Affiliation(s)
- Isabelle Draper
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
38
|
Herrero P, Magariños M, Molina I, Benito J, Dorado B, Turiégano E, Canal I, Torroja L. Squeeze involvement in the specification of Drosophila leucokinergic neurons: Different regulatory mechanisms endow the same neuropeptide selection. Mech Dev 2007; 124:427-40. [PMID: 17442544 DOI: 10.1016/j.mod.2007.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/14/2007] [Accepted: 03/01/2007] [Indexed: 11/20/2022]
Abstract
One of the most widely studied phenomena in the establishment of neuronal identity is the determination of neurosecretory phenotype, in which cell-type-specific combinatorial codes direct distinct neurotransmitter or neuropeptide selection. However, neuronal types from divergent lineages may adopt the same neurosecretory phenotype, and it is unclear whether different classes of neurons use different or similar components to regulate shared features of neuronal identity. We have addressed this question by analyzing how differentiation of the Drosophila larval leucokinergic system, which is comprised of only four types of neurons, is regulated by factors known to affect expression of the FMRFamide neuropeptide. We show that all leucokinergic cells express the transcription factor Squeeze (Sqz). However, based on the effect on LK expression of loss- and gain-of-function mutations, we can describe three types of Lk regulation. In the brain LHLK cells, both Sqz and Apterous (Ap) are required for LK expression, but surprisingly, high levels of either Sqz or Ap alone are sufficient to restore LK expression in these neurons. In the suboesophageal SELK cells, Sqz, but not Ap, is required for LK expression. In the abdominal ABLK neurons, inhibition of retrograde axonal transport reduces LK expression, and although sqz is dispensable for LK expression in these cells, it can induce ectopic leucokinergic ABLK-like cells when over-expressed. Thus, Sqz appears to be a regulatory factor for neuropeptidergic identity common to all leucokinergic cells, whose function in different cell types is regulated by cell-specific factors.
Collapse
Affiliation(s)
- Pilar Herrero
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E 28049 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Girard F, Joly W, Savare J, Bonneaud N, Ferraz C, Maschat F. Chromatin immunoprecipitation reveals a novel role for the Drosophila SoxNeuro transcription factor in axonal patterning. Dev Biol 2006; 299:530-42. [PMID: 16979619 DOI: 10.1016/j.ydbio.2006.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 07/31/2006] [Accepted: 08/06/2006] [Indexed: 02/07/2023]
Abstract
In all metazoans, the expression of group B HMG domain Sox transcription factors is associated with the earliest stages of CNS development. In Drosophila, SoxNeuro (SoxN) is involved in dorso-ventral patterning of the neuroectoderm, and in the formation and segregation of neuroblasts. In this report, we show that SoxN expression persists in a subset of neurons and glial cells of the ventral nerve cord at embryonic stages 15/16. In an attempt to address SoxN function in late stages of CNS development, we have used a chromatin immunoprecipitation approach to isolate genomic regions bound in vivo by SoxN. We identified several genes involved in the regulation of axon scaffolding as potential direct target genes of SoxN, including beat1a, semaphorin2a, fasciclin2, longitudinal lacking and tailup/islet. We present genetic evidence for a direct involvement of SoxN in axonal patterning. Indeed, overexpressing a transcriptionally hyperactive mutated SoxN protein in neurons results in specific defects in axon scaffolding, which are also observed in transheterozygous combinations of SoxN null mutation and mutations in its target genes.
Collapse
Affiliation(s)
- Franck Girard
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique UPR1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
40
|
Soller M, Haussmann IU, Hollmann M, Choffat Y, White K, Kubli E, Schäfer MA. Sex-peptide-regulated female sexual behavior requires a subset of ascending ventral nerve cord neurons. Curr Biol 2006; 16:1771-82. [PMID: 16979554 DOI: 10.1016/j.cub.2006.07.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Male-derived Sex-peptide (SP) elicits egg laying and rejection of courting males in mated Drosophila females. Little is known about the genes that specify the underlying neuronal circuits and mediate this switch in female sexual behavior. RESULTS Here we show that the egghead gene involved in glycosphingolipid biosynthesis provides an essential component to the SP response. We have isolated viable alleles of the vital egghead gene that abolish egghead expression from a distal promoter resulting in the absence of the largest transcript of this complex transcription unit. Temporally and spatially restricted expression of egghead revealed a requirement for egghead early in the development of apterous-expressing ventral nerve cord neurons to rescue the SP response. In viable egghead alleles, these ascending interneurons, three per abdominal and seven per thoracic hemisegment, fail to innervate the central brain. egghead expression in apterous neurons rescues neuronal targeting and the response to SP. Furthermore, neurotransmission in apterous neurons is required to elicit the SP response. CONCLUSION Together with the former finding of SP binding to afferent nerves , these results suggest that SP-mediated modification of sensory input switches female sexual behavior from the virgin to the mated state.
Collapse
Affiliation(s)
- Matthias Soller
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Joly W, Mugat B, Maschat F. Engrailed controls the organization of the ventral nerve cord through frazzled regulation. Dev Biol 2006; 301:542-54. [PMID: 17126316 DOI: 10.1016/j.ydbio.2006.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 09/20/2006] [Accepted: 10/14/2006] [Indexed: 11/19/2022]
Abstract
In Drosophila, the ventral nerve cord (VNC) architecture is built from neuroblasts that are specified during embryonic development, mainly by transcription factors. Here we show that Engrailed, a homeodomain transcription factor known to be involved in the establishment of neuroblast identity, is also directly implicated in the regulation of axonal guidance cues. Posterior commissures (PC) are missing in engrailed mutant embryos, and axonal pathfinding defects are observed when Engrailed is ectopically expressed at early stages, prior to neuronal specification. We also show that frazzled, enabled, and trio, all of which are potential direct targets of Engrailed and are involved in axonal navigation, interact genetically with engrailed to form posterior commissures in the developing VNC. The regulation of frazzled expression in engrailed-expressing neuroblasts contributes significantly to the formation of the posterior commissures by acting on axon growth. Finally, we identified a small genomic fragment within intron 1 of frazzled that can mediate activation by Engrailed in vivo when fused to a GFP reporter. These results indicate that Engrailed's function during the segregation of the neuroblasts is crucial for regulating different actors that are later involved in axon guidance.
Collapse
Affiliation(s)
- Willy Joly
- Institute of Human Genetics, IGH, UPR 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | |
Collapse
|
42
|
Wegener C, Reinl T, Jänsch L, Predel R. Direct mass spectrometric peptide profiling and fragmentation of larval peptide hormone release sites in Drosophila melanogaster reveals tagma-specific peptide expression and differential processing. J Neurochem 2006; 96:1362-74. [PMID: 16441518 DOI: 10.1111/j.1471-4159.2005.03634.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulatory peptides represent a diverse group of messenger molecules. In insects, they are produced by endocrine cells as well as secretory neurones within the CNS. Many regulatory peptides are released as hormones into the haemolymph to regulate, for example, diuresis, heartbeat or ecdysis behaviour. Hormonal release of neuropeptides takes place at specialized organs, so-called neurohaemal organs. We have performed a mass spectrometric characterization of the peptide complement of the main neurohaemal organs and endocrine cells of the Drosophila melanogaster larva to gain insight into the hormonal communication possibilities of the fruit fly. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and MALDI-TOF-TOF tandem mass spectrometry, we detected 23 different peptides of which five were unpredicted by previous genome screenings. We also found a hitherto unknown peptide product of the capa gene in the ring gland and transverse nerves, suggesting that it might be released as hormone. Our results show that the peptidome of the neurohaemal organs is tagma-specific and does not change during metamorphosis. We also provide evidence for the first case of differential prohormone processing in Drosophila.
Collapse
Affiliation(s)
- Christian Wegener
- Emmy Noether Neuropeptide Group, Animal Physiology, Philipps-University, Marburg, Germany
| | | | | | | |
Collapse
|
43
|
Tu MP, Yin CM, Tatar M. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol 2005; 142:347-56. [PMID: 15935161 DOI: 10.1016/j.ygcen.2005.02.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 02/01/2005] [Accepted: 02/09/2005] [Indexed: 11/25/2022]
Abstract
Juvenile hormone (JH) is a key endocrine regulator of insect metamorphosis, reproduction, and aging. The synthesis of JH is regulated by neuropeptides and biogenic amines, but the molecular and cellular basis of this control remains largely unknown. Genetic analysis of JH synthesis in Drosophila melanogaster mutant for insulin signaling may provide new and powerful insights. Mutants of the insulin receptor (InR) are slow to develop, small, infertile, and long-lived. We previously reported that mutants of InR had reduced JH synthesis as young adults, and that normal longevity and vitellogenesis were restored by topical application of a JH analog [Science 292 (2001) 107]. Here, we describe the 10-day adult age course of JH synthesis from isolated corpus allatum (CA) of InR and of chico, the insulin receptor substrate homolog. JH synthesis increased in wildtype flies to a maximum of 30fmol/gland/h at day 10. In contrast, homozygous InR mutants produced no more than 3 fmol/gland/h JH within the first 5 days, and only 7 fmol/gland/h at day 10. InR mutation disproportionately reduced the synthesis of JH III-bisepoxide, the major JH subtype of the fly. Mutation of chico also reduces body size and extends longevity [Science 292 (2001) 104; Aging Cell 1 (2002a) 75]. Both homozygous and heterozygous chico genotypes reduced JH synthesis, but only to 47 and 67%, respectively, of wildtype and without influencing the ratio of JH subtypes. Because JH synthetic rate does not correlate with the size of CA, it is not likely that insulin signaling mediates JH by impeding endocrine tissue development. Alternatively, we find allatotropin-positive axons to be abundant in the adult brain and in the corpora cardiaca-corpus allatum complex but these neurons are less immunoreactive in the InR mutant genotype, suggesting that insulin signaling may affect JH synthesis through control of JH regulatory neuropeptides.
Collapse
Affiliation(s)
- Meng-Ping Tu
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
44
|
Allan DW, Park D, St Pierre SE, Taghert PH, Thor S. Regulators acting in combinatorial codes also act independently in single differentiating neurons. Neuron 2005; 45:689-700. [PMID: 15748845 DOI: 10.1016/j.neuron.2005.01.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 12/17/2004] [Accepted: 01/20/2005] [Indexed: 10/25/2022]
Abstract
In the Drosophila ventral nerve cord, a small number of neurons express the LIM-homeodomain gene apterous (ap). These ap neurons can be subdivided based upon axon pathfinding and their expression of neuropeptidergic markers. ap, the zinc finger gene squeeze, the bHLH gene dimmed, and the BMP pathway are all required for proper specification of these cells. Here, using several ap neuron terminal differentiation markers, we have resolved how each of these factors contributes to ap neuron diversity. We find that these factors interact genetically and biochemically in subtype-specific combinatorial codes to determine certain defining aspects of ap neuron subtype identity. However, we also find that ap, dimmed, and squeeze additionally act independently of one another to specify certain other defining aspects of ap neuron subtype identity. Therefore, within single neurons, we show that single regulators acting in numerous molecular contexts differentially specify multiple subtype-specific traits.
Collapse
Affiliation(s)
- Douglas W Allan
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
45
|
Hippenmeyer S, Kramer I, Arber S. Control of neuronal phenotype: what targets tell the cell bodies. Trends Neurosci 2004; 27:482-8. [PMID: 15271496 DOI: 10.1016/j.tins.2004.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Assembly of neuronal circuits is controlled by the sequential acquisition of neuronal subpopulation-specific identities at progressive developmental steps. Whereas neuronal features involved in initial phases of differentiation are already established at cell-cycle exit, recent findings, based mainly on work in the peripheral nervous system, suggest that the timely integration of signals encountered en route to targets and from the target region itself is essential to control late steps in connectivity. As neurons project towards their targets they require target-derived signals to establish mature axonal projections and acquire neuronal traits such as the expression of distinct combinations of neurotransmitters. Recent evidence presented in this review shows that this principle, of a signaling interplay between target-derived signals and neuronal cell bodies, is often mediated through transcriptional events and is evolutionarily conserved.
Collapse
Affiliation(s)
- Simon Hippenmeyer
- Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland, and Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | |
Collapse
|
46
|
Predel R, Neupert S, Wicher D, Gundel M, Roth S, Derst C. Unique accumulation of neuropeptides in an insect: FMRFamide-related peptides in the cockroach, Periplaneta americana. Eur J Neurosci 2004; 20:1499-513. [PMID: 15355317 DOI: 10.1111/j.1460-9568.2004.03598.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FMRFamides belong to the most extensively studied neuropeptides in invertebrates and exhibit diverse physiological effects on different target organs, such as muscles, intestine and the nervous system. This study on the American cockroach confirms for the first time that extended FMRFamides occur in non-dipteran insects. By means of tandem mass spectrometry, these neuropeptides were structurally elucidated, and sequence information was used for subsequent cloning of the cockroach FMRFamide gene. This precursor gene encodes for 24 putative peptides and shows sufficient similarity with the Drosophila FMRFamide gene. Of the 24 peptides, 23 were detected by mass spectrometric methods; it is the highest number of neuropeptide forms shown to be expressed from a single precursor in any insect. The expression was traced back to single neurons in the thoracic ganglia. The unique accumulation of these FMRFamide-related peptides in thoracic perisympathetic organs provides the definite evidence for a tagma-specific distribution of peptidergic neurohormones in neurohaemal release sites of the insect CNS. Excitatory effects of the cockroach FMRFamides were observed on antenna-heart preparations. In addition, the newly described FMRFamides reduce the spike frequency of dorsal-unpaired median neurons and reduce the intracellular calcium concentration, which may affect the peripheral release of the biogenic amine octopamine.
Collapse
Affiliation(s)
- R Predel
- Saxon Academy of Sciences, Research Group Jena, Erbertstrasse 1, 07743 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Fradkin LG, van Schie M, Wouda RR, de Jong A, Kamphorst JT, Radjkoemar-Bansraj M, Noordermeer JN. The Drosophila Wnt5 protein mediates selective axon fasciculation in the embryonic central nervous system. Dev Biol 2004; 272:362-75. [PMID: 15282154 DOI: 10.1016/j.ydbio.2004.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Revised: 03/25/2004] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
The decision of whether and where to cross the midline, an evolutionarily conserved line of bilateral symmetry in the central nervous system, is the first task for many newly extending axons. We show that Wnt5, a member of the conserved Wnt secreted glycoprotein family, is required for the formation of the anterior of the two midline-crossing commissures present in each Drosophila hemisegment. Initial path finding of pioneering neurons across the midline in both commissures is normal in wnt5 mutant embryos; however, the subsequent separation of the early midline-crossing axons into two distinct commissures does not occur. The majority of the follower axons that normally cross the midline in the anterior commissure fail to do so, remaining tightly associated near their cell bodies, or projecting inappropriately across the midline in between the commissures. The lateral and intermediate longitudinal pathways also fail to form correctly, similarly reflecting earlier failures in pathway defasciculation. Panneural expression of Wnt5 in a wnt5 mutant background rescues both the commissural and longitudinal defects. We show that the Wnt5 protein is predominantly present on posterior commissural axons and at a low level on the anterior commissure and longitudinal projections. Finally, we demonstrate that transcriptional repression of wnt5 in AC neurons by the recently described Wnt5 receptor, Derailed, contributes to this largely posterior commissural localization of Wnt5 protein.
Collapse
Affiliation(s)
- Lee G Fradkin
- Department of Molecular and Cell Biology, Leiden University Medical Center, 2333 AL Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
48
|
Lints R, Jia L, Kim K, Li C, Emmons SW. Axial patterning of C. elegans male sensilla identities by selector genes. Dev Biol 2004; 269:137-51. [PMID: 15081363 DOI: 10.1016/j.ydbio.2004.01.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 01/20/2004] [Accepted: 01/26/2004] [Indexed: 10/26/2022]
Abstract
The fan and rays of the C. elegans male tail constitute a compound sensory organ essential for mating. Within this organ, the individual sensilla, known as rays, have unique identities. We show that ray identities are patterned by a selector gene mechanism in a manner similar to other serially homologous axial structures. One selector gene that promotes the identities of a subset of the rays is the Hox gene egl-5. Within EGL-5-expressing rays, further patterning is provided by a Pax-6 homolog and a signal of the TGFbeta family. These genes and pathway coordinately specify multiple ray properties affecting all three terminal ray cell types. These properties include complex patterns of FMRFamide-like (FaRP) neuropeptides, serotonin (5HT) and dopamine expression, and ray morphology. Differences in these differentiated characteristics give each sensillum a unique identity and potentially endow the compound ray organ with a higher-order information gathering capacity.
Collapse
Affiliation(s)
- R Lints
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
49
|
Keshishian H, Kim YS. Orchestrating development and function: retrograde BMP signaling in the Drosophila nervous system. Trends Neurosci 2004; 27:143-7. [PMID: 15036879 DOI: 10.1016/j.tins.2004.01.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent work has shown that bone morphogenetic protein (BMP) growth factors regulate development of the larval neuromuscular junction (NMJ) of Drosophila. Intriguingly, the same BMP growth factors also influence the expression of circulating hormones that modulate the physiological properties of NMJs. Together, the results suggest that retrograde growth factor signaling by BMPs integrates neuromuscular development and function at both local and global levels in the animal.
Collapse
Affiliation(s)
- Haig Keshishian
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA.
| | | |
Collapse
|
50
|
Park D, Han M, Kim YC, Han KA, Taghert PH. Ap-let neurons--a peptidergic circuit potentially controlling ecdysial behavior in Drosophila. Dev Biol 2004; 269:95-108. [PMID: 15081360 DOI: 10.1016/j.ydbio.2004.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 01/14/2004] [Accepted: 01/14/2004] [Indexed: 10/26/2022]
Abstract
Here we describe a novel set of peptidergic neurons conserved throughout all developmental stages in the Drosophila central nervous system (CNS). We show that a small complement of 28 apterous-expressing cells (Ap-let neurons) in the ventral nerve cord (VNC) of Drosophila larvae co-express numerous gene products. The products include the neuroendocrine-specific bHLH regulator called Dimmed (Dimm), four neuropeptide biosynthetic enzymes (PC2, Fur1, PAL2, and PHM), and a specific dopamine receptor subtype (dDA1). For the PC2, Fur1, and PAL2 enzymes, and for the dDA1 receptor, this neuronal pattern represents the vast majority of their total expression in the VNC. In addition, while Dimm and PHM are present in the peritracheal Inka cells in larvae, pupae, and adults, Ap, PC2, Fur1, PAL2, and dDA1 are not. PC2, PAL2, and DA1 receptor expression were all controlled by both dimm and ap. Previous genetic analysis of animals deficient in PC2 revealed an abnormal larval ecdysis phenotype. Together, these data support the hypothesis that the small cohort of Ap-let interneurons regulates larval ecdysis behavior by secretion of an unidentified amidated peptide(s). This hypothesis further predicts that the production of the Ap-let neuropeptide(s) is dependent on each of four specific enzymes, and that a certain aspect(s) of its production and/or release is regulated by dopamine input.
Collapse
Affiliation(s)
- Dongkook Park
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|