1
|
Han C, Liu S, Ye S, Chen K, Chen D, Wang K, Liang W, Zhong S, Liu L, Li S, Chen W, Li Q. Genome-wide identification, evolution and expression of pax gene family members in mandarin fish (Siniperca chuatsi). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101423. [PMID: 39842301 DOI: 10.1016/j.cbd.2025.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
The pax gene family is involved in the development process through its extensive effects on cell proliferation, differentiation, and apoptosis. Herein, the whole pax gene family members of mandarin fish (Siniperca chuatsi) were first identified and characterized. By comparing pax gene family members from another 13 representative animals, an expansion of pax gene family members was observed in teleosts. In mandarin fish, a total of 15 potential pax gene family members, distributed on 13 chromosomes, were found, which shared conserved synteny with other teleosts. The expression profiles revealed that members of pax gene family showed time-specific expression profiles during embryonic and gonad development in mandarin fish, which indicated they might play a specific role in organogenesis during embryonic development and the process of gonad development and differentiation. Our research will lay a good foundation for further functional investigation of pax gene family during fish embryonic and gonad development.
Collapse
Affiliation(s)
- Chong Han
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Shiyan Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuzheng Ye
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Kaichun Chen
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Dingxian Chen
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Kaifeng Wang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Weiqian Liang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Simin Zhong
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lanyuan Liu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Sipeng Li
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Weijian Chen
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Qiang Li
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Angom RS, Singh M, Muhammad H, Varanasi SM, Mukhopadhyay D. Zebrafish as a Versatile Model for Cardiovascular Research: Peering into the Heart of the Matter. Cells 2025; 14:531. [PMID: 40214485 PMCID: PMC11988917 DOI: 10.3390/cells14070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. A total of 17.5 million people died of CVDs in the year 2012, accounting for 31% of all deaths globally. Vertebrate animal models have been used to understand cardiac disease biology, as the cellular, molecular, and physiological aspects of human CVDs can be replicated closely in these organisms. Zebrafish is a popular model organism offering an arsenal of genetic tools that allow the rapid in vivo analysis of vertebrate gene function and disease conditions. It has a short breeding cycle, high fecundity, optically transparent embryos, rapid internal organ development, and easy maintenance. This review aims to give readers an overview of zebrafish cardiac biology and a detailed account of heart development in zebrafish and its comparison with humans and the conserved genetic circuitry. We also discuss the contributions made in CVD research using the zebrafish model. The first part of this review focuses on detailed information on the morphogenetic and differentiation processes in early cardiac development. The overlap and divergence of the human heart's genetic circuitry, structure, and physiology are emphasized wherever applicable. In the second part of the review, we overview the molecular tools and techniques available to dissect gene function and expression in zebrafish, with special mention of the use of these tools in cardiac biology.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Meghna Singh
- Department of Pathology and Lab Medicine, University of California, Los Angeles, CA 92093, USA;
| | - Huzaifa Muhammad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| |
Collapse
|
3
|
Akerberg AA, Trembley M, Butty V, Schwertner A, Zhao L, Beerens M, Liu X, Mahamdeh M, Yuan S, Boyer L, MacRae C, Nguyen C, Pu WT, Burns CE, Burns CG. RBPMS2 Is a Myocardial-Enriched Splicing Regulator Required for Cardiac Function. Circ Res 2022; 131:980-1000. [PMID: 36367103 PMCID: PMC9770155 DOI: 10.1161/circresaha.122.321728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND RBPs (RNA-binding proteins) perform indispensable functions in the post-transcriptional regulation of gene expression. Numerous RBPs have been implicated in cardiac development or physiology based on gene knockout studies and the identification of pathogenic RBP gene mutations in monogenic heart disorders. The discovery and characterization of additional RBPs performing indispensable functions in the heart will advance basic and translational cardiovascular research. METHODS We performed a differential expression screen in zebrafish embryos to identify genes enriched in nkx2.5-positive cardiomyocytes or cardiopharyngeal progenitors compared to nkx2.5-negative cells from the same embryos. We investigated the myocardial-enriched gene RNA-binding protein with multiple splicing (variants) 2 [RBPMS2)] by generating and characterizing rbpms2 knockout zebrafish and human cardiomyocytes derived from RBPMS2-deficient induced pluripotent stem cells. RESULTS We identified 1848 genes enriched in the nkx2.5-positive population. Among the most highly enriched genes, most with well-established functions in the heart, we discovered the ohnologs rbpms2a and rbpms2b, which encode an evolutionarily conserved RBP. Rbpms2 localizes selectively to cardiomyocytes during zebrafish heart development and strong cardiomyocyte expression persists into adulthood. Rbpms2-deficient embryos suffer from early cardiac dysfunction characterized by reduced ejection fraction. The functional deficit is accompanied by myofibril disarray, altered calcium handling, and differential alternative splicing events in mutant cardiomyocytes. These phenotypes are also observed in RBPMS2-deficient human cardiomyocytes, indicative of conserved molecular and cellular function. RNA-sequencing and comparative analysis of genes mis-spliced in RBPMS2-deficient zebrafish and human cardiomyocytes uncovered a conserved network of 29 ortholog pairs that require RBPMS2 for alternative splicing regulation, including RBFOX2, SLC8A1, and MYBPC3. CONCLUSIONS Our study identifies RBPMS2 as a conserved regulator of alternative splicing, myofibrillar organization, and calcium handling in zebrafish and human cardiomyocytes.
Collapse
Affiliation(s)
- Alexander A. Akerberg
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Michael Trembley
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Vincent Butty
- BioMicroCenter, Department of Biology (V.B.), Massachusetts Institute of Technology, Cambridge‚ MA
- Department of Biology (V.B., L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
| | - Asya Schwertner
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Long Zhao
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Manu Beerens
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (M.B., C.M.)
| | - Xujie Liu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Mohammed Mahamdeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Laurie Boyer
- Department of Biology (V.B., L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
- Department of Biological Engineering (L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
| | - Calum MacRae
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (M.B., C.M.)
| | - Christopher Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Innovation Research Center, Heart Vascular & Thoracic Institute, Cleveland Clinic‚ Cleveland‚ OH (C.N.)
| | - William T. Pu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Harvard Stem Cell Institute, Cambridge, MA (W.T.P., C.E.B.)
| | - Caroline E. Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Harvard Stem Cell Institute, Cambridge, MA (W.T.P., C.E.B.)
| | - C. Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| |
Collapse
|
4
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
5
|
Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome. Cell Rep 2019; 24:1342-1354.e5. [PMID: 30067987 PMCID: PMC6261257 DOI: 10.1016/j.celrep.2018.06.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Microdeletions involving TBX1 result in variable congenital malformations known collectively as 22q11.2 deletion syndrome (22q11.2DS). Tbx1-deficient mice and zebrafish recapitulate several disease phenotypes, including pharyngeal arch artery (PAA), head muscle (HM), and cardiac outflow tract (OFT) deficiencies. In zebrafish, these structures arise from nkx2.5+ progenitors in pharyngeal arches 2-6. Because pharyngeal arch morphogenesis is compromised in Tbx1-deficient animals, the malformations were considered secondary. Here, we report that the PAA, HM, and OFT phenotypes in tbx1 mutant zebrafish are primary and arise prior to pharyngeal arch morphogenesis from failed specification of the nkx2.5+ pharyngeal lineage. Through in situ analysis and lineage tracing, we reveal that nkx2.5 and tbx1 are co-expressed in this progenitor population. Furthermore, we present evidence suggesting that gdf3-ALK4 signaling is a downstream mediator of nkx2.5+ pharyngeal lineage specification. Collectively, these studies support a cellular mechanism potentially underlying the cardiovascular and craniofacial defects observed in the 22q11.2DS population.
Collapse
|
6
|
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e653-e711. [PMID: 30571578 PMCID: PMC6555769 DOI: 10.1161/cir.0000000000000606] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Collapse
|
7
|
Guzzolino E, Chiavacci E, Ahuja N, Mariani L, Evangelista M, Ippolito C, Rizzo M, Garrity D, Cremisi F, Pitto L. Post-transcriptional Modulation of Sphingosine-1-Phosphate Receptor 1 by miR-19a Affects Cardiovascular Development in Zebrafish. Front Cell Dev Biol 2018; 6:58. [PMID: 29922649 PMCID: PMC5996577 DOI: 10.3389/fcell.2018.00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Sphingosine-1-phosphate is a bioactive lipid and a signaling molecule integrated into many physiological systems such as differentiation, proliferation and migration. In mammals S1P acts through binding to a family of five trans-membrane, G-protein coupled receptors (S1PRs) whose complex role has not been completely elucidated. In this study we use zebrafish, in which seven s1prs have been identified, to investigate the role of s1pr1. In mammals S1PR1 is the most highly expressed S1P receptor in the developing heart and regulates vascular development, but in zebrafish the data concerning its role are contradictory. Here we show that overexpression of zebrafish s1pr1 affects both vascular and cardiac development. Moreover we demonstrate that s1pr1 expression is strongly repressed by miR-19a during the early phases of zebrafish development. In line with this observation and with a recent study showing that miR-19a is downregulated in a zebrafish Holt-Oram model, we now demonstrate that s1pr1 is upregulated in heartstring hearts. Next we investigated whether defects induced by s1pr1 upregulation might contribute to the morphological alterations caused by Tbx5 depletion. We show that downregulation of s1pr1 is able to partially rescue cardiac and fin defects induced by Tbx5 depletion. Taken together, these data support a role for s1pr1 in zebrafish cardiovascular development, suggest the involvement of this receptor in the Tbx5 regulatory circuitry, and further support the crucial role of microRNAs in early phase of zebrafish development.
Collapse
Affiliation(s)
- Elena Guzzolino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elena Chiavacci
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Neha Ahuja
- Department of Biology, Center for Cardiovascular Research, Colorado State University, Fort Collins, CO, United States
| | - Laura Mariani
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Monica Evangelista
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Deborah Garrity
- Department of Biology, Center for Cardiovascular Research, Colorado State University, Fort Collins, CO, United States
| | | | - Letizia Pitto
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
8
|
Meng J, Xu WY, Chen X, Lin T, Deng XY. Gene locations may contribute to predicting gene regulatory relationships. J Zhejiang Univ Sci B 2018; 19:25-37. [PMID: 29308605 DOI: 10.1631/jzus.b1700303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We propose that locations of genes on chromosomes can contribute to the prediction of gene regulatory relationships. We constructed a time-based gene regulatory network of zebrafish cardiogenesis on the basis of a spatio-temporal neighborhood method. Through the network, specific regulatory pathways and order of gene expression during zebrafish cardiogenesis were obtained. By comparing the order with locations of these genes on chromosomes, we discovered that there exists a reversal phenomenon between the order and order of gene locations. The discovery provides an inherent rule to instruct exploration of gene regulatory relationships. Specifically, the discovery can help to predict if regulatory relationships between genes exist and contribute to evaluating the correctness of discovered gene regulatory relationships.
Collapse
Affiliation(s)
- Jun Meng
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Yuan Xu
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao Chen
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Lin
- Laboratory of Machine Learning and Optimization, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne 999034, Switzerland
| | - Xiao-Yu Deng
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Paffett-Lugassy N, Novikov N, Jeffrey S, Abrial M, Guner-Ataman B, Sakthivel S, Burns CE, Burns CG. Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field. Development 2017; 144:4616-4624. [PMID: 29061637 DOI: 10.1242/dev.153411] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/11/2017] [Indexed: 02/03/2023]
Abstract
During mammalian embryogenesis, cardiac progenitor cells constituting the second heart field (SHF) give rise to the right ventricle and primitive outflow tract (OFT). In zebrafish, previous lineage-tracing and mutant analyses suggested that SHF ventricular and OFT progenitors co-migrate to the arterial pole of the zebrafish heart tube soon after their specification in the nkx2.5+ field of anterior lateral plate mesoderm (ALPM). Using additional prospective lineage tracing, we demonstrate that while SHF ventricular progenitors migrate directly to the arterial pole, OFT progenitors become temporarily sequestered in the mesodermal cores of pharyngeal arch 2 (PA2), where they downregulate nkx2.5 expression. While there, they intermingle with precursors for PA2-derived head muscles (HMs) and hypobranchial artery endothelium, which we demonstrate are co-specified with SHF progenitors in the nkx2.5+ ALPM. Soon after their sequestration in PA2, OFT progenitors migrate to the arterial pole of the heart and differentiate into OFT lineages. Lastly, we demonstrate that SHF ventricular and OFT progenitors exhibit unique sensitivities to a mutation in fgf8a Our data highlight novel aspects of SHF, OFT and HM development in zebrafish that will inform mechanistic interpretations of cardiopharyngeal phenotypes in zebrafish models of human congenital disorders.
Collapse
Affiliation(s)
- Noelle Paffett-Lugassy
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Natasha Novikov
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Spencer Jeffrey
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Maryline Abrial
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Burcu Guner-Ataman
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Srinivasan Sakthivel
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200N, Denmark
| | - Caroline E Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA .,Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - C Geoffrey Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA .,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zhang Y, Tang S, Sansalone L, Baker JD, Raymo FM. A Photoswitchable Fluorophore for the Real-Time Monitoring of Dynamic Events in Living Organisms. Chemistry 2016; 22:15027-15034. [PMID: 27571689 DOI: 10.1002/chem.201603545] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 12/12/2022]
Abstract
This study reports the synthesis of a photoactivatable fluorophore with optimal photochemical and photophysical properties for the real-time tracking of motion in vivo. The photoactivation mechanism designed into this particular compound permits the conversion of an emissive reactant into an emissive product with resolved fluorescence, under mild illumination conditions that are impossible to replicate with conventional switching schemes based on bleaching. Indeed, the supramolecular delivery of these photoswitchable probes into the cellular blastoderm of Drosophila melanogaster embryos allows the real-time visualization of translocating molecules with no detrimental effects on the developing organisms. Thus, this innovative mechanism for fluorescence photoactivation can evolve into a general chemical tool to monitor dynamic processes in living biological specimens.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146-0431, USA
| | - Sicheng Tang
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146-0431, USA
| | - Lorenzo Sansalone
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146-0431, USA
| | - James D Baker
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146-0431, USA
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146-0431, USA.
| |
Collapse
|
11
|
Powell R, Bubenshchikova E, Fukuyo Y, Hsu C, Lakiza O, Nomura H, Renfrew E, Garrity D, Obara T. Wtip is required for proepicardial organ specification and cardiac left/right asymmetry in zebrafish. Mol Med Rep 2016; 14:2665-78. [PMID: 27484451 PMCID: PMC4991684 DOI: 10.3892/mmr.2016.5550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 06/02/2016] [Indexed: 01/20/2023] Open
Abstract
Wilm's tumor 1 interacting protein (Wtip) was identified as an interacting partner of Wilm's tumor protein (WT1) in a yeast two-hybrid screen. WT1 is expressed in the proepicardial organ (PE) of the heart, and mouse and zebrafish wt1 knockout models appear to lack the PE. Wtip's role in the heart remains unexplored. In the present study, we demonstrate that wtip expression is identical in wt1a-, tcf21-, and tbx18-positive PE cells, and that Wtip protein localizes to the basal body of PE cells. We present the first genetic evidence that Wtip signaling in conjunction with WT1 is essential for PE specification in the zebrafish heart. By overexpressing wtip mRNA, we observed ectopic expression of PE markers in the cardiac and pharyngeal arch regions. Furthermore, wtip knockdown embryos showed perturbed cardiac looping and lacked the atrioventricular (AV) boundary. However, the chamber-specific markers amhc and vmhc were unaffected. Interestingly, knockdown of wtip disrupts early left-right (LR) asymmetry. Our studies uncover new roles for Wtip regulating PE cell specification and early LR asymmetry, and suggest that the PE may exert non-autonomous effects on heart looping and AV morphogenesis. The presence of cilia in the PE, and localization of Wtip in the basal body of ciliated cells, raises the possibility of cilia-mediated PE signaling in the embryonic heart.
Collapse
Affiliation(s)
- Rebecca Powell
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ekaterina Bubenshchikova
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Yayoi Fukuyo
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Chaonan Hsu
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Olga Lakiza
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Hiroki Nomura
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Erin Renfrew
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Deborah Garrity
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tomoko Obara
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
12
|
Miyagi H, Nag K, Sultana N, Munakata K, Hirose S, Nakamura N. Characterization of the zebrafish cx36.7 gene promoter: Its regulation of cardiac-specific expression and skeletal muscle-specific repression. Gene 2016; 577:265-74. [PMID: 26692140 DOI: 10.1016/j.gene.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/28/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022]
Abstract
Zebrafish connexin 36.7 (cx36.7/ecx) has been identified as a key molecule in the early stages of heart development in this species. A defect in cx36.7 causes severe heart malformation due to the downregulation of nkx2.5 expression, a result which resembles congenital heart disease in humans. It has been shown that cx36.7 is expressed specifically in early developing heart cardiomyocytes. However, the regulatory mechanism for the cardiac-restricted expression of cx36.7 remains to be elucidated. In this study we isolated the 5'-flanking promoter region of the cx36.7 gene and characterized its promoter activity in zebrafish embryos. Deletion analysis showed that a 316-bp upstream region is essential for cardiac-restricted expression. This region contains four GATA elements, the proximal two of which are responsible for promoter activation in the embryonic heart and serve as binding sites for gata4. When gata4, gata5 and gata6 were simultaneously knocked down, the promoter activity was significantly decreased. Moreover, the deletion of the region between -316 and -133bp led to EGFP expression in the embryonic trunk muscle. The distal two GATA and A/T-rich elements in this region act as repressors of promoter activity in skeletal muscle. These results suggest that cx36.7 expression is directed by cardiac promoter activation via the two proximal GATA elements as well as by skeletal muscle-specific promoter repression via the two distal GATA elements.
Collapse
Affiliation(s)
- Hisako Miyagi
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kakon Nag
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Naznin Sultana
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Keijiro Munakata
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
13
|
Sakata H, Maéno M. Nkx2.5 is involved in myeloid cell differentiation at anterior ventral blood islands in the Xenopus embryo. Dev Growth Differ 2014; 56:544-54. [PMID: 25283688 DOI: 10.1111/dgd.12155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
Abstract
We have shown previously that two populations of myeloid cells emerge in the anterior and posterior ventral blood islands (aVBI and pVBI) at the different stages in Xenopus laevis embryo. In order to elucidate the regulatory mechanism of myeloid cell differentiation in the aVBI, we examined the role of Nkx2.5, an essential transcription factor for heart differentiation, in regulation of the myeloid cell differentiation in this region. Knockdown of endogenous Nkx2.5 by introducing MO into the dorsal marginal zone (DMZ) suppressed the expression of MHCα as well as that of mpo and spib in the resultant embryos and in DMZ explants made from the injected embryos. Expression of c/ebpα was less affected in the embryos injected with Nkx2.5 MO. The effect of Nkx2.5 MO in myeloid cell differentiation was recovered by coinjection of nkx2.5 or c/ebpα mRNA, indicating that Nkx2.5 functions at the same or the upper level of C/EBPα for the specification of myeloid cells. An attempt to identify transcription factors for myeloid cell differentiation in ventral marginal zone (VMZ) explants demonstrated that coinjection of two transcription factors out of three factors, namely C/EBPα, Nkx2.5 and GATA4, was sufficient to induce a certain amount of mpo expression. We suggest that C/EBPα is an unequivocal factor for myeloid cell differentiation in the aVBI and that Nkx2.5 and GATA4 cooperate with C/EBPα for promotion of myeloid cell differentiation.
Collapse
Affiliation(s)
- Hiroyuki Sakata
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | | |
Collapse
|
14
|
Yeung KS, Chee YY, Luk HM, Kan ASY, Tang MHY, Lau ET, Shuen AY, Lo IFM, Chan KYK, Chung BHY. Spread of X inactivation on chromosome 15 is associated with a more severe phenotype in a girl with an unbalanced t(X; 15) translocation. Am J Med Genet A 2014; 164A:2521-8. [DOI: 10.1002/ajmg.a.36670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 05/22/2014] [Indexed: 01/29/2023]
Affiliation(s)
- KS Yeung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - YY Chee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - HM Luk
- Clinical Genetic Service; Department of Health; Hong Kong SAR China
| | - Anita SY Kan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - Mary HY Tang
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - Elizabeth T Lau
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - Andrew Y Shuen
- Department of Human Genetics; McGill University; Montreal Canada
| | - Ivan FM Lo
- Clinical Genetic Service; Department of Health; Hong Kong SAR China
| | - Kelvin YK Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - Brian HY Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| |
Collapse
|
15
|
Rydeen AB, Waxman JS. Cyp26 enzymes are required to balance the cardiac and vascular lineages within the anterior lateral plate mesoderm. Development 2014; 141:1638-48. [PMID: 24667328 DOI: 10.1242/dev.105874] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Normal heart development requires appropriate levels of retinoic acid (RA) signaling. RA levels in embryos are dampened by Cyp26 enzymes, which metabolize RA into easily degraded derivatives. Loss of Cyp26 function in humans is associated with numerous developmental syndromes that include cardiovascular defects. Although previous studies have shown that Cyp26-deficient vertebrate models also have cardiovascular defects, the mechanisms underlying these defects are not understood. Here, we found that in zebrafish, two Cyp26 enzymes, Cyp26a1 and Cyp26c1, are expressed in the anterior lateral plate mesoderm (ALPM) and predominantly overlap with vascular progenitors (VPs). Although singular knockdown of Cyp26a1 or Cyp26c1 does not overtly affect cardiovascular development, double Cyp26a1 and Cyp26c1 (referred to here as Cyp26)-deficient embryos have increased atrial cells and reduced cranial vasculature cells. Examining the ALPM using lineage tracing indicated that in Cyp26-deficient embryos the myocardial progenitor field contains excess atrial progenitors and is shifted anteriorly into a region that normally solely gives rise to VPs. Although Cyp26 expression partially overlaps with VPs in the ALPM, we found that Cyp26 enzymes largely act cell non-autonomously to promote appropriate cardiovascular development. Our results suggest that localized expression of Cyp26 enzymes cell non-autonomously defines the boundaries between the cardiac and VP fields within the ALPM through regulating RA levels, which ensures a proper balance of myocardial and endothelial lineages. Our study provides novel insight into the earliest consequences of Cyp26 deficiency that underlie cardiovascular malformations in vertebrate embryos.
Collapse
Affiliation(s)
- Ariel B Rydeen
- The Heart Institute, Molecular Cardiovascular Biology and Developmental Biology Divisions, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
16
|
Lee E, Koo Y, Ng A, Wei Y, Luby-Phelps K, Juraszek A, Xavier RJ, Cleaver O, Levine B, Amatruda JF. Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy 2014; 10:572-87. [PMID: 24441423 DOI: 10.4161/auto.27649] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic analyses indicate that autophagy, an evolutionarily conserved lysosomal degradation pathway, is essential for eukaryotic differentiation and development. However, little is known about whether autophagy contributes to morphogenesis during embryogenesis. To address this question, we examined the role of autophagy in the early development of zebrafish, a model organism for studying vertebrate tissue and organ morphogenesis. Using zebrafish that transgenically express the fluorescent autophagy reporter protein, GFP-LC3, we found that autophagy is active in multiple tissues, including the heart, during the embryonic period. Inhibition of autophagy by morpholino knockdown of essential autophagy genes (including atg5, atg7, and becn1) resulted in defects in morphogenesis, increased numbers of dead cells, abnormal heart structure, and reduced organismal survival. Further analyses of cardiac development in autophagy-deficient zebrafish revealed defects in cardiac looping, abnormal chamber morphology, aberrant valve development, and ectopic expression of critical transcription factors including foxn4, tbx5, and tbx2. Consistent with these results, Atg5-deficient mice displayed abnormal Tbx2 expression and defects in valve development and chamber septation. Thus, autophagy plays an essential, conserved role in cardiac morphogenesis during vertebrate development.
Collapse
Affiliation(s)
- Eunmyong Lee
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Yeon Koo
- Department of Molecular Biology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Aylwin Ng
- Center for Computational & Integrative Biology; Massachusetts General Hospital; Boston, MA USA; Gastrointestinal Unit; Massachusetts General Hospital; Boston, MA USA; Broad Institute of Harvard and MIT; Cambridge, MA USA
| | - Yongjie Wei
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA; Center for Autophagy Research; University of Texas Southwestern Medical Center; Dallas, TX USA; Howard Hughes Medical Institute; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Kate Luby-Phelps
- Department of Cell Biology; UT Southwestern Medical Center; Dallas, TX USA
| | - Amy Juraszek
- Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Ramnik J Xavier
- Center for Computational & Integrative Biology; Massachusetts General Hospital; Boston, MA USA; Gastrointestinal Unit; Massachusetts General Hospital; Boston, MA USA; Broad Institute of Harvard and MIT; Cambridge, MA USA
| | - Ondine Cleaver
- Department of Molecular Biology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Beth Levine
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA; Center for Autophagy Research; University of Texas Southwestern Medical Center; Dallas, TX USA; Howard Hughes Medical Institute; University of Texas Southwestern Medical Center; Dallas, TX USA; Department of Microbiology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - James F Amatruda
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA; Department of Molecular Biology; University of Texas Southwestern Medical Center; Dallas, TX USA; Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
17
|
Wilkinson RN, Jopling C, van Eeden FJM. Zebrafish as a model of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:65-91. [PMID: 24751427 DOI: 10.1016/b978-0-12-386930-2.00004-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zebrafish has been rapidly adopted as a model for cardiac development and disease. The transparency of the embryo, its limited requirement for active oxygen delivery, and ease of use in genetic manipulations and chemical exposure have made it a powerful alternative to rodents. Novel technologies like TALEN/CRISPR-mediated genome engineering and advanced imaging methods will only accelerate its use. Here, we give an overview of heart development and function in the fish and highlight a number of areas where it is most actively contributing to the understanding of cardiac development and disease. We also review the current state of research on a feature that we only could wish to be conserved between fish and human; cardiac regeneration.
Collapse
Affiliation(s)
- Robert N Wilkinson
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Chris Jopling
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Labex Ion Channel Science and Therapeutics, Montpellier, France; INSERM, U661, Montpellier, France; Universités de Montpellier 1&2, UMR-5203, Montpellier, France
| | - Fredericus J M van Eeden
- MRC Centre for Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nat Cell Biol 2013; 15:1362-9. [PMID: 24161929 PMCID: PMC3864813 DOI: 10.1038/ncb2862] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/18/2013] [Indexed: 01/12/2023]
Abstract
The pharyngeal arch arteries (PAAs) are transient embryonic blood vessels that make indispensable contributions to the carotid arteries and great vessels of the heart, including the aorta and pulmonary artery1, 2. During embryogenesis, the PAAs appear in a craniocaudal sequence to connect pre-existing segments of the primitive circulation after de novo vasculogenic assembly from angioblast precursors3, 4. Despite the unique spatiotemporal characteristics of PAA development, the embryonic origins of PAA angioblasts and the genetic factors regulating their emergence remain unknown. Here, we identify the embryonic source of PAA endothelium as nkx2.5+ progenitors in lateral plate mesoderm long considered to adopt cell fates within the heart exclusively5, 6. Further, we report that PAA endothelial differentiation relies on Nkx2.5, a canonical cardiac transcription factor not previously implicated in blood vessel formation. Together, these studies reveal the heart field origin of PAA endothelium and attribute a novel vasculogenic function to the cardiac transcription factor nkx2.5 during great vessel precursor development.
Collapse
|
19
|
Novikov N, Evans T. Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling. Development 2013; 140:3787-98. [PMID: 23903195 DOI: 10.1242/dev.093567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biphasic control of WNT signaling is essential during cardiogenesis, but how the pathway switches from promoting cardiac mesoderm to restricting cardiomyocyte progenitor fate is unknown. We identified genes expressed in lateral mesoderm that are dysregulated in zebrafish when both gata5 and gata6 are depleted, causing a block to cardiomyocyte specification. This screen identified tmem88a, which is expressed in the early cardiac progenitor field and was previously implicated in WNT modulation by overexpression studies. Depletion of tmem88a results in a profound cardiomyopathy, secondary to impaired cardiomyocyte specification. In tmem88a morphants, activation of the WNT pathway exacerbates the cardiomyocyte deficiency, whereas WNT inhibition rescues progenitor cells and cardiogenesis. We conclude that specification of cardiac fate downstream of gata5/6 involves activation of the tmem88a gene to constrain WNT signaling and expand the number of cardiac progenitors. Tmem88a is a novel component of the regulatory mechanism controlling the second phase of biphasic WNT activity essential for embryonic cardiogenesis.
Collapse
Affiliation(s)
- Natasha Novikov
- Department of Surgery, Weill Cornell Medical College, Cornell University, 1300 York Ave., LC-708, New York, NY, USA
| | | |
Collapse
|
20
|
Bennett JS, Stroud DM, Becker JR, Roden DM. Proliferation of embryonic cardiomyocytes in zebrafish requires the sodium channel scn5Lab. Genesis 2013; 51:562-74. [PMID: 23650201 DOI: 10.1002/dvg.22400] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 03/24/2013] [Accepted: 04/29/2013] [Indexed: 12/30/2022]
Abstract
In mice, homozygous deletion of the cardiac sodium channel Scn5a results in defects in cardiac morphology and embryonic death before robust sodium current can be detected. In zebrafish, morpholino knockdown of cardiac sodium channel orthologs scn5Laa and scn5Lab perturbs specification of precardiac mesoderm and inhibits growth of the embryonic heart. It is not known which developmental processes are perturbed by sodium channel knockdown and whether reduced cell number is from impaired migration of cardiac progenitors into the heart, impaired myocyte proliferation, or both. We found that embryos deficient in scn5Lab displayed defects in primary cardiogenesis specific to loss of nkx2.5, but not nkx2.7. We generated kaede reporter fish and demonstrated that embryos treated with anti-scn5Lab morpholino showed normal secondary differentiation of cardiomyocytes at the arterial pole between 30 and 48 h post-fertilization. However, while proliferating myocytes were readily detected at 48 hpf in wild type embryos, there were no BrdU-positive cardiomyocytes in embryos subjected to anti-scn5Lab treatment. Proliferating myocytes were present in embryos injected with anti-tnnt2 morpholino to phenocopy the silent heart mutation, and absent in embryos injected with anti-tnnt2 and anti-scn5Lab morpholinos, indicating cardiac contraction is not required for the loss of proliferation. These data demonstrate that the role of scn5Lab in later heart growth does not involve contribution of the secondary heart field, but rather proliferation of cardiomyocytes, and appears unrelated to the role of the channel in cardiac electrogenesis.
Collapse
Affiliation(s)
- J S Bennett
- Program in Human Genetics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
21
|
Ye D, Lin F. S1pr2/Gα13 signaling controls myocardial migration by regulating endoderm convergence. Development 2013; 140:789-99. [PMID: 23318642 DOI: 10.1242/dev.085340] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A key process during vertebrate heart development is the migration of bilateral populations of myocardial precursors towards the midline to form the primitive heart tube. In zebrafish, signaling mediated by sphingosine-1-phosphate (S1P) and its cognate G protein-coupled receptor (S1pr2/Mil) is essential for myocardial migration, but the underlying mechanisms remain undefined. Here, we show that suppression of Gα(13) signaling disrupts myocardial migration, leading to the formation of two bilaterally located hearts (cardia bifida). Genetic studies indicate that Gα(13) acts downstream of S1pr2 to regulate myocardial migration through a RhoGEF-dependent pathway. Furthermore, disrupting any component of the S1pr2/Gα(13)/RhoGEF pathway impairs endoderm convergence during segmentation, and the endodermal defects correlate with the extent of cardia bifida. Moreover, endoderm transplantation reveals that the presence of wild-type anterior endodermal cells in Gα(13)-deficient embryos is sufficient to rescue the endoderm convergence defect and cardia bifida, and, conversely, that the presence of anterior endodermal cells defective for S1pr2 or Gα(13) in wild-type embryos causes such defects. Thus, S1pr2/Gα(13) signaling probably acts in the endoderm to regulate myocardial migration. In support of this notion, cardiac-specific expression of Gα(13) fails to rescue cardia bifida in the context of global Gα(13) inhibition. Our data demonstrate for the first time that the Gα(13)/RhoGEF-dependent pathway functions downstream of S1pr2 to regulate convergent movement of the endoderm, an event that is crucial for coordinating myocardial migration.
Collapse
Affiliation(s)
- Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, the University of Iowa, 1-400 Bowen Science Building, Iowa City, IA 52242-1109, USA
| | | |
Collapse
|
22
|
Zhen YS, Wu Q, Xiao CL, Chang NN, Wang X, Lei L, Zhu X, Xiong JW. Overlapping cardiac programs in heart development and regeneration. J Genet Genomics 2012; 39:443-9. [PMID: 23021544 DOI: 10.1016/j.jgg.2012.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 02/03/2023]
Abstract
Gaining cellular and molecular insights into heart development and regeneration will likely provide new therapeutic targets and opportunities for cardiac regenerative medicine, one of the most urgent clinical needs for heart failure. Here we present a review on zebrafish heart development and regeneration, with a particular focus on early cardiac progenitor development and their contribution to building embryonic heart, as well as cellular and molecular programs in adult zebrafish heart regeneration. We attempt to emphasize that the signaling pathways shaping cardiac progenitors in heart development may also be redeployed during the progress of adult heart regeneration. A brief perspective highlights several important and promising research areas in this exciting field.
Collapse
Affiliation(s)
- Yi-Song Zhen
- Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation. Dev Biol 2012; 369:199-210. [PMID: 22750409 DOI: 10.1016/j.ydbio.2012.06.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 01/17/2023]
Abstract
Mef2 transcription factors have been strongly linked with early heart development. D-mef2 is required for heart formation in Drosophila, but whether Mef2 is essential for vertebrate cardiomyocyte (CM) differentiation is unclear. In mice, although Mef2c is expressed in all CMs, targeted deletion of Mef2c causes lethal loss of second heart field (SHF) derivatives and failure of cardiac looping, but first heart field CMs can differentiate. Here we examine Mef2 function in early heart development in zebrafish. Two Mef2c genes exist in zebrafish, mef2ca and mef2cb. Both are expressed similarly in the bilateral heart fields but mef2cb is strongly expressed in the heart poles at the primitive heart tube stage. By using fish mutants for mef2ca and mef2cb and antisense morpholinos to knock down either or both Mef2cs, we show that Mef2ca and Mef2cb have essential but redundant roles in myocardial differentiation. Loss of both Mef2ca and Mef2cb function does not interfere with early cardiogenic markers such as nkx2.5, gata4 and hand2 but results in a dramatic loss of expression of sarcomeric genes and myocardial markers such as bmp4, nppa, smyd1b and late nkx2.5 mRNA. Rare residual CMs observed in mef2ca;mef2cb double mutants are ablated by a morpholino capable of knocking down other Mef2s. Mef2cb over-expression activates bmp4 within the cardiogenic region, but no ectopic CMs are formed. Surprisingly, anterior mesoderm and other tissues become skeletal muscle. Mef2ca single mutants have delayed heart development, but form an apparently normal heart. Mef2cb single mutants have a functional heart and are viable adults. Our results show that the key role of Mef2c in myocardial differentiation is conserved throughout the vertebrate heart.
Collapse
|
24
|
Han L, Yuan Y, Zhao L, He Q, Li Y, Chen X, Liu X, Liu K. Tracking antiangiogenic components from Glycyrrhiza uralensis
Fisch. based on zebrafish assays using high-speed countercurrent chromatography. J Sep Sci 2012; 35:1167-72. [DOI: 10.1002/jssc.201101031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/14/2012] [Accepted: 01/31/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Liwen Han
- School of Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Tianjin China
- Key Laboratory For Biosensors of Shandong Province; Biology Institute of Shandong Academy of Sciences; Jinan Shandong Province China
| | - Yanqiang Yuan
- Key Laboratory For Biosensors of Shandong Province; Biology Institute of Shandong Academy of Sciences; Jinan Shandong Province China
| | - Liang Zhao
- Qilu Hospital; Shandong University; Jinan China
| | - Qiuxia He
- Key Laboratory For Biosensors of Shandong Province; Biology Institute of Shandong Academy of Sciences; Jinan Shandong Province China
| | - Yubo Li
- School of Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Tianjin China
| | - Xiqiang Chen
- Key Laboratory For Biosensors of Shandong Province; Biology Institute of Shandong Academy of Sciences; Jinan Shandong Province China
| | - Xiuhe Liu
- Shandong Provincial Key Laboratory of Microbial Engineering and College of Food and Biologic Engineering; Shandong Institute of Light Industry; Jinan China
| | - Kechun Liu
- Key Laboratory For Biosensors of Shandong Province; Biology Institute of Shandong Academy of Sciences; Jinan Shandong Province China
| |
Collapse
|
25
|
Retinoic acid signaling plays a restrictive role in zebrafish primitive myelopoiesis. PLoS One 2012; 7:e30865. [PMID: 22363502 PMCID: PMC3281886 DOI: 10.1371/journal.pone.0030865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/28/2011] [Indexed: 12/18/2022] Open
Abstract
Retinoic acid (RA) is known to regulate definitive myelopoiesis but its role in vertebrate primitive myelopoiesis remains unclear. Here we report that zebrafish primitive myelopoiesis is restricted by RA in a dose dependent manner mainly before 11 hpf (hours post fertilization) when anterior hemangioblasts are initiated to form. RA treatment significantly reduces expressions of anterior hemangioblast markers scl, lmo2, gata2 and etsrp in the rostral end of ALPM (anterior lateral plate mesoderm) of the embryos. The result indicates that RA restricts primitive myelopoiesis by suppressing formation of anterior hemangioblasts. Analyses of ALPM formation suggest that the defective primitive myelopoiesis resulting from RA treatment before late gastrulation may be secondary to global loss of cells for ALPM fate whereas the developmental defect resulting from RA treatment during 10–11 hpf should be due to ALPM patterning shift. Overexpressions of scl and lmo2 partially rescue the block of primitive myelopoiesis in the embryos treated with 250 nM RA during 10–11 hpf, suggesting RA acts upstream of scl to control primitive myelopoiesis. However, the RA treatment blocks the increased primitive myelopoiesis caused by overexpressing gata4/6 whereas the abolished primitive myelopoiesis in gata4/5/6 depleted embryos is well rescued by 4-diethylamino-benzaldehyde, a retinal dehydrogenase inhibitor, or partially rescued by knocking down aldh1a2, the major retinal dehydrogenase gene that is responsible for RA synthesis during early development. Consistently, overexpressing gata4/6 inhibits aldh1a2 expression whereas depleting gata4/5/6 increases aldh1a2 expression. The results reveal that RA signaling acts downstream of gata4/5/6 to control primitive myelopoiesis. But, 4-diethylamino-benzaldehyde fails to rescue the defective primitive myelopoiesis in either cloche embryos or lycat morphants. Taken together, our results demonstrate that RA signaling restricts zebrafish primitive myelopoiesis through acting downstream of gata4/5/6, upstream of, or parallel to, cloche, and upstream of scl.
Collapse
|
26
|
Taylor JM, Saunter CD, Love GD, Girkin JM, Henderson DJ, Chaudhry B. Real-time optical gating for three-dimensional beating heart imaging. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:116021. [PMID: 22112126 DOI: 10.1117/1.3652892] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We demonstrate real-time microscope image gating to an arbitrary position in the cycle of the beating heart of a zebrafish embryo. We show how this can be used for high-precision prospective gating of fluorescence image slices of the moving heart. We also present initial results demonstrating the application of this technique to 3-D structural imaging of the beating embryonic heart.
Collapse
Affiliation(s)
- Jonathan M Taylor
- Durham University, Centre for Advanced Instrumentation, Department of Physics, Durham, United Kingdom.
| | | | | | | | | | | |
Collapse
|
27
|
Yanik MF, Rohde CB, Pardo-Martin C. Technologies for Micromanipulating, Imaging, and Phenotyping Small Invertebrates and Vertebrates. Annu Rev Biomed Eng 2011; 13:185-217. [DOI: 10.1146/annurev-bioeng-071910-124703] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mehmet Fatih Yanik
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Christopher B. Rohde
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Carlos Pardo-Martin
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
28
|
Lengerke C, Wingert R, Beeretz M, Grauer M, Schmidt AG, Konantz M, Daley GQ, Davidson AJ. Interactions between Cdx genes and retinoic acid modulate early cardiogenesis. Dev Biol 2011; 354:134-42. [PMID: 21466798 PMCID: PMC3502019 DOI: 10.1016/j.ydbio.2011.03.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/01/2011] [Accepted: 03/28/2011] [Indexed: 02/04/2023]
Abstract
Cdx transcription factors regulate embryonic positional identities and have crucial roles in anteroposterior patterning (AP) processes of all three germ layers. Previously we have shown that the zebrafish homologues cdx1a and cdx4 redundantly regulate posterior mesodermal derivatives inducing embryonic blood cell fate specification and patterning of the embryonic kidney. Here we hypothesize that cdx factors restrict formation of anterior mesodermal derivatives such as cardiac cells by imposing posterior identity to developing mesodermal cells. We show that ectopic expression of Cdx1 or Cdx4 applied during the brief window of mesoderm patterning in differentiating murine embryonic stem cell (ESC) strongly suppresses cardiac development as assayed by expression of cardiac genes and formation of embryoid bodies (EB) containing "beating" cell clusters. Conversely, in loss-of-function studies performed in cdx-deficient zebrafish embryos, we observed a dose-dependent expansion of tbx5a(+) anterior-lateral plate mesoderm giving rise to cardiac progenitors. However, further cardiac development of these mesodermal cells required additional suppression of the retinoic acid (RA) pathway, possibly due to differential activity of inhibitory RA signals in cdx mutants. Together, our data suggest that cdx proteins affect cardiogenesis by regulating the formation of cardiogenic mesoderm and together with the RA pathway control the early development of cardiac precursor cells.
Collapse
Affiliation(s)
- Claudia Lengerke
- Department of Hematology & Oncology, University of Tuebingen Medical Center II, 72076 Tuebingen, Germany
| | - Rebecca Wingert
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael Beeretz
- Department of Hematology & Oncology, University of Tuebingen Medical Center II, 72076 Tuebingen, Germany
| | - Matthias Grauer
- Department of Hematology & Oncology, University of Tuebingen Medical Center II, 72076 Tuebingen, Germany
| | - Anne G. Schmidt
- Department of Hematology & Oncology, University of Tuebingen Medical Center II, 72076 Tuebingen, Germany
| | - Martina Konantz
- Department of Hematology & Oncology, University of Tuebingen Medical Center II, 72076 Tuebingen, Germany
| | - George Q. Daley
- Children’s Hospital Boston, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Alan J. Davidson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
29
|
Langenbacher AD, Nguyen CT, Cavanaugh AM, Huang J, Lu F, Chen JN. The PAF1 complex differentially regulates cardiomyocyte specification. Dev Biol 2011; 353:19-28. [PMID: 21338598 PMCID: PMC3075326 DOI: 10.1016/j.ydbio.2011.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/07/2011] [Accepted: 02/11/2011] [Indexed: 11/28/2022]
Abstract
The specification of an appropriate number of cardiomyocytes from the lateral plate mesoderm requires a careful balance of both positive and negative regulatory signals. To identify new regulators of cardiac specification, we performed a phenotype-driven ENU mutagenesis forward genetic screen in zebrafish. In our genetic screen we identified a zebrafish ctr9 mutant with a dramatic reduction in myocardial cell number as well as later defects in primitive heart tube elongation and atrioventricular boundary patterning. Ctr9, together with Paf1, Cdc73, Rtf1 and Leo1, constitute the RNA polymerase II associated protein complex, PAF1. We demonstrate that the PAF1 complex (PAF1C) is structurally conserved among zebrafish and other metazoans and that loss of any one of the components of the PAF1C results in abnormal development of the atrioventricular boundary of the heart. However, Ctr9, Cdc73, Paf1 and Rtf1, but not Leo1, are required for the specification of an appropriate number of cardiomyocytes and elongation of the heart tube. Interestingly, loss of Rtf1 function produced the most severe defects, resulting in a nearly complete absence of cardiac precursors. Based on gene expression analyses and transplantation studies, we found that the PAF1C regulates the developmental potential of the lateral plate mesoderm and is required cell autonomously for the specification of cardiac precursors. Our findings demonstrate critical but differential requirements for PAF1C components in zebrafish cardiac specification and heart morphogenesis.
Collapse
Affiliation(s)
- Adam D. Langenbacher
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Catherine T. Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Ann M. Cavanaugh
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Jie Huang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Fei Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Jonsson Cancer Center, University of California, Los Angeles, CA 90095, USA
- Cardiovascular Research Laboratory, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Znosko WA, Yu S, Thomas K, Molina GA, Li C, Tsang W, Dawid IB, Moon AM, Tsang M. Overlapping functions of Pea3 ETS transcription factors in FGF signaling during zebrafish development. Dev Biol 2010; 342:11-25. [PMID: 20346941 PMCID: PMC2866755 DOI: 10.1016/j.ydbio.2010.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 11/23/2022]
Abstract
Fibroblast growth factors (FGFs) are secreted molecules that activate the RAS/mitogen-activated protein kinase (MAPK) signaling pathway. In zebrafish development, FGF signaling is responsible for establishing dorsal polarity, maintaining the isthmic organizer, and cardiac ventricle formation. Because several ETS factors are known transcriptional mediators of MAPK signaling, we hypothesized that these factors function to mediate FGF signaling processes. In zebrafish, the simultaneous knock-down of three Pea3 ETS proteins, Etv5, Erm, and Pea3, produced phenotypes reminiscent of embryos deficient in FGF signaling. Morphant embryos displayed both cardiac and left/right patterning defects as well as disruption of the isthmic organizer. Furthermore, the expression of FGF target genes was abolished in Pea3 ETS depleted embryos. To understand how FGF signaling and ETS factors control gene expression, transcriptional regulation of dusp6 was studied in mouse and zebrafish. Conserved Pea3 ETS binding sites were identified within the Dusp6 promoter, and reporter assays showed that one of these sites is required for dusp6 induction by FGFs. We further demonstrated the interaction of Pea3 ETS factors with the Dusp6 promoter both in vitro and in vivo. These results revealed the requirement of ETS factors in transducing FGF signals in developmental processes.
Collapse
Affiliation(s)
- Wade A. Znosko
- Department of Microbiology and Molecular Genetics, 3501 Fifth Avenue, BST3-5062. University of Pittsburgh, Pittsburgh, PA 15213
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213
| | - Shibin Yu
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kirk Thomas
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Gabriela A. Molina
- Department of Microbiology and Molecular Genetics, 3501 Fifth Avenue, BST3-5062. University of Pittsburgh, Pittsburgh, PA 15213
| | - Chengjian Li
- Department of Microbiology and Molecular Genetics, 3501 Fifth Avenue, BST3-5062. University of Pittsburgh, Pittsburgh, PA 15213
| | - Warren Tsang
- Department of Microbiology and Molecular Genetics, 3501 Fifth Avenue, BST3-5062. University of Pittsburgh, Pittsburgh, PA 15213
| | - Igor B. Dawid
- Program in Genomics of Development, NICHD, NIH, Building 6B/420 9000 Rockville Pike, Bethesda. MD 20892
| | - Anne M. Moon
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael Tsang
- Department of Microbiology and Molecular Genetics, 3501 Fifth Avenue, BST3-5062. University of Pittsburgh, Pittsburgh, PA 15213
- Department of Developmental Biology, University of Pittsburgh, School of Medicine
| |
Collapse
|
31
|
Liang J, Gui Y, Wang W, Gao S, Li J, Song H. Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos. ACTA ACUST UNITED AC 2010; 88:480-6. [DOI: 10.1002/bdra.20654] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Lam PY, Webb SE, Leclerc C, Moreau M, Miller AL. Inhibition of stored Ca2+ release disrupts convergence-related cell movements in the lateral intermediate mesoderm resulting in abnormal positioning and morphology of the pronephric anlagen in intact zebrafish embryos. Dev Growth Differ 2009; 51:429-42. [PMID: 19382938 DOI: 10.1111/j.1440-169x.2009.01106.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ca(2+) is a highly versatile intra- and intercellular signal that has been reported to regulate a variety of different pattern-forming processes during early development. To investigate the potential role of Ca(2+) signaling in regulating convergence-related cell movements, and the positioning and morphology of the pronephric anlagen, we treated zebrafish embryos from 11.5 h postfertilization (hpf; i.e. just before the pronephric anlagen are morphologically distinguishable in the lateral intermediate mesoderm; LIM) to 16 hpf, with a variety of membrane permeable pharmacological reagents known to modulate [Ca(2+)](i). The effect of these treatments on pronephric anlagen positioning and morphology was determined in both fixed and live embryos via in situ hybridization using the pronephic-specific probes, cdh17, pax2.1 and sim1, and confocal imaging of BODIPY FL C(5)-ceramide-labeled embryos, respectively. We report that Ca(2+) released from intracellular stores via inositol 1,4,5-trisphosphate receptors plays a significant role in the positioning and morphology of the pronephric anlagen, but does not affect the fate determination of the LIM cells that form these primordia. Our data suggest that when Ca(2+) release is inhibited, the resulting effects on the pronephric anlagen are a consequence of the disruption of normal convergence-related movements of LIM cells toward the embryonic midline.
Collapse
Affiliation(s)
- Pui Ying Lam
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
33
|
Abstract
Excess retinoic acid (RA) signaling can be teratogenic and result in cardiac birth defects, but the cellular and molecular origins of these defects are not well understood. Excessive RA signaling can completely eliminate heart formation in the zebrafish embryo. However, atrial and ventricular cells are differentially sensitive to more modest increases in RA signaling. Increased Hox activity, downstream of RA signaling, causes phenotypes similar to those resulting from excess RA. These results suggest that Hox activity mediates the differential effects of ectopic RA on atrial and ventricular cardiomyocytes and may underlie the teratogenic effects of RA on the heart.
Collapse
Affiliation(s)
- Joshua S. Waxman
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Deborah Yelon
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
34
|
Sun L, Lien CL, Xu X, Shung KK. In vivo cardiac imaging of adult zebrafish using high frequency ultrasound (45-75 MHz). ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:31-9. [PMID: 17825980 PMCID: PMC2292109 DOI: 10.1016/j.ultrasmedbio.2007.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 06/17/2007] [Accepted: 07/09/2007] [Indexed: 05/13/2023]
Abstract
The zebrafish has emerged as an excellent genetic model organism for studies of cardiovascular development. Optical transparency and external development during embryogenesis allow for visual analysis in the early development. However, to understand the cardiovascular structures and functions beyond the early stage requires a high-resolution, real-time, noninvasive imaging alternative due to the opacity of adult zebrafish. In this research, we report the development of a high frequency ultrasonic system for adult zebrafish cardiac imaging, capable of 75 MHz B-mode imaging at a spatial resolution of 25 microm and 45 MHz pulsed-wave Doppler measurement. The system allows for real-time delineation of detailed cardiac structures, estimation of cardiac dimensions, as well as image-guided Doppler blood flow measurements. In vivo imaging studies showed the identification of the atrium, ventricle, bulbus arteriosus, atrioventricular valve and bulboventricular valve in real-time images, with cardiac measurement at various stages. Doppler waveforms acquired at the ventricle and the bulbus arteriosus demonstrated the utility of this system to study the zebrafish cardiovascular hemodynamics. This high frequency ultrasonic system offers a multitude of opportunities for cardiovascular researchers. In addition, the detection of E-flow and A-flow during the ventricular filling and the appearance of diastolic flow reversal at bulbus arteriosus suggested the functional similarity of zebrafish heart to that of higher vertebrates.
Collapse
Affiliation(s)
- Lei Sun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
35
|
Serluca FC. Development of the proepicardial organ in the zebrafish. Dev Biol 2007; 315:18-27. [PMID: 18206866 DOI: 10.1016/j.ydbio.2007.10.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/25/2007] [Accepted: 10/05/2007] [Indexed: 12/25/2022]
Abstract
The epicardium is the last layer of the vertebrate heart to form, surrounding the heart muscle during embryogenesis and providing signaling cues essential to the continued growth and differentiation of the heart. This outer layer of the heart develops from a transient structure, the proepicardial organ (PEO). Despite its essential roles, the early signals required for the formation of the PEO and the epicardium remain poorly understood. The molecular markers wt1 and tcf21 are used to identify the epicardial layer in the zebrafish heart, to trace its development and to determine genes required for its normal development. Disruption of lateral plate mesoderm (LPM) migration through knockdown of miles apart or casanova leads to cardia bifida with each bilateral heart associated with its own PEO, suggesting that the earliest progenitors of the epicardium lie in the LPM. Using a gene knockdown approach, a genetic framework for PEO development is outlined. The pandora/spt6 gene is required for multiple cardiac lineages, the zinc-finger transcription factor wt1 is required for the epicardial lineage only and finally, the cell polarity genes heart and soul and nagie oko are required for proper PEO morphogenesis.
Collapse
Affiliation(s)
- Fabrizio C Serluca
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Genetic insights into normal and abnormal heart development. Cardiovasc Pathol 2007; 17:48-54. [PMID: 18160060 DOI: 10.1016/j.carpath.2007.06.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/28/2007] [Indexed: 11/23/2022] Open
Abstract
Congenital heart defects (CHDs) affect 1-2% of newborn children and are the leading cause of death in infants under 1 year of age. CHDs represent the single largest class of birth defects and account for 25% of all human congenital abnormalities. Numerous epidemiologic studies have established the heritable nature of CHDs. However, despite the remarkable progress of the past decade, very few CHD-causing genes have been identified so far. Molecular and genetic analysis of heart development--which requires the execution of specific genetic programs--has led to the identification of essential cardiac regulators and mutations that are linked to human CHD. Elucidation of the mechanisms of action of these transcription factors has also provided a molecular framework that will continue to help furthering our understanding of the molecular basis of normal and abnormal heart growth. This review will summarize present knowledge of cardiac development and illustrate how analysis of heart development has helped understand the genetic basis of some CHDs and how these advances could translate into better prevention, diagnosis, and care of congenital heart disease.
Collapse
|
37
|
Schoenebeck JJ, Keegan BR, Yelon D. Vessel and blood specification override cardiac potential in anterior mesoderm. Dev Cell 2007; 13:254-67. [PMID: 17681136 PMCID: PMC2709538 DOI: 10.1016/j.devcel.2007.05.012] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 04/27/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Organ progenitors arise within organ fields, embryonic territories that are larger than the regions required for organ formation. Little is known about the regulatory pathways that define organ field boundaries and thereby limit organ size. Here we identify a mechanism for restricting heart size through confinement of the developmental potential of the heart field. Via fate mapping in zebrafish, we locate cardiac progenitors within hand2-expressing mesoderm and demonstrate that hand2 potentiates cardiac differentiation within this region. Beyond the rostral boundary of hand2 expression, we find progenitors of vessel and blood lineages. In embryos deficient in vessel and blood specification, rostral mesoderm undergoes a fate transformation and generates ectopic cardiomyocytes. Therefore, induction of vessel and blood specification represses cardiac specification and delimits the capacity of the heart field. This regulatory relationship between cardiovascular pathways suggests strategies for directing progenitor cell differentiation to facilitate cardiac regeneration.
Collapse
Affiliation(s)
- Jeffrey J. Schoenebeck
- Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 USA
| | - Brian R. Keegan
- Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 USA
| | - Deborah Yelon
- Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 USA
| |
Collapse
|
38
|
Bussmann J, Bakkers J, Schulte-Merker S. Early endocardial morphogenesis requires Scl/Tal1. PLoS Genet 2007; 3:e140. [PMID: 17722983 PMCID: PMC1950955 DOI: 10.1371/journal.pgen.0030140] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022] Open
Abstract
The primitive heart tube is composed of an outer myocardial and an inner endocardial layer that will give rise to the cardiac valves and septa. Specification and differentiation of these two cell layers are among the earliest events in heart development, but the embryonic origins and genetic regulation of early endocardial development remain largely undefined. We have analyzed early endocardial development in the zebrafish using time-lapse confocal microscopy and show that the endocardium seems to originate from a region in the lateral plate mesoderm that will give rise to hematopoietic cells of the primitive myeloid lineage. Endocardial precursors appear to rapidly migrate to the site of heart tube formation, where they arrive prior to the bilateral myocardial primordia. Analysis of a newly discovered zebrafish Scl/Tal1 mutant showed an additional and previously undescribed role of this transcription factor during the development of the endocardium. In Scl/Tal1 mutant embryos, endocardial precursors are specified, but migration is severely defective and endocardial cells aggregate at the ventricular pole of the heart. We further show that the initial fusion of the bilateral myocardial precursor populations occurs independently of the endocardium and tal1 function. Our results suggest early separation of the two components of the primitive heart tube and imply Scl/Tal1 as an indispensable component of the molecular hierarchy that controls endocardium morphogenesis. In its earliest functional form, the embryonic heart of all vertebrates is a simple linear tube consisting of two cell types. An outer muscular cell layer called the myocardium surrounds an inner vascular cell layer called the endocardium that connects the heart to the vascular system. The integration of both cell types is an important step during heart development, but the formation of the endocardial component of the heart tube is poorly understood. Here, we analyze the formation of the endocardium in the zebrafish embryo and show using time-lapse imaging that it is a highly dynamic structure. In addition, we have identified a zebrafish mutant with a specific defect during endocardial development. This defect is caused by a mutation in T cell acute leukemia 1, a gene that—when misexpressed—causes many cases of childhood leukemias. Here, we show an additional role for this gene during heart development. In mutant embryos, both endocardial and myocardial precursors are specified, but integration of both cell types does not occur properly due to a defective migration of the endocardial precursors. Given the many interactions that occur between the endocardium and the myocardium, our results will provide a more comprehensive understanding of heart development.
Collapse
Affiliation(s)
| | - Jeroen Bakkers
- Hubrecht Institute, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute, Utrecht, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Pantazis P, González-Gaitán M. Localized multiphoton photoactivation of paGFP in Drosophila wing imaginal discs. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:044004. [PMID: 17867808 DOI: 10.1117/1.2770478] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In biological imaging of fluorescent molecules, multiphoton laser scanning microscopy (MPLSM) has become the favorite method of fluorescence microscopy in tissue explants and living animals. The great power of MPLSM with pulsed lasers in the infrared wavelength lies in its relatively deep optical penetration and reduced ability to cause potential nonspecific phototoxicity. These properties are of crucial importance for long time-lapse imaging. Since the excited area is intrinsically confined to the high-intensity focal volume of the illuminating beam, MPLSM can also be applied as a tool for selectively manipulating fluorophores in a known, three-dimensionally defined volume within the tissue. Here we introduce localized multiphoton photoactivation (MP-PA) as a technique suitable for analyzing the dynamics of photoactivated molecules with three-dimensional spatial resolution of a few micrometers. Short, intense laser light pulses uncage photoactivatable molecules via multiphoton excitation in a defined volume. MP-PA is demonstrated on photoactivatable paGFP in Drosophila wing imaginal discs. This technique is especially useful for extracting quantitative information about the properties of photoactivatable fusion proteins in different cellular locations in living tissue as well as to label single or small patches of cells in tissue to track their subsequent lineage.
Collapse
Affiliation(s)
- Periklis Pantazis
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
40
|
Miyasaka KY, Kida YS, Sato T, Minami M, Ogura T. Csrp1 regulates dynamic cell movements of the mesendoderm and cardiac mesoderm through interactions with Dishevelled and Diversin. Proc Natl Acad Sci U S A 2007; 104:11274-9. [PMID: 17592114 PMCID: PMC2040889 DOI: 10.1073/pnas.0702000104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zebrafish Csrp1 is a member of the cysteine- and glycine-rich protein (CSRP) family and is expressed in the mesendoderm and its derivatives. Csrp1 interacts with Dishevelled 2 (Dvl2) and Diversin (Div), which control cell morphology and other dynamic cell behaviors via the noncanonical Wnt and JNK pathways. When csrp1 message is knocked down, abnormal convergent extension cell movement is induced, resulting in severe deformities in midline structures. In addition, cardiac bifida is induced as a consequence of defects in cardiac mesoderm cell migration. Our data highlight Csrp1 as a key molecule of the noncanonical Wnt pathway, which orchestrates cell behaviors during dynamic morphogenetic movements of tissues and organs.
Collapse
Affiliation(s)
- Kota Y. Miyasaka
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Yasuyuki S. Kida
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Takayuki Sato
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Mari Minami
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Schlueter PJ, Peng G, Westerfield M, Duan C. Insulin-like growth factor signaling regulates zebrafish embryonic growth and development by promoting cell survival and cell cycle progression. Cell Death Differ 2007; 14:1095-105. [PMID: 17332774 DOI: 10.1038/sj.cdd.4402109] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although much is known about the global effects of insulin-like growth factor 1 receptor (IGF1R)-mediated signaling on fetal growth and the clinical manifestations resulting from IGF/IGF1R deficiencies, we have an incomplete understanding of the cellular actions of this essential pathway during vertebrate embryogenesis. In this study, we inhibited IGF1R signaling during zebrafish embryogenesis using antisense morpholino oligonucleotides or a dominant-negative IGF1R fusion protein. IGF1R inhibition resulted in reduced embryonic growth, arrested development and increased lethality. IGF1R-deficient embryos had significant defects in the retina, inner ear, motoneurons and heart. No patterning abnormalities, however, were found in the brain or other embryonic tissues. At the cellular level, IGF1R inhibition increased caspase 3 activity and induced neuronal apoptosis. Coinjection of antiapoptotic bcl2-like mRNA attenuated the elevated apoptosis and rescued the retinal and motoneuron defects, but not the developmental arrest. Subsequent cell cycle analysis indicated an increased percentage of cells in G1 and a decreased percentage in S phase in IGF1R-deficient embryos independent of apoptosis. These results provide novel insight into the cellular basis of IGF1R function and show that IGF1R signaling does not function as an anteriorizing signal but regulates embryonic growth and development by promoting cell survival and cell cycle progression.
Collapse
Affiliation(s)
- P J Schlueter
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
42
|
Guzzo RM, Foley AC, Ibarra YM, Mercola M. Signaling Pathways in Embryonic Heart Induction. CARDIOVASCULAR DEVELOPMENT 2007. [DOI: 10.1016/s1574-3349(07)18005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Ho YL, Lin YH, Tsai IJ, Hsieh FJ, Tsai HJ. In Vivo Assessment of Cardiac Morphology and Function in Heart-specific Green Fluorescent Zebrafish. J Formos Med Assoc 2007; 106:181-6. [PMID: 17389161 DOI: 10.1016/s0929-6646(09)60238-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/PURPOSE The zebrafish (Danio rerio) is a new animal model for cardiac research. Zebrafish possessing a green fluorescent heart facilitates the dynamic observation of cardiac development, morphology, and function in vivo. However, the effect of an excessive expression of green fluorescent protein (GFP) in cardiac muscle on the heart function of zebrafish has not been reported. METHODS We cloned a 1.6 kb polymerase chain reaction (PCR) product containing the upstream sequence (870 bp), exon 1 (39 bp), intron 1 (682 bp), and exon 2 (69 bp) of the zebrafish cardiac myosin light chain 2 gene. A germ line-transmitted zebrafish possessing a green fluorescent heart was generated by injecting this PCR product fused with the GFP gene with ends consisting of inverted terminal repeats of an adeno-associated virus. RESULTS Green fluorescence was intensively and specifically expressed in the myocardial cells located around both the heart chambers. Two lines with different GFP expression were bred (A26 and A277). The luminance of A277 was brighter than that of A26 (1.7-fold). The 4 days postfertilization (dpf) cardiac function and morphology were similar between these two groups. However, the 8 dpf cardiac growth seemed to be retarded in the A277 group. The 8 dpf heart rate, stroke volume, and cardiac output were also significantly lower in the A277 group. CONCLUSION Excess expression of GFP seems to exert some detrimental effects on zebrafish hearts.
Collapse
Affiliation(s)
- Yi-Lwun Ho
- Graduate Institute of Clinical Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Lavallée G, Andelfinger G, Nadeau M, Lefebvre C, Nemer G, Horb ME, Nemer M. The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO J 2006; 25:5201-13. [PMID: 17053787 PMCID: PMC1630408 DOI: 10.1038/sj.emboj.7601379] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 09/06/2006] [Indexed: 11/09/2022] Open
Abstract
In humans, congenital heart defects occur in 1-2% of live birth, but the molecular mechanisms and causative genes remain unidentified in the majority of cases. We have uncovered a novel transcription pathway important for heart morphogenesis. We report that KLF13, a member of the Krüppel-like family of zinc-finger proteins, is expressed predominantly in the heart, binds evolutionarily conserved regulatory elements on cardiac promoters and activates cardiac transcription. KLF13 is conserved across species and knockdown of KLF13 in Xenopus embryos leads to atrial septal defects and hypotrabeculation similar to those observed in humans or mice with hypomorphic GATA-4 alleles. Physical and functional interaction with GATA-4, a dosage-sensitive cardiac regulator, provides a mechanistic explanation for KLF13 action in the heart. The data demonstrate that KLF13 is an important component of the transcription network required for heart development and suggest that KLF13 is a GATA-4 modifier; by analogy to other GATA-4 collaborators, mutations in KLF13 may be causative for congenital human heart disease.
Collapse
Affiliation(s)
- Geneviève Lavallée
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Gregor Andelfinger
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Mathieu Nadeau
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Chantal Lefebvre
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Georges Nemer
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Marko E Horb
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
- Cardiac Growth and Differentiation Unit, Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Quebec, Canada H2W 1R7. Tel.: +1 514 987 5680; Fax: +1 514 987 5575; E-mail:
| | - Mona Nemer
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
- Cardiac Growth and Differentiation Unit, Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Quebec, Canada H2W 1R7. Tel.: +1 514 987 5680; Fax: +1 514 987 5575; E-mail:
| |
Collapse
|
45
|
Kruithof BPT, van Wijk B, Somi S, Kruithof-de Julio M, Pérez Pomares JM, Weesie F, Wessels A, Moorman AFM, van den Hoff MJB. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol 2006; 295:507-22. [PMID: 16753139 DOI: 10.1016/j.ydbio.2006.03.033] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/17/2006] [Accepted: 03/22/2006] [Indexed: 11/28/2022]
Abstract
Proepicardial cells give rise to epicardium, coronary vasculature and cardiac fibroblasts. The proepicardium is derived from the mesodermal lining of the prospective pericardial cavity that simultaneously contributes myocardium to the venous pole of the elongating primitive heart tube. Using proepicardial explant cultures, we show that proepicardial cells have the potential to differentiate into cardiac muscle cells, reflecting the multipotency of this pericardial mesoderm. The differentiation into the myocardial or epicardial lineage is mediated by the cooperative action of BMP and FGF signaling. BMP2 is expressed in the distal IFT myocardium and stimulates cardiomyocyte formation. FGF2 is expressed in the proepicardium and stimulates differentiation into the epicardial lineage. In the base of the proepicardium, coexpression of BMP2 and FGF2 inhibits both myocardial and epicardial differentiation. We conclude that the epicardial/myocardial lineage decisions are mediated by an extrinsic, inductive mechanism, which is determined by the position of the cells in the pericardial mesoderm.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Experimental and Molecular Cardiology Group, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cheng L, Guo XF, Yang XY, Chong M, Cheng J, Li G, Gui YH, Lu DR. Delta-sarcoglycan is necessary for early heart and muscle development in zebrafish. Biochem Biophys Res Commun 2006; 344:1290-9. [PMID: 16650823 DOI: 10.1016/j.bbrc.2006.03.234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
Delta-sarcoglycan, one member of the sarcoglycan complex, is a very conservative muscle-specific protein exclusively expressed in the skeletal and cardiac muscles of vertebrates. Mutations in sarcoglycans are known to be involved in limb-girdle muscular dystrophy (LGMD) and dilated cardiomyopathy (DCM) in humans. To address the role of delta-sarcoglycan gene in zebrafish development, we have studied expression pattern of delta-sarcoglycan in zebrafish embryos and examined the role of delta-sarcoglycan in zebrafish embryonic development by morpholino. Strong expression of delta-sarcoglycan was observed in various muscles including those of the segment, heart, eye, jaw, pectoral fin, branchial arches, and swim bladder in zebrafish embryo. Delta-sarcoglycan was also expressed in midbrain and retina. Knockdown of delta-sarcoglycan resulted in severe abnormality in both the cardiac and skeletal muscles. Some severe ones displayed serious morphological abnormality such as hypoplastic head, linear heart, very weak heartbeats, and runtish trunk, all dead within 5 dpf. Whole-mount in situ hybridization analysis showed that adaxial cells and muscle pioneers were affected in delta-sarcoglycan knockdown embryos. In addition, absence of delta-sarcoglycan protein severely delayed the cardiac development and influenced the differentiation of cardiac muscle, and the cardiac left-right asymmetry was dramatically changed in morpholino-treated embryos. These data together suggest that delta-sarcoglycan plays an important role in early heart and muscle development.
Collapse
Affiliation(s)
- Lu Cheng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakamura S, Kobayashi D, Aoki Y, Yokoi H, Ebe Y, Wittbrodt J, Tanaka M. Identification and lineage tracing of two populations of somatic gonadal precursors in medaka embryos. Dev Biol 2006; 295:678-88. [PMID: 16682019 DOI: 10.1016/j.ydbio.2006.03.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 11/18/2022]
Abstract
The gonad contains two major cell lineages, germline and somatic cells. Little is known, however, about the somatic gonadal cell lineage in vertebrates. Using fate mapping studies and ablation experiments in medaka fish (Oryzias latipes), we determined that somatic gonadal precursors arise from the most posterior part of the sdf-1a expression domain in the lateral plate mesoderm at the early segmentation stage; this region has the properties of a gonadal field. Somatic gonadal precursors in this field, which continuously express sdf-1a, move anteriorly and medially to the prospective gonadal area by convergent movement. By the stage at which these somatic gonadal precursors have become located adjacent to the embryonic body, the precursors no longer replace the surrounding lateral plate mesoderm, becoming spatially organized into two distinct populations. We further show that, prior to reaching the prospective gonadal area, these populations can be distinguished by expression of either ftz-f1 or sox9b. These results clearly indicate that different populations of gonadal precursors are present before the formation of a single gonadal primordium, shedding new light on the developmental processes of somatic gonadal cell and subsequent sex differentiation.
Collapse
Affiliation(s)
- Shuhei Nakamura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Buch T, Heppner FL, Tertilt C, Heinen TJAJ, Kremer M, Wunderlich FT, Jung S, Waisman A. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2005; 2:419-26. [PMID: 15908920 DOI: 10.1038/nmeth762] [Citation(s) in RCA: 700] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 04/18/2005] [Indexed: 12/12/2022]
Abstract
A new system for lineage ablation is based on transgenic expression of a diphtheria toxin receptor (DTR) in mouse cells and application of diphtheria toxin (DT). To streamline this approach, we generated Cre-inducible DTR transgenic mice (iDTR) in which Cre-mediated excision of a STOP cassette renders cells sensitive to DT. We tested the iDTR strain by crossing to the T cell- and B cell-specific CD4-Cre and CD19-Cre strains, respectively, and observed efficient ablation of T and B cells after exposure to DT. In MOGi-Cre/iDTR double transgenic mice expressing Cre recombinase in oligodendrocytes, we observed myelin loss after intraperitoneal DT injections. Thus, DT crosses the blood-brain barrier and promotes cell ablation in the central nervous system. Notably, we show that the developing DT-specific antibody response is weak and not neutralizing, and thus does not impede the efficacy of DT. Our results validate the use of iDTR mice as a tool for cell ablation in vivo.
Collapse
Affiliation(s)
- Thorsten Buch
- Laboratory for Molecular Immunology, Institute for Genetics, University of Cologne, D-50931 Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Li Y, Xiang J, Duan C. Insulin-like Growth Factor-binding Protein-3 Plays an Important Role in Regulating Pharyngeal Skeleton and Inner Ear Formation and Differentiation. J Biol Chem 2005; 280:3613-20. [PMID: 15550380 DOI: 10.1074/jbc.m411479200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor-binding protein (IGFBP)-3 is the major insulin-like growth factor (IGF) carrier protein in the bloodstream. IGFBP-3 prolongs the half-life of circulating IGFs and prevents their potential hypoglycemic effect. IGFBP-3 is also expressed in many peripheral tissues in fetal and adult stages. In vitro, IGFBP-3 can inhibit or potentiate IGF actions and even possesses IGF-independent activities, suggesting that local IGFBP-3 may also have paracrine/autocrine function(s). The in vivo function of IGFBP-3, however, is unclear. In this study, we elucidate the developmental role of IGFBP-3 using the zebrafish model. IGFBP-3 mRNA expression is first detected in the migrating cranial neural crest cells and subsequently in pharyngeal arches in zebrafish embryos. IGFBP-3 mRNA is also persistently expressed in the developing inner ears. To determine the role of IGFBP-3 in these tissues, we ablated the IGFBP-3 gene product using morpholino-modified antisense oligonucleotides (MOs). The IGFBP-3 knocked down embryos had delayed pharyngeal skeleton morphogenesis and greatly reduced pharyngeal cartilage differentiation. Knockdown of IGFBP-3 also significantly decreased inner ear size and disrupted hair cell differentiation and semicircular canal formation. Furthermore, reintroduction of a MO-resistant form of IGFBP-3 "rescued" the MO-induced defects. These findings suggest that IGFBP-3 plays an important role in regulating pharyngeal cartilage and inner ear development and growth in zebrafish.
Collapse
Affiliation(s)
- Yun Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
50
|
Heicklen-Klein A, McReynolds LJ, Evans T. Using the zebrafish model to study GATA transcription factors. Semin Cell Dev Biol 2004; 16:95-106. [PMID: 15659344 DOI: 10.1016/j.semcdb.2004.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The zebrafish is an established animal model system that profits from the availability of strong experimental approaches in both genetics and embryology. As a vertebrate, zebrafish can be used to model many aspects of human development and disease. GATA transcription factors play important roles in the development of many organ systems, including those for hematopoietic, cardiovascular, reproductive, and gut-endoderm derived tissues. The six vertebrate GATA factors are highly conserved in zebrafish at the level of sequence, expression pattern, and function. The identification of mutants, establishment of transgenic GFP reporter fish, and the ease of performing loss- and gain-of-function experiments have all contributed new insight into our understanding of the regulation and function of GATA factors. We review recent advances toward this goal using the zebrafish system with a focus on hematopoiesis and cardiogenesis, and suggest how comparative genetics using the zebrafish genes might reveal core conserved properties, as well as changes in gene function that reflect different morphogenetic programs utilized by various vertebrate embryos.
Collapse
Affiliation(s)
- Alice Heicklen-Klein
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin Room 501, Bronx, NY 10461, USA
| | | | | |
Collapse
|