1
|
Parimita S, Das A, Samanta S. Vestigial-like family member 1 (VGLL1): An emerging candidate in tumor progression. Biochem Biophys Res Commun 2025; 766:151889. [PMID: 40300335 DOI: 10.1016/j.bbrc.2025.151889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
Vestigial-like family member 1 (VGLL1), a product of an X-linked gene (VGLL1), belongs to a family of transcriptional co-activators including VGLL2, VGLL3 and VGLL4. These proteins are called vestigial-like because of the structural and functional similarities with the Drosophila ortholog vestigial (vg). VGLL1 is usually expressed in human placenta, and has also been detected in many aggressive cancers. For this reason, it is called an onco-placental protein. It can bind and activate the TEA-domain containing transcription factors TEAD1-4, and the interaction is mediated through a conserved 'valine-x-x-histidine-phenylalanine' domain (VxxHF, x denotes any amino acid) present in VGLL1 protein. Prior studies indicate a pro-tumorigenic role for this protein in several cancers including carcinoma of the breast. This review aims at summarizing our present knowledge about the functions of VGLL1, and the mechanisms that regulate its expression in cancer.
Collapse
Affiliation(s)
- Shubhashree Parimita
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Sanjoy Samanta
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Zheng G, Yan Z, Zou J, Zou X, Chai K, Zhang G. AR and YAP crosstalk: impacts on therapeutic strategies in prostate cancer. Front Oncol 2025; 15:1520808. [PMID: 39963114 PMCID: PMC11830605 DOI: 10.3389/fonc.2025.1520808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Prostate cancer ranks as one of the most common types of cancer affecting men worldwide, and its progression is shaped by a diverse array of influencing factors. The AR signaling pathway plays a pivotal role in the pathogenesis of prostate cancer. While existing anti-androgen treatments show initial efficacy, they ultimately do not succeed in halting the advancement to CRPC. Recent studies have identified alterations in the Hippo-YAP signaling pathway within prostate cancer, highlighting intricate crosstalk with the AR signaling pathway. In this review, we examine the interactions and underlying mechanisms between AR and YAP, the key molecules in these two signaling pathways. AR regulates the stability and function of YAP by modulating its transcription, translation, and phosphorylation status, while YAP exerts both promotional and inhibitory regulatory effects on AR. Based on these findings, this paper investigates their significant roles in the onset, progression, and therapeutic resistance of prostate cancer, and discusses the clinical potential of YAP in prostate cancer treatment.
Collapse
Affiliation(s)
- Guansong Zheng
- First Clinical College, Gannan Medical University, Ganzhou, China
| | - Zhaojie Yan
- First Clinical College, Gannan Medical University, Ganzhou, China
| | - Junrong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Keqiang Chai
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Tang Y, Chen F, Fang G, Zhang H, Zhang Y, Zhu H, Zhang X, Han Y, Cao Z, Guo F, Wang W, Ye D, Ju J, Tan L, Li C, Zhao Y, Zhou Z, An L, Jiao S. A cofactor-induced repressive type of transcription factor condensation can be induced by synthetic peptides to suppress tumorigenesis. EMBO J 2024; 43:5586-5612. [PMID: 39358623 PMCID: PMC11574045 DOI: 10.1038/s44318-024-00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Transcriptional factors (TFs) act as key determinants of cell death and survival by differentially modulating gene expression. Here, we identified many TFs, including TEAD4, that form condensates in stressed cells. In contrast to YAP-induced transcription-activating condensates of TEAD4, we found that co-factors such as VGLL4 and RFXANK alternatively induced repressive TEAD4 condensates to trigger cell death upon glucose starvation. Focusing on VGLL4, we demonstrated that heterotypic interactions between TEAD4 and VGLL4 favor the oligomerization and assembly of large TEAD4 condensates with a nonclassical inhibitory function, i.e., causing DNA/chromatin to be aggregated and entangled, which eventually impede gene expression. Based on these findings, we engineered a peptide derived from the TEAD4-binding motif of VGLL4 to selectively induce TEAD4 repressive condensation. This "glue" peptide displayed a strong antitumor effect in genetic and xenograft mouse models of gastric cancer via inhibition of TEAD4-related gene transcription. This new type of repressive TF phase separation exemplifies how cofactors can orchestrate opposite functions of a given TF, and offers potential new antitumor strategies via artificial induction of repressive condensation.
Collapse
Grants
- 2020YFA0803200 MOST | National Key Research and Development Program of China (NKPs)
- 2023YFC2505903 MOST | National Key Research and Development Program of China (NKPs)
- 32270747,92168116, 22077002, 82222052 MOST | National Natural Science Foundation of China (NSFC)
- 32200567, 31930026, 82150112 MOST | National Natural Science Foundation of China (NSFC)
- 32070710, 82372613 MOST | National Natural Science Foundation of China (NSFC)
- 82361168638, 32170706, 82002493 MOST | National Natural Science Foundation of China (NSFC)
- 22ZR1448100, 22QA1407200, 23ZR1448900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- 22QA1407300, 23ZR1480400, 23YF1432900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- STCSM | Natural Science Foundation of Shanghai Municipality (上海市自然科学基金)
Collapse
Affiliation(s)
- Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hui Zhang
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Yanni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hanying Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xinru Zhang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Han
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhifa Cao
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Dan Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Junyi Ju
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lijie Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Chuanchuan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Liwei An
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
4
|
Sonnemann HM, Pazdrak B, Nassif B, Sun Y, Elzohary L, Talukder AH, Katailiha AS, Bhat K, Lizée G. Placental co-transcriptional activator Vestigial-like 1 (VGLL1) drives tumorigenesis via increasing transcription of proliferation and invasion genes. Front Oncol 2024; 14:1403052. [PMID: 38912065 PMCID: PMC11190739 DOI: 10.3389/fonc.2024.1403052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Vestigial-like 1 (VGLL1) is a co-transcriptional activator that binds to TEA domain-containing transcription factors (TEADs). Its expression is upregulated in a variety of aggressive cancer types, including pancreatic and basal-like breast cancer, and increased transcription of VGLL1 is strongly correlated with poor prognosis and decreased overall patient survival. In normal tissues, VGLL1 is most highly expressed within placental trophoblast cells, which share the common attributes of rapid cellular proliferation and invasion with tumor cells. The impact of VGLL1 in cancer has not been fully elucidated and no VGLL1-targeted therapy currently exists. Methods The aim of this study was to evaluate the cellular function and downstream genomic targets of VGLL1 in placental, pancreatic, and breast cancer cells. Functional assays were employed to assess the role of VGLL1 in cellular invasion and proliferation, and ChIP-seq and RNAseq assays were performed to identify VGLL1 target genes and potential impact using pathway analysis. Results ChIP-seq analysis identified eight transcription factors with a VGLL1-binding motif that were common between all three cell types, including TEAD1-4, AP-1, and GATA6, and revealed ~3,000 shared genes with which VGLL1 interacts. Furthermore, increased VGLL1 expression led to an enhancement of cell invasion and proliferation, which was supported by RNAseq analysis showing transcriptional changes in several genes known to be involved in these processes. Discussion This work expands our mechanistic understanding of VGLL1 function in tumor cells and provides a strong rationale for developing VGLL1-targeted therapies for treating cancer patients.
Collapse
Affiliation(s)
- Heather M. Sonnemann
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara Pazdrak
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara Nassif
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Yimo Sun
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Lama Elzohary
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Amjad H. Talukder
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Arjun S. Katailiha
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Krishna Bhat
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
Parimita S, Das A, Samanta S. VGLL1 stabilization of cytoplasmic TAZ promotes EGFR expression and maintains tumor initiating cells in breast cancer independent of TEAD. Cell Signal 2024; 118:111120. [PMID: 38417636 DOI: 10.1016/j.cellsig.2024.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Vestigial-like family member 1 (VGLL1) is one of the X-linked genes whose expression is elevated in basal-like breast cancer (BLBC) because of X-chromosome isodisomy. As an approach towards understanding its function, we performed correlation study using transcript data of breast cancer patients from cBioPortal for Cancer Genomics. Our analysis identified EGFR as the most correlated transcript with VGLL1. We demonstrate that VGLL1 promotes EGFR expression and increases the frequency of breast tumor initiating cells (CD44high/+CD24low/-). These findings are crucial because an elevated EGFR expression and high frequency of CD44high/+CD24low/- cells are defining features of BLBC, and we provide a new mechanistic insight into how their expressions are controlled. Importantly, VGLL1 regulation of EGFR and CD44high/+CD24low/- population is mediated by the hippo-transducer TAZ which exerts its oncogenic roles by binding and activating TEAD transcription factors. A crucial finding is that TEAD-binding domain of TAZ is dispensable for its regulation of EGFR and CD44high/+CD24low/- cells. Instead, VGLL1 stabilization of cytoplasmic TAZ is essential for these functions. Also, we show that VGLL1/TAZ restricts the surface expression of CD24 which contributes to the increased number of CD44high/+CD24low/- cells. In addition, we observed that VGLL1 represses AXL expression and suppresses claudin-low phenotype, and that is caused by the VGLL1 mediated nuclear expulsion of TAZ. Therefore, EGFR and AXL seem to represent two different breast tumor subtypes, and their differential expressions is controlled by VGLL1.
Collapse
Affiliation(s)
- Shubhashree Parimita
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjoy Samanta
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Li H, Cai L, Pan Q, Jiang X, Zhao J, Xiang T, Tang Y, Wang Q, He J, Weng D, Zhang Y, Liu Z, Xia J. N 6-methyladenosine-modified VGLL1 promotes ovarian cancer metastasis through high-mobility group AT-hook 1/Wnt/β-catenin signaling. iScience 2024; 27:109245. [PMID: 38439973 PMCID: PMC10910247 DOI: 10.1016/j.isci.2024.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/30/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
The main causes of death in patients with ovarian cancer (OC) are invasive lesions and the spread of metastasis. The present study aimed to explore the mechanisms that might promote OC metastasis. Here, we identified that VGLL1 expression was remarkably increased in metastatic OC samples. The role of VGLL1 in OC metastasis and tumor growth was examined by cell function assays and mouse models. Mechanistically level, METTL3-mediated N6-methyladenosine (m6A) modification contributed to VGLL1 upregulation in an IGF2BP2 recognition-dependent manner. Furthermore, VGLL1 directly interacts with TEAD4 and co-transcriptionally activates HMGA1. HMGA1 further activates Wnt/β-catenin signaling to enhance OC metastasis by promoting the epithelial-mesenchyme transition traits. Rescue assays indicated that the upregulation of HMGA1 was essential for VGLL1-induced metastasis. Collectively, these findings showed that the m6A-induced VGLL1/HMGA1/β-catenin axis might play a vital role in OC metastasis and tumor growth. VGLL1 might serve as a prognostic marker and therapeutic target against the metastasis of OC.
Collapse
Affiliation(s)
- Han Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Liming Cai
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Qiuzhong Pan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xingyu Jiang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jingjing Zhao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Tong Xiang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yan Tang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Qijing Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jia He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Desheng Weng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yanna Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Jianchuan Xia
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
7
|
Gessler L, Huraskin D, Jian Y, Eiber N, Hu Z, Prószyński T, Hashemolhosseini S. The YAP1/TAZ-TEAD transcriptional network regulates gene expression at neuromuscular junctions in skeletal muscle fibers. Nucleic Acids Res 2024; 52:600-624. [PMID: 38048326 PMCID: PMC10810223 DOI: 10.1093/nar/gkad1124] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
We examined YAP1/TAZ-TEAD signaling pathway activity at neuromuscular junctions (NMJs) of skeletal muscle fibers in adult mice. Our investigations revealed that muscle-specific knockouts of Yap1 or Taz, or both, demonstrate that these transcriptional coactivators regulate synaptic gene expression, the number and morphology of NMJs, and synaptic nuclei. Yap1 or Taz single knockout mice display reduced grip strength, fragmentation of NMJs, and accumulation of synaptic nuclei. Yap1/Taz muscle-specific double knockout mice do not survive beyond birth and possess almost no NMJs, the few detectable show severely impaired morphology and are organized in widened endplate bands; and with motor nerve endings being mostly absent. Myogenic gene expression is significantly impaired in the denervated muscles of knockout mice. We found that Tead1 and Tead4 transcription rates were increased upon incubation of control primary myotubes with AGRN-conditioned medium. Reduced AGRN-dependent acetylcholine receptor clustering and synaptic gene transcription were observed in differentiated primary Tead1 and Tead4 knockout myotubes. In silico analysis of previously reported genomic occupancy sites of TEAD1/4 revealed evolutionary conserved regions of potential TEAD binding motifs in key synaptic genes, the relevance of which was functionally confirmed by reporter assays. Collectively, our data suggest a role for YAP1/TAZ-TEAD1/TEAD4 signaling, particularly through TAZ-TEAD4, in regulating synaptic gene expression and acetylcholine receptor clustering at NMJs.
Collapse
Affiliation(s)
- Lea Gessler
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Danyil Huraskin
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yongzhi Jian
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nane Eiber
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tomasz J Prószyński
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Wrocław, Poland
| | - Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Muscle Research Center, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
8
|
Tomić T, Tomić D, Vukoja M, Kraljević M, Ljevak I, Glamočlija U, Tomić V, Vukojević K, Beljan Perak R, Šoljić V. Clinical Significance and Expression Pattern of RIP5 and VGLL4 in Clear Cell Renal Cell Carcinoma Patients Treated with Sunitinib. Biomedicines 2024; 12:149. [PMID: 38255254 PMCID: PMC10813538 DOI: 10.3390/biomedicines12010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
While clear cell renal cell carcinoma (ccRCC) is curable, advanced metastatic (mRCC) remains a clinical challenge. We analyzed clinical, pathohistological, and molecular data (Receptor Interacting Protein 5-RIP5 and Vestigial Like Family Member 4-VGLL4 expression) of 55 mRCC patients treated with first-line treatment with sunitinib. The trend of linear increase in the protein expression of RIP5 was observed with the progression of tumor grade. Overall, 80% of RIP5-positive cells were in the control kidneys and high-grade mRCC. On the contrary, RIP5 displayed low expression in grade 2 mRCC (5.63%). The trend of linear decrease in the expression of VGLL4 was observed with the progression of tumor grade. The highest protein expression of VGLL4 was observed in grade 2 (87.82%) in comparison to grade 3 and 4 and control. High expression of RIP5 mRNA was associated with longer first-line overall survival and longer progression-free survival in mRCC. In addition, a high VGLL4 mRNA expression showed better overall survival in patients with ccRCC. In conclusion, high mRNA expression of RIP5 and VGLL4 are important markers of better survival rates in mRCC patients.
Collapse
Affiliation(s)
- Tanja Tomić
- Faculty of Health Studies, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (T.T.); (I.L.); (V.T.); (V.Š.)
| | - Davor Tomić
- Department of Urology, University Hospital Center Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Martina Vukoja
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Marija Kraljević
- Department of Oncology, University Hospital Center Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Ivona Ljevak
- Faculty of Health Studies, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (T.T.); (I.L.); (V.T.); (V.Š.)
| | - Una Glamočlija
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Vajdana Tomić
- Faculty of Health Studies, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (T.T.); (I.L.); (V.T.); (V.Š.)
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
- Department of Gynecology, University Hospital Center Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Faculty of Health Studies, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (T.T.); (I.L.); (V.T.); (V.Š.)
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Renata Beljan Perak
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia;
| | - Violeta Šoljić
- Faculty of Health Studies, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (T.T.); (I.L.); (V.T.); (V.Š.)
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| |
Collapse
|
9
|
Zhong Y, Tan X, Wang X, Jiang J, Song K, Chen H, Zhang H, Wang Z, Zhang L, Guo C, Liang H, Yu W. Generation of Vgll4-DreER transgenic mouse for visualizing and manipulating VGLL4-expressing cells in vivo. J Biochem Mol Toxicol 2023; 37:e23435. [PMID: 37352117 DOI: 10.1002/jbt.23435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Vestigial like family member 4 (VGLL4), a member of the Hippo pathway, is a transcriptional cofactor involved in many biological processes, such as tumor progression, postnatal heart growth, and muscle regeneration. However, the VGLL4 expression pattern in vivo remains unclear. To detect and trace Vgll4-expressing cells and their progeny, we generated and characterized a new tamoxifen-inducible Dre knock-in mouse line, Vgll4-DreER. This mouse line expressed DreER (Dre recombinase fused to the estrogen receptor) under the control of the endogenous Vgll4 promoter. After crossing the Vgll4-DreER mouse line with the Dre-responsive reporter H11-rRFP, Dre-mediated recombination in the tissue was monitored on the basis of red fluorescent protein (RFP) signals, which indicated the distribution of VGLL4-positive cells in vivo. Our data revealed that VGLL4 is widely expressed in various cell types at embryonic and neonatal stages. After comparison with our previously reported Vgll4-GFP mouse, we found that the RFP signal profile was wider than the green fluorescent protein (GFP) pattern, indicating that Vgll4-DreER is more sensitive for labeling VGLL4-expressing cells. We next used a dual-recombination system to simultaneously label VGLL4- and keratin 5 (KRT5)-positive cell populations, and no crosstalk was observed in the Krt5-CreER;Vgll4-DreER;R26-rGlR mice. Taken together, the Vgll4-DreER mouse line is a valuable new tool for examining the precise VGLL4 expression profile and conditional manipulating of VGLL4-expressing cells and their progeny.
Collapse
Affiliation(s)
- Yazhu Zhong
- Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong, China
| | - Xixi Tan
- Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong, China
| | - Xiaodong Wang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Jun Jiang
- School of Life Science, Yunnan University, Kunming, Yunnan, China
| | - Kai Song
- School of Life Science, Yunnan University, Kunming, Yunnan, China
| | - Haiyuan Chen
- Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong, China
| | - Hao Zhang
- Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong, China
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chunming Guo
- School of Life Science, Yunnan University, Kunming, Yunnan, China
| | - Hongfeng Liang
- Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong, China
| | - Wei Yu
- Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong, China
| |
Collapse
|
10
|
Mori S, Ishii Y, Takeuchi T, Kukimoto I. Nuclear proinflammatory cytokine S100A9 enhances expression of human papillomavirus oncogenes via transcription factor TEAD1. J Virol 2023; 97:e0081523. [PMID: 37578237 PMCID: PMC10506480 DOI: 10.1128/jvi.00815-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023] Open
Abstract
Transcription of the human papillomavirus (HPV) oncogenes, E6 and E7, is regulated by the long control region (LCR) of the viral genome. Although various transcription factors have been reported to bind to the LCR, little is known about the transcriptional cofactors that modulate HPV oncogene expression in association with these transcription factors. Here, we performed in vitro DNA-pulldown purification of nuclear proteins in cervical cancer cells, followed by proteomic analyses to identify transcriptional cofactors that bind to the HPV16 LCR via the transcription factor TEAD1. We detected the proinflammatory cytokine S100A9 that localized to the nucleus of cervical cancer cells and associated with the LCR via direct interaction with TEAD1. Nuclear S100A9 levels and its association with the LCR were increased in cervical cancer cells by treatment with a proinflammatory phorbol ester. Knockdown of S100A9 decreased HPV oncogene expression and reduced the growth of cervical cancer cells and their susceptibility to cisplatin, whereas forced nuclear expression of S100A9 using nuclear localization signals exerted opposite effects. Thus, we conclude that nuclear S100A9 binds to the HPV LCR via TEAD1 and enhances viral oncogene expression by acting as a transcriptional coactivator. IMPORTANCE Human papillomavirus (HPV) infection is the primary cause of cervical cancer, and the viral oncogenes E6 and E7 play crucial roles in carcinogenesis. Although cervical inflammation contributes to the development of cervical cancer, the molecular mechanisms underlying the role of these inflammatory responses in HPV carcinogenesis are not fully understood. Our study shows that S100A9, a proinflammatory cytokine, is induced in the nucleus of cervical cancer cells by inflammatory stimuli, and it enhances HPV oncogene expression by acting as a transcriptional coactivator of TEAD1. These findings provide new molecular insights into the relationship between inflammation and viral carcinogenesis.
Collapse
Affiliation(s)
- Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiyuki Ishii
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takamasa Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
11
|
Sonnemann HM, Pazdrak B, Antunes DA, Roszik J, Lizée G. Vestigial-like 1 (VGLL1): An ancient co-transcriptional activator linking wing, placenta, and tumor development. Biochim Biophys Acta Rev Cancer 2023; 1878:188892. [PMID: 37004960 DOI: 10.1016/j.bbcan.2023.188892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Vestigial-like 1 (VGLL1) is a recently discovered driver of proliferation and invasion that is expressed in many aggressive human malignancies and is strongly associated with poor prognosis. The VGLL1 gene encodes for a co-transcriptional activator that shows intriguing structural similarity to key activators in the hippo pathway, providing important clues to its functional role. VGLL1 binds to TEADs in an analogous fashion to YAP1 but appears to activate a distinct set of downstream gene targets. In mammals, VGLL1 expression is found almost exclusively in placental trophoblasts, cells that share many hallmarks of cancer. Due to its role as a driver of tumor progression, VGLL1 has become a target of interest for potential anticancer therapies. In this review, we discuss VGLL1 from an evolutionary perspective, contrast its role in placental and tumor development, summarize the current knowledge of how signaling pathways can modulate VGLL1 function, and discuss potential approaches for targeting VGLL1 therapeutically.
Collapse
|
12
|
Lou J, Lu Y, Cheng J, Zhou F, Yan Z, Zhang D, Meng X, Zhao Y. A chemical perspective on the modulation of TEAD transcriptional activities: Recent progress, challenges, and opportunities. Eur J Med Chem 2022; 243:114684. [DOI: 10.1016/j.ejmech.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
13
|
Hou D, Qin P, Niu X, Li T, Chen B, Wei C, Jing Z, Han R, Li H, Liu X, Tian Y, Li D, Li Z, Cai H, Kang X. Genome-wide identification evolution and expression of vestigial-like gene family in chicken. Anim Biotechnol 2022; 33:1602-1612. [PMID: 34032551 DOI: 10.1080/10495398.2021.1920425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vestigial-like (Vgll) genes are widespread in vertebrates and play an important role in muscle development. In this study, we used bioinformatics methods to systematically identify the chicken VGLL family in the whole genome and investigated its evolutionary history and gene structure features. Tissue expression spectra combined with real-time PCR data were used to analyze the organizational expression pattern of the genes. Based on the maximum likelihood method, a phylogenetic tree of the VGLL family was constructed, and 94 VGLL genes were identified in 24 breeds, among which four VGLL family genes were identified in the chicken genome. Ten motifs were detected in the VGLL genes, and the analysis of introns combined with gene structure revealed that the family was conserved during evolution. Tissue expression analysis suggested that the expression profiles of the VGLL family genes in 16 tissues differed between LU Shi and AA broilers. In addition, a single gene (VGLL2) showed increased expression in chickens at embryonic days 10-16 and was involved in the growth and development of skeletal muscle in chickens in the embryonic stage. In summary, VGLL genes are involved in chicken muscle growth and development, which provides useful information for subsequent functional studies of VGLL genes.
Collapse
Affiliation(s)
- Dan Hou
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Panpan Qin
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinran Niu
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Tong Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Bingjie Chen
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chengjie Wei
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhenzhu Jing
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hong Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaojun Liu
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Donghua Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hanfang Cai
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
14
|
Targeting the Hippo Pathway in Gastric Cancer and Other Malignancies in the Digestive System: From Bench to Bedside. Biomedicines 2022; 10:biomedicines10102512. [PMID: 36289774 PMCID: PMC9599207 DOI: 10.3390/biomedicines10102512] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The Hippo pathway is an evolutionally conserved signaling cascade that controls organ size and tissue regeneration under physiological conditions, and its aberrations have been well studied to promote tumor initiation and progression. Dysregulation of the Hippo tumor suppressor signaling frequently occurs in gastric cancer (GC) and other solid tumors and contributes to cancer development through modulating multiple aspects, including cell proliferation, survival, metastasis, and oncotherapy resistance. In the clinic, Hippo components also possess diagnostic and prognostic values for cancer patients. Considering its crucial role in driving tumorigenesis, targeting the Hippo pathway may greatly benefit developing novel cancer therapies. This review summarizes the current research progress regarding the core components and regulation of the Hippo pathway, as well as the mechanism and functional roles of their dysregulation in gastrointestinal malignancies, especially in GC, and discusses the therapeutic potential of targeting the Hippo pathway against cancers.
Collapse
|
15
|
Ando T, Okamoto K, Shintani T, Yanamoto S, Miyauchi M, Gutkind JS, Kajiya M. Integrating Genetic Alterations and the Hippo Pathway in Head and Neck Squamous Cell Carcinoma for Future Precision Medicine. J Pers Med 2022; 12:jpm12101544. [PMID: 36294681 PMCID: PMC9604790 DOI: 10.3390/jpm12101544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic alterations and dysregulation of signaling pathways are indispensable for the initiation and progression of cancer. Understanding the genetic, molecular, and signaling diversities in cancer patients has driven a dynamic change in cancer therapy. Patients can select a suitable molecularly targeted therapy or immune checkpoint inhibitor based on the driver gene alterations determined by sequencing of cancer tissue. This “precision medicine” approach requires detailed elucidation of the mechanisms connecting genetic alterations of driver genes and aberrant downstream signaling pathways. The regulatory mechanisms of the Hippo pathway and Yes-associated protein/transcriptional co-activator with PDZ binding motif (YAP/TAZ) that have central roles in cancer cell proliferation are not fully understood, reflecting their recent discovery. Nevertheless, emerging evidence has shown that various genetic alterations dysregulate the Hippo pathway and hyperactivate YAP/TAZ in cancers, including head and neck squamous cell carcinoma (HNSCC). Here, we summarize the latest evidence linking genetic alterations and the Hippo pathway in HNSCC, with the aim of contributing to the continued development of precision medicine.
Collapse
Affiliation(s)
- Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-82-257-5727
| | - Kento Okamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - J. Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
16
|
Yuan H, Ikegame M, Fukuhara Y, Takemoto F, Yu Y, Teramachi J, Weng Y, Guo J, Yamada D, Takarada T, Li Y, Okamura H, Zhang B. Vestigial-Like 3 Plays an Important Role in Osteoblast Differentiation by Regulating the Expression of Osteogenic Transcription Factors and BMP Signaling. Calcif Tissue Int 2022; 111:331-344. [PMID: 35750933 DOI: 10.1007/s00223-022-00997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Our previous gene profiling analysis showed that the transcription cofactor vestigial-like 3 (VGLL3) gene expression was upregulated by mechanical tension in the mouse cranial suture, coinciding with accelerated osteoblast differentiation. Therefore, we hypothesized that VGLL3 plays a significant role in osteogenic differentiation. To clarify the function of VGLL3 in osteoblasts, we examined its expression characteristics in mouse bone tissue and the osteoblastic cell line MC3T3-E1. We further examined the effects of Vgll3 knockdown on osteoblast differentiation and bone morphogenetic protein (BMP) signaling. In the mouse cranial suture, where membranous ossification occurs, VGLL3 was immunohistochemically detected mostly in the nucleus of osteoblasts, preosteoblasts, and fibroblastic cells. VGLL3 expression in MC3T3-E1 cells was transient and peaked at a relatively early stage of differentiation. RNA sequencing revealed that downregulated genes in Vgll3-knockdown cells were enriched in gene ontology terms associated with osteoblast differentiation. Interestingly, most of the upregulated genes were related to cell division. Targeted Vgll3 knockdown markedly suppressed the expression of major osteogenic transcription factors (Runx2, Sp7/osterix, and Dlx5) and osteoblast differentiation. It also attenuated BMP signaling; moreover, exogenous BMP2 partially restore osteogenic transcription factors' expression in Vgll3-knockdown cells. Furthermore, overexpression of Vgll3 increased the expression of osteogenic transcription factors. These results suggest that VGLL3 plays a critical role in promoting osteoblast differentiation and that part of the process is mediated by BMP signaling. Further elucidation of VGLL3 function will increase our understanding of osteogenesis and skeletal disease etiology.
Collapse
Affiliation(s)
- Haoze Yuan
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, 246 Xuefu Road, Nangang, Harbin, 150001, Heilongjiang, People's Republic of China
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Yoko Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Fumiko Takemoto
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yaqiong Yu
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, P.R. China
| | - Jumpei Teramachi
- Department of Oral Function & Anatomy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Jiajie Guo
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, P.R. China
| | - Daisuke Yamada
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama, Japan
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, 246 Xuefu Road, Nangang, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, 246 Xuefu Road, Nangang, Harbin, 150001, Heilongjiang, People's Republic of China.
- Heilongjiang Academy of Medical Sciences, Harbin, 150001, Heilongjiang, P.R. China.
| |
Collapse
|
17
|
The molecular genetics of human appendicular skeleton. Mol Genet Genomics 2022; 297:1195-1214. [PMID: 35907958 DOI: 10.1007/s00438-022-01930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
Disorders that result from de-arrangement of growth, development and/or differentiation of the appendages (limbs and digit) are collectively called as inherited abnormalities of human appendicular skeleton. The bones of appendicular skeleton have central role in locomotion and movement. The different types of appendicular skeletal abnormalities are well described in the report of "Nosology and Classification of Genetic skeletal disorders: 2019 Revision". In the current article, we intend to present the embryology, developmental pathways, disorders and the molecular genetics of the appendicular skeletal malformations. We mainly focused on the polydactyly, syndactyly, brachydactyly, split-hand-foot malformation and clubfoot disorders. To our knowledge, only nine genes of polydactyly, five genes of split-hand-foot malformation, nine genes for syndactyly, eight genes for brachydactyly and only single gene for clubfoot have been identified to be involved in disease pathophysiology. The current molecular genetic data will help life sciences researchers working on the rare skeletal disorders. Moreover, the aim of present systematic review is to gather the published knowledge on molecular genetics of appendicular skeleton, which would help in genetic counseling and molecular diagnosis.
Collapse
|
18
|
Yong J, Li Y, Lin S, Wang Z, Xu Y. Inhibitors Targeting YAP in Gastric Cancer: Current Status and Future Perspectives. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2445-2456. [PMID: 34140763 PMCID: PMC8203099 DOI: 10.2147/dddt.s308377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) is one of the most common cancers globally, threatening global health. The deregulation of the Hippo signaling pathway has been discovered in GC and may be related to cancer development, proliferation, metastasis, and drug resistance. Yes-associated protein (YAP), as a downstream effector of the Hippo signaling pathway and a crucial co-transcription factor in the nucleus, is a promising and vital potential drug target for the treatment of GC. A series of drugs or compounds that inhibit YAP has been developed or confirmed. Therefore, this review will focus on summarizing the drugs and small-molecule inhibitors that have been reported to inhibit YAP and discuss the clinical prospects of YAP inhibitors in GC.
Collapse
Affiliation(s)
- Jiaxin Yong
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Yuan Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Sihan Lin
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Yan Xu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| |
Collapse
|
19
|
Fan WM, Luo D, Zhang JZ, Wang D, Shen J. Vestigial suppresses apoptosis and cell migration in a manner dependent on the level of JNK-Caspase signaling in the Drosophila wing disc. INSECT SCIENCE 2021; 28:63-76. [PMID: 32037698 DOI: 10.1111/1744-7917.12762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
The Decapentaplegic (Dpp) and Wingless (Wg) signal pathways play important roles in numerous biological processes in Drosophila. The Drosophila vestigial (vg) gene is selectively required for wing imaginal disc cell proliferation, which is essential for the formation of the adult wing and halter structures, and is regulated by Dpp and Wg signaling. Using a Drosophila invasion model of wing epithelium, we showed herein that inhibition of Dpp or Wg signaling promoted cells to migrate across the cell lineage restrictive anterior/posterior (A/P) compartment boundary. Being downstream of both Dpp and Wg signaling, vg can block cell migration induced by loss of either pathway. In addition, suppression of vg is sufficient to induce cell migration across the A/P boundary. Transcriptomic analysis revealed potential downstream genes involved in the cell migration after suppressing vg in the wing disc. We further demonstrated that the c-Jun N-terminal kinase (JNK) signaling promoted cell migration induced by vg suppression by upregulating Caspase activity. Taken together, our results revealed the requirement of Vg for suppressing cell migration and clarified how developmental signals collaborate to stabilize cells along the compartment boundary.
Collapse
Affiliation(s)
- Wen-Min Fan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Dan Luo
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Jun-Zheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Bradley SD, Talukder AH, Lai I, Davis R, Alvarez H, Tiriac H, Zhang M, Chiu Y, Melendez B, Jackson KR, Katailiha A, Sonnemann HM, Li F, Kang Y, Qiao N, Pan BF, Lorenzi PL, Hurd M, Mittendorf EA, Peterson CB, Javle M, Bristow C, Kim M, Tuveson DA, Hawke D, Kopetz S, Wolff RA, Hwu P, Maitra A, Roszik J, Yee C, Lizée G. Vestigial-like 1 is a shared targetable cancer-placenta antigen expressed by pancreatic and basal-like breast cancers. Nat Commun 2020; 11:5332. [PMID: 33087697 PMCID: PMC7577998 DOI: 10.1038/s41467-020-19141-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL)-based cancer immunotherapies have shown great promise for inducing clinical regressions by targeting tumor-associated antigens (TAA). To expand the TAA landscape of pancreatic ductal adenocarcinoma (PDAC), we performed tandem mass spectrometry analysis of HLA class I-bound peptides from 35 PDAC patient tumors. This identified a shared HLA-A*0101 restricted peptide derived from co-transcriptional activator Vestigial-like 1 (VGLL1) as a putative TAA demonstrating overexpression in multiple tumor types and low or absent expression in essential normal tissues. Here we show that VGLL1-specific CTLs expanded from the blood of a PDAC patient could recognize and kill in an antigen-specific manner a majority of HLA-A*0101 allogeneic tumor cell lines derived not only from PDAC, but also bladder, ovarian, gastric, lung, and basal-like breast cancers. Gene expression profiling reveals VGLL1 as a member of a unique group of cancer-placenta antigens (CPA) that may constitute immunotherapeutic targets for patients with multiple cancer types.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Female
- Gene Expression Profiling
- HLA-A1 Antigen/immunology
- Humans
- Immunotherapy, Adoptive
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Placenta/immunology
- Pregnancy
- Prognosis
- T-Lymphocytes, Cytotoxic/immunology
- Transcription Factors/genetics
- Transcription Factors/immunology
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Sherille D Bradley
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Amjad H Talukder
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ivy Lai
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Davis
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Hector Alvarez
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Herve Tiriac
- Cold Spring Harbor Laboratory Cancer Center, Cold Spring Harbor, NY, USA
| | - Minying Zhang
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Brenda Melendez
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle R Jackson
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Arjun Katailiha
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Heather M Sonnemann
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Fenge Li
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yaan Kang
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Na Qiao
- Department of Breast Surgery Research, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Bih-Fang Pan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Hurd
- Ahmed Center for Pancreatic Cancer Research, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Milind Javle
- Department of Gastrointestinal Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Bristow
- Center for Co-clinical Trials, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kim
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory Cancer Center, Cold Spring Harbor, NY, USA
| | - David Hawke
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, USA.
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Im JY, Kim DM, Park H, Kang MJ, Kim DY, Chang KY, Kim BK, Won M. VGLL1 phosphorylation and activation promotes gastric cancer malignancy via TGF-β/ERK/RSK2 signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118892. [PMID: 33069758 DOI: 10.1016/j.bbamcr.2020.118892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
We previously reported that vestigial-like 1 (VGLL1), a cofactor of transcriptional enhanced associate domain 4 (TEAD4), is transcriptionally regulated by PI3K and β-catenin signaling and is involved in gastric cancer malignancy. However, the precise mechanism underlying the regulation of VGLL1 activation remains unknown. Therefore, we aimed to investigate the molecular mechanism underlying the transforming growth factor-β (TGF-β)-mediated activation of VGLL1 and the VGLL1-TEAD4 interaction in gastric cancer cells. We showed that TGF-β enhanced VGLL1 phosphorylation and that this phosphorylated VGLL1 functioned as a transcription cofactor of TEAD4 in NUGC3 cells. TGF-β also increased the phosphorylation of ERK and ribosomal S6 kinase 2 (RSK2) in NUGC3 cells, thereby triggering the translocation of phosphorylated RSK2 to the nucleus. Site-directed mutagenesis and immunoprecipitation experiments revealed that RSK2 phosphorylated VGLL1 at S84 in the presence of TGF-β. Mutation of VGLL1 at S84 suppressed VGLL1-TEAD4 binding and the subsequent transcriptional activation of matrix metalloprotease 9 (MMP9). Moreover, VGLL1 peptide containing S84 suppressed the TGF-β-induced MMP9 expression and reduced the invasion and proliferation of gastric cancer cells, whereas VGLL1 peptide containing S84A did not. Furthermore, suppression of expression or activation of VGLL1 enhances the therapeutic effects of lapatinib. Collectively, these results indicate that VGLL1 phosphorylation via TGF-β/ERK/RSK2 signaling plays a crucial role in MMP9-mediated malignancy of gastric cancer. In addition, our study highlights the therapeutic potential of the peptide containing VGLL1 S84 for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Da-Mi Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Hyunkyung Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Da-Yoon Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Kwan Young Chang
- R&D Center, OneCureGEN Co., Ltd, Daejeon, 34141, Republic of Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea; R&D Center, OneCureGEN Co., Ltd, Daejeon, 34141, Republic of Korea,.
| |
Collapse
|
22
|
Shiiba M, Yamagami H, Sudo T, Tomokuni Y, Kashiwabara D, Kirita T, Kusukawa J, Komiya M, Tei K, Kitagawa Y, Imai Y, Kawamata H, Bukawa H, Satomura K, Oki H, Shinozuka K, Sugihara K, Sugiura T, Sekine J, Yokoe H, Saito K, Tanzawa H. Development of prediction models for the sensitivity of oral squamous cell carcinomas to preoperative S-1 administration. Heliyon 2020; 6:e04601. [PMID: 32793829 PMCID: PMC7408317 DOI: 10.1016/j.heliyon.2020.e04601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
S-1 is an anticancer agent that is comprised of tegafur, gimeracil, and oteracil potassium, and is widely used in various carcinomas including oral squamous cell carcinoma (OSCC). Although an established prediction tool is not available, we aimed to develop prediction models for the sensitivity of primary OSCC cases to the preoperative administration of S-1. We performed DNA microarray analysis of 95 cases with OSCC. Using global gene expression data and the clinical data, we developed two different prediction models, namely, model 1 that comprised the complete response (CR) + the partial response (PR) versus stable disease (SD) + progressive disease (PD), and model 2 that comprised responders versus non-responders. Twelve and 18 genes were designated as feature genes (FGs) in models 1 and 2, respectively, and, of these, six genes were common to both models. The sensitivity was 96.3%, the specificity was 91.2%, and the accuracy was 92.6% for model 1, and the sensitivity was 95.6%, the specificity was 85.2%, and the accuracy was 92.6% for model 2. These models were validated using receiver operating characteristic analysis, and the areas under the curves were 0.967 and 0.949 in models 1 and 2, respectively. The data led to the development of models that can reliably predict the sensitivity of patients with OSCC to the preoperative administration of S-1. The mechanism that regulates S-1 sensitivity remains unclear; however, the prediction models developed provide hope that further functional investigations into the FGs will lead to a greater understanding of drug resistance.
Collapse
Affiliation(s)
- Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Japan.,Department of Oral Science, Graduate School of Medicine, Chiba University, Japan.,Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Japan
| | | | | | | | | | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Japan
| | - Jingo Kusukawa
- Department of Dental and Oral Medical Center, Kurume University School of Medicine, Japan
| | - Masamichi Komiya
- Department of Oral Surgery, Nihon University School of Dentistry at Matsudo, Japan.,Division of Dental and Oral Surgery, Nihon University Itabashi Hospital, Japan
| | - Kanchu Tei
- Department of Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Hokkaido University, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Graduate School of Dental Medicine, Hokkaido University, Japan
| | - Yutaka Imai
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Japan
| | - Hitoshi Kawamata
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Japan
| | - Hiroki Bukawa
- Department of Oral and Maxillofacial Surgery, University of Tsukuba, Japan
| | - Kazuhito Satomura
- Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, Japan
| | - Hidero Oki
- Department of Maxillofacial Surgery, Nihon University School of Dentistry, Japan
| | - Keiji Shinozuka
- Department of Maxillofacial Surgery, Nihon University School of Dentistry, Japan
| | - Kazumasa Sugihara
- Maxillofacial Diagnostic and Surgical Sciences, Department of Oral and Maxillofacial Rehabilitation, Course of Developmental Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Tsuyoshi Sugiura
- Maxillofacial Diagnostic and Surgical Sciences, Department of Oral and Maxillofacial Rehabilitation, Course of Developmental Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Joji Sekine
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Japan
| | - Hidetaka Yokoe
- Department of Dentistry and Oral Surgery, National Defense Medical College, Japan
| | - Kengo Saito
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Japan.,Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Japan
| |
Collapse
|
23
|
Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov 2020; 19:480-494. [PMID: 32555376 DOI: 10.1038/s41573-020-0070-z] [Citation(s) in RCA: 539] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The Hippo pathway is an evolutionarily conserved signalling pathway with key roles in organ development, epithelial homeostasis, tissue regeneration, wound healing and immune modulation. Many of these roles are mediated by the transcriptional effectors YAP and TAZ, which direct gene expression via control of the TEAD family of transcription factors. Dysregulated Hippo pathway and YAP/TAZ-TEAD activity is associated with various diseases, most notably cancer, making this pathway an attractive target for therapeutic intervention. This Review highlights the key findings from studies of Hippo pathway signalling across biological processes and diseases, and discusses new strategies and therapeutic implications of targeting this pathway.
Collapse
|
24
|
The Transcriptional Cofactor VGLL1 Drives Transcription of Human Papillomavirus Early Genes via TEAD1. J Virol 2020; 94:JVI.01945-19. [PMID: 32132238 DOI: 10.1128/jvi.01945-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
The TEAD family of transcription factors requires associating cofactors to induce gene expression. TEAD1 is known to activate the early promoter of human papillomavirus (HPV), but the precise mechanisms of TEAD1-mediated transactivation of the HPV promoter, including its relevant cofactors, remain unexplored. Here, we reveal that VGLL1, a TEAD-interacting cofactor, contributes to HPV early gene expression. Knockdown of VGLL1 and/or TEAD1 led to a decrease in viral early gene expression in human cervical keratinocytes and cervical cancer cell lines. We identified 11 TEAD1 target sites in the HPV16 long control region (LCR) by in vitro DNA pulldown assays; 8 of these sites contributed to the transcriptional activation of the early promoter in luciferase reporter assays. VGLL1 bound to the HPV16 LCR via its interaction with TEAD1 both in vitro and in vivo Furthermore, introducing HPV16 and HPV18 whole genomes into primary human keratinocytes led to increased levels of VGLL1, due in part to the upregulation of TEADs. These results suggest that multiple VGLL1/TEAD1 complexes are recruited to the LCR to support the efficient transcription of HPV early genes.IMPORTANCE Although a number of transcription factors have been reported to be involved in HPV gene expression, little is known about the cofactors that support HPV transcription. In this study, we demonstrate that the transcriptional cofactor VGLL1 plays a prominent role in HPV early gene expression, dependent on its association with the transcription factor TEAD1. Whereas TEAD1 is ubiquitously expressed in a variety of tissues, VGLL1 displays tissue-specific expression and is implicated in the development and differentiation of epithelial lineage tissues, where HPV gene expression occurs. Our results suggest that VGLL1 may contribute to the epithelial specificity of HPV gene expression, providing new insights into the mechanisms that regulate HPV infection. Further, VGLL1 is also critical for the growth of cervical cancer cells and may represent a novel therapeutic target for HPV-associated cancers.
Collapse
|
25
|
International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019; 365:365/6460/eaav7188. [PMID: 31604244 PMCID: PMC7241648 DOI: 10.1126/science.aav7188] [Citation(s) in RCA: 718] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 08/06/2019] [Indexed: 02/02/2023]
Abstract
We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses.
Collapse
Affiliation(s)
- International Multiple Sclerosis Genetics Consortium
- Correspondence to: Philip L. De Jager, MD PhD, Center for Translational & Computational Neuroimmunology, Multiple Sclerosis Center, Department of Neurology, Columbia University Medical Center, 630 W 168th Street P&S Box 16, New York, NY 10032, T: 212.305.3609,
| |
Collapse
|
26
|
Figeac N, Mohamed AD, Sun C, Schönfelder M, Matallanas D, Garcia-Munoz A, Missiaglia E, Collie-Duguid E, De Mello V, Pobbati AV, Pruller J, Jaka O, Harridge SDR, Hong W, Shipley J, Vargesson N, Zammit PS, Wackerhage H. VGLL3 operates via TEAD1, TEAD3 and TEAD4 to influence myogenesis in skeletal muscle. J Cell Sci 2019; 132:jcs.225946. [PMID: 31138678 PMCID: PMC6633393 DOI: 10.1242/jcs.225946] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/03/2019] [Indexed: 12/21/2022] Open
Abstract
VGLL proteins are transcriptional co-factors that bind TEAD family transcription factors to regulate events ranging from wing development in fly, to muscle fibre composition and immune function in mice. Here, we characterise Vgll3 in skeletal muscle. We found that mouse Vgll3 was expressed at low levels in healthy muscle but that its levels increased during hypertrophy or regeneration; in humans, VGLL3 was highly expressed in tissues from patients with various muscle diseases, such as in dystrophic muscle and alveolar rhabdomyosarcoma. Interaction proteomics revealed that VGLL3 bound TEAD1, TEAD3 and TEAD4 in myoblasts and/or myotubes. However, there was no interaction with proteins from major regulatory systems such as the Hippo kinase cascade, unlike what is found for the TEAD co-factors YAP (encoded by YAP1) and TAZ (encoded by WWTR1). Vgll3 overexpression reduced the activity of the Hippo negative-feedback loop, affecting expression of muscle-regulating genes including Myf5, Pitx2 and Pitx3, and genes encoding certain Wnts and IGFBPs. VGLL3 mainly repressed gene expression, regulating similar genes to those regulated by YAP and TAZ. siRNA-mediated Vgll3 knockdown suppressed myoblast proliferation, whereas Vgll3 overexpression strongly promoted myogenic differentiation. However, skeletal muscle was overtly normal in Vgll3-null mice, presumably due to feedback signalling and/or redundancy. This work identifies VGLL3 as a transcriptional co-factor operating with the Hippo signal transduction network to control myogenesis. Summary: VGLL3 interacts with TEAD transcription factors to direct expression of crucial muscle regulatory genes and contribute to the control of skeletal myogenesis.
Collapse
Affiliation(s)
- Nicolas Figeac
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Abdalla D Mohamed
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health, Ingolstaedter Landstrasse 1, D-85764 Munich/Neuherberg, Germany
| | - Congshan Sun
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.,Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Martin Schönfelder
- Faculty of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany
| | - David Matallanas
- Systems Biology Ireland, Conway Institute, Belfield; Dublin 4, Ireland
| | | | - Edoardo Missiaglia
- Institute of Pathology, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Elaina Collie-Duguid
- University of Aberdeen, Centre for Genome Enabled Biology and Medicine, 23 St Machar Drive, Aberdeen AB24 3RY, UK
| | - Vanessa De Mello
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ajaybabu V Pobbati
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Johanna Pruller
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Oihane Jaka
- Centre for Human and Applied Physiological Sciences, King's College London, London SE1 1UL, UK
| | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, King's College London, London SE1 1UL, UK
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Henning Wackerhage
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK .,Faculty of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany
| |
Collapse
|
27
|
Smith SA, Sessions RB, Shoemark DK, Williams C, Ebrahimighaei R, McNeill MC, Crump MP, McKay TR, Harris G, Newby AC, Bond M. Antiproliferative and Antimigratory Effects of a Novel YAP-TEAD Interaction Inhibitor Identified Using in Silico Molecular Docking. J Med Chem 2019; 62:1291-1305. [PMID: 30640473 PMCID: PMC6701825 DOI: 10.1021/acs.jmedchem.8b01402] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
The Hippo pathway is an important
regulator of cell growth, proliferation,
and migration. TEAD transcription factors, which lie at the core of
the Hippo pathway, are essential for regulation of organ growth and
wound repair. Dysregulation of TEAD and its regulatory cofactor Yes-associated
protein (YAP) have been implicated in numerous human cancers and hyperproliferative
pathological processes. Hence, the YAP–TEAD complex is a promising
therapeutic target. Here, we use in silico molecular docking using
Bristol University Docking Engine to screen a library of more than
8 million druglike molecules for novel disrupters of the YAP–TEAD
interaction. We report the identification of a novel compound (CPD3.1)
with the ability to disrupt YAP–TEAD protein–protein
interaction and inhibit TEAD activity, cell proliferation, and cell
migration. The YAP–TEAD complex is a viable drug target, and
CPD3.1 is a lead compound for the development of more potent TEAD
inhibitors for treating cancer and other hyperproliferative pathologies.
Collapse
Affiliation(s)
- Sarah A Smith
- School of Translational Health Sciences, Faculty of Health Sciences , University of Bristol , Research Floor Level 7, Bristol Royal Infirmary , Bristol BS2 8HW , U.K
| | - Richard B Sessions
- School of Biochemistry, Faculty of Biomedical Sciences , University of Bristol , Biomedical Sciences Building, University Walk , Bristol BS8 1TD , U.K
| | - Deborah K Shoemark
- School of Biochemistry, Faculty of Biomedical Sciences , University of Bristol , Biomedical Sciences Building, University Walk , Bristol BS8 1TD , U.K
| | - Christopher Williams
- School of Chemistry, Faculty of Science , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Reza Ebrahimighaei
- School of Translational Health Sciences, Faculty of Health Sciences , University of Bristol , Research Floor Level 7, Bristol Royal Infirmary , Bristol BS2 8HW , U.K
| | - Madeleine C McNeill
- School of Translational Health Sciences, Faculty of Health Sciences , University of Bristol , Research Floor Level 7, Bristol Royal Infirmary , Bristol BS2 8HW , U.K
| | - Matthew P Crump
- School of Chemistry, Faculty of Science , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Tristan R McKay
- Centre for Bioscience , Manchester Metropolitan University , John Dalton Building , Manchester M1 5GD , U.K
| | - Gemma Harris
- Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus , Didcot, Oxfordshire OX11 0FA , U.K
| | - Andrew C Newby
- School of Translational Health Sciences, Faculty of Health Sciences , University of Bristol , Research Floor Level 7, Bristol Royal Infirmary , Bristol BS2 8HW , U.K
| | - Mark Bond
- School of Translational Health Sciences, Faculty of Health Sciences , University of Bristol , Research Floor Level 7, Bristol Royal Infirmary , Bristol BS2 8HW , U.K
| |
Collapse
|
28
|
Soncin F, Khater M, To C, Pizzo D, Farah O, Wakeland A, Arul Nambi Rajan K, Nelson KK, Chang CW, Moretto-Zita M, Natale DR, Laurent LC, Parast MM. Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. Development 2018; 145:dev.156273. [PMID: 29361559 DOI: 10.1242/dev.156273] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 01/09/2018] [Indexed: 01/08/2023]
Abstract
An increasing body of evidence points to significant spatio-temporal differences in early placental development between mouse and human, but a detailed comparison of placentae in these two species is missing. We set out to compare placentae from both species across gestation, with a focus on trophoblast progenitor markers. We found that CDX2 and ELF5, but not EOMES, are expressed in early post-implantation trophoblast subpopulations in both species. Genome-wide expression profiling of mouse and human placentae revealed clusters of genes with distinct co-expression patterns across gestation. Overall, there was a closer fit between patterns observed in the placentae when the inter-species comparison was restricted to human placentae through gestational week 16 (thus, excluding full-term samples), suggesting that the developmental timeline in mouse runs parallel to the first half of human placental development. In addition, we identified VGLL1 as a human-specific marker of proliferative cytotrophoblast, where it is co-expressed with the transcription factor TEAD4. As TEAD4 is involved in trophectoderm specification in the mouse, we posit a regulatory role for VGLL1 in early events during human placental development.
Collapse
Affiliation(s)
- Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Marwa Khater
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Cuong To
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Omar Farah
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Anna Wakeland
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Kanaga Arul Nambi Rajan
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Katharine K Nelson
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Ching-Wen Chang
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Matteo Moretto-Zita
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - David R Natale
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Louise C Laurent
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, USA .,Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA .,Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| |
Collapse
|
29
|
Wang SP, Wang LH. Disease implication of hyper-Hippo signalling. Open Biol 2017; 6:rsob.160119. [PMID: 27805903 PMCID: PMC5090056 DOI: 10.1098/rsob.160119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
The Hippo signalling pathway regulates cellular proliferation, apoptosis and differentiation, thus exerting profound effects on cellular homeostasis. Inhibition of Hippo signalling has been frequently implicated in human cancers, indicating a well-known tumour suppressor function of the Hippo pathway. However, it is less certain whether and how hyperactivation of the Hippo pathway affects biological outcome in living cells. This review describes current knowledge of the regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactivation of the Hippo signalling nexus. The disease implications of hyperactivated Hippo signalling have also been discussed, including arrhythmogenic cardiomyopathy, Sveinsson's chorioretinal atrophy, Alzheimer's disease, amyotrophic lateral sclerosis and diabetes. By highlighting the significance of disease-relevant Hippo signalling activation, this review can offer exciting prospects to address the onset and potential reversal of Hippo-related disorders.
Collapse
Affiliation(s)
- Shu-Ping Wang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Lan-Hsin Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 114, Taiwan
| |
Collapse
|
30
|
Pathak S, Banerjee A, Meng WJ, Kumar Nandy S, Gopinath M, Sun XF. Significant expression of tafazzin (TAZ) protein in colon cancer cells and its downregulation by radiation. Int J Radiat Biol 2017; 94:79-87. [PMID: 29099643 DOI: 10.1080/09553002.2018.1400191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Surajit Pathak
- Department of Oncology and Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
- Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Antara Banerjee
- Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Wen-Jian Meng
- Department of Oncology and Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Suman Kumar Nandy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
- Bioinformatics Centre, Department of RDAP, North-Eastern Hill University, Tura Campus, Tura, India
| | - Madhumala Gopinath
- Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Xiao-Feng Sun
- Department of Oncology and Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| |
Collapse
|
31
|
Recurrent BRAF Gene Rearrangements in Myxoinflammatory Fibroblastic Sarcomas, but Not Hemosiderotic Fibrolipomatous Tumors. Am J Surg Pathol 2017; 41:1456-1465. [PMID: 28692601 DOI: 10.1097/pas.0000000000000899] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myxoinflammatory fibroblastic sarcoma (MIFS) is a low grade soft tissue sarcoma with a predilection for acral sites, being associated with a high rate of local recurrence but very infrequent distant metastases. Although a t(1;10) translocation resulting in TGFBR3-MGEA5 fusion has been reported as a recurrent genetic event in MIFS, this abnormality is seen only in a subset of cases. As no studies to date have investigated the spectrum of alternative genetic alterations in TGFBR3-MGEA5 fusion negative MIFS, we undertook a genetic analysis of this particular cohort for further molecular classification. Triggered by an index case occurring in the finger of a 37-year-old female and harboring a novel TOM1L2-BRAF fusion by targeted RNA sequencing we investigated potential recurrent BRAF abnormalities by screening a large group of 19 TGFBR3-MGEA5 fusion negative MIFS by fluorescence in situ hybridization. There were 6 (32%) additional MIFS with BRAF genetic abnormalities, including 5 gene rearrangements and one showing BRAF amplification. Interestingly, VGLL3 amplification, a recurrent genetic abnormality coexisting with t(1;10) in some MIFS, was also detected by fluorescence in situ hybridization in 4/6 (67%) BRAF-rearranged MIFS, but not in the BRAF-amplified case. Up-regulated VGLL3 mRNA expression was also demonstrated in the index case by RNA sequencing. The 7 BRAF-rearranged/amplified MIFS arose in the fingers (n=3), and 1 each in wrist, forearm, foot, and knee, of adult patients (36 to 74 y; M:F=4:3). The histologic spectrum ranged from predominantly solid growth of plump histiocytoid to epithelioid tumor cells with focal myxoid change to a predominantly myxoid background with scattered tumor cells. Varying degree of inflammatory infiltrates and large tumor cells with virocyte-like macronucleoli were observed in most cases. Immunohistochemical stains of phosphorylated ERK, a downstream effector of BRAF activation, were positive in all 4 cases tested (2 diffuse strong, 2 focal strong). Unlike t(1;10), BRAF rearrangements were only found in MIFS but not in 6 hemosiderotic fibrolipomatous tumor (HFLT) lacking TGFBR3-MGEA5 fusions (including 2 pure HFLT, 2 hybrid HFLT-MIFS, and 2 associated with pleomorphic hyalinizing angiectatic tumors).
Collapse
|
32
|
Simon E, Thézé N, Fédou S, Thiébaud P, Faucheux C. Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration. Biol Open 2017; 6:1528-1540. [PMID: 28870996 PMCID: PMC5665465 DOI: 10.1242/bio.026153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drosophila Vestigial is the founding member of a protein family containing a highly conserved domain, called Tondu, which mediates their interaction with members of the TEAD family of transcription factors (Scalloped in Drosophila). In Drosophila, the Vestigial/Scalloped complex controls wing development by regulating the expression of target genes through binding to MCAT sequences. In vertebrates, there are four Vestigial-like genes, the functions of which are still not well understood. Here, we describe the regulation and function of vestigial-like 3 (vgll3) during Xenopus early development. A combination of signals, including FGF8, Wnt8a, Hoxa2, Hoxb2 and retinoic acid, limits vgll3 expression to hindbrain rhombomere 2. We show that vgll3 regulates trigeminal placode and nerve formation and is required for normal neural crest development by affecting their migration and adhesion properties. At the molecular level, vgll3 is a potent activator of pax3, zic1, Wnt and FGF, which are important for brain patterning and neural crest cell formation. Vgll3 interacts in the embryo with Tead proteins but unexpectedly with Ets1, with which it is able to stimulate a MCAT driven luciferase reporter gene. Our findings highlight a critical function for vgll3 in vertebrate early development.
Collapse
Affiliation(s)
- Emilie Simon
- Univ. Bordeaux, INSERM U1035, F-33076 Bordeaux, France
| | - Nadine Thézé
- Univ. Bordeaux, INSERM U1035, F-33076 Bordeaux, France
| | | | | | | |
Collapse
|
33
|
DNA-binding mechanism of the Hippo pathway transcription factor TEAD4. Oncogene 2017; 36:4362-4369. [PMID: 28368398 DOI: 10.1038/onc.2017.24] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/29/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022]
Abstract
TEA domain (TEAD) family transcription factors are key regulators in development, tissue homeostasis and cancer progression. TEAD4 acts as a critical downstream effector of the evolutionarily conserved Hippo signaling pathway. The well-studied oncogenic protein YAP forms a complex with TEAD4 to regulate gene transcription; so does the tumor suppressor VGLL4. Although it is known that TEAD proteins can bind promoter regions of target genes through the TEA domain, the specific and detailed mechanism of DNA recognition by the TEA domain remains partially understood. Here, we report the crystal structure of TEAD4 TEA domain in complex with a muscle-CAT DNA element. The structure revealed extensive interactions between the TEA domain and the DNA duplex involving both the major and minor grooves of DNA helix. The DNA recognition helix, α3 helix, determines the specificity of the TEA domain binding to DNA sequence. Structure-guided biochemical analysis identified two major binding sites on the interface of the TEA domain-DNA complex. Mutation of TEAD4 at either site substantially decreases its occupancy on the promoter region of target genes, and largely impaired YAP-induced TEAD4 transactivation and target gene transcription, leading to inhibition of growth and colony formation of gastric cancer cell HGC-27. Collectively, our work provides a structural basis for understanding the regulatory mechanism of TEAD-mediated gene transcription.
Collapse
|
34
|
Human Papillomavirus 16 E6 Upregulates APOBEC3B via the TEAD Transcription Factor. J Virol 2017; 91:JVI.02413-16. [PMID: 28077648 DOI: 10.1128/jvi.02413-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
The cytidine deaminase APOBEC3B (A3B) underlies the genetic heterogeneity of several human cancers, including cervical cancer, which is caused by human papillomavirus (HPV) infection. We previously identified a region within the A3B promoter that is activated by the viral protein HPV16 E6 in human keratinocytes. Here, we discovered three sites recognized by the TEAD family of transcription factors within this region of the A3B promoter. Reporter assays in HEK293 cells showed that exogenously expressed TEAD4 induced A3B promoter activation through binding to these sites. Normal immortalized human keratinocytes expressing E6 (NIKS-E6) displayed increased levels of TEAD1/4 protein compared to parental NIKS. A series of E6 mutants revealed that E6-mediated degradation of p53 was important for increasing TEAD4 levels. Knockdown of TEADs in NIKS-E6 significantly reduced A3B mRNA levels, whereas ectopic expression of TEAD4 in NIKS increased A3B mRNA levels. Finally, chromatin immunoprecipitation assays demonstrated increased levels of TEAD4 binding to the A3B promoter in NIKS-E6 compared to NIKS. Collectively, these results indicate that E6 induces upregulation of A3B through increased levels of TEADs, highlighting the importance of the TEAD-A3B axis in carcinogenesis.IMPORTANCE The expression of APOBEC3B (A3B), a cellular DNA cytidine deaminase, is upregulated in various human cancers and leaves characteristic, signature mutations in cancer genomes, suggesting that it plays a prominent role in carcinogenesis. Viral oncoproteins encoded by human papillomavirus (HPV) and polyomavirus have been reported to induce A3B expression, implying the involvement of A3B upregulation in virus-associated carcinogenesis. However, the molecular mechanisms causing A3B upregulation remain unclear. Here, we demonstrate that exogenous expression of the cellular transcription factor TEAD activates the A3B promoter. Further, the HPV oncoprotein E6 increases the levels of endogenous TEAD1/4 protein, thereby leading to A3B upregulation. Since increased levels of TEAD4 are frequently observed in many cancers, an understanding of the direct link between TEAD and A3B upregulation is of broad oncological interest.
Collapse
|
35
|
Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy. Genes (Basel) 2016; 7:genes7090055. [PMID: 27589805 PMCID: PMC5042386 DOI: 10.3390/genes7090055] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
The Hippo signaling pathway is a highly-conserved developmental pathway that plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) are two important transcriptional co-activators that are negatively regulated by the Hippo signaling pathway. By binding to transcription factors, especially the TEA domain transcription factors (TEADs), YAP and TAZ induce the expression of growth-promoting genes, which can promote organ regeneration after injury. Therefore, controlled activation of YAP and TAZ can be useful for regenerative medicine. However, aberrant activation of YAP and TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and TEADs can promote cancer development. Hence, pharmacological inhibition of YAP and TAZ may be a useful approach to treat tumors with high YAP and/or TAZ activity. In this review, we present the mechanisms regulating the Hippo pathway, the role of the Hippo pathway in tissue repair and cancer, as well as a detailed analysis of the different strategies to target the Hippo signaling pathway and the genes regulated by YAP and TAZ for regenerative medicine and cancer therapy.
Collapse
|
36
|
Landin-Malt A, Benhaddou A, Zider A, Flagiello D. An evolutionary, structural and functional overview of the mammalian TEAD1 and TEAD2 transcription factors. Gene 2016; 591:292-303. [PMID: 27421669 DOI: 10.1016/j.gene.2016.07.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/22/2023]
Abstract
TEAD proteins constitute a family of highly conserved transcription factors, characterized by a DNA-binding domain called the TEA domain and a protein-binding domain that permits association with transcriptional co-activators. TEAD proteins are unable to induce transcription on their own. They have to interact with transcriptional cofactors to do so. Once TEADs bind their co-activators, the different complexes formed are known to regulate the expression of genes that are crucial for embryonic development, important for organ formation (heart, muscles), and involved in cell death and proliferation. In the first part of this review we describe what is known of the structure of TEAD proteins. We then focus on two members of the family: TEAD1 and TEAD2. First the different transcriptional cofactors are described. These proteins can be classified in three categories: i), cofactors regulating chromatin conformation, ii), cofactors able to bind DNA, and iii), transcriptional cofactors without DNA binding domain. Finally we discuss the recent findings that identified TEAD1 and 2 and its coactivators involved in cancer progression.
Collapse
Affiliation(s)
- André Landin-Malt
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Ataaillah Benhaddou
- Univ Paris Diderot, Sorbonne Paris Cité, Team Regulation of Cell-Fate Specification in the Mouse, IJM, UMR 7592 CNRS, Paris, France.
| | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, Team Molecular Oncology and Ovarian Pathologies, IJM, UMR 7592 CNRS, Paris, France.
| | - Domenico Flagiello
- Univ Paris Diderot, Sorbonne Paris Cité, Team Regulation of Cell-Fate Specification in the Mouse, IJM, UMR 7592 CNRS, Paris, France.
| |
Collapse
|
37
|
Simon E, Faucheux C, Zider A, Thézé N, Thiébaud P. From vestigial to vestigial-like: the Drosophila gene that has taken wing. Dev Genes Evol 2016; 226:297-315. [PMID: 27116603 DOI: 10.1007/s00427-016-0546-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/10/2016] [Indexed: 12/16/2022]
Abstract
The members of the vestigial-like gene family have been identified as homologs of the Drosophila vestigial, which is essential to wing formation. All members of the family are characterized by the presence of the TONDU domain, a highly conserved sequence that mediates their interaction with the transcription factors of the TEAD family. Mammals possess four vestigial-like genes that can be subdivided into two classes, depending on the number of Tondu domains present. While vestigial proteins have been studied in great depth in Drosophila, we still have sketchy knowledge of the functions of vestigial-like proteins in vertebrates. Recent studies have unveiled unexpected functions for some of these members and reveal the role they play in the Hippo pathway. Here, we present the current knowledge about vestigial-like family gene members and their functions, together with their identification in different taxa.
Collapse
Affiliation(s)
- Emilie Simon
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Corinne Faucheux
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, F-75205, Paris, France
| | - Nadine Thézé
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Pierre Thiébaud
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France.
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France.
- Univ. Bordeaux, INSERM U1035, 146 rue Léo Saignat, 33076, Bordeaux CEDEX, France.
| |
Collapse
|
38
|
A Molecular Study of Pediatric Spindle and Sclerosing Rhabdomyosarcoma: Identification of Novel and Recurrent VGLL2-related Fusions in Infantile Cases. Am J Surg Pathol 2016; 40:224-35. [PMID: 26501226 DOI: 10.1097/pas.0000000000000538] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sclerosing rhabdomyosarcoma (ScRMS) and spindle cell rhabdomyosarcoma (SRMS) have been recently reclassified as a stand-alone pathologic entity, separate from embryonal RMS. Genetically, a subset of the congenital cases display NCOA2 gene rearrangements, whereas tumors occurring in older children or adults harbor MYOD1 gene mutations with or without coexisting PIK3CA mutations. Despite these recent advances, a significant number of tumors lack known genetic alterations. In this study we sought to investigate a large group of pediatric SRMS/ScRMS, spanning a diverse clinical and pathologic spectrum, by using a combined fluorescence in situ hybridization, targeted DNA, and whole-transcriptome sequencing methodology for a more definitive molecular classification. A total of 26 SRMS and ScRMS cases were selected from the 2 participating institutions for the molecular analysis. Ten of the 11 congenital/infantile SRMS showed recurrent fusion genes: with novel VGLL2 rearrangements seen in 7 (63%), including VGLL2-CITED2 fusion in 4 and VGLL2-NCOA2 in 2 cases. Three (27%) cases harbored the previously described NCOA2 gene fusions, including TEAD1-NCOA2 in 2 and SRF-NCOA2 in 1. All fusion-positive congenital/infantile SRMS patients with available long-term follow-up were alive and well, none developing distant metastases. Among the remaining 15 SRMS patients older than 1 year, 10 (67%) showed MYOD1 L122R mutations, most of them following a fatal outcome despite an aggressive multimodality treatment. All 4 cases harboring coexisting MYOD1/PIK3CA mutations shared sclerosing morphology. All 5 fusion/mutation-negative SRMS cases presented as intra-abdominal or paratesticular lesions.
Collapse
|
39
|
Zhou Y, Huang T, Cheng ASL, Yu J, Kang W, To KF. The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis. Int J Mol Sci 2016; 17:ijms17010138. [PMID: 26805820 PMCID: PMC4730377 DOI: 10.3390/ijms17010138] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/22/2023] Open
Abstract
The TEAD family of transcription factors is necessary for developmental processes. The family members contain a TEA domain for the binding with DNA elements and a transactivation domain for the interaction with transcription coactivators. TEAD proteins are required for the participation of coactivators to transmit the signal of pathways for the downstream signaling processes. TEADs also play an important role in tumor initiation and facilitate cancer progression via activating a series of progression-inducing genes, such as CTGF, Cyr61, Myc and Gli2. Recent studies have highlighted that TEADs, together with their coactivators, promote or even act as the crucial parts in the development of various malignancies, such as liver, ovarian, breast and prostate cancers. Furthermore, TEADs are proposed to be useful prognostic biomarkers due to the ideal correlation between high expression and clinicopathological parameters in gastric, breast, ovarian and prostate cancers. In this review, we summarize the functional role of TEAD proteins in tumorigenesis and discuss the key role of TEAD transcription factors in the linking of signal cascade transductions. Improved knowledge of the TEAD proteins will be helpful for deep understanding of the molecular mechanisms of tumorigenesis and identifying ideal predictive or prognostic biomarkers, even providing clinical translation for anticancer therapy in human cancers.
Collapse
Affiliation(s)
- Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| | - Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| |
Collapse
|
40
|
Tajonar A, Maehr R, Hu G, Sneddon JB, Rivera-Feliciano J, Cohen DE, Elledge SJ, Melton DA. Brief report: VGLL4 is a novel regulator of survival in human embryonic stem cells. Stem Cells 2015; 31:2833-41. [PMID: 23765749 PMCID: PMC4617635 DOI: 10.1002/stem.1445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 02/21/2013] [Accepted: 03/07/2013] [Indexed: 01/07/2023]
Abstract
Human embryonic stem cells (hESCs) are maintained in a self-renewing state by an interconnected network of mechanisms that sustain pluripotency, promote proliferation and survival, and prevent differentiation. We sought to find novel genes that could contribute to one or more of these processes using a gain-of-function screen of a large collection of human open reading frames. We identified Vestigial-like 4 (VGLL4), a cotranscriptional regulator with no previously described function in hESCs, as a positive regulator of survival in hESCs. Specifically, VGLL4 overexpression in hESCs significantly decreases cell death in response to dissociation stress. Additionally, VGLL4 overexpression enhances hESC colony formation from single cells. These effects may be attributable, in part, to a decreased activity of initiator and effector caspases observed in the context of VGLL4 overexpression. Additionally, we show an interaction between VGLL4 and the Rho/Rock pathway, previously implicated in hESC survival. This study introduces a novel gain-of-function approach for studying hESC maintenance and presents VGLL4 as a previously undescribed regulator of this process. Stem Cells 2013;31:2833-2841.
Collapse
Affiliation(s)
- Adriana Tajonar
- Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shi Z, Jiao S, Zhou Z. Structural dissection of Hippo signaling. Acta Biochim Biophys Sin (Shanghai) 2015; 47:29-38. [PMID: 25476203 DOI: 10.1093/abbs/gmu107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway controls cell number and organ size by restricting cell proliferation and promoting apoptosis, and thus is a key regulator in development and homeostasis. Dysfunction of the Hippo pathway correlates with many pathological conditions, especially cancer. Hippo signaling also plays important roles in tissue regeneration and stem cell biology. Therefore, the Hippo pathway is recognized as a crucial target for cancer therapy and regeneration medicine. To date, structures of several key components in Hippo signaling have been determined. In this review, we summarize current available structural studies of the Hippo pathway, which may help to improve our understanding of its regulatory mechanisms, as well as to facilitate further functional studies and potential therapeutic interventions.
Collapse
|
42
|
Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 2014; 94:1287-312. [PMID: 25287865 DOI: 10.1152/physrev.00005.2014] [Citation(s) in RCA: 1292] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The transcriptional regulators YAP and TAZ are the focus of intense interest given their remarkable biological properties in development, tissue homeostasis and cancer. YAP and TAZ activity is key for the growth of whole organs, for amplification of tissue-specific progenitor cells during tissue renewal and regeneration, and for cell proliferation. In tumors, YAP/TAZ can reprogram cancer cells into cancer stem cells and incite tumor initiation, progression and metastasis. As such, YAP/TAZ are appealing therapeutic targets in cancer and regenerative medicine. Just like the function of YAP/TAZ offers a molecular entry point into the mysteries of tissue biology, their regulation by upstream cues is equally captivating. YAP/TAZ are well known for being the effectors of the Hippo signaling cascade, and mouse mutants in Hippo pathway components display remarkable phenotypes of organ overgrowth, enhanced stem cell content and reduced cellular differentiation. YAP/TAZ are primary sensors of the cell's physical nature, as defined by cell structure, shape and polarity. YAP/TAZ activation also reflects the cell "social" behavior, including cell adhesion and the mechanical signals that the cell receives from tissue architecture and surrounding extracellular matrix (ECM). At the same time, YAP/TAZ entertain relationships with morphogenetic signals, such as Wnt growth factors, and are also regulated by Rho, GPCRs and mevalonate metabolism. YAP/TAZ thus appear at the centerpiece of a signaling nexus by which cells take control of their behavior according to their own shape, spatial location and growth factor context.
Collapse
Affiliation(s)
- Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | | |
Collapse
|
43
|
Caine C, Kasherov P, Silber J, Lalouette A. Mef2 interacts with the Notch pathway during adult muscle development in Drosophila melanogaster. PLoS One 2014; 9:e108149. [PMID: 25247309 PMCID: PMC4172597 DOI: 10.1371/journal.pone.0108149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/03/2014] [Indexed: 12/22/2022] Open
Abstract
Myogenesis of indirect flight muscles (IFMs) in Drosophila melanogaster follows a well-defined cellular developmental scheme. During embryogenesis, a set of cells, the Adult Muscle Precursors (AMPs), are specified. These cells will become proliferating myoblasts during the larval stages which will then give rise to the adult IFMs. Although the cellular aspect of this developmental process is well studied, the molecular biology behind the different stages is still under investigation. In particular, the interactions required during the transition from proliferating myoblasts to differentiated myoblasts ready to fuse to the muscle fiber. It has been previously shown that the Notch pathway is active in proliferating myoblasts, and that this pathway is inhibited in developing muscle fibers. Furthermore, the Myocyte Enhancing Factor 2 (Mef2), Vestigial (Vg) and Scalloped (Sd) transcription factors are necessary for IFM development and that Vg is required for Notch pathway repression in differentiating fibers. Here we examine the interactions between Notch and Mef2 and mechanisms by which the Notch pathway is inhibited during differentiation. We show that Mef2 is capable of inhibiting the Notch pathway in non myogenic cells. A previous screen for Mef2 potential targets identified Delta a component of the Notch pathway. Dl is expressed in Mef2 and Sd-positive developing fibers. Our results show that Mef2 and possibly Sd regulate a Dl enhancer specifically expressed in the developing IFMs and that Mef2 is required for Dl expression in developing IFMs.
Collapse
Affiliation(s)
- Charlotte Caine
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Petar Kasherov
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Joël Silber
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alexis Lalouette
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
44
|
Wackerhage H, Del Re DP, Judson RN, Sudol M, Sadoshima J. The Hippo signal transduction network in skeletal and cardiac muscle. Sci Signal 2014; 7:re4. [PMID: 25097035 DOI: 10.1126/scisignal.2005096] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of the Hippo pathway can be traced back to two areas of research. Genetic screens in fruit flies led to the identification of the Hippo pathway kinases and scaffolding proteins that function together to suppress cell proliferation and tumor growth. Independent research, often in the context of muscle biology, described Tead (TEA domain) transcription factors, which bind CATTCC DNA motifs to regulate gene expression. These two research areas were joined by the finding that the Hippo pathway regulates the activity of Tead transcription factors mainly through phosphorylation of the transcriptional coactivators Yap and Taz, which bind to and activate Teads. Additionally, many other signal transduction proteins crosstalk to members of the Hippo pathway forming a Hippo signal transduction network. We discuss evidence that the Hippo signal transduction network plays important roles in myogenesis, regeneration, muscular dystrophy, and rhabdomyosarcoma in skeletal muscle, as well as in myogenesis, organ size control, and regeneration of the heart. Understanding the role of Hippo kinases in skeletal and heart muscle physiology could have important implications for translational research.
Collapse
Affiliation(s)
- Henning Wackerhage
- School of Medical Sciences, University of Aberdeen, Health Sciences Building, Foresterhill, AB25 2ZD Aberdeen, Scotland, UK.
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Robert N Judson
- School of Medical Sciences, University of Aberdeen, Health Sciences Building, Foresterhill, AB25 2ZD Aberdeen, Scotland, UK. Biomedical Research Centre, University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore. Department of Medicine, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
45
|
Castilla MÁ, López-García MÁ, Atienza MR, Rosa-Rosa JM, Díaz-Martín J, Pecero ML, Vieites B, Romero-Pérez L, Benítez J, Calcabrini A, Palacios J. VGLL1 expression is associated with a triple-negative basal-like phenotype in breast cancer. Endocr Relat Cancer 2014; 21:587-99. [PMID: 24891455 DOI: 10.1530/erc-13-0485] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vestigial-like 1 (VGLL1) is a poorly characterized gene encoding a transcriptional co-activator structurally homologous to TAZ and YAP that modulates the Hippo pathway in Drosophila. In this study, we examined the expression of VGLL1 and its intronic miRNA, miR-934, in breast cancer. VGLL1 and miR-934 expression miRNA profiling was carried out on frozen samples of grade 3 invasive ductal carcinomas. VGLL1 protein was also examined in 433 sporadic and BRCA1-associated breast carcinomas on tissue microarrays. RNA-seq data from The Cancer Genome Atlas (TCGA) was used to confirm differences in VGLL1 and miR-934 expression in different breast cancer subtypes, and to correlate their expression with that of other genes and miRNAs. Of 28 miRNAs differentially expressed in estrogen receptor (ER)-positive and ER-negative grade 3 breast carcinomas, miR-934 was most strongly upregulated in ER-negative carcinomas, and its expression was correlated with that of VGLL1. Nuclear VGLL1 expression was observed in 13% of sporadic breast carcinomas, and while VGLL1 was only occasionally found in luminal A (0.70%) and B (5.60%) carcinomas, it was often expressed in HER2-positive (17%), triple-negative (TN) breast carcinomas (>40%) and BRCA1-associated TN carcinomas (>50%). These findings were confirmed in the TCGA dataset, which revealed positive associations with luminal progenitor genes (GABRP, SLC6A14, FOXC1, PROM1, and BBOX1) and strong negative correlations with ER-associated genes (ESR1, C6ORF211, GATA3, and FOXA1). Moreover, VGLL1 expression was associated with reduced overall survival. In conclusion, VGLL1 and miR-934 are mainly expressed in sporadic and BRCA1-associated TN basal-like breast carcinomas, and their coordinated expression, at least partially mediated by the direct modulation of ESR1, might be involved in the maintenance of a luminal progenitor phenotype.
Collapse
Affiliation(s)
- María Ángeles Castilla
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, ItalyInstituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, Italy
| | - María Ángeles López-García
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, ItalyInstituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, Italy
| | - María Reina Atienza
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, Italy
| | - Juan Manuel Rosa-Rosa
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, Italy
| | - Juan Díaz-Martín
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, ItalyInstituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, Italy
| | - María Luisa Pecero
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, Italy
| | - Begoña Vieites
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, ItalyInstituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, Italy
| | - Laura Romero-Pérez
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, ItalyInstituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, Italy
| | - Javier Benítez
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, Italy
| | - Annarica Calcabrini
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, Italy
| | - José Palacios
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, ItalyInstituto de Biomedicina de Sevilla-CSIC-Universidad de SevillaHospital Universitario Virgen del Rocío, Department of Pathology, Avda. Manuel Siurot S/N, 41013 Seville, SpainRed Temática de Investigación Cooperativa en Cáncer (RTICC)ISCIII, Madrid, SpainServicio de Anatomía PatológicaHospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainHuman Genetics GroupDepartamento de Biología del Cáncer, Spanish National Cancer Research Centre (CNIO)-CIBERER, Madrid, SpainDepartment of Technology and HealthIstituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
46
|
Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, He F, Wang Y, Zhang Z, Wang W, Wang X, Guo T, Li P, Zhao Y, Ji H, Zhang L, Zhou Z. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 2014; 25:166-80. [PMID: 24525233 DOI: 10.1016/j.ccr.2014.01.010] [Citation(s) in RCA: 482] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/05/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022]
Abstract
The Hippo pathway has been implicated in suppressing tissue overgrowth and tumor formation by restricting the oncogenic activity of YAP. However, transcriptional regulators that inhibit YAP activity have not been well studied. Here, we uncover clinical importance for VGLL4 in gastric cancer suppression and find that VGLL4 directly competes with YAP for binding TEADs. Importantly, VGLL4's tandem Tondu domains are not only essential but also sufficient for its inhibitory activity toward YAP. A peptide mimicking this function of VGLL4 potently suppressed tumor growth in vitro and in vivo. These findings suggest that disruption of YAP-TEADs interaction by a VGLL4-mimicking peptide may be a promising therapeutic strategy against YAP-driven human cancers.
Collapse
Affiliation(s)
- Shi Jiao
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Huizhen Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhubing Shi
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Aimei Dong
- Department of Gastroenterology and Internal Medicine, Nanjing Xiaguan Hospital, Nanjing, Jiangsu 210085, China
| | - Wenjing Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiaomin Song
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Feng He
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yicui Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhenzhen Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Wenjia Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xin Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Tong Guo
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Peixue Li
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yun Zhao
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Hongbin Ji
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| | - Lei Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| | - Zhaocai Zhou
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
47
|
The Surprising Features of the TEAD4-Vgll1 Protein-Protein Interaction. Chembiochem 2014; 15:537-42. [DOI: 10.1002/cbic.201300715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Indexed: 12/18/2022]
|
48
|
Zhang W, Gao Y, Li P, Shi Z, Guo T, Li F, Han X, Feng Y, Zheng C, Wang Z, Li F, Chen H, Zhou Z, Zhang L, Ji H. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res 2014; 24:331-43. [PMID: 24458094 DOI: 10.1038/cr.2014.10] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/13/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is one of the most devastating diseases worldwide with high incidence and mortality. Hippo (Hpo) pathway is a conserved regulator of organ size in both Drosophila and mammals. Emerging evidence has suggested the significance of Hpo pathway in cancer development. In this study, we identify VGLL4 as a novel tumor suppressor in lung carcinogenesis through negatively regulating the formation of YAP-TEAD complex, the core component of Hpo pathway. Our data show that VGLL4 is frequently observed to be lowly expressed in both mouse and human lung cancer specimens. Ectopic expression of VGLL4 significantly suppresses the growth of lung cancer cells in vitro. More importantly, VGLL4 significantly inhibits lung cancer progression in de novo mouse model. We further find that VGLL4 inhibits the activity of the YAP-TEAD transcriptional complex. Our data show that VGLL4 directly competes with YAP in binding to TEADs and executes its growth-inhibitory function through two TDU domains. Collectively, our study demonstrates that VGLL4 is a novel tumor suppressor for lung cancer through negatively regulating the YAP-TEAD complex formation and thus the Hpo pathway.
Collapse
Affiliation(s)
- Wenjing Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Yijun Gao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Peixue Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Zhubing Shi
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Tong Guo
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Fei Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Xiangkun Han
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Yan Feng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Chao Zheng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Zuoyun Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Fuming Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Haiquan Chen
- 1] Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China [2] Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai 200031, China
| |
Collapse
|
49
|
Split-hand/foot malformation - molecular cause and implications in genetic counseling. J Appl Genet 2013; 55:105-15. [PMID: 24163146 PMCID: PMC3909621 DOI: 10.1007/s13353-013-0178-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Split-hand/foot malformation (SHFM) is a congenital limb defect affecting predominantly the central rays of the autopod and occurs either as an isolated trait or part of a multiple congenital anomaly syndrome. SHFM is usually sporadic, familial forms are uncommon. The condition is clinically and genetically heterogeneous and shows mostly autosomal dominant inheritance with variable expressivity and reduced penetrance. To date, seven chromosomal loci associated with isolated SHFM have been described, i.e., SHFM1 to 6 and SHFM/SHFLD. The autosomal dominant mode of inheritance is typical for SHFM1, SHFM3, SHFM4, SHFM5. Autosomal recessive and X-linked inheritance is very uncommon and have been noted only in a few families. Most of the known SHFM loci are associated with chromosomal rearrangements that involve small deletions or duplications of the human genome. In addition, three genes, i.e., TP63, WNT10B, and DLX5 are known to carry point mutations in patients affected by SHFM. In this review, we focus on the known molecular basis of isolated SHFM. We provide clinical and molecular information about each type of abnormality as well as discuss the underlying pathways and mechanism that contribute to their development. Recent progress in the understanding of SHFM pathogenesis currently allows for the identification of causative genetic changes in about 50 % of the patients affected by this condition. Therefore, we propose a diagnostic flow-chart helpful in the planning of molecular genetic tests aimed at identifying disease causing mutation. Finally, we address the issue of genetic counseling, which can be extremely difficult and challenging especially in sporadic SHFM cases.
Collapse
|
50
|
A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res 2013; 23:1201-14. [PMID: 23999857 DOI: 10.1038/cr.2013.120] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 01/01/2023] Open
Abstract
The Hippo (Hpo) pathway controls tissue growth and organ size by regulating the activity of transcriptional co-activator Yorkie (Yki), which associates with transcription factor Scalloped (Sd) in the nucleus to promote downstream target gene expression. Here we identify a novel protein Sd-Binding-Protein (SdBP)/Tgi, which directly competes with Yki for binding to Sd through its TDU domains and inhibits the Sd-Yki transcriptional activity. We also find that SdBP retains Yki in the nucleus through the association with Yki WW domains via its PPXY motifs. Collectively, we identify SdBP as a novel component of the Hpo pathway, negatively regulating the transcriptional activity of Sd-Yki to restrict tissue growth.
Collapse
|