1
|
Duarte-Olivenza C, Hurle JM, Montero JA, Lorda-Diez CI. Modeling the Differentiation of Embryonic Limb Chondroprogenitors by Cell Death and Cell Senescence in High Density Micromass Cultures and Their Regulation by FGF Signaling. Cells 2022; 12:cells12010175. [PMID: 36611968 PMCID: PMC9818968 DOI: 10.3390/cells12010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Considering the importance of programmed cell death in the formation of the skeleton during embryonic development, the aim of the present study was to analyze whether regulated cell degeneration also accompanies the differentiation of embryonic limb skeletal progenitors in high-density tridimensional cultures (micromass cultures). Our results show that the formation of primary cartilage nodules in the micromass culture assay involves a patterned process of cell death and cell senescence, complementary to the pattern of chondrogenesis. As occurs in vivo, the degenerative events were preceded by DNA damage detectable by γH2AX immunolabeling and proceeded via apoptosis and cell senescence. Combined treatments of the cultures with growth factors active during limb skeletogenesis, including FGF, BMP, and WNT revealed that FGF signaling modulates the response of progenitors to signaling pathways implicated in cell death. Transcriptional changes induced by FGF treatments suggested that this function is mediated by the positive regulation of the genetic machinery responsible for apoptosis and cell senescence together with hypomethylation of the Sox9 gene promoter. We propose that FGF signaling exerts a primordial function in the embryonic limb conferring chondroprogenitors with their biological properties.
Collapse
Affiliation(s)
| | | | - Juan A. Montero
- Correspondence: (J.A.M.); (C.I.L.-D.); Fax: +34-942201923 (J.A.M. and C.I.L.-D.)
| | - Carlos I. Lorda-Diez
- Correspondence: (J.A.M.); (C.I.L.-D.); Fax: +34-942201923 (J.A.M. and C.I.L.-D.)
| |
Collapse
|
2
|
Bastide S, Chomsky E, Saudemont B, Loe-Mie Y, Schmutz S, Novault S, Marlow H, Tanay A, Spitz F. TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb. SCIENCE ADVANCES 2022; 8:eadd0695. [PMID: 36516250 PMCID: PMC9750149 DOI: 10.1126/sciadv.add0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states' molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.
Collapse
Affiliation(s)
- Sébastien Bastide
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- École Doctorale “Complexité du Vivant”, Sorbonne Université, 75005 Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
| | - François Spitz
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Parada C, Banavar SP, Khalilian P, Rigaud S, Michaut A, Liu Y, Joshy DM, Campàs O, Gros J. Mechanical feedback defines organizing centers to drive digit emergence. Dev Cell 2022; 57:854-866.e6. [PMID: 35413235 DOI: 10.1016/j.devcel.2022.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
During embryonic development, digits gradually emerge in a periodic pattern. Although genetic evidence indicates that digit formation results from a self-organizing process, the underlying mechanisms are still unclear. Here, we find that convergent-extension tissue flows driven by active stresses underlie digit formation. These active stresses simultaneously shape cartilage condensations and lead to the emergence of a compressive stress region that promotes high activin/p-SMAD/SOX9 expression, thereby defining digit-organizing centers via a mechanical feedback. In Wnt5a mutants, such mechanical feedback is disrupted due to the loss of active stresses, organizing centers do not emerge, and digit formation is precluded. Thus, digit emergence does not result solely from molecular interactions, as was previously thought, but requires a mechanical feedback that ensures continuous coupling between phalanx specification and elongation. Our work, which links mechanical and molecular signals, provides a mechanistic context for the emergence of organizing centers that may underlie various developmental processes.
Collapse
Affiliation(s)
- Carolina Parada
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75724 Paris Cedex 15, France; CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Samhita P Banavar
- Department of Physics, University of California, Santa Barbara, CA 93106-5070, USA
| | - Parisa Khalilian
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75724 Paris Cedex 15, France; CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Stephane Rigaud
- Image Analysis Hub, C2RT, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Arthur Michaut
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75724 Paris Cedex 15, France; CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, USA
| | - Dennis Manjaly Joshy
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, USA; Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA, USA; Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany.
| | - Jerome Gros
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75724 Paris Cedex 15, France; CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
4
|
Towler OW, Shore EM. BMP signaling and skeletal development in fibrodysplasia ossificans progressiva (FOP). Dev Dyn 2022; 251:164-177. [PMID: 34133058 PMCID: PMC9068236 DOI: 10.1002/dvdy.387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disease caused by increased BMP pathway signaling due to mutation of ACVR1, a bone morphogenetic protein (BMP) type 1 receptor. The primary clinical manifestation of FOP is extra-skeletal bone formation (heterotopic ossification) within soft connective tissues. However, the underlying ACVR1 mutation additionally alters skeletal bone development and nearly all people born with FOP have bilateral malformation of the great toes as well as other skeletal malformations at diverse anatomic sites. The specific mechanisms through which ACVR1 mutations and altered BMP pathway signaling in FOP influence skeletal bone formation during development remain to be elucidated; however, recent investigations are providing a clearer understanding of the molecular and developmental processes associated with ACVR1-regulated skeletal formation.
Collapse
Affiliation(s)
- Oscar Will Towler
- The Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eileen M. Shore
- The Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Lorda-Diez CI, Duarte-Olivenza C, Hurle JM, Montero JA. Transforming growth factor beta signaling: The master sculptor of fingers. Dev Dyn 2021; 251:125-136. [PMID: 33871876 DOI: 10.1002/dvdy.349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor beta (TGFβ) constitutes a large and evolutionarily conserved superfamily of secreted factors that play essential roles in embryonic development, cancer, tissue regeneration, and human degenerative pathology. Studies of this signaling cascade in the regulation of cellular and tissue changes in the three-dimensional context of a developing embryo have notably advanced in the understanding of the action mechanism of these growth factors. In this review, we address the role of TGFβ signaling in the developing limb, focusing on its essential function in the morphogenesis of the autopod. As we discuss in this work, modern mouse genetic experiments together with more classical embryological approaches in chick embryos, provided very valuable information concerning the role of TGFβ and Activin family members in the morphogenesis of the digits of tetrapods, including the formation of phalanxes, digital tendons, and interphalangeal joints. We emphasize the importance of the Activin and TGFβ proteins as digit inducing factors and their critical interaction with the BMP signaling to sculpt the hand and foot morphology.
Collapse
Affiliation(s)
- Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Cristina Duarte-Olivenza
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
6
|
Montero JA, Lorda-Diez CI, Sanchez-Fernandez C, Hurle JM. Cell death in the developing vertebrate limb: A locally regulated mechanism contributing to musculoskeletal tissue morphogenesis and differentiation. Dev Dyn 2020; 250:1236-1247. [PMID: 32798262 PMCID: PMC8451844 DOI: 10.1002/dvdy.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Our aim is to critically review current knowledge of the function and regulation of cell death in the developing limb. We provide a detailed, but short, overview of the areas of cell death observed in the developing limb, establishing their function in morphogenesis and structural development of limb tissues. We will examine the functions of this process in the formation and growth of the limb primordia, formation of cartilaginous skeleton, formation of synovial joints, and establishment of muscle bellies, tendons, and entheses. We will analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process, we will discuss a new biological perspective that explains cell death: this process, rather than secondary to a specific genetic program, is a consequence of the tissue building strategy employed by the embryo based on the formation of scaffolds that disintegrate once their associated neighboring structures differentiate. We examine the functions of cell death in the formation and growth of the limb primordia. We analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process and the absence of defined genetic program in their regulation we propose that cell death is a consequence of the tissue building strategy employed by the embryo regulated by epigenetic factors .
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | | | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
7
|
Fowler DA, Larsson HCE. The tissues and regulatory pattern of limb chondrogenesis. Dev Biol 2020; 463:124-134. [PMID: 32417169 DOI: 10.1016/j.ydbio.2020.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Initial limb chondrogenesis offers the first differentiated tissues that resemble the mature skeletal anatomy. It is a developmental progression of three tissues. The limb begins with undifferentiated mesenchyme-1, some of which differentiates into condensations-2, and this tissue then transforms into cartilage-3. Each tissue is identified by physical characteristics of cell density, shape, and extracellular matrix composition. Tissue specific regimes of gene regulation underlie the diagnostic physical and chemical properties of these three tissues. These three tissue based regimes co-exist amid a background of other gene regulatory regimes within the same tissues and time-frame of limb development. The bio-molecular indicators of gene regulation reveal six identifiable patterns. Three of these patterns describe the unique bio-molecular indicators of each of the three tissues. A fourth pattern shares bio-molecular indicators between condensation and cartilage. Finally, a fifth pattern is composed of bio-molecular indicators that are found in undifferentiated mesenchyme prior to any condensation differentiation, then these bio-molecular indicators are upregulated in condensations and downregulated in undifferentiated mesenchyme. The undifferentiated mesenchyme that remains in between the condensations and cartilage, the interdigit, contains a unique set of bio-molecular indicators that exhibit dynamic behaviour during chondrogenesis and therefore argue for its own inclusion as a tissue in its own right and for more study into this process of differentiation.
Collapse
Affiliation(s)
- Donald A Fowler
- Redpath Museum, McGill University, 859 Sherbrooke St W, Montréal, QC, H3A 0C4, Canada; Department of Biology, McGill University, Stewart Biology Building, 1205 Docteur Penfield, Montréal, QC, H3A 1B1, Canada.
| | - Hans C E Larsson
- Redpath Museum, McGill University, 859 Sherbrooke St W, Montréal, QC, H3A 0C4, Canada.
| |
Collapse
|
8
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
9
|
Systemic Activation of Activin A Signaling Causes Chronic Kidney Disease-Mineral Bone Disorder. Int J Mol Sci 2018; 19:ijms19092490. [PMID: 30142896 PMCID: PMC6163495 DOI: 10.3390/ijms19092490] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 11/19/2022] Open
Abstract
The high cardiovascular mortality associated with chronic kidney disease (CKD) is caused in part by the CKD-mineral bone disorder (CKD-MBD) syndrome. The CKD-MBD consists of skeletal, vascular and cardiac pathology caused by metabolic derangements produced by kidney disease. The prevalence of osteopenia/osteoporosis resulting from the skeletal component of the CKD-MBD, renal osteodystrophy (ROD), in patients with CKD exceeds that of the general population and is a major public health concern. That CKD is associated with compromised bone health is widely accepted, yet the mechanisms underlying impaired bone metabolism in CKD are not fully understood. Therefore, clarification of the molecular mechanisms by which CKD produces ROD is of crucial significance. We have shown that activin A, a member of the transforming growth factor (TGF)-β super family, is an important positive regulator of receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis with Smad-mediated signaling being crucial for inducing osteoclast development and function. Recently, we have demonstrated systemic activation of activin receptors and activin A levels in CKD mouse models, such as diabetic CKD and Alport (AL) syndrome. In these CKD mouse models, bone remodeling caused by increased osteoclast numbers and activated osteoclastic bone resorption was observed and treatment with an activin receptor ligand trap repaired CKD-induced-osteoclastic bone resorption and stimulated individual osteoblastic bone formation, irrespective of parathyroid hormone (PTH) elevation. These findings have opened a new field for exploring mechanisms of activin A-enhanced osteoclast formation and function in CKD. Activin A appears to be a strong candidate for CKD-induced high-turnover ROD. Therefore, the treatment with the decoy receptor for activin A might be a good candidate for treatment for CKD-induced osteopenia or osteoporosis, indicating that the new findings from in these studies will lead to the identification of novel therapeutic targets for CKD-related and osteopenia and osteoporosis in general. In this review, we describe the impact of CKD-induced Smad signaling in osteoclasts, osteoblasts and vascular cells in CKD.
Collapse
|
10
|
Seo CH, Kwack MH, Kim MK, Kim JC, Sung YK. Activin A-induced signalling controls hair follicle neogenesis. Exp Dermatol 2017; 26:108-115. [DOI: 10.1111/exd.13234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Chang H. Seo
- Department of Immunology; School of Medicine; Kyungpook National University; Daegu Korea
| | - Mi H. Kwack
- Department of Immunology; School of Medicine; Kyungpook National University; Daegu Korea
| | - Moon K. Kim
- Department of Immunology; School of Medicine; Kyungpook National University; Daegu Korea
| | - Jung C. Kim
- Department of Immunology; School of Medicine; Kyungpook National University; Daegu Korea
| | - Young K. Sung
- Department of Immunology; School of Medicine; Kyungpook National University; Daegu Korea
| |
Collapse
|
11
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
12
|
Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond. Hum Reprod Update 2016; 22:342-57. [PMID: 26884470 DOI: 10.1093/humupd/dmv058] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/20/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Activins are members of the pleiotrophic family of the transforming growth factor-beta (TGF-β) superfamily of cytokines, initially isolated for their capacity to induce the release of FSH from pituitary extracts. Subsequent research has demonstrated that activins are involved in multiple biological functions including the control of inflammation, fibrosis, developmental biology and tumourigenesis. This review summarizes the current knowledge on the roles of activin in reproductive and developmental biology. It also discusses interesting advances in the field of modulating the bioactivity of activins as a therapeutic target, which would undoubtedly be beneficial for patients with reproductive pathology. METHODS A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies in the English language which have contributed to the advancement of the field of activin biology, since its initial isolation in 1987 until July 2015. 'Activin', 'testis', 'ovary', 'embryonic development' and 'therapeutic targets' were used as the keywords in combination with other search phrases relevant to the topic of activin biology. RESULTS Activins, which are dimers of inhibin β subunits, act via a classical TGF-β signalling pathway. The bioactivity of activin is regulated by two endogenous inhibitors, inhibin and follistatin. Activin is a major regulator of testicular and ovarian development. In the ovary, activin A promotes oocyte maturation and regulates granulosa cell steroidogenesis. It is also essential in endometrial repair following menstruation, decidualization and maintaining pregnancy. Dysregulation of the activin-follistatin-inhibin system leads to disorders of female reproduction and pregnancy, including polycystic ovary syndrome, ectopic pregnancy, miscarriage, fetal growth restriction, gestational diabetes, pre-eclampsia and pre-term birth. Moreover, a rise in serum activin A, accompanied by elevated FSH, is characteristic of female reproductive aging. In the male, activin A is an autocrine and paracrine modulator of germ cell development and Sertoli cell proliferation. Disruption of normal activin signalling is characteristic of many tumours affecting reproductive organs, including endometrial carcinoma, cervical cancer, testicular and ovarian cancer as well as prostate cancer. While activin A and B aid the progression of many tumours of the reproductive organs, activin C acts as a tumour suppressor. Activins are important in embryonic induction, morphogenesis of branched glandular organs, development of limbs and nervous system, craniofacial and dental development and morphogenesis of the Wolffian duct. CONCLUSIONS The field of activin biology has advanced considerably since its initial discovery as an FSH stimulating agent. Now, activin is well known as a growth factor and cytokine that regulates many aspects of reproductive biology, developmental biology and also inflammation and immunological mechanisms. Current research provides evidence for novel roles of activins in maintaining the structure and function of reproductive and other organ systems. The fact that activin A is elevated both locally as well as systemically in major disorders of the reproductive system makes it an important biomarker. Given the established role of activin A as a pro-inflammatory and pro-fibrotic agent, studies of its involvement in disorders of reproduction resulting from these processes should be examined. Follistatin, as a key regulator of the biological actions of activin, should be evaluated as a therapeutic agent in conditions where activin A overexpression is established as a contributing factor.
Collapse
Affiliation(s)
- R Wijayarathna
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31, Wright Street, Clayton, VIC 3168, Australia
| | - D M de Kretser
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31, Wright Street, Clayton, VIC 3168, Australia
| |
Collapse
|
13
|
Molecular Control of Interdigital Cell Death and Cell Differentiation by Retinoic Acid during Digit Development. J Dev Biol 2014. [DOI: 10.3390/jdb2020138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Leddy HA, McNulty AL, Lee SH, Rothfusz NE, Gloss B, Kirby ML, Hutson MR, Cohn DH, Guilak F, Liedtke W. Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations. FASEB J 2014; 28:2525-37. [PMID: 24577120 DOI: 10.1096/fj.13-245936] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Point mutations in the calcium-permeable TRPV4 ion channel have been identified as the cause of autosomal-dominant human motor neuropathies, arthropathies, and skeletal malformations of varying severity. The objective of this study was to determine the mechanism by which TRPV4 channelopathy mutations cause skeletal dysplasia. The human TRPV4(V620I) channelopathy mutation was transfected into primary porcine chondrocytes and caused significant (2.6-fold) up-regulation of follistatin (FST) expression levels. Pore altering mutations that prevent calcium influx through the channel prevented significant FST up-regulation (1.1-fold). We generated a mouse model of the TRPV4(V620I) mutation, and found significant skeletal deformities (e.g., shortening of tibiae and digits, similar to the human disease brachyolmia) and increases in Fst/TRPV4 mRNA levels (2.8-fold). FST was significantly up-regulated in primary chondrocytes transfected with 3 different dysplasia-causing TRPV4 mutations (2- to 2.3-fold), but was not affected by an arthropathy mutation (1.1-fold). Furthermore, FST-loaded microbeads decreased bone ossification in developing chick femora (6%) and tibiae (11%). FST gene and protein levels were also increased 4-fold in human chondrocytes from an individual natively expressing the TRPV4(T89I) mutation. Taken together, these data strongly support that up-regulation of FST in chondrocytes by skeletal dysplasia-inducing TRPV4 mutations contributes to disease pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniel H Cohn
- Department of Molecular, Cell, and Developmental Biology and Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California at Los Angeles, Los Angeles, California, USA
| | | | - Wolfgang Liedtke
- Department of Neurology, Duke University Clinics for Pain and Palliative Care, Duke University Medical Center, Durham, North Carolina, USA; and
| |
Collapse
|
15
|
Lorda-Diez CI, Montero JA, Garcia-Porrero JA, Hurle JM. Divergent differentiation of skeletal progenitors into cartilage and tendon: lessons from the embryonic limb. ACS Chem Biol 2014; 9:72-9. [PMID: 24228739 DOI: 10.1021/cb400713v] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Repairing damaged cartilage and tendons is a major challenge of regenerative medicine. There has been great progress in the past decade toward obtaining stem cells for regenerative purposes from a variety of sources. However, the development of procedures to direct and maintain the differentiation of progenitors into cartilage or tendon is still a hurdle to overcome in regenerative medicine of the musculoskeletal system. This is because connective tissues often lack stable phenotypes and retain plasticity to return to the initial stages of differentiation or to transdifferentiate into another connective tissue cell lineage. This makes it necessary to unravel the molecular basis that is responsible for the differentiation of connective tissue cell lineages. In this review, we summarize the investigations performed in the past two decades to unravel the signals that regulate the differentiation of skeletal cell progenitors into cartilage and tendons during embryonic limb development. The data obtained in those studies demonstrate that Tgfβ, BMP, FGF, and Wnt establish a complex signaling network that directs the differentiation of skeletal cell progenitors. Remarkably, in the embryonic digit model, the divergent differentiation of progenitors depends on the temporal coordination of those signals, rather than being specified by an individual signaling pathway. Due to its potential medical relevance, we highlight the importance of the coordinate influence of the Tgfβ and BMP pathways in the differentiation of cell progenitors into tendon or cartilage.
Collapse
Affiliation(s)
- Carlos I. Lorda-Diez
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| | - Juan A. Montero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| | - Juan A. Garcia-Porrero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| |
Collapse
|
16
|
Esquivies L, Blackler A, Peran M, Rodriguez-Esteban C, Izpisua Belmonte JC, Booker E, Gray PC, Ahn C, Kwiatkowski W, Choe S. Designer nodal/BMP2 chimeras mimic nodal signaling, promote chondrogenesis, and reveal a BMP2-like structure. J Biol Chem 2013; 289:1788-97. [PMID: 24311780 DOI: 10.1074/jbc.m113.529180] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nodal, a member of the TGF-β superfamily, plays an important role in vertebrate and invertebrate early development. The biochemical study of Nodal and its signaling pathway has been a challenge, mainly because of difficulties in producing the protein in sufficient quantities. We have developed a library of stable, chemically refoldable Nodal/BMP2 chimeric ligands (NB2 library). Three chimeras, named NB250, NB260, and NB264, show Nodal-like signaling properties including dependence on the co-receptor Cripto and activation of the Smad2 pathway. NB250, like Nodal, alters heart looping during the establishment of embryonic left-right asymmetry, and both NB250 and NB260, as well as Nodal, induce chondrogenic differentiation of human adipose-derived stem cells. This Nodal-induced differentiation is shown to be more efficient than BPM2-induced differentiation. Interestingly, the crystal structure of NB250 shows a backbone scaffold similar to that of BMP2. Our results show that these chimeric ligands may have therapeutic implications in cartilage injuries.
Collapse
|
17
|
Sensiate LA, Sobreira DR, Da Veiga FC, Peterlini DJ, Pedrosa AV, Rirsch T, Joazeiro PP, Schubert FR, Collares-Buzato CB, Xavier-Neto J, Dietrich S, Alvares LE. Dact gene expression profiles suggest a role for this gene family in integrating Wnt and TGF-β signaling pathways during chicken limb development. Dev Dyn 2013; 243:428-39. [DOI: 10.1002/dvdy.23948] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/20/2012] [Accepted: 01/27/2013] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Débora R. Sobreira
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
- Institute of Biomedical and Biomolecular Science, University of Portsmouth; Portsmouth United Kingdom
| | | | | | | | - Thaís Rirsch
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
| | - Paulo Pinto Joazeiro
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
| | - Frank R. Schubert
- Institute of Biomedical and Biomolecular Science, University of Portsmouth; Portsmouth United Kingdom
| | | | | | - Susanne Dietrich
- Institute of Biomedical and Biomolecular Science, University of Portsmouth; Portsmouth United Kingdom
| | - Lúcia Elvira Alvares
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
| |
Collapse
|
18
|
Lorda-Diez CI, Montero JA, Rodriguez-Leon J, Garcia-Porrero JA, Hurle JM. Expression and functional study of extracellular BMP antagonists during the morphogenesis of the digits and their associated connective tissues. PLoS One 2013; 8:e60423. [PMID: 23573253 PMCID: PMC3616094 DOI: 10.1371/journal.pone.0060423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/26/2013] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study is to gain insight into the role of BMP signaling in the diversification of the embryonic limb mesodermal progenitors destined to form cartilage, joints, and tendons. Given the importance of extracellular BMP modulators in in vivo systems, we performed a systematic search of those expressed in the developing autopod during the formation of the digits. Here, we monitored the expression of extracellular BMP modulators including: Noggin, Chordin, Chordin-like 1, Chordin-like 2, Twisted gastrulation, Dan, BMPER, Sost, Sostdc1, Follistatin, Follistatin-like 1, Follistatin-like 5 and Tolloid. These factors show differential expression domains in cartilage, joints and tendons. Furthermore, they are induced in specific temporal patterns during the formation of an ectopic extra digit, preceding the appearance of changes that are identifiable by conventional histology. The analysis of gene regulation, cell proliferation and cell death that are induced by these factors in high density cultures of digit progenitors provides evidence of functional specialization in the control of mesodermal differentiation but not in cell proliferation or apoptosis. We further show that the expression of these factors is differentially controlled by the distinct signaling pathways acting in the developing limb at the stages covered by this study. In addition, our results provide evidence suggesting that TWISTED GASTRULATION cooperates with CHORDINS, BMPER, and NOGGIN in the establishment of tendons or cartilage in a fashion that is dependent on the presence or absence of TOLLOID.
Collapse
Affiliation(s)
- Carlos I. Lorda-Diez
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | - Juan A. Montero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | | | - Juan A. Garcia-Porrero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
- * E-mail:
| |
Collapse
|
19
|
Bénazet JD, Pignatti E, Nugent A, Unal E, Laurent F, Zeller R. Smad4 is required to induce digit ray primordia and to initiate the aggregation and differentiation of chondrogenic progenitors in mouse limb buds. Development 2012; 139:4250-60. [PMID: 23034633 DOI: 10.1242/dev.084822] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SMAD4 is an essential mediator of canonical TGFβ/BMP signal transduction and we inactivated Smad4 in mouse limb buds from early stages onward to study its functions in the mesenchyme. While this Smad4 inactivation did not alter the early Sox9 distribution, prefiguring the chondrogenic primordia of the stylopod and zeugopod, it disrupted formation of all Sox9-positive digit ray primordia. Specific inactivation of Smad4 during handplate development pointed to its differential requirement for posterior and anterior digit ray primordia. At the cellular level, Smad4 deficiency blocked the aggregation of Sox9-positive progenitors, thereby preventing chondrogenic differentiation as revealed by absence of collagen type II. The progressive loss of SOX9 due to disrupting digit ray primordia and chondrogenesis was paralleled by alterations in genes marking other lineages. This pointed to a general loss of tissue organization and diversion of mutant cells toward non-specific connective tissue. Conditional inactivation of Bmp2 and Bmp4 indicated that the loss of digit ray primordia and increase in connective tissue were predominantly a consequence of disrupting SMAD4-mediated BMP signal transduction. In summary, our analysis reveals that SMAD4 is required to initiate: (1) formation of the Sox9-positive digit ray primordia; and (2) aggregation and chondrogenic differentiation of all limb skeletal elements.
Collapse
Affiliation(s)
- Jean-Denis Bénazet
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Fiems LO. Double Muscling in Cattle: Genes, Husbandry, Carcasses and Meat. Animals (Basel) 2012; 2:472-506. [PMID: 26487034 PMCID: PMC4494293 DOI: 10.3390/ani2030472] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 12/20/2022] Open
Abstract
Molecular biology has enabled the identification of the mechanisms whereby inactive myostatin increases skeletal muscle growth in double-muscled (DM) animals. Myostatin is a secreted growth differentiation factor belonging to the transforming growth factor-β superfamily. Mutations make the myostatin gene inactive, resulting in muscle hypertrophy. The relationship between the different characteristics of DM cattle are defined with possible consequences for livestock husbandry. The extremely high carcass yield of DM animals coincides with a reduction in the size of most vital organs. As a consequence, DM animals may be more susceptible to respiratory disease, urolithiasis, lameness, nutritional stress, heat stress and dystocia, resulting in a lower robustness. Their feed intake capacity is reduced, necessitating a diet with a greater nutrient density. The modified myofiber type is responsible for a lower capillary density, and it induces a more glycolytic metabolism. There are associated changes for the living animal and post-mortem metabolism alterations, requiring appropriate slaughter conditions to maintain a high meat quality. Intramuscular fat content is low, and it is characterized by more unsaturated fatty acids, providing healthier meat for the consumer. It may not always be easy to find a balance between the different disciplines underlying the livestock husbandry of DM animals to realize a good performance and health and meat quality.
Collapse
Affiliation(s)
- Leo O Fiems
- Animal Sciences Unit, The Institute for Agricultural and Fisheries Research (ILVO), Scheldeweg 68, B-9090 Melle, Belgium.
| |
Collapse
|
21
|
Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb. PLoS One 2011; 6:e24546. [PMID: 21931747 PMCID: PMC3172225 DOI: 10.1371/journal.pone.0024546] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/12/2011] [Indexed: 12/12/2022] Open
Abstract
The characterization of genes involved in the formation of cartilage is of key importance to improve cell-based cartilage regenerative therapies. Here, we have developed a suitable experimental model to identify precocious chondrogenic events in vivo by inducing an ectopic digit in the developing embryo. In this model, only 12 hr after the implantation of a Tgfβ bead, in the absence of increased cell proliferation, cartilage forms in undifferentiated interdigital mesoderm and in the course of development, becomes a structurally and morphologically normal digit. Systematic quantitative PCR expression analysis, together with other experimental approaches allowed us to establish 3 successive periods preceding the formation of cartilage. The “pre-condensation stage”, occurring within the first 3 hr of treatment, is characterized by the activation of connective tissue identity transcriptional factors (such as Sox9 and Scleraxis) and secreted factors (such as Activin A and the matricellular proteins CCN-1 and CCN-2) and the downregulation of the galectin CG-8. Next, the “condensation stage” is characterized by intense activation of Smad 1/5/8 BMP-signaling and increased expression of extracellular matrix components. During this period, the CCN matricellular proteins promote the expression of extracellular matrix and cell adhesion components. The third period, designated the “pre-cartilage period”, precedes the formation of molecularly identifiable cartilage by 2–3 hr and is characterized by the intensification of Sox 9 gene expression, along with the stimulation of other pro-chondrogenic transcription factors, such as HifIa. In summary, this work establishes a temporal hierarchy in the regulation of pro-chondrogenic genes preceding cartilage differentiation and provides new insights into the relative roles of secreted factors and cytoskeletal regulators that direct the first steps of this process in vivo.
Collapse
|
22
|
Chimal-Monroy J, Abarca-Buis RF, Cuervo R, Díaz-Hernández M, Bustamante M, Rios-Flores JA, Romero-Suárez S, Farrera-Hernández A. Molecular control of cell differentiation and programmed cell death during digit development. IUBMB Life 2011; 63:922-9. [PMID: 21901820 DOI: 10.1002/iub.563] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/18/2011] [Indexed: 12/14/2022]
Abstract
During the hand plate development, the processes of cell differentiation and control of cell death are relevant to ensure a correct shape of the limb. The progenitor cell pool that later will differentiate into cartilage to form the digits arises from undifferentiated mesenchymal cells beneath the apical ectodermal ridge (AER). Once these cells abandon the area of influence of signals from AER and ectoderm, some cells are committed to chondrocyte lineage forming the digital rays. However, if the cells are not committed to chondrocyte lineage, they will form the prospective interdigits that in species with free digits will subsequently die. In this work, we provide the overview of the molecular interactions between different signaling pathways responsible for the formation of digit and interdigit regions. In addition, we briefly describe some experiments concerning the most important signals responsible for promoting cell death. Finally, on the basis that the interdigital tissue has chondrogenic potential, we discuss the hypothesis that apoptotic-promoting signals might also act as antichondrogenic factors and chondrogenic factors might operate as anti-apoptotic factors.
Collapse
Affiliation(s)
- Jesús Chimal-Monroy
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Ciudad Universitaria. Apartado Postal 70228. México.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Conditional activin receptor type 1B (Acvr1b) knockout mice reveal hair loss abnormality. J Invest Dermatol 2010; 131:1067-76. [PMID: 21191412 DOI: 10.1038/jid.2010.400] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The in vivo functions of the activin A receptor type 1b (Acvr1b) have been difficult to study because Acvr1b(-/-) mice die during embryogenesis. To investigate the roles of Acvr1b in the epithelial tissues, we created mice with a conditional disruption of Acvr1b (Acvr1b(flox/flox)) and crossed them with K14-Cre mice. Acvr1b(flox/flox); K14-Cre mice displayed various degrees of hairlessness at postnatal day 5, and the phenotype is exacerbated by age. Histological analyses showed that those hair follicles that developed during morphogenesis were later disrupted by delays in hair cycle reentry. Failure in cycling of the hair follicles and regrowth of the hair shaft and the inner root sheath resulted in subsequent severe hair loss. Apart from previous reports of other members of the transforming growth factor-β/activin/bone morphogenic protein pathways, we demonstrate a specialized role for Acvr1b in hair cycling in addition to hair follicle development. Acvr1b(flox/flox); K14-Cre mice also had a thicker epidermis than did wild-type mice, which resulted from persistent proliferation of skin epithelial cells; however, no tumor formation was observed by 18 months of age. Our analysis of this Acvr1b knockout mouse line provides direct genetic evidence that Acvr1b signaling is required for both hair follicle development and cycling.
Collapse
|
24
|
Karamboulas K, Dranse HJ, Underhill TM. Regulation of BMP-dependent chondrogenesis in early limb mesenchyme by TGFbeta signals. J Cell Sci 2010; 123:2068-76. [PMID: 20501701 DOI: 10.1242/jcs.062901] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the developing axial skeleton, sequential sonic hedgehog (SHH) and bone morphogenetic protein (BMP) signals are required for specification of a chondrogenic fate in presomitic tissue. A similar paradigm is thought to operate in the limb, but the signals involved are unclear. To investigate the nature of these signals, we examined BMP action in mesenchymal populations derived from the early murine limb bud (approximately embryonic day 10.5). These populations exhibited a graded response to BMPs, in which early limb mesenchymal cells (from the distal hind limb) displayed an anti-chondrogenic response, whereas BMPs promoted chondrogenesis in more mature cell populations (from the proximal fore limb). Under these conditions, multiple Gata genes were induced by BMPs and the extent of induction correlated with BMP anti-chondrogenic activity. A screen of limb-bud-expressed ligands revealed that prior short-term exposure to transforming growth factor beta1 (TGFbeta1) ameliorated the anti-chondrogenic response to BMP. Furthermore, brief activation of the TGFbeta pathway was found to be necessary for subsequent induction of chondrogenesis by BMPs. Our findings indicate that, similar to axial skeletogenesis, induction of chondrogenesis in the appendicular skeleton is a two-step process. However, the programs differ in the transient signals driving chondrogenic responsiveness to BMPs, with SHH operating in the former and TGFbeta activation in the latter.
Collapse
|
25
|
Harkness L, Taipaleenmaki H, Mahmood A, Frandsen U, Saamanen AM, Kassem M, Abdallah BM. Isolation and Differentiation of Chondrocytic Cells Derived from Human Embryonic Stem Cells Using dlk1/FA1 as a Novel Surface Marker. Stem Cell Rev Rep 2009; 5:353-68. [DOI: 10.1007/s12015-009-9099-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
David D, Marques B, Ferreira C, Vieira P, Corona-Rivera A, Ferreira JC, van Bokhoven H. Characterization of two ectrodactyly-associated translocation breakpoints separated by 2.5 Mb on chromosome 2q14.1-q14.2. Eur J Hum Genet 2009; 17:1024-33. [PMID: 19223936 DOI: 10.1038/ejhg.2009.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Split hand-split foot malformation or ectrodactyly is a heterogeneous congenital defect of digit formation. The aim of this study is the mapping of the breakpoints and a detailed molecular characterization of the candidate genes for an isolated and syndromic form of ectrodactyly, both associated with de novo apparently balanced chromosome translocations involving the same chromosome 2 band, [t(2;11)(q14.2;q14.2)] and [t(2;4)(q14.1;q35)], respectively. Breakpoints were mapped by fluorescence in situ hybridization using bacterial artificial chromosome clones. Where possible, these breakpoints were further delimited. Candidate genes were screened for pathogenic mutations and the expression levels of two of them analysed. The isolated bilateral split foot malformation-associated chromosome 2 breakpoint was localized at 120.9 Mb, between the two main candidate genes, encoding GLI-Kruppel family member GLI2 and inhibin-betaB. The second breakpoint associated with holoprosencephaly, hypertelorism and ectrodactyly syndrome was mapped 2.5 Mb proximal at 118.4 Mb and the candidate genes identified from this region were the insulin-induced protein 2 and the homeobox protein engrailed-1. No clear pathogenic mutations were identified in any of these genes. The breakpoint between INHBB and GLI2 coincides with a previously identified translocation breakpoint associated with ectrodactyly. We propose a mechanism by which translocations in the 2q14.1-q14.2 region disrupt the specific arrangement of long-range regulatory elements that control the tight quantitative spatiotemporal expression of one or more genes from the breakpoint region.
Collapse
Affiliation(s)
- Dezso David
- Department of Genetics, National Institute of Health Dr Ricardo Jorge, Lisboa, Portugal.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gamer LW, Ho V, Cox K, Rosen V. Expression and function of BMP3 during chick limb development. Dev Dyn 2008; 237:1691-8. [PMID: 18489005 DOI: 10.1002/dvdy.21561] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) play diverse roles in many aspects of skeletal development and bone homeostasis. During endochondral ossification, tight regulation of BMP activity is required to assure proper survival, proliferation and differentiation of skeletal progenitor cells into chondrocytes and osteoblasts. BMP3, a structurally divergent member of the BMP family, acts as a negative regulator of bone formation by limiting BMP signal transduction. In this study, we focus on the chick limb where we find BMP3 has a unique localization pattern with strong expression in the developing perichondrium. Overexpression of BMP3 in chick wing bud at the onset of chondrogenesis, using replication competent retrovirus, reduces BMP signaling leading to increased cell proliferation and delayed cell differentiation, resulting in expanded skeletal elements and joint fusions. Our results suggest that BMP3 expression in the perichondrium may serve to regulate cartilage cell proliferation by modulating the levels of BMP signaling, thus ensuring proper endochondral ossification.
Collapse
Affiliation(s)
- Laura W Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
28
|
Montero JA, Lorda-Diez CI, Gañan Y, Macias D, Hurle JM. Activin/TGFbeta and BMP crosstalk determines digit chondrogenesis. Dev Biol 2008; 321:343-56. [PMID: 18602912 DOI: 10.1016/j.ydbio.2008.06.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 06/05/2008] [Accepted: 06/11/2008] [Indexed: 12/13/2022]
Abstract
The progress zone (PZ) is a specialized area at the distal margin of the developing limb where mesodermal cells are kept in proliferation and undifferentiated, allowing limb outgrowth. At stages of digit morphogenesis the PZ cells can undergo two possible fates, either aggregate initiating chondrogenic differentiation to configure the digit blastemas, or to die by apoptosis if they are incorporated in the interdigital mesenchyme. While both processes are controlled by bone morphogenetic proteins (BMPs) the molecular basis for such contrasting differential behavior of the autopodial mesoderm remains unknown. Here we show that a well-defined crescent domain of high BMP activity located at the tip of the forming digits, which we termed the digit crescent (DC), directs incorporation and differentiation of the PZ mesenchymal cells into the digit aggregates. The presence of this domain does not correlate with an exclusive expression domain of BMP receptors and its abrogation by surgical approaches or by local application of BMP antagonists is followed by digit truncation and cell death. We further show that establishment of the DC is directed by Activin/TGFbeta signaling, which inhibits Smad 6 and Bambi, two specific BMP antagonists expressed in the interdigits and progress zone mesoderm. The interaction between Activin/TGFbeta and BMP pathways at the level of DC promotes the expression of the chondrogenic factor SOX9 accompanied by a local decrease in cell proliferation. Characteristically, the DC domain is asymmetric, it being extended towards the posterior interdigit. The presence of the DC is transitorily dependent of the adjacent posterior interdigit and its maintenance requires also the integrity of the AER.
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander 39011, Spain
| | | | | | | | | |
Collapse
|
29
|
Rolian C. Developmental basis of limb length in rodents: evidence for multiple divisions of labor in mechanisms of endochondral bone growth. Evol Dev 2008; 10:15-28. [PMID: 18184354 DOI: 10.1111/j.1525-142x.2008.00211.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammals are remarkably diverse in limb lengths and proportions, but the number and kind of developmental mechanisms that contribute to length differences between limb bones remain largely unknown. Intra- and interspecific differences in bone length could result from variations in the cellular processes of endochondral bone growth, creating differences in rates of chondrocyte proliferation or hypertrophy, variation in the shape and size of chondrocytes, differences in the number of chondrocytes in precursor populations and throughout growth, or a combination of these mechanisms. To address these questions, this study compared cellular mechanisms of endochondral bone growth in cross-sectional ontogenetic series of the appendicular skeleton of two rodent species: the mouse (Mus musculus) and Mongolian gerbil (Meriones unguiculatus). Results indicate that multiple cellular processes of endochondral bone growth contribute to phenotypic differences in limb bone length. The data also suggest that separate developmental processes contribute to intraspecific length differences in proximal versus distal limb bones, and that these proximo-distal mechanisms are distinct from mechanisms that contribute to interspecific differences in limb bone length related to body size. These developmental "divisions of labor" are hypothesized to be important features of vertebrate limb development that allow (1) morphology in the autopods to evolve independently of the proximal limb skeleton, and (2) adaptive changes in limb proportions related to locomotion to evolve independently of evolutionary changes in body size.
Collapse
Affiliation(s)
- Campbell Rolian
- Department of Anthropology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
30
|
Abstract
Digit formation is the last step in the skeletal patterning of developing limbs. This process involves important aspects such as determination of chondrogenic versus interdigital areas; growth of digital rays with periodic segmentation to form joints and thus phalanges, and finally tip formation. Traditionally it was believed that the properties of digital rays were fixed at earlier stages, but recently a surprising plasticity of digit primordia at the time of condensation has been demonstrated. This implies the presence of local interactions that are able to modulate the particular programs that make a given digit, but we don't fully understand how they operate. An involvement of signaling from the interdigital spaces and from the apical ectodermal ridge has been proposed. Another interesting question is the formation of the last limb structure, digit tips, which may involve a specific molecular and cellular program. Indeed, the expression of several developmentally important genes is restricted to digit tips at late stages of limb development. Understanding the molecular and cellular interactions that lead to digit morphogenesis has important implications not only in the context of embryonic development (for example, how early cues received by cells are translated into anatomy or what are the mechanisms that control the cease of activity of signaling regions) but also in terms of limb diversification during evolution.
Collapse
Affiliation(s)
- Jesús C Casanova
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, CSIC, Darwin, 3, 28049 Madrid, Spain
| | | |
Collapse
|
31
|
Babbs C, Heller R, Everman DB, Crocker M, Twigg SRF, Schwartz CE, Giele H, Wilkie AOM. A new locus for split hand/foot malformation with long bone deficiency (SHFLD) at 2q14.2 identified from a chromosome translocation. Hum Genet 2007; 122:191-9. [PMID: 17569090 DOI: 10.1007/s00439-007-0390-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Split hand/foot malformation (SHFM) with long bone deficiency (SHFLD) is a distinct entity in the spectrum of ectrodactylous limb malformations characterised by associated tibial a/hypoplasia. Pedigrees with multiple individuals affected by SHFLD often include non-penetrant intermediate relatives, making genetic mapping difficult. Here we report a sporadic patient with SHFLD who carries a de novo chromosomal translocation t(2;18)(q14.2;p11.2). Characterisation of the breakpoints revealed that neither disrupts any known gene; however, the chromosome 2 breakpoint lies between GLI2 and INHBB, two genes known to be involved in limb development. To investigate whether mutation of a gene in proximity to the chromosome 2 breakpoint underlies the SHFLD, we sought independent evidence of mutations in GLI2, INHBB and two other genes (RALB and FLJ14816) in 44 unrelated patients with SHFM, SHFLD or isolated long bone deficiency. No convincing pathogenic mutations were found, raising the possibility that a long-range cis acting regulatory element may be disrupted by this translocation. The previous description of a translocation with a 2q14.2 breakpoint associated with ectrodactyly, and the mapping of the ectrodactylous Dominant hemimelia mouse mutation to a region of homologous synteny, suggests that 2q14.2 represents a novel locus for SHFLD.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Base Sequence
- Blotting, Southern
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- Chromosomes, Human, Pair 2/genetics
- Computational Biology
- DNA Mutational Analysis
- DNA Primers/genetics
- Foot Deformities, Congenital/genetics
- Foot Deformities, Congenital/pathology
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/pathology
- Humans
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Tibia/abnormalities
- Tibia/pathology
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Christian Babbs
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Chondrogenesis is a key process in skeletogenesis since endochondral ossification requires the formation of a cartilaginous template. Knowledge of molecular mechanisms regulating chondrogenesis is extremely valuable not only to understand many human disorders but also in regenerative medicine. Embryonic skeletogenesis is an excellent model to study this mechanism. Most cartilages share the cellular basis underlying chondrogenesis but the high heterogeneity in morphologies of the different skeletal elements appears to be generated by differential participation of a variety of chondrogenic signals. Here we overview the regulatory factors responsible for chondrogenesis concluding that early chondrogenic signals for the digit cartilages differ from those implicated in the formation of other axial and appendicular skeletal components.
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
| | | |
Collapse
|
33
|
Montero JA, Zuzarte-Luis V, Garcia-Martinez V, Hurle JM. Role of RhoC in digit morphogenesis during limb development. Dev Biol 2006; 303:325-35. [PMID: 17208217 DOI: 10.1016/j.ydbio.2006.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 11/08/2006] [Accepted: 11/10/2006] [Indexed: 11/30/2022]
Abstract
Here we report a new role for the small GTPase RhoC in the control of limb chondrogenesis. Expression of rhoC is a precocious marker of the zeugopodial and digit blastemas and is induced by treatments with TGFbetas preceding the formation of ectopic digits. As development progresses, expression of rhoC outlines the growing distal tip of the digits, and marks the regions of interphalangeal joint formation. Functional experiments show that RhoC is a negative regulator of chondrogenesis, which controls digit outgrowth and joint segmentation. These functions appear to be mediated by reorganization of the actin cytoskeleton and modification of the adhesive properties of the mesenchymal cells.
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, C/Cardenal Herrera Oria s/n, Santander 39011, Spain.
| | | | | | | |
Collapse
|
34
|
Zuzarte-Luis V, Berciano MT, Lafarga M, Hurlé JM. Caspase redundancy and release of mitochondrial apoptotic factors characterize interdigital apoptosis. Apoptosis 2006; 11:701-15. [PMID: 16532376 DOI: 10.1007/s10495-006-5481-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we show a detailed analysis of cellular and molecular events during in vivo apoptotic cell death in the INZs (interdigital necrotic zones) of the embryonic limb. As the apoptotic mechanisms proceed, the transcriptionally active chromatin and nuclear traffic of RNAs are disrupted, cytoskeletal components are disorganized and the adhesive properties of cells are compromised as Paxillin, a clue member of the focal adhesion complex, decreases in early apoptotic cells. Activation of effector caspases 3 and 7 follow nuclear degradation. In addition, active caspase2 is localized in the nuclei and cytoplasm of early apoptotic cells suggesting a major role in physiological conditions supported by its down-regulation in tissue survival experiments. However in caspase 2 siRNA assays we observed translocation of caspase 3 to the nuclei suggesting functional redundancy. We also observed release of cytochrome c and AIF from the mitochondria, and interestingly AIF becomes intranuclear in a caspase independent manner.
Collapse
Affiliation(s)
- V Zuzarte-Luis
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander 39011, Spain
| | | | | | | |
Collapse
|
35
|
Licona P, Chimal-Monroy J, Soldevila G. Inhibins are the major activin ligands expressed during early thymocyte development. Dev Dyn 2006; 235:1124-32. [PMID: 16477644 DOI: 10.1002/dvdy.20707] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Activins are members of the transforming growth factor-beta (TGFbeta) superfamily, which regulate cell differentiation processes. Here we report the first quantitative analysis of the expression of Activin/Inhibin ligands, type I and II receptors, as well as Smad proteins in fetal (E14-E16) and adult thymic subpopulations. Our data showed that Alk4, ActRIIA, ActRIIB, and Smads 2, 3, and 4, are expressed in fetal thymus (E14 > E15 > E16) and in thymocytes from adult mice (mostly in the double negative [DN] subpopulation). Ligand expression analysis showed that betaA, betaB, and alpha subunits were mainly detected in thymic stromal cells. Interestingly, alpha subunits were expressed at much higher levels compared to betaA and betaB subunits, demonstrating for the first time the potential role of Inhibins as important mediators during early T cell development. Our data indicate that Activin/Inhibin signaling could regulate the process of thymus organogenesis and early thymocyte differentiation, as it has been demonstrated for other members of the TGF-beta superfamily.
Collapse
Affiliation(s)
- Paula Licona
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, México DF-04510
| | | | | |
Collapse
|
36
|
Hoshino A, Koide M, Ono T, Yasugi S. Sex-specific and left-right asymmetric expression pattern of Bmp7 in the gonad of normal and sex-reversed chicken embryos. Dev Growth Differ 2005; 47:65-74. [PMID: 15771626 DOI: 10.1111/j.1440-169x.2004.00783.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A genetic switch determines whether the indifferent gonad develops into an ovary or a testis. In adult females of many avian species, the left ovary is functional while the right one regresses. In the embryo, bone morphogenetic proteins (BMP) mediate biological effects in many organ developments but their roles in avian sex determination and gonadal differentiation remains largely unknown. Here, we report the sex-specific and left-right (L-R) asymmetric expression pattern of Bmp7 in the chicken gonadogenesis. Bmp7 was L-R asymmetrically expressed at the beginning of genital ridge formation. After sexual differentiation occurred, sex-specific expression pattern of Bmp7 was observed in the ovary mesenchyme. In addition, ovary-specific Bmp7 expression was reduced in experimentally induced female-to-male reversal using the aromatase inhibitor (AI). These dynamic changes of expression pattern of Bmp7 in the gonad with or without AI treatment suggest that BMP may play roles in determination of L-R asymmetric development and sex-dependent differentiation in the avian gonadogenesis.
Collapse
Affiliation(s)
- Anshin Hoshino
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | |
Collapse
|
37
|
Abstract
The developing limb bud provides one of the best examples in which programmed cell death exerts major morphogenetic functions. In this work, we revise the distribution and the developmental significance of cell death in the embryonic vertebrate limb and its control by the BMP signalling pathway. In addition, paying special attention to the interdigital apoptotic zones, we review current data concerning the intracellular death machinery implicated in mesodermal limb apoptosis.
Collapse
Affiliation(s)
- Vanessa Zuzarte-Luis
- Departamento de Anatomia y Biologia Celular, Universidad de Cantabria, C/Cardenal Herrera Oria, s/n, 39011 Santander, Cantabria, Spain
| | | |
Collapse
|
38
|
Thompson TB, Cook RW, Chapman SC, Jardetzky TS, Woodruff TK. Beta A versus beta B: is it merely a matter of expression? Mol Cell Endocrinol 2004; 225:9-17. [PMID: 15451562 DOI: 10.1016/j.mce.2004.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Activins are members of the transforming growth factor (TGF) beta (beta) superfamily of proteins that function in a wide array of physiological processes. Like other TGFbeta ligands, activins are biologically active as dimers. An activin molecule is comprised of two beta-subunits, of which four isoforms have been identified: betaA, betaB, betaC, and betaE. The most widely studied activins to date are activin A (betaA/betaA), activin B (betaB/betaB), and activin AB (betaA/betaB). Inhibin is a naturally occurring activin antagonist that consists of an alpha-subunit disulfide-linked to one of the activin beta-subunits, producing inhibin A (alpha/betaA), or inhibin B (alpha/betaB). The development of assays distinguishing between different forms of activins and inhibins, along with knock-in and knock-out models, have provided evidence that the betaA- and betaB-subunits have independent and separate roles physiologically. Additionally, evaluation of ligand-receptor interactions indicates significant differences in receptor affinity between activin isoforms, as well as between inhibin isoforms. In this review we explore the differences between activin/inhibin betaA- and betaB-subunits, including expression patterns, binding properties, and the specific structural aspects of each. From the growing pool of knowledge regarding activins and inhibins, the emerging data support the hypothesis that betaA- and betaB-subunits are functionally differently.
Collapse
Affiliation(s)
- Thomas B Thompson
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, O.T. Hogan 4-150, 2205 Tech Drive, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
39
|
Sanz-Ezquerro JJ, Tickle C. Fgf signaling controls the number of phalanges and tip formation in developing digits. Curr Biol 2004; 13:1830-6. [PMID: 14561411 DOI: 10.1016/j.cub.2003.09.040] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tetrapods have two pairs of limbs, each typically with five digits, each of which has a defined number of phalanges derived from an archetypal formula. Much progress has been made in understanding vertebrate limb initiation and the patterning processes that determine digit number in developing limb buds, but little is known about how phalange number is controlled. We and others previously showed that an additional phalange can be induced in a chick toe if sonic hedgehog protein is applied in between developing digit primordia. Here we show that formation of an additional phalange is associated with prolonged Fgf8 expression in the overlying apical ridge and that an Fgf Receptor inhibitor blocks its formation. The additional phalange is produced by elongation and segmentation of the penultimate phalange, suggesting that the digit tip forms when Fgf signaling ceases by a special mechanism, possibly involving Wnt signaling. Consistent with this, Fgfs inhibit tip formation whereas attenuation of Fgf signaling induces tip formation prematurely. We propose that duration of Fgf signaling from the ridge, responsible for elongation of digit primordia, coupled with a characteristic periodicity of joint formation, generates the appropriate number of phalanges in each digit. We also propose that the process that generates the digit tips is independent of that which generates more proximal phalanges. This has implications for understanding human limb congenital malformations and evolution of digit diversity.
Collapse
Affiliation(s)
- Juan José Sanz-Ezquerro
- Division of Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Building/Medical Sciences Institute complex, University of Dundee, Dow Street, DD1 5EH, Dundee, United Kingdom.
| | | |
Collapse
|
40
|
Abstract
Syndactyly is a congenital anomaly of the hand that is more common in males, is present bilaterally in 50% of affected patients, and often is associated with other musculoskeletal malformations or systemic syndromes. The goal of syndactyly release is to create a functional hand with the fewest surgical procedures while minimizing complications. For simple syndactyly, surgical reconstruction can begin at approximately 6 months, although many surgeons prefer to wait until the infant is 18 months old. Special situations, such as complex syndactyly and involvement of border digits, may warrant surgical intervention earlier than 6 months. Reconstruction of the web commissure is the most technically challenging part of the operation, followed by separation of the remaining digits. Full-thickness skin grafting is almost always required for soft-tissue coverage. Complex syndactyly and syndactyly associated with other hand anomalies warrant special consideration. After reconstruction, patients should be examined periodically until they have achieved skeletal maturity because late complications such as web creep can occur.
Collapse
Affiliation(s)
- Khiem D Dao
- Orthopaedic Hand Surgeon, Westminster, CA 91304, USA
| | | | | | | | | |
Collapse
|
41
|
Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 2003; 23:7230-42. [PMID: 14517293 PMCID: PMC230332 DOI: 10.1128/mcb.23.20.7230-7242.2003] [Citation(s) in RCA: 435] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 05/14/2003] [Accepted: 07/14/2003] [Indexed: 02/06/2023] Open
Abstract
Myostatin, a transforming growth factor beta (TGF-beta) family member, is a potent negative regulator of skeletal muscle growth. In this study we characterized the myostatin signal transduction pathway and examined its effect on bone morphogenetic protein (BMP)-induced adipogenesis. While both BMP7 and BMP2 activated transcription from the BMP-responsive I-BRE-Lux reporter and induced adipogenic differentiation, myostatin inhibited BMP7- but not BMP2-mediated responses. To dissect the molecular mechanism of this antagonism, we characterized the myostatin signal transduction pathway. We showed that myostatin binds the type II Ser/Thr kinase receptor. ActRIIB, and then partners with a type I receptor, either activin receptor-like kinase 4 (ALK4 or ActRIB) or ALK5 (TbetaRI), to induce phosphorylation of Smad2/Smad3 and activate a TGF-beta-like signaling pathway. We demonstrated that myostatin prevents BMP7 but not BMP2 binding to its receptors and that BMP7-induced heteromeric receptor complex formation is blocked by competition for the common type II receptor, ActRIIB. Thus, our results reveal a strikingly specific antagonism of BMP7-mediated processes by myostatin and suggest that myostatin is an important regulator of adipogenesis.
Collapse
Affiliation(s)
- A Rebbapragada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
42
|
Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 2003; 34:303-7. [PMID: 12808456 DOI: 10.1038/ng1178] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Accepted: 05/15/2003] [Indexed: 11/09/2022]
Abstract
During limb outgrowth, signaling by bone morphogenetic proteins (BMPs) must be moderated to maintain the signaling loop between the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER). Gremlin, an extracellular Bmp antagonist, has been proposed to fulfill this function and therefore be important in limb patterning. We tested this model directly by mutating the mouse gene encoding gremlin (Cktsf1b1, herein called gremlin). In the mutant limb, the feedback loop between the ZPA and the AER is interrupted, resulting in abnormal skeletal pattern. We also show that the gremlin mutation is allelic to the limb deformity mutation (ld). Although Bmps and their antagonists have multiple roles in limb development, these experiments show that gremlin is the principal BMP antagonist required for early limb outgrowth and patterning.
Collapse
Affiliation(s)
- Mustafa K Khokha
- Department of Molecular and Cell Biology, University of California-Berkeley, 401 Barker Hall, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
43
|
Nakamura M, Matzuk MM, Gerstmayer B, Bosio A, Lauster R, Miyachi Y, Werner S, Paus R. Control of pelage hair follicle development and cycling by complex interactions between follistatin and activin. FASEB J 2003; 17:497-9. [PMID: 12514121 DOI: 10.1096/fj.02-0247fje] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Members of the transforming growth factor beta/bone morphogenetic protein (TGF-beta/BMP) family are involved in the control of hair follicle (HF) morphogenesis and cycling. The activities of several members of this family activins and BMP-2, -4, -7, and -11) are controlled by antagonists such as follistatin. Because follistatin-deficient mice show abnormalities in vibrissae development, we explored the role of follistatin and activin in pelage HF development and cycling. We show here that during HF development follistatin mRNA was prominently expressed by hair matrix and outer root sheath keratinocytes as well as by interfollicular epidermal cells, whereas activin betaA mRNA was mainly expressed in dermal papilla cells. Compared with age-matched wild-type controls, both follistatin knockout mice and activin betaA transgenic mice showed a significant retardation of HF morphogenesis. Treatment of wild-type embryonic skin explants with follistatin protein stimulated HF development. This effect was inhibited by addition of recombinant activin A protein. Activin betaA transgenic mice demonstrated retardation of catagen entry, down-regulation of BMP-2, and up-regulation of expression of its antagonist matrix GLA protein. These observations suggest that follistatin and activin interaction plays an important role in both HF development and cycling, possibly in part by regulating expression of BMP-2 and its antagonist.
Collapse
Affiliation(s)
- Motonobu Nakamura
- Department of Dermatology, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Members of the TGF-beta superfamily, which includes TGF-betas, growth differentiation factors, bone morphogenetic proteins, activins, inhibins, and glial cell line-derived neurotrophic factor, are synthesized as prepropeptide precursors and then processed and secreted as homodimers or heterodimers. Most ligands of the family signal through transmembrane serine/threonine kinase receptors and SMAD proteins to regulate cellular functions. Many studies have reported the characterization of knockout and knock-in transgenic mice as well as humans or other mammals with naturally occurring genetic mutations in superfamily members or their regulatory proteins. These investigations have revealed that TGF-beta superfamily ligands, receptors, SMADs, and upstream and downstream regulators function in diverse developmental and physiological pathways. This review attempts to collate and integrate the extensive body of in vivo mammalian studies produced over the last decade.
Collapse
Affiliation(s)
- Hua Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
45
|
Guha U, Gomes WA, Kobayashi T, Pestell RG, Kessler JA. In vivo evidence that BMP signaling is necessary for apoptosis in the mouse limb. Dev Biol 2002; 249:108-20. [PMID: 12217322 DOI: 10.1006/dbio.2002.0752] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the role of Bone morphogenetic protein (BMP) signaling in murine limb development in vivo, the keratin 14 promoter was used to drive expression of the BMP antagonist Noggin in transgenic mice. Phosphorylation and nuclear translocation of Smad1/5 were dramatically reduced in limbs of the transgenic animals, confirming the inhibition of BMP signaling. These mice developed extensive limb soft tissue syndactyly and postaxial polydactyly. Apoptosis in the developing limb necrotic zones was reduced with incomplete regression of the interdigital tissue. The postaxial extra digit is also consistent with a role for BMPs in regulating apoptosis. Furthermore, there was persistent expression of Fgf8, suggesting a delay in the regression of the AER. However, Msx1 and Msx2 expression was unchanged in these transgenic mice, implying that induction of these genes is not essential for mediating BMP-induced interdigital apoptosis in mice. These abnormalities were rescued by coexpressing BMP4 under the same promoter in double transgenic mice, suggesting that the limb abnormalities are a direct effect of inhibiting BMP signaling.
Collapse
Affiliation(s)
- Udayan Guha
- Department of Nueroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
46
|
Chimal-Monroy J, Montero JA, Gañan Y, Macias D, Garcia-Porrero JA, Hurle JM. Comparative analysis of the expression and regulation of Wnt5a, Fz4, and Frzb1 during digit formation and in micromass cultures. Dev Dyn 2002; 224:314-20. [PMID: 12112461 DOI: 10.1002/dvdy.10110] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous studies have shown that three members of the Wnt signaling pathway, the ligand WNT5A, the receptor FZ4, and the Wnt antagonist FRZB1, are implicated in the formation and differentiation of the digits. In this study, we have attempted to establish a functional correlation between them by comparing their expression patterns and their regulation by the signals controlling proliferation and differentiation of the limb mesoderm during formation of the avian digits in vivo and in micromass cultures. In vivo Wnt5a and Fz4 are expressed in the undifferentiated mesoderm of the autopod and in the differentiating digit cartilages. In the undifferentiated mesoderm, the expression of both genes is regulated positively by FGFs and negatively by bone morphogenetic proteins (BMPs). As chondrogenic differentiation starts, Fz4 becomes intensely up-regulated in the aggregate and in the developing perichondrium, whereas transcripts of Wnt5a are excluded from the core of the aggregate but maintained in the surrounding mesenchyme and perichondrium. In addition, at this stage, the expression of both genes become positively regulated by BMPs. These changes in expression and regulation are coincident with the induction of Frzb1 in the chondrogenic aggregate, which is expressed under the positive control of BMPs. Our findings fit with a role of Wnt5a/Fz4 negatively regulating in vivo the initiation and progression of cartilage differentiation. In vitro, only Frzb1 is expressed and regulated in a manner resembling that observed in vivo. Wnt5a and Fz4 are both expressed in the differentiating mesenchyme of micromass cultures, but their expression is not significantly regulated by the addition of FGF-2 or BMP-7 to the culture medium.
Collapse
Affiliation(s)
- J Chimal-Monroy
- Departamento de Biología Celular y Fisiología. Instituto de Investigaciones Biomédicas, UNAM, México, Mexico
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Zhang D, Ferguson CM, O'Keefe RJ, Puzas JE, Rosier RN, Reynolds PR. A role for the BMP antagonist chordin in endochondral ossification. J Bone Miner Res 2002; 17:293-300. [PMID: 11811560 DOI: 10.1359/jbmr.2002.17.2.293] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone morphogenetic proteins (BMPs) are ubiquitous regulators of cellular growth and differentiation. A variety of processes modulate BMP activity, including negative regulation by several distinct binding proteins. One such BMP antagonist chordin has a role in axis determination and neural induction in the early embryo. In this study, a role for chordin during endochondral ossification has been investigated. During limb development, Chordin expression was detected only at the distal ends of the skeletal elements. In cultured embryonic sternal chondrocytes, Chordin expression was related inversely to the stages of maturation. Further, treating cultured chondrocytes with chordin interfered with maturation induced by treatment with BMP-2. These results suggest that chordin may negatively regulate chondrocyte maturation and limb growth in vivo. To address this hypothesis, chordin protein was expressed ectopically in Hamburger-Hamilton (HH) stage 25-27 embryonic chick limbs. The phenotypic changes and alteration of gene expression in treated limbs revealed that overexpression of chordin protein delayed chondrocyte maturation in developing skeletal elements. In summary, these findings strongly support a role for chordin as a negative regulator of endochondral ossification.
Collapse
Affiliation(s)
- Donghui Zhang
- Department of Orthopedics, School of Medicine and Dentistry, University of Rochester, New York, USA
| | | | | | | | | | | |
Collapse
|
49
|
Wagner GP, Chiu CH. The tetrapod limb: a hypothesis on its origin. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 291:226-40. [PMID: 11598912 DOI: 10.1002/jez.1100] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A wrist joint and structures typical of the hand, such as digits, however, are absent in [Eustenopteron] (Andrews and Westoll, '68, p 240). Great changes must have been undergone during evolution of the ankle joint; the small number of large bones in the fin must somehow have developed into a large number of small bones, and it is very difficult to draw homologies in this region, or even be certain of what is being compared (Andrews and Westoll, '68, p 268). The tetrapod limb is one of the major morphological adaptations that facilitated the transition from an aquatic to a terrestrial lifestyle in vertebrate evolution. We review the paleontological evidence for the fin-limb transition and conclude that the innovation associated with evolution of the tetrapod limb is the zeugopodial-mesopodial transition, i.e., the evolution of the developmental mechanism that differentiates the distal parts of the limb (the autopodium, i.e., hand or foot) from the proximal parts. Based on a review of tetrapod limb and fish fin development, we propose a genetic hypothesis for the origin of the autopodium. In tetrapods the genes Hoxa-11 and Hoxa-13 have locally exclusive expression domains along the proximal-distal axis of the limb bud. The junction between the distal limit of Hoxa-11 expression and of the proximal limit of Hoxa-13 expression is involved in establishing the border between the zeugopodial and autopodial anlagen. In zebrafish, the expression domains of these genes are overlapping and there is no evidence for an autopodial equivalent in the fin skeleton. We propose that the evolution of the derived expression patterns of Hoxa-11 and Hoxa-13 may be causally involved in the origin of the tetrapod limb.
Collapse
Affiliation(s)
- G P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106, USA.
| | | |
Collapse
|
50
|
Abstract
Development of glandular organs such as the kidney, lung, and prostate involves the process of branching morphogenesis. The developing organ begins as an epithelial bud that invades the surrounding mesenchyme, projecting dividing epithelial cords or tubes away from the site of initiation. This is a tightly regulated process that requires complex epithelial-mesenchymal interactions, resulting in a three-dimensional treelike structure. We propose that activins are key growth and differentiation factors during this process. The purpose of this review is to examine the direct, indirect, and correlative lines of evidence to support this hypothesis. The expression of activins is reviewed together with the effect of activins and follistatins in the development of branched organs. We demonstrate that activin has both negative and positive effects on cell growth during branching morphogenesis, highlighting the complex nature of activin in the regulation of proliferation and differentiation. We propose potential mechanisms for the way in which activins modify branching and address the issue of whether activin is a regulator of branching morphogenesis.
Collapse
Affiliation(s)
- E M Ball
- Centre for Urological Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|