1
|
Kim MS, Yoon GH, Choi SC. Artesunate disrupts germ layer formation by inhibiting BMP signaling pathway. Anim Cells Syst (Seoul) 2025; 29:349-359. [PMID: 40370638 PMCID: PMC12077442 DOI: 10.1080/19768354.2025.2504940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Xenopus embryo is a useful model for evaluating the adverse effects of any compounds on the cellular processes essential for early development and adult tissue homeostasis. Our chemical library screening with frog embryos identified artesunate (ART) as an inhibitor of the BMP signaling pathway to interfere with the specification of embryonic germ layers. Exposure to ART led to reduction of the anterior-posterior body axis, malformed tail structures and loss of pigment cells in the trunk region of embryos. The severely defective embryos exhibited truncation of posterior structures, resembling the phenotypes of tadpoles depleted of BMPs. Consistent with these morphological deformities, ART exposure inhibited the BMP-dependent transcriptions of target genes and specification of ventral mesoderm. In contrast, the expression of an organizer-specific gene induced by Activin/Nodal signaling remained unchanged in ART-treated cells. ART also enhanced anterior neural differentiation at the expense of epidermal and neural crest cell fates. Unexpectedly, we observed that ART exposure accelerates proteasomal degradation of a BMP transducer Smad1, leading to upregulation of MAP kinase activity. Taken together, these results suggest that ART acts as an inhibitor of BMP signaling pathway, exerting severe adverse effects on the specification of germ layers in vertebrate early development.
Collapse
Affiliation(s)
- Myeoung Su Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Gang-Ho Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sun-Cheol Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
2
|
Asashima M, Satou-Kobayashi Y, Haramoto Y, Ariizumi T. Self-organization from organs to embryoids by activin in early amphibian development. Cells Dev 2025:203996. [PMID: 39862904 DOI: 10.1016/j.cdev.2025.203996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Embryonic development is a complex self-organizing process orchestrated by a series of regulatory events at the molecular and cellular levels, resulting in the formation of a fully functional organism. This review focuses on activin protein as a mesoderm-inducing factor and the self-organizing properties it confers. Activin has been detected in both unfertilized eggs and embryos, suggesting its involvement in early developmental processes. To explore its effects, animal cap cells-pluripotent cells from the animal pole of amphibian blastula-stage embryos-were treated with varying concentrations of activin. The results showed that activin induced mesodermal tissues, including blood, muscle, and notochord, in a dose-dependent manner. Co-treatment with activin and retinoic acid further promoted the development of kidney and pancreatic tissues, while activin alone stimulated the formation of beating cardiac tissue. In subsequent experiments, high concentrations of activin conferred an organizer-like activity on animal cap cells. The pretreatment duration affected outcomes: longer exposure induced anterior structures, such as eyes, while shorter exposure resulted in posterior structures, like tails. These findings reflect moderate self-assembly, where cells become increasingly organized. In another experiment, activin was used to create an artificial gradient. Explants cultured on this gradient developed into embryoids with well-defined anteroposterior, dorsoventral, and left-right axes, exemplifying higher-order self-organization. These results demonstrate that controlled activin gradients can drive the formation of nearly complete tadpole-like larvae, effectively recapitulating the processes of early embryogenesis. This system offers valuable insights into the mechanisms underlying axis formation and organogenesis, providing a promising platform for future research in developmental biology.
Collapse
Affiliation(s)
- Makoto Asashima
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan.
| | | | - Yoshikazu Haramoto
- Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, Tokyo, Japan
| | - Takashi Ariizumi
- Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, Tokyo, Japan
| |
Collapse
|
3
|
Favarolo MB, Revinski DR, Garavaglia MJ, López SL. Nodal and churchill1 position the expression of a notch ligand during Xenopus germ layer segregation. Life Sci Alliance 2022; 5:5/12/e202201693. [PMID: 36180230 PMCID: PMC9604498 DOI: 10.26508/lsa.202201693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Churchill and Nodal signaling, which participate in vertebrates’ germ layer induction, position a domain of Delta/Notch activity, which refines germ layer boundaries during frog gastrulation. In vertebrates, Nodal signaling plays a major role in endomesoderm induction, but germ layer delimitation is poorly understood. In avian embryos, the neural/mesoderm boundary is controlled by the transcription factor CHURCHILL1, presumably through the repressor ZEB2, but there is scarce knowledge about its role in other vertebrates. During amphibian gastrulation, Delta/Notch signaling refines germ layer boundaries in the marginal zone, but it is unknown the place this pathway occupies in the network comprising Churchill1 and Nodal. Here, we show that Xenopus churchill1 is expressed in the presumptive neuroectoderm at mid-blastula transition and during gastrulation, upregulates zeb2, prevents dll1 expression in the neuroectoderm, and favors neuroectoderm over endomesoderm development. Nodal signaling prevents dll1 expression in the endoderm but induces it in the presumptive mesoderm, from where it activates Notch1 and its target gene hes4 in the non-involuting marginal zone. We propose a model where Nodal and Churchill1 position Dll1/Notch1/Hes4 domains in the marginal zone, ensuring the delimitation between mesoderm and neuroectoderm.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Diego R Revinski
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Matías J Garavaglia
- Laboratorio de Bioinsumos, Instituto de Biotecnología, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina .,CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| |
Collapse
|
4
|
Xing C, Zeng Z, Li Y, Gong B, Shen W, Shah R, Yan L, Du H, Meng A. Regulatory factor identification for nodal genes in zebrafish by causal inference. Front Cell Dev Biol 2022; 10:1047363. [DOI: 10.3389/fcell.2022.1047363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of nodal genes is critical for mesoderm and endoderm induction. Our previous study reported that zebrafish nodal genes ndr1/squint and ndr2/cyclops are coordinately regulated by maternal Eomesa, Hwa-activated β-catenin (Hwa/β-catenin) signaling, and Nodal autoregulation (Nodal/Smad2) signaling. However, the exact contribution and underlying mechanisms are still elusive. Here, we applied “causal inference” to evaluate the causal between the independent and dependent variables, and we found that Hwa/β-catenin and Smad2 are the cause of ndr1 activation, while Eomesa is the cause of ndr2 activation. Mechanistically, the different cis-regulatory regions of ndr1 and ndr2 bound by Eomesa, β-catenin, and Smad2 were screened out via ChIP-qPCR and verified by the transgene constructs. The marginal GFP expression driven by ndr1 transgenesis could be diminished without both maternal Eomesa and Hwa/β-catenin, while Eomesa, not β-catenin, could bind and activate ndr2 demonstrated by ndr2 transgenesis. Thus, the distinct regulation of ndr1/ndr2 relies on different cis-regulatory regions.
Collapse
|
5
|
Xing C, Shen W, Gong B, Li Y, Yan L, Meng A. Maternal Factors and Nodal Autoregulation Orchestrate Nodal Gene Expression for Embryonic Mesendoderm Induction in the Zebrafish. Front Cell Dev Biol 2022; 10:887987. [PMID: 35693948 PMCID: PMC9178097 DOI: 10.3389/fcell.2022.887987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Nodal proteins provide crucial signals for mesoderm and endoderm induction. In zebrafish embryos, the nodal genes ndr1/squint and ndr2/cyclops are implicated in mesendoderm induction. It remains elusive how ndr1 and ndr2 expression is regulated spatiotemporally. Here we investigated regulation of ndr1 and ndr2 expression using Mhwa mutants that lack the maternal dorsal determinant Hwa with deficiency in β-catenin signaling, Meomesa mutants that lack maternal Eomesodermin A (Eomesa), Meomesa;Mhwa double mutants, and the Nodal signaling inhibitor SB431542. We show that ndr1 and ndr2 expression is completely abolished in Meomesa;Mhwa mutant embryos, indicating an essential role of maternal eomesa and hwa. Hwa-activated β-catenin signaling plays a major role in activation of ndr1 expression in the dorsal blastodermal margin, while eomesa is mostly responsible for ndr1 expression in the lateroventral margin and Nodal signaling contributes to ventral expansion of the ndr1 expression domain. However, ndr2 expression mainly depends on maternal eomesa with minor or negligible contribution of maternal hwa and Nodal autoregulation. These mechanisms may help understand regulation of Nodal expression in other species.
Collapse
Affiliation(s)
- Cencan Xing
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Daxing Research Institute, University of Science and Technology, Beijing, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bo Gong
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yaqi Li
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lu Yan
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Guangzhou National Laboratory, Guangzhou, China
- *Correspondence: Anming Meng,
| |
Collapse
|
6
|
Schmidt-Ott U, Yoon Y. Evolution and loss of ß-catenin and TCF-dependent axis specification in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100877. [PMID: 35104659 PMCID: PMC9133022 DOI: 10.1016/j.cois.2022.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Mechanisms and evolution of primary axis specification in insects are discussed in the context of the roles of ß-catenin and TCF in polarizing metazoan embryos. Three hypotheses are presented. First, insects with sequential segmentation and posterior growth use cell-autonomous mechanisms for establishing embryo polarity via the nuclear ratio of ß-catenin and TCF. Second, TCF homologs establish competence for anterior specification. Third, the evolution of simultaneous segmentation mechanisms, also known as long-germ development, resulted in primary axis specification mechanisms that are independent of ß-catenin but reliant on TCF, a condition that preceded the frequent replacement of anterior determinants in long germ insects.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57th Street, Chicago, IL 60637, USA.
| | - Yoseop Yoon
- University of California, Irvine, Dept. of Microbiology and Molecular Genetics, School of Medicine, 811 Health Sciences Rd., Med Sci B262, CA 92617, USA
| |
Collapse
|
7
|
Seidl F, Levis NA, Schell R, Pfennig DW, Pfennig KS, Ehrenreich IM. Genome of Spea multiplicata, a Rapidly Developing, Phenotypically Plastic, and Desert-Adapted Spadefoot Toad. G3 (BETHESDA, MD.) 2019; 9:3909-3919. [PMID: 31578218 PMCID: PMC6893194 DOI: 10.1534/g3.119.400705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
Frogs and toads (anurans) are widely used to study many biological processes. Yet, few anuran genomes have been sequenced, limiting research on these organisms. Here, we produce a draft genome for the Mexican spadefoot toad, Spea multiplicata, which is a member of an unsequenced anuran clade. Atypically for amphibians, spadefoots inhabit deserts. Consequently, they possess many unique adaptations, including rapid growth and development, prolonged dormancy, phenotypic (developmental) plasticity, and adaptive, interspecies hybridization. We assembled and annotated a 1.07 Gb Sp. multiplicata genome containing 19,639 genes. By comparing this sequence to other available anuran genomes, we found gene amplifications in the gene families of nodal, hyas3, and zp3 in spadefoots, and obtained evidence that anuran genome size differences are partially driven by variability in intergenic DNA content. We also used the genome to identify genes experiencing positive selection and to study gene expression levels in spadefoot hybrids relative to their pure-species parents. Completion of the Sp. multiplicata genome advances efforts to determine the genetic bases of spadefoots' unique adaptations and enhances comparative genomic research in anurans.
Collapse
Affiliation(s)
- Fabian Seidl
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, and
| | - Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Rachel Schell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, and
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, and
| |
Collapse
|
8
|
Park DS, Kim K, Jang M, Choi SC. Role of dipeptidyl peptidase-4 as a potentiator of activin/nodal signaling pathway. BMB Rep 2018. [PMID: 30463640 PMCID: PMC6330939 DOI: 10.5483/bmbrep.2018.51.12.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DPP4 (dipeptidyl peptidase-4), a highly conserved transmembrane glycoprotein with an exo-peptidase activity, has been shown to contribute to glucose metabolism, immune regulation, signal transduction, and cell differentiation. Here, we show that DPP4 is involved in control of activin/nodal signaling in Xenopus early development. In support of this, gain of function of DPP4 augmented Smad2 phosphorylation as well as expression of target genes induced by activin or nodal signal. In addition, Dpp4 and Xnr1 showed synergistic effect on induction of ectopic dorsal body axis, when co-injected at suboptimal doses in early embryos. Conversely, saxagliptin, a DPP4 inhibitor repressed activin induction of Smad2 phosphorylation. Notably, overexpression of Dpp4 disrupted specification of dorsal body axis of embryo, leading to malformed phenotypes such as spina bifida and a shortened and dorsally bent axis. Together, these results suggest that DPP4 functions as a potentiator of activin/nodal signaling pathway.
Collapse
Affiliation(s)
- Dong-Seok Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kyuhee Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Minjoo Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
9
|
Ding Y, Colozza G, Sosa EA, Moriyama Y, Rundle S, Salwinski L, De Robertis EM. Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. Proc Natl Acad Sci U S A 2018; 115:E9135-E9144. [PMID: 30209221 PMCID: PMC6166843 DOI: 10.1073/pnas.1812117115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Xenopus laevis embryo has been subjected to almost saturating screens for molecules specifically expressed in dorsal Spemann organizer tissue. In this study, we performed high-throughput RNA sequencing of ectodermal explants, called animal caps, which normally give rise to epidermis. We analyzed dissociated animal cap cells that, through sustained activation of MAPK, differentiate into neural tissue. We also microinjected mRNAs for Cerberus, Chordin, FGF8, BMP4, Wnt8, and Xnr2, which induce neural or other germ layer differentiations. The searchable database provided here represents a valuable resource for the early vertebrate cell differentiation. These analyses resulted in the identification of a gene present in frog and fish, which we call Bighead. Surprisingly, at gastrula, it was expressed in the Spemann organizer and endoderm, rather than in ectoderm as we expected. Despite the plethora of genes already mined from Spemann organizer tissue, Bighead encodes a secreted protein that proved to be a potent inhibitor of Wnt signaling in a number of embryological and cultured cell signaling assays. Overexpression of Bighead resulted in large head structures very similar to those of the well-known Wnt antagonists Dkk1 and Frzb-1. Knockdown of Bighead with specific antisense morpholinos resulted in embryos with reduced head structures, due to increased Wnt signaling. Bighead protein bound specifically to the Wnt coreceptor lipoprotein receptor-related protein 6 (Lrp6), leading to its removal from the cell surface. Bighead joins two other Wnt antagonists, Dkk1 and Angptl4, which function as Lrp6 endocytosis regulators. These results suggest that endocytosis plays a crucial role in Wnt signaling.
Collapse
Affiliation(s)
- Yi Ding
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Gabriele Colozza
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Eric A Sosa
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Yuki Moriyama
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Samantha Rundle
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Lukasz Salwinski
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095-1662
| | - Edward M De Robertis
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662;
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| |
Collapse
|
10
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
11
|
Wei S, Wang Q. Molecular regulation of Nodal signaling during mesendoderm formation. Acta Biochim Biophys Sin (Shanghai) 2018; 50:74-81. [PMID: 29206913 DOI: 10.1093/abbs/gmx128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
One of the most important events during vertebrate embryogenesis is the formation or specification of the three germ layers, endoderm, mesoderm, and ectoderm. After a series of rapid cleavages, embryos form the mesendoderm and ectoderm during late blastulation and early gastrulation. The mesendoderm then further differentiates into the mesoderm and endoderm. Nodal, a member of the transforming growth factor β (TGF-β) superfamily, plays a pivotal role in mesendoderm formation by regulating the expression of a number of critical transcription factors, including Mix-like, GATA, Sox, and Fox. Because the Nodal signal transduction pathway is well-characterized, increasing effort has been made to delineate the spatiotemporal modulation of Nodal signaling during embryonic development. In this review, we summarize the recent progress delineating molecular regulation of Nodal signal intensity and duration during mesendoderm formation.
Collapse
Affiliation(s)
- Shi Wei
- The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Abstract
Background Ebstein anomaly (EA) is a rare congenital defect characterized by apical displacement of the septal tricuspid leaflets and atrialization of the right ventricle. The etiology of EA is unclear; however, recurrence in families and the association of EA with genetic syndromes and copy number variants (CNVs) suggest a genetic component. Objective We performed a population-based study to search for recurrent and novel CNVs in a previously unreported set of EA cases. Methods We genotyped 60 EA cases identified from all live births (2,891,076) from selected California counties (1991–2010) using the Illumina HumanOmni2.5–8 array. We identified 38 candidate CNVs in 28 (46%) cases and prioritized and validated 11 CNVs based on the genes included. Results Five CNVs (41%) overlapped or were close to genes involved in early myocardial development, including NODAL, PDLIM5, SIX1, ASF1A and FGF12. We also replicated a previous association of EA with CNVs at 1p34.1 and AKAP12. Finally, we identified four CNVs overlapping or in close proximity to the transcription factors HES3, TRIM71, CUX1 and EIF4EBP2. Conclusions This study supports the relationship of genetic factors to EA and demonstrates that defects in cardiomyocytes and myocardium differentiation may play a role. Abnormal differentiation of cardiomyocytes and how genetic factors contribute should be examined for their association with EA.
Collapse
|
13
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
14
|
Klein-Szanto AJ, Bassi DE. Proprotein convertase inhibition: Paralyzing the cell's master switches. Biochem Pharmacol 2017; 140:8-15. [PMID: 28456517 DOI: 10.1016/j.bcp.2017.04.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Abstract
Proprotein convertases are serine proteases responsible for the cleavage and subsequent activation of protein substrates, many of them relevant for the development of an ample variety of diseases. Seven of the PCs, including furin and PACE4, recognize and hydrolyze the C-terminal end of the general sequence RXRR/KXR, whereas PCSK-9 recognizes a series of non-basic amino acids. In some systems, PC-mediated substrate activation results in the development of pathological processes, such as cancer, endocrinopathies, and cardiovascular and infectious diseases. After establishing PCs as relevant contributors to disease processes, research efforts were directed towards the development of inhibition strategies, including small and large molecules, anti-sense therapies, and antibody-based therapies. Most of these inhibitors mimic the consensus sequence of PCs, blocking the active site in a competitive manner. The most promising inhibitors were designed as bioengineered proteins; however, some non-protein and peptidomimetic agents have also proved to be effective. These efforts led to the design of pre-clinical studies and clinical trials utilizing inhibitors to PCs. Although the initial studies were performed using non-selective PCs inhibitors, such as CMK, the search for more specific, and compartmentalized selective inhibitors resulted in specific activities ascribed to some, but not all of the PCs. For instance, PACE4 inhibitors were effective in decreasing prostate cancer cell proliferation, and neovascularization. Decreased metastatic ovarian cancer utilizing furin inhibitors represents one of the major endeavors, currently in a phase II trial stage. Antibodies targeting PCSK-9 decreased significantly the levels of HDL-cholesterol, in a phase III trial. The study of Proprotein convertases has reached a stage of maturity. New strategies based on the alteration of their activity at the cellular and clinical level represent a promising experimental pharmacology field. The development of allosteric inhibitors, or specific agents directed against individual PCs is one of the challenges to be unraveled in the future.
Collapse
Affiliation(s)
| | - Daniel E Bassi
- Fox Chase Cancer Center, 333 Cotman Ave, Philadelphia 19111, USA.
| |
Collapse
|
15
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Tseng WC, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:307-381. [PMID: 27975275 DOI: 10.1007/978-3-319-46095-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Scott T Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
17
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
18
|
Thies RS, Murry CE. The advancement of human pluripotent stem cell-derived therapies into the clinic. Development 2016; 142:3077-84. [PMID: 26395136 DOI: 10.1242/dev.126482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells (hPSCs) offer many potential applications for drug screening and 'disease in a dish' assay capabilities. However, a more ambitious goal is to develop cell therapeutics using hPSCs to generate and replace somatic cells that are lost as a result of disease or injury. This Spotlight article will describe the state of progress of some of the hPSC-derived therapeutics that offer the most promise for clinical use. Lessons from developmental biology have been instrumental in identifying signaling molecules that can guide these differentiation processes in vitro, and will be described in the context of these cell therapy programs.
Collapse
Affiliation(s)
- R Scott Thies
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Charles E Murry
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA Department of Bioengineering, University of Washington, Seattle, WA 98195, USA Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Abdelalim EM, Emara MM. Pluripotent Stem Cell-Derived Pancreatic β Cells: From In Vitro Maturation to Clinical Application. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Abstract
Anterior-posterior (A-P) patterning of the vertebrate main body axis regulated by timing. Anterior structures are specified early, posterior late. (1) Timing involves timed decision points as emphasised by the Wnt studies of Sokol and colleagues. It also involves complex timers, where large parts of the axis are patterned sequentially by a common upstream mechanism (articles by Durston et al., Mullins et al., Oates et al.,). (2) A gastrula BMP-anti BMP dependent time-space translation (TST) mechanism was demonstrated for the trunk section of the axis (Durston). (3) Thisses' studies emphasise the importance of BMP-anti BMP and the organiser inducing factor nodal for A-P patterning. (4) Meinhardt's interesting studies on the organiser and A-P patterning are reviewed in relation to TST. (5) Mullins' investigations show that anti-BMP dependent TST starts earlier (at the blastula stage) and extends further anteriorly (to the anterior head). Sive's studies imply it may extend further still to the "extreme anterior domain" (EAD). (6) The somitogenesis timer (clock) is presented. Stern's and Oates' findings are discussed. (7) Relations between somitogenesis and axial TST are discussed. (8) Relations of classical axial patterning pathways to TST decision points and somitogenesis are inventarised. In conclusion, all of these findings point to an integral BMP-anti BMP dependent A-P TST mechanism, running from cement gland in the EAD, Six3 and the anterior tip of the forebrain at blastula stages to Hox13 and the tip of the tail by the mid neurula stage. TST acts via sequential timed transitions between ventral (unstable, timed) and dorsal (stabilised) states. In the trunk-tail, the timer is thought to be Hox temporal collinearity and TST depends on Hox function. In the head, TST is under investigation. The somitogenesis clock is upstream of the TST timer, providing precision in the posterior part of the axis at least. Classical A-P signalling pathways: retinoids, FGFs and Wnts, change behaviour at functional decision points on the axis.
Collapse
|
21
|
Röttinger E, DuBuc TQ, Amiel AR, Martindale MQ. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava. Biol Open 2015; 4:830-42. [PMID: 25979707 PMCID: PMC4571091 DOI: 10.1242/bio.011809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms.
Collapse
Affiliation(s)
- Eric Röttinger
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Timothy Q DuBuc
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| | - Aldine R Amiel
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Mark Q Martindale
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| |
Collapse
|
22
|
Bose B, Sudheer PS. In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets. Methods Mol Biol 2015; 1341:257-84. [PMID: 25783769 DOI: 10.1007/7651_2015_230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the advent of pluripotent stem cells, (embryonic and induced pluripotent stem cells), applications of such pluripotent stem cells are of prime importance. Indeed, scientists are involved in studying the basic biology of pluripotent stem cells, but equal impetus is there to direct the pluripotent stem cells into multiple lineages for cell therapy applications. Scientists across the globe have been successful, to a certain extent, in obtaining cells of definitive endoderm and also pancreatic β islets by differentiating human pluripotent stem cells. Pluripotent stem cell differentiation protocols aim at mimicking in vivo embryonic development. As in vivo embryonic development is a complex process and involves interplay of multiple cytokines, the differentiation protocols also involve a stepwise use of multiple cytokines. Indeed the novel markers for pancreas organogenesis serve as the roadmaps to develop new protocols for pancreatic differentiation from pluripotent stem cells. Earliest developed protocols for pancreas differentiation involved "Nestin selection pathway," a pathway common for both neuronal and pancreatic differentiation lead to the generation of cells that were a combination of cells from neuronal lineage. Eventually with the discovery of hierarchy of β cell transcription factors like Pdx1, Pax4, and Nkx2.2, forced expression of such transcription factors proved successful in converting a pluripotent stem cell into a β cell. Protocols developed almost half a decade ago to the recent ones rather involve stepwise differentiations involving various cytokines and could generate as high as 25 % functional insulin-positive cells in vitro. Most advanced protocols for β islet differentiations from human pluripotent stem cells focused on 3D culture conditions, which reportedly produced 60-65 % functional β islet cells. Here, we describe the protocol for differentiation of human pluripotent stem cells into functional β cells under both 2D and 3D culture conditions.
Collapse
Affiliation(s)
- Bipasha Bose
- Level 03, Stem Cell Biology and Tissue Engineering Division, Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018, Karnataka, India.
| | - P Shenoy Sudheer
- Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, NTU/SBS Lab location @ Level 2, Singapore Institute for Clinical Sciences Brenner Centre for Molecular Medicine 30 Medical Drive, Singapore, 117609, Singapore
| |
Collapse
|
23
|
Tan G, Elefanty AG, Stanley EG. β-cell regeneration and differentiation: how close are we to the 'holy grail'? J Mol Endocrinol 2014; 53:R119-29. [PMID: 25385843 DOI: 10.1530/jme-14-0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes can be managed by careful monitoring of blood glucose and timely delivery of exogenous insulin. However, even with fastidious compliance, people with diabetes can suffer from numerous complications including atherosclerosis, retinopathy, neuropathy, and kidney disease. This is because delivery of exogenous insulin coupled with glucose monitoring cannot provide the fine level of glucose control normally provided by endogenous β-cells in the context of intact islets. Moreover, a subset of people with diabetes lack awareness of hypoglycemic events; a status that can have grave consequences. Therefore, much effort has been focused on replacing lost or dysfunctional β-cells with cells derived from other sources. The advent of stem cell biology and cellular reprogramming strategies have provided impetus to this work and raised hopes that a β-cell replacement therapy is on the horizon. In this review, we look at two components that will be required for successful β-cell replacement therapy: a reliable and safe source of β-cells and a mechanism by which such cells can be delivered and protected from host immune destruction. Particular attention is paid to insulin-producing cells derived from pluripotent stem cells because this platform addresses the issue of scale, one of the more significant hurdles associated with potential cell-based therapies. We also review methods for encapsulating transplanted cells, a technique that allows grafts to evade immune attack and survive for a long term in the absence of ongoing immunosuppression. In surveying the literature, we conclude that there are still several substantial hurdles that need to be cleared before a stem cell-based β-cell replacement therapy for diabetes becomes a reality.
Collapse
Affiliation(s)
- Gemma Tan
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Edouard G Stanley
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
24
|
Chiu WT, Charney Le R, Blitz IL, Fish MB, Li Y, Biesinger J, Xie X, Cho KWY. Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program. Development 2014; 141:4537-47. [PMID: 25359723 DOI: 10.1242/dev.107227] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nodal/TGFβ signaling regulates diverse biological responses. By combining RNA-seq on Foxh1 and Nodal signaling loss-of-function embryos with ChIP-seq of Foxh1 and Smad2/3, we report a comprehensive genome-wide interaction between Foxh1 and Smad2/3 in mediating Nodal signaling during vertebrate mesendoderm development. This study significantly increases the total number of Nodal target genes regulated by Foxh1 and Smad2/3, and reinforces the notion that Foxh1-Smad2/3-mediated Nodal signaling directly coordinates the expression of a cohort of genes involved in the control of gene transcription, signaling pathway modulation and tissue morphogenesis during gastrulation. We also show that Foxh1 may function independently of Nodal signaling, in addition to its role as a transcription factor mediating Nodal signaling via Smad2/3. Finally, we propose an evolutionarily conserved interaction between Foxh1 and PouV, a mechanism observed in Pou5f1-mediated regulation of pluripotency in human embryonic stem and epiblast cells.
Collapse
Affiliation(s)
- William T Chiu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Rebekah Charney Le
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Yi Li
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Jacob Biesinger
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Xiaohui Xie
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|
25
|
Nelson AC, Cutty SJ, Niini M, Stemple DL, Flicek P, Houart C, Bruce AEE, Wardle FC. Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression. BMC Biol 2014; 12:81. [PMID: 25277163 PMCID: PMC4206766 DOI: 10.1186/s12915-014-0081-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 12/27/2022] Open
Abstract
Background Nodal signalling is an absolute requirement for normal mesoderm and endoderm formation in vertebrate embryos, yet the transcriptional networks acting directly downstream of Nodal and the extent to which they are conserved is largely unexplored, particularly in vivo. Eomesodermin also plays a role in patterning mesoderm and endoderm in vertebrates, but its mechanisms of action and how it interacts with the Nodal signalling pathway are still unclear. Results Using a combination of expression analysis and chromatin immunoprecipitation with deep sequencing (ChIP-seq) we identify direct targets of Smad2, the effector of Nodal signalling in blastula stage zebrafish embryos, including many novel target genes. Through comparison of these data with published ChIP-seq data in human, mouse and Xenopus we show that the transcriptional network driven by Smad2 in mesoderm and endoderm is conserved in these vertebrate species. We also show that Smad2 and zebrafish Eomesodermin a (Eomesa) bind common genomic regions proximal to genes involved in mesoderm and endoderm formation, suggesting Eomesa forms a general component of the Smad2 signalling complex in zebrafish. Combinatorial perturbation of Eomesa and Smad2-interacting factor Foxh1 results in loss of both mesoderm and endoderm markers, confirming the role of Eomesa in endoderm formation and its functional interaction with Foxh1 for correct Nodal signalling. Finally, we uncover a novel role for Eomesa in repressing ectodermal genes in the early blastula. Conclusions Our data demonstrate that evolutionarily conserved developmental functions of Nodal signalling occur through maintenance of the transcriptional network directed by Smad2. This network is modulated by Eomesa in zebrafish which acts to promote mesoderm and endoderm formation in combination with Nodal signalling, whilst Eomesa also opposes ectoderm gene expression. Eomesa, therefore, regulates the formation of all three germ layers in the early zebrafish embryo. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0081-5) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Xu P, Zhu G, Wang Y, Sun J, Liu X, Chen YG, Meng A. Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. J Mol Cell Biol 2014; 6:272-85. [DOI: 10.1093/jmcb/mju028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
27
|
Constam DB. Regulation of TGFβ and related signals by precursor processing. Semin Cell Dev Biol 2014; 32:85-97. [PMID: 24508081 DOI: 10.1016/j.semcdb.2014.01.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
Secreted cytokines of the TGFβ family are found in all multicellular organisms and implicated in regulating fundamental cell behaviors such as proliferation, differentiation, migration and survival. Signal transduction involves complexes of specific type I and II receptor kinases that induce the nuclear translocation of Smad transcription factors to regulate target genes. Ligands of the BMP and Nodal subgroups act at a distance to specify distinct cell fates in a concentration-dependent manner. These signaling gradients are shaped by multiple factors, including proteases of the proprotein convertase (PC) family that hydrolyze one or several peptide bonds between an N-terminal prodomain and the C-terminal domain that forms the mature ligand. This review summarizes information on the proteolytic processing of TGFβ and related precursors, and its spatiotemporal regulation by PCs during development and various diseases, including cancer. Available evidence suggests that the unmasking of receptor binding epitopes of TGFβ is only one (and in some cases a non-essential) function of precursor processing. Future studies should consider the impact of proteolytic maturation on protein localization, trafficking and turnover in cells and in the extracellular space.
Collapse
Affiliation(s)
- Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment SV ISREC, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
28
|
Bose B, Katikireddy KR, Shenoy PS. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation. VITAMINS AND HORMONES 2014; 95:223-48. [PMID: 24559920 DOI: 10.1016/b978-0-12-800174-5.00009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Diabetes is a group of metabolic diseases, rising globally at an alarming rate. Type 1 (juvenile diabetes) is the autoimmune version of diabetes where the pancreas is unable to produce insulin, whereas type 2 (adult onset diabetes) is caused due to insulin resistance of the cells. In either of the cases, elevated blood glucose levels are observed which leads to progressive comorbidity like renal failure, cardiovascular disease, retinopathy, etc. Metformin, sulphonyl urea group of drugs, as well as insulin injections are the available therapies. In advanced cases of diabetes, the drug alone or drug in combination with insulin injections are not able to maintain a steady level of blood glucose. Moreover, frequent insulin injections are rather cumbersome for the patient. So, regenerative medicine could be a permanent solution for fighting diabetes. Islet transplantation has been tried with a limited amount of success on a large population of diabetics because of the shortage of cadaveric pancreas. Therefore, the best proposed alternative is regenerative medicine involving human pluripotent stem cell (hPSC)-derived beta islet transplantation which can be obtained in large quantities. Efficient protocols for in vitro differentiation of hPSC into a large number of sustained insulin-producing beta cells for transplantation will be considered to be a giant leap to address global rise in diabetic cases. Although most of the protocols mimic in vivo pancreatic development in humans, considerable amount of lacuna persists for near-perfect differentiation strategies. Moreover, beta islets differentiated from hPSC have not yet been successfully translated under clinical scenario.
Collapse
Affiliation(s)
- Bipasha Bose
- Nanyang Technological University, School of Biological Sciences, NTU Lab Location @ Level 2 Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, Singapore, Singapore.
| | | | - P Sudheer Shenoy
- Nanyang Technological University, School of Biological Sciences, NTU Lab Location @ Level 2 Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, Singapore, Singapore
| |
Collapse
|
29
|
Li HY, Grifone R, Saquet A, Carron C, Shi DL. The Xenopus homologue of Down syndrome critical region protein 6 drives dorsoanterior gene expression and embryonic axis formation by antagonising polycomb group proteins. Development 2013; 140:4903-13. [DOI: 10.1242/dev.098319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mesoderm and embryonic axis formation in vertebrates is mediated by maternal and zygotic factors that activate the expression of target genes. Transcriptional derepression plays an important role in the regulation of expression in different contexts; however, its involvement and possible mechanism in mesoderm and embryonic axis formation are largely unknown. Here we demonstrate that XDSCR6, a Xenopus homologue of human Down syndrome critical region protein 6 (DSCR6, or RIPPLY3), regulates mesoderm and embryonic axis formation through derepression of polycomb group (PcG) proteins. Xdscr6 maternal mRNA is enriched in the endoderm of the early gastrula and potently triggers the formation of dorsal mesoderm and neural tissues in ectoderm explants; it also dorsalises ventral mesoderm during gastrulation and induces a secondary embryonic axis. A WRPW motif, which is present in all DSCR6 homologues, is necessary and sufficient for the dorsal mesoderm- and axis-inducing activity. Knockdown of Xdscr6 inhibits dorsal mesoderm gene expression and results in head deficiency. We further show that XDSCR6 physically interacts with PcG proteins through the WRPW motif, preventing the formation of PcG bodies and antagonising their repressor activity in embryonic axis formation. By chromatin immunoprecipitation, we demonstrate that XDSCR6 releases PcG proteins from chromatin and allows dorsal mesoderm gene transcription. Our studies suggest that XDSCR6 might function to sequester PcG proteins and identify a novel derepression mechanism implicated in embryonic induction and axis formation.
Collapse
Affiliation(s)
- Hong-Yan Li
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
- Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Raphaëlle Grifone
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Audrey Saquet
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Clémence Carron
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - De-Li Shi
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| |
Collapse
|
30
|
Mfopou JK, Bouwens L. [Differentiation of pluripotent stem cells into pancreatic lineages]. Med Sci (Paris) 2013; 29:736-43. [PMID: 24005628 DOI: 10.1051/medsci/2013298012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diabetes mellitus is the leading metabolic disease and represents a major public health concern worldwide. Whereas the transplantation of pancreas donor-derived islets significantly improves the quality of life of diabetic patients who become insulin independent for few years, it can unfortunately be provided only to few patients in an advanced stage of the disease. This situation is related to the severe shortage in pancreas donors and has prompted the hunt for alternative sources of islet cells. Beside many other strategies aiming at producing new beta cells in vitro or in vivo, a particular focus has been on the plupiropent stem cells because of their abundant availability and their extreme plasticity. Progress in understanding small vertebrates embryonic development has tremendously contributed to the design of differentiation strategies applied to pluripotent stem cells. Nowadays, definitive endoderm and pancreatic progenitors can be efficiently induced from human embryonic stem cells and from human induced pluripotent stem cells. Although we are still lacking the knowledge required for deriving functional beta cells in vitro, transplantation experiments have demonstrated that stem cell-derived pancreas progenitors further generate this phenotype in vivo. All these findings gathered during the last decade witness the closer clinical application of pluripotent stem cell progenies in diabetes cell therapy.
Collapse
Affiliation(s)
- Josué Kunjom Mfopou
- Unité de différenciation cellulaire, Centre de recherche sur le diabète, Vrije Universiteit Brussel, Bruxelles, Belgique.
| | | |
Collapse
|
31
|
Cattell MV, Garnett AT, Klymkowsky MW, Medeiros DM. A maternally established SoxB1/SoxF axis is a conserved feature of chordate germ layer patterning. Evol Dev 2013; 14:104-15. [PMID: 23016978 DOI: 10.1111/j.1525-142x.2011.00525.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite deep evolutionary roots in the metazoa, the gene regulatory network driving germ layer specification is surprisingly labile both between and within phyla. In Xenopus laevis, SoxB1- and SoxF-type transcription factors are intimately involved in germ-layer specification, in part through their regulation of Nodal signaling. However, it is unclear if X. laevis is representative of the ancestral vertebrate condition, as the precise roles of SoxF and SoxB1 in germ-layer specification vary among vertebrates, and there is no evidence that SoxF mediates germ-layer specification in any invertebrate. To better understand the evolution of germ-layer specification in the vertebrate lineage, we analyzed the expression of soxB1 and soxF genes in embryos and larvae of the basal vertebrate lamprey, and the basal chordate amphioxus. We find that both species maternally deposit soxB1 mRNA in the animal pole, soxF mRNA in the vegetal hemisphere, and zygotically express soxB1 and soxF throughout nascent ectoderm and mesendoderm, respectively. We also find that soxF is excluded from the vegetalmost blastomeres in lamprey and that, in contrast to vertebrates, amphioxus does not express soxF in the oral epithelium. In the context of recent work, our results suggest that a maternally established animal/vegetal Sox axis is a deeply conserved feature of chordate development that predates the role of Nodal in vertebrate germ-layer specification. Furthermore, exclusion of this axis from the vegetal pole in lamprey is consistent with the presence of an extraembryonic yolk mass, as has been previously proposed. Finally, conserved expression of SoxF in the forming mouth across the vertebrates, but not in amphioxus, lends support to the idea that the larval amphioxus mouth is nonhomologous to the vertebrate mouth.
Collapse
Affiliation(s)
- Maria V Cattell
- Ecology and Evolutionary Biology, University of Colorado-Boulder, CO 80309-0334, USA
| | | | | | | |
Collapse
|
32
|
Quail DF, Siegers GM, Jewer M, Postovit LM. Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol 2013; 45:885-98. [PMID: 23291354 DOI: 10.1016/j.biocel.2012.12.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/19/2012] [Accepted: 12/24/2012] [Indexed: 12/22/2022]
Abstract
With few exceptions, most cells in adult organisms have lost the expression of stem cell-associated proteins and are instead characterized by tissue-specific gene expression and function. This cell fate specification is dictated spatially and temporally during embryogenesis. It has become increasingly apparent that the elegant and complicated process of cell specification is "undone" in cancer. This may be because cancer cells respond to their microenvironment and mutations by acquiring a more permissive, plastic epigenome, or because cancer cells arise from mutated stem cells. Regardless, these advanced cancer cells must use stem cell-associated proteins to sustain their phenotype. One such protein is Nodal, an embryonic morphogen belonging to the transforming growth factor-β (TGF-β) superfamily. First described in early developmental models, Nodal orchestrates embryogenesis by regulating a myriad of processes, including mesendoderm induction, left-right asymmetry and embryo implantation. Nodal is relatively restricted to embryonic and reproductive cell types and is thus absent from most normal adult tissues. However, recent studies focusing on a variety of malignancies have demonstrated that Nodal expression re-emerges during cancer progression. Moreover, in almost every cancer studied thus far, the acquisition of Nodal expression is associated with increased tumourigenesis, invasion and metastasis. As the list of cancers that express Nodal grows, it is essential that the scientific and medical communities fully understand how this morphogen is regulated in both normal and neoplastic conditions. Herein, we review the literature relating to normal and pathological Nodal signalling. In particular, we emphasize the role that this secreted protein plays during morphogenic events and how it signals to support stem cell maintenance and tumour progression.
Collapse
Affiliation(s)
- Daniela F Quail
- Department of Anatomy and Cell Biology, University of Western Ontario and Robarts Research Institute, London, ON, Canada
| | | | | | | |
Collapse
|
33
|
Reid CD, Zhang Y, Sheets MD, Kessler DS. Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer. Dev Biol 2012; 368:231-41. [PMID: 22627292 DOI: 10.1016/j.ydbio.2012.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/22/2012] [Accepted: 05/08/2012] [Indexed: 11/25/2022]
Abstract
Signaling inputs from multiple pathways are essential for the establishment of distinct cell and tissue types in the embryo. Therefore, multiple signals must be integrated to activate gene expression and confer cell fate, but little is known about how this occurs at the level of target gene promoters. During early embryogenesis, Wnt and Nodal signals are required for formation of the Spemann organizer, which is essential for germ layer patterning and axis formation. Signaling by both Wnt and Nodal pathways is required for the expression of multiple organizer genes, suggesting that integration of these signals is required for organizer formation. Here, we demonstrate transcriptional cooperation between the Wnt and Nodal pathways in the activation of the organizer genes Goosecoid (Gsc), Cerberus (Cer), and Chordin (Chd). Combined Wnt and Nodal signaling synergistically activates transcription of these organizer genes. Effectors of both pathways occupy the Gsc, Cer and Chd promoters and effector occupancy is enhanced with active Wnt and Nodal signaling. This suggests that, at organizer gene promoters, a stable transcriptional complex containing effectors of both pathways forms in response to combined Wnt and Nodal signaling. Consistent with this idea, the histone acetyltransferase p300 is recruited to organizer promoters in a Wnt and Nodal effector-dependent manner. Taken together, these results offer a mechanism for spatial and temporal restriction of organizer gene transcription by the integration of two major signaling pathways, thus establishing the Spemann organizer domain.
Collapse
Affiliation(s)
- Christine D Reid
- Department of Cell and Developmental Biology, University of Pennsylvania, School of Medicine, Room 1110 Biomedical Research Building 2/3, 421 Curie Boulevard, Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
34
|
Akiyama T, Marqués G, Wharton KA. A large bioactive BMP ligand with distinct signaling properties is produced by alternative proconvertase processing. Sci Signal 2012; 5:ra28. [PMID: 22472650 DOI: 10.1126/scisignal.2002549] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dimers of conventional transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) ligands are composed of two 100- to 140-amino acid peptides that are produced through the proteolytic processing of a proprotein precursor by proconvertases, such as furin. We report the identification of an evolutionarily conserved furin processing site in the amino terminus (NS) of the Glass bottom boat (Gbb; the Drosophila ortholog of vertebrate BMP5, 6, and 7) proprotein that generates a 328-amino acid, active BMP ligand distinct from the conventional 130-amino acid ligand. Gbb38, the large ligand form of Gbb, exhibited greater signaling activity and a longer range than the shorter form Gbb15. The abundance of Gbb15 and Gbb38 varied among different tissues, raising the possibility that differential processing could account for tissue-specific behaviors of BMPs. In human populations, mutations that abolished the NS cleavage site in BMP4, BMP15, or anti-Müllerian hormone were associated with cleft lip with or without cleft palate (BMP4), premature ovarian failure (BMP15), and persistent Müllerian duct syndrome (anti-Müllerian hormone), suggesting the importance of NS processing during development. The identification of this large BMP ligand form and the functional differences between large and small ligands exemplifies the potential for differential proprotein processing to substantially affect BMP and TGF-β signaling output in different tissue and cellular contexts.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
35
|
Yoon SJ, Wills AE, Chuong E, Gupta R, Baker JC. HEB and E2A function as SMAD/FOXH1 cofactors. Genes Dev 2011; 25:1654-61. [PMID: 21828274 DOI: 10.1101/gad.16800511] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nodal signaling, mediated through SMAD transcription factors, is necessary for pluripotency maintenance and endoderm commitment. We identified a new motif, termed SMAD complex-associated (SCA), that is bound by SMAD2/3/4 and FOXH1 in human embryonic stem cells (hESCs) and derived endoderm. We demonstrate that two basic helix-loop-helix (bHLH) proteins-HEB and E2A-bind the SCA motif at regions overlapping SMAD2/3 and FOXH1. Furthermore, we show that HEB and E2A associate with SMAD2/3 and FOXH1, suggesting they form a complex at critical target regions. This association is biologically important, as E2A is critical for mesendoderm specification, gastrulation, and Nodal signal transduction in Xenopus tropicalis embryos. Taken together, E proteins are novel Nodal signaling cofactors that associate with SMAD2/3 and FOXH1 and are necessary for mesendoderm differentiation.
Collapse
Affiliation(s)
- Se-Jin Yoon
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
36
|
Liu W, Foley AC. Signaling pathways in early cardiac development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:191-205. [PMID: 20830688 DOI: 10.1002/wsbm.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiomyocyte differentiation is a complex multistep process requiring the proper temporal and spatial integration of multiple signaling pathways. Previous embryological and genetic studies have identified a number of signaling pathways that are critical to mediate the initial formation of the mesoderm and its allocation to the cardiomyocyte lineage. It has become clear that some of these signaling networks work autonomously, in differentiating myocardial cells whereas others work non-autonomously, in neighboring tissues, to regulate cardiac differentiation indirectly. Here, we provide an overview of three signaling networks that mediate cardiomyocyte specification and review recent insights into their specific roles in heart development. In addition, we demonstrate how systems level, 'omic approaches' and other high-throughput techniques such as small molecules screens are beginning to impact our understanding of cardiomyocyte specification and, to identify novel signaling pathways involved in this process. In particular, it now seems clear that at least one chemokine receptor CXCR4 is an important marker for cardiomyocyte progenitors and may play a functional role in their differentiation. Finally, we discuss some gaps in our current understanding of early lineage selection that could be addressed by various types of omic analysis.
Collapse
Affiliation(s)
- Wenrui Liu
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
37
|
Tadjuidje E, Cha SW, Louza M, Wylie C, Heasman J. The functions of maternal Dishevelled 2 and 3 in the early Xenopus embryo. Dev Dyn 2011; 240:1727-36. [PMID: 21618643 DOI: 10.1002/dvdy.22671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2011] [Indexed: 02/03/2023] Open
Abstract
Of the three Dishevelled (Dvl) genes, only Dvl2 and Dvl3 are maternally encoded in the frog, Xenopus laevis. We show here by loss of function analysis that single depletion of either Dvl2 or Dvl3 from the oocyte causes the same embryonic phenotype. We find that the effects of loss of function of Dvl2 and 3 together are additive, and that the proteins physically interact, suggesting that both are required in the same complex. We show that maternal Dvl2 and 3 are required for convergence extension movements downstream of the dorsally localized signaling pathway activated by Xnr3, but not downstream of the pathway activated by activin. Also, depletion of maternal Dvl2 and 3 mRNAs causes the up-regulation of a subset of zygotic ectodermal genes, including Foxi1e, with surprisingly no significant effect on the canonical Wnt direct target genes Siamois and Xnr3. We suggest that the likely reason for continued expression of the Wnt target genes in Dvl2/3-depleted embryos is that maternal Dvl mRNA depletion is insufficient to deplete stored punctae of Dvl protein in the oocyte cortex, which may transduce dorsal signaling after fertilization.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
38
|
Silva AC, Filipe M, Steinbeisser H, Belo JA. Characterization of Cer-1 cis-regulatory region during early Xenopus development. Dev Genes Evol 2011; 221:29-41. [PMID: 21509535 DOI: 10.1007/s00427-011-0357-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/08/2011] [Indexed: 01/07/2023]
Abstract
Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position -172 to -168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.
Collapse
|
39
|
Li L, Jing N. Pluripotent stem cell studies elucidate the underlying mechanisms of early embryonic development. Genes (Basel) 2011; 2:298-312. [PMID: 24710192 PMCID: PMC3924820 DOI: 10.3390/genes2020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/08/2011] [Accepted: 03/21/2011] [Indexed: 01/02/2023] Open
Abstract
Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently, pluripotent stem cell lines derived from different developmental stages have provided an in vitro system for investigating molecular mechanisms regulating cell fate decisions. In this review, we summarize the major functions of the BMP, FGF, Nodal and Wnt signaling pathways, which have well-established roles in vertebrate embryogenesis. Then, we highlight recent studies in pluripotent stem cells that have revealed the stage-specific roles of BMP,FGF and Nodal pathways during neural differentiation. These findings enhance our understanding of the stepwise regulation of embryo patterning by particular signaling pathways and provide new insight into the mechanisms underlying early embryonic development.
Collapse
Affiliation(s)
- Lingyu Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| | - Naihe Jing
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|
40
|
Chen C, Chai J, Singh L, Kuo CY, Jin L, Feng T, Marzano S, Galeni S, Zhang N, Iacovino M, Qin L, Hara M, Stein R, Bromberg JS, Kyba M, Ku HT. Characterization of an in vitro differentiation assay for pancreatic-like cell development from murine embryonic stem cells: detailed gene expression analysis. Assay Drug Dev Technol 2011; 9:403-19. [PMID: 21395400 DOI: 10.1089/adt.2010.0314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Embryonic stem (ES) cell technology may serve as a platform for the discovery of drugs to treat diseases such as diabetes. However, because of difficulties in establishing reliable ES cell differentiation methods and in creating cost-effective plating conditions for the high-throughput format, screening for molecules that regulate pancreatic beta cells and their immediate progenitors has been limited. A relatively simple and inexpensive differentiation protocol that allows efficient generation of insulin-expressing cells from murine ES cells was previously established in our laboratories. In this report, this system is characterized in greater detail to map developmental cell stages for future screening experiments. Our results show that sequential activation of multiple gene markers for undifferentiated ES cells, epiblast, definitive endoderm, foregut, and pancreatic lineages was found to follow the sequence of events that mimics pancreatic ontogeny. Cells that expressed enhanced green fluorescent protein, driven by pancreatic and duodenal homeobox 1 or insulin 1 promoter, correctly expressed known beta cell lineage markers. Overexpression of Sox17, an endoderm fate-determining transcription factor, at a very early stage of differentiation (days 2-3) enhanced pancreatic gene expression. Overexpression of neurogenin3, an endocrine progenitor cell marker, induced glucagon expression at stages when pancreatic and duodenal homeobox 1 message was present (days 10-16). Forced expression (between days 16 and 25) of MafA, a pancreatic maturation factor, resulted in enhanced expression of insulin genes, glucose transporter 2 and glucokinase, and glucose-responsive insulin secretion. Day 20 cells implanted in vivo resulted in pancreatic-like cells. Together, our differentiation assay recapitulates the proceedings and behaviors of pancreatic development and will be valuable for future screening of beta cell effectors.
Collapse
Affiliation(s)
- Chialin Chen
- Department of Diabetes, Endocrinology, and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence, as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes.
Collapse
Affiliation(s)
- Jason R. Spence
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ryan Lauf
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Noah F. Shroyer
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
42
|
Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, Micallef SJ, Park IH, Basford C, Wheeler MB, Daley GQ, Elefanty AG, Stanley EG, Keller G. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 2011; 138:861-71. [PMID: 21270052 DOI: 10.1242/dev.055236] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of insulin-producing β-cells from human pluripotent stem cells is dependent on efficient endoderm induction and appropriate patterning and specification of this germ layer to a pancreatic fate. In this study, we elucidated the temporal requirements for TGFβ family members and canonical WNT signaling at these developmental stages and show that the duration of nodal/activin A signaling plays a pivotal role in establishing an appropriate definitive endoderm population for specification to the pancreatic lineage. WNT signaling was found to induce a posterior endoderm fate and at optimal concentrations enhanced the development of pancreatic lineage cells. Inhibition of the BMP signaling pathway at specific stages was essential for the generation of insulin-expressing cells and the extent of BMP inhibition required varied widely among the cell lines tested. Optimal stage-specific manipulation of these pathways resulted in a striking 250-fold increase in the levels of insulin expression and yielded populations containing up to 25% C-peptide+ cells.
Collapse
Affiliation(s)
- M Cristina Nostro
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Takai A, Inomata H, Arakawa A, Yakura R, Matsuo-Takasaki M, Sasai Y. Anterior neural development requires Del1, a matrix-associated protein that attenuates canonical Wnt signaling via the Ror2 pathway. Development 2010; 137:3293-302. [PMID: 20823067 DOI: 10.1242/dev.051136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During early embryogenesis, the neural plate is specified along the anterior-posterior (AP) axis by the action of graded patterning signals. In particular, the attenuation of canonical Wnt signals plays a central role in the determination of the anterior brain region. Here, we show that the extracellular matrix (ECM) protein Del1, expressed in the anterior neural plate, is essential for forebrain development in the Xenopus embryo. Overexpression of Del1 expands the forebrain domain and promotes the formation of head structures, such as the eye, in a Chordin-induced secondary axis. Conversely, the inhibition of Del1 function by a morpholino oligonucleotide (MO) represses forebrain development. Del1 also augments the expression of forebrain markers in neuralized animal cap cells, whereas Del1-MO suppresses them. We previously reported that Del1 interferes with BMP signaling in the dorsal-ventral patterning of the gastrula marginal zone. By contrast, we demonstrate here that Del1 function in AP neural patterning is mediated mainly by the inhibition of canonical Wnt signaling. Wnt-induced posteriorization of the neural plate is counteracted by Del1, and the Del1-MO phenotype (posteriorization) is reversed by Dkk1. Topflash reporter assays show that Del1 suppresses luciferase activities induced by Wnt1 and beta-catenin. This inhibitory effect of Del1 on canonical Wnt signaling, but not on BMP signaling, requires the Ror2 pathway, which is implicated in non-canonical Wnt signaling. These findings indicate that the ECM protein Del1 promotes forebrain development by creating a local environment that attenuates the cellular response to posteriorizing Wnt signals via a unique pathway.
Collapse
Affiliation(s)
- Akira Takai
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Cao L, Gibson JD, Miyamoto S, Sail V, Verma R, Rosenberg DW, Nelson CE, Giardina C. Intestinal lineage commitment of embryonic stem cells. Differentiation 2010; 81:1-10. [PMID: 20934799 DOI: 10.1016/j.diff.2010.09.182] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/17/2010] [Accepted: 09/22/2010] [Indexed: 01/02/2023]
Abstract
Generating lineage-committed intestinal stem cells from embryonic stem cells (ESCs) could provide a tractable experimental system for understanding intestinal differentiation pathways and may ultimately provide cells for regenerating damaged intestinal tissue. We tested a two-step differentiation procedure in which ESCs were first cultured with activin A to favor formation of definitive endoderm, and then treated with fibroblast-conditioned medium with or without Wnt3A. The definitive endoderm expressed a number of genes associated with gut-tube development through mouse embryonic day 8.5 (Sox17, Foxa2, and Gata4 expressed and Id2 silent). The intestinal stem cell marker Lgr5 gene was also activated in the endodermal cells, whereas the Msi1, Ephb2, and Dcamkl1 intestinal stem cell markers were not. Exposure of the endoderm to fibroblast-conditioned medium with Wnt3A resulted in the activation of Id2, the remaining intestinal stem cell markers and the later gut markers Cdx2, Fabp2, and Muc2. Interestingly, genes associated with distal gut-associated mesoderm (Foxf2, Hlx, and Hoxd8) were also simulated by Wnt3A. The two-step differentiation protocol generated gut bodies with crypt-like structures that included regions of Lgr5-expressing proliferating cells and regions of cell differentiation. These gut bodies also had a smooth muscle component and some underwent peristaltic movement. The ability of the definitive endoderm to differentiate into intestinal epithelium was supported by the vivo engraftment of these cells into mouse colonic mucosa. These findings demonstrate that definitive endoderm derived from ESCs can carry out intestinal cell differentiation pathways and may provide cells to restore damaged intestinal tissue.
Collapse
Affiliation(s)
- Li Cao
- University of Connecticut, Department of Molecular and Cell Biology, 91 North Eagleville Road, Unit 3125 Storrs, CT 06269-3125, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Onai T, Yu JK, Blitz IL, Cho KWY, Holland LZ. Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol 2010; 344:377-89. [PMID: 20488174 PMCID: PMC4781670 DOI: 10.1016/j.ydbio.2010.05.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022]
Abstract
The basal chordate amphioxus resembles vertebrates in having a dorsal, hollow nerve cord, a notochord and somites. However, it lacks extensive gene duplications, and its embryos are small and gastrulate by simple invagination. Here we demonstrate that Nodal/Vg1 signaling acts from early cleavage through the gastrula stage to specify and maintain dorsal/anterior development while, starting at the early gastrula stage, BMP signaling promotes ventral/posterior identity. Knockdown and gain-of-function experiments show that these pathways act in opposition to one another. Signaling by these pathways is modulated by dorsally and/or anteriorly expressed genes including Chordin, Cerberus, and Blimp1. Overexpression and/or reporter assays in Xenopus demonstrate that the functions of these proteins are conserved between amphioxus and vertebrates. Thus, a fundamental genetic mechanism for axial patterning involving opposing Nodal and BMP signaling is present in amphioxus and probably also in the common ancestor of amphioxus and vertebrates or even earlier in deuterostome evolution.
Collapse
Affiliation(s)
- Takayuki Onai
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202 USA
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica,128 Academia Road, Sec., Nankang, Taipei 11529, Taiwan
| | - Ira L. Blitz
- Department of Developmental and Cell Biology, and Developmental Biology Center, University of California Irvine, Irvine CA 92697-2300
| | - Ken W. Y. Cho
- Department of Developmental and Cell Biology, and Developmental Biology Center, University of California Irvine, Irvine CA 92697-2300
| | - Linda Z. Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202 USA
| |
Collapse
|
46
|
Swiers G, Chen YH, Johnson AD, Loose M. A conserved mechanism for vertebrate mesoderm specification in urodele amphibians and mammals. Dev Biol 2010; 343:138-52. [PMID: 20394741 DOI: 10.1016/j.ydbio.2010.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 11/26/2022]
Abstract
Understanding how mesoderm is specified during development is a fundamental issue in biology, and it has been studied intensively in embryos from Xenopus. The gene regulatory network (GRN) for Xenopus is surprisingly complex and is not conserved in vertebrates, including mammals, which have single copies of the key genes Nodal and Mix. Why the Xenopus GRN should express multiple copies of Nodal and Mix genes is not known. To understand how these expanded gene families evolved, we investigated mesoderm specification in embryos from axolotls, representing urodele amphibians, since urodele embryology is basal to amphibians and was conserved during the evolution of amniotes, including mammals. We show that single copies of Nodal and Mix are required for mesoderm specification in axolotl embryos, suggesting the ancestral vertebrate state. Furthermore, we uncovered a novel genetic interaction in which Mix induces Brachyury expression, standing in contrast to the relationship of these molecules in Xenopus. However, we demonstrate that this functional relationship is conserved in mammals by showing that it is involved in the production of mesoderm from mouse embryonic stem cells. From our results, we produced an ancestral mesoderm (m)GRN, which we suggest is conserved in vertebrates. The results are discussed within the context of a theory in which the evolution of mechanisms governing early somatic development is constrained by the ancestral germ line-soma relationship, in which germ cells are produced by epigenesis.
Collapse
Affiliation(s)
- Gemma Swiers
- Institute of Genetics, Queens Medical Centre, University of Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
47
|
Chang LL, Kessler DS. Foxd3 is an essential Nodal-dependent regulator of zebrafish dorsal mesoderm development. Dev Biol 2010; 342:39-50. [PMID: 20346935 PMCID: PMC2866760 DOI: 10.1016/j.ydbio.2010.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/12/2010] [Accepted: 03/16/2010] [Indexed: 02/05/2023]
Abstract
Establishment of the embryonic mesoderm is dependent on integration of multiple signaling and transcriptional inputs. We report that the transcriptional regulator Foxd3 is essential for dorsal mesoderm formation in zebrafish, and that this function is dependent on the Nodal pathway. Foxd3 gain-of-function results in expanded dorsal mesodermal gene expression, including the Nodal-related gene cyclops, and body axis dorsalization. Foxd3 knockdown embryos displayed reduced expression of cyclops and mesodermal genes, axial defects similar to Nodal pathway loss-of-function, and Nodal pathway activation rescued these phenotypes. In MZoep mutants inactive for Nodal signaling, Foxd3 did not rescue mesoderm formation or axial development, indicating that the mesodermal function of Foxd3 is dependent on an active downstream Nodal pathway. A previously identified foxd3 mutant, sym1, was described as a predicted null mutation with neural crest defects, but no mesodermal or axial phenotypes. We find that Sym1 protein retains activity and can induce strong mesodermal expansion and axial dorsalization. A subset of sym1 homozygotes displays axial defects and reduced cyclops and mesodermal gene expression, and penetrance of the mesodermal phenotypes is enhanced by Foxd3 knockdown. Therefore, sym1 is a hypomorphic allele, and reduced Foxd3 function results in a reduction of cyclops expression, and subsequent mesodermal and axial defects. These results demonstrate that Foxd3 is an essential upstream regulator of the Nodal pathway in zebrafish dorsal mesoderm development and establish a broadly conserved role for Foxd3 in vertebrate mesodermal development.
Collapse
Affiliation(s)
- Lisa L. Chang
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 1110 Biomedical Research Building 2/3, 421 Curie Boulevard, Philadelphia, PA 19104-6058 USA, ,
| | - Daniel S. Kessler
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 1110 Biomedical Research Building 2/3, 421 Curie Boulevard, Philadelphia, PA 19104-6058 USA, ,
| |
Collapse
|
48
|
Luxardi G, Marchal L, Thomé V, Kodjabachian L. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development 2010; 137:417-26. [PMID: 20056679 DOI: 10.1242/dev.039735] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate body plan is established in two major steps. First, mesendoderm induction singles out prospective endoderm, mesoderm and ectoderm progenitors. Second, these progenitors are spatially rearranged during gastrulation through numerous and complex movements to give rise to an embryo comprising three concentric germ layers, polarised along dorsoventral, anteroposterior and left-right axes. Although much is known about the molecular mechanisms of mesendoderm induction, signals controlling gastrulation movements are only starting to be revealed. In vertebrates, Nodal signalling is required to induce the mesendoderm, which has precluded an analysis of its potential role during the later process of gastrulation. Using time-dependent inhibition, we show that in Xenopus, Nodal signalling plays sequential roles in mesendoderm induction and gastrulation movements. Nodal activity is necessary for convergent extension in axial mesoderm and for head mesoderm migration. Using morpholino-mediated knockdown, we found that the Nodal ligands Xnr5 and Xnr6 are together required for mesendoderm induction, whereas Xnr1 and Xnr2 act later to control gastrulation movements. This control is operated via the direct regulation of key movement-effector genes, such as papc, has2 and pdgfralpha. Interestingly, however, Nodal does not appear to mobilise the Wnt/PCP pathway, which is known to control cell and tissue polarity. This study opens the way to the analysis of the genetic programme and cell behaviours that are controlled by Nodal signalling during vertebrate gastrulation. It also provides a good example of the sub-functionalisation that results from the expansion of gene families in evolution.
Collapse
Affiliation(s)
- Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216, CNRS-Université de la Méditerranée, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
49
|
FOLEY ANNC, STERN CLAUDIOD. Evolution of vertebrate forebrain development: how many different mechanisms? J Anat 2009. [DOI: 10.1046/j.1469-7580.199.parts1-2.5.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
50
|
Kwek J, De Iongh R, Nicholas K, Familari M. Molecular insights into evolution of the vertebrate gut: focus on stomach and parietal cells in the marsupial,Macropus eugenii. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:613-24. [DOI: 10.1002/jez.b.21227] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|