1
|
Hernández-López C, Puliafito A, Xu Y, Lu Z, Di Talia S, Vergassola M. Two-fluid dynamics and micron-thin boundary layers shape cytoplasmic flows in early Drosophila embryos. Proc Natl Acad Sci U S A 2023; 120:e2302879120. [PMID: 37878715 PMCID: PMC10622894 DOI: 10.1073/pnas.2302879120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cytoplasmic flows are widely emerging as key functional players in development. In early Drosophila embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol. Gel contractility is controlled by the cell cycle oscillator, the two fluids being coupled by friction. In addition to recapitulating experimental flow patterns, our model explains observations that remained elusive and makes a series of predictions. First, the model captures the vorticity of cytosolic flows, which highlights deviations from Stokes' flow that were observed experimentally but remained unexplained. Second, the model reveals strong differences in the gel and cytosol motion. In particular, a micron-sized boundary layer is predicted close to the cortex, where the gel slides tangentially while the cytosolic flow cannot slip. Third, the model unveils a mechanism that stabilizes the spreading of nuclei with respect to perturbations of their initial positions. This self-correcting mechanism is argued to be functionally important for proper nuclear spreading. Fourth, we use our model to analyze the effects of flows on the transport of the morphogen Bicoid and the establishment of its gradients. Finally, the model predicts that the flow strength should be reduced if the shape of the domain is more round, which is experimentally confirmed in Drosophila mutants. Thus, our two-fluid model explains flows and nuclear positioning in early Drosophila, while making predictions that suggest novel future experiments.
Collapse
Affiliation(s)
| | | | - Yitong Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Ziqi Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Massimo Vergassola
- Department of Physics, École Normale Supérieure, Paris75005, France
- Department of Physics, University of California, San Diego, CA92075
| |
Collapse
|
2
|
Cai X, Rondeel I, Baumgartner S. Modulating the bicoid gradient in space and time. Hereditas 2021; 158:29. [PMID: 34404481 PMCID: PMC8371787 DOI: 10.1186/s41065-021-00192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022] Open
Abstract
Background The formation of the Bicoid (Bcd) gradient in the early Drosophila is one of the most fascinating observations in biology and serves as a paradigm for gradient formation, yet its mechanism is still not fully understood. Two distinct models were proposed in the past, the SDD and the ARTS model. Results We define novel cis- and trans-acting factors that are indispensable for gradient formation. The first one is the poly A tail length of the bcd mRNA where we demonstrate that it changes not only in time, but also in space. We show that posterior bcd mRNAs possess a longer poly tail than anterior ones and this elongation is likely mediated by wispy (wisp), a poly A polymerase. Consequently, modulating the activity of Wisp results in changes of the Bcd gradient, in controlling downstream targets such as the gap and pair-rule genes, and also in influencing the cuticular pattern. Attempts to modulate the Bcd gradient by subjecting the egg to an extra nuclear cycle, i.e. a 15th nuclear cycle by means of the maternal haploid (mh) mutation showed no effect, neither on the appearance of the gradient nor on the control of downstream target. This suggests that the segmental anlagen are determined during the first 14 nuclear cycles. Finally, we identify the Cyclin B (CycB) gene as a trans-acting factor that modulates the movement of Bcd such that Bcd movement is allowed to move through the interior of the egg. Conclusions Our analysis demonstrates that Bcd gradient formation is far more complex than previously thought requiring a revision of the models of how the gradient is formed.
Collapse
Affiliation(s)
- Xiaoli Cai
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden
| | - Inge Rondeel
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden.,Present address: Hubrecht Institute, 3584 CT, Utrecht, The Netherlands
| | - Stefan Baumgartner
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden. .,Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
3
|
Singh D, Schmidt N, Müller F, Bange T, Bird AW. Destabilization of Long Astral Microtubules via Cdk1-Dependent Removal of GTSE1 from Their Plus Ends Facilitates Prometaphase Spindle Orientation. Curr Biol 2020; 31:766-781.e8. [PMID: 33333009 DOI: 10.1016/j.cub.2020.11.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/25/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The precise regulation of microtubule dynamics over time and space in dividing cells is critical for several mitotic mechanisms that ultimately enable cell proliferation, tissue organization, and development. Astral microtubules, which extend from the centrosome toward the cell cortex, must be present for the mitotic spindle to properly orient, as well as for the faithful execution of anaphase and cytokinesis. However, little is understood about how the dynamic properties of astral microtubules are regulated spatiotemporally, or the contribution of astral microtubule dynamics to spindle positioning. The mitotic regulator Cdk1-CyclinB promotes destabilization of centrosomal microtubules and increased microtubule dynamics as cells enter mitosis, but how Cdk1 activity modulates astral microtubule stability, and whether it impacts spindle positioning, is unknown. Here, we uncover a mechanism revealing that Cdk1 destabilizes astral microtubules in prometaphase and thereby influences spindle reorientation. Phosphorylation of the EB1-dependent microtubule plus-end tracking protein GTSE1 by Cdk1 in early mitosis abolishes its interaction with EB1 and recruitment to microtubule plus ends. Loss of Cdk1 activity, or mutation of phosphorylation sites in GTSE1, induces recruitment of GTSE1 to growing microtubule plus ends in mitosis. This decreases the catastrophe frequency of astral microtubules and causes an increase in the number of long astral microtubules reaching the cell cortex, which restrains the ability of cells to reorient spindles along the long cellular axis in early mitosis. Astral microtubules thus must not only be present but also dynamic to allow the spindle to reorient, a state assisted by selective destabilization of long astral microtubules via Cdk1.
Collapse
Affiliation(s)
- Divya Singh
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Franziska Müller
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department for Systems Chronobiology, Institute of Medical Psychology, LMU Munich, Goethestrasse 31/ I, 80336 Munich, Germany
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
4
|
Falahati H, Hur W, Di Talia S, Wieschaus E. Temperature-Induced uncoupling of cell cycle regulators. Dev Biol 2020; 470:147-153. [PMID: 33278404 DOI: 10.1016/j.ydbio.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
The early stages of development involve complex sequences of morphological changes that are both reproducible from embryo to embryo and often robust to environmental variability. To investigate the relationship between reproducibility and robustness we examined cell cycle progression in early Drosophila embryos at different temperatures. Our experiments show that while the subdivision of cell cycle steps is conserved across a wide range of temperatures (5-35 °C), the relative duration of individual steps varies with temperature. We find that the transition into prometaphase is delayed at lower temperatures relative to other cell cycle events, arguing that it has a different mechanism of regulation. Using an in vivo biosensor, we quantified the ratio of activities of the major mitotic kinase, Cdk1 and one of the major mitotic phosphatases PP1. Comparing activation profile with cell cycle transition times at different temperatures indicates that in early fly embryos activation of Cdk1 drives entry into prometaphase but is not required for earlier cell cycle events. In fact, chromosome condensation can still occur when Cdk1 activity is inhibited pharmacologically. These results demonstrate that different kinases are rate-limiting for different steps of mitosis, arguing that robust inter-regulation may be needed for rapid and ordered mitosis.
Collapse
Affiliation(s)
- Hanieh Falahati
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Woonyung Hur
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Eric Wieschaus
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
5
|
Blake-Hedges C, Megraw TL. Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster. Results Probl Cell Differ 2019; 67:277-321. [PMID: 31435800 PMCID: PMC11725063 DOI: 10.1007/978-3-030-23173-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first 3 h of Drosophila melanogaster embryo development are exemplified by rapid nuclear divisions within a large syncytium, transforming the zygote to the cellular blastoderm after 13 successive cleavage divisions. As the syncytial embryo develops, it relies on centrosomes and cytoskeletal dynamics to transport nuclei, maintain uniform nuclear distribution throughout cleavage cycles, ensure generation of germ cells, and coordinate cellularization. For the sake of this review, we classify six early embryo stages that rely on processes coordinated by the centrosome and its regulation of the cytoskeleton. The first stage features migration of one of the female pronuclei toward the male pronucleus following maturation of the first embryonic centrosomes. Two subsequent stages distribute the nuclei first axially and then radially in the embryo. The remaining three stages involve centrosome-actin dynamics that control cortical plasma membrane morphogenesis. In this review, we highlight the dynamics of the centrosome and its role in controlling the six stages that culminate in the cellularization of the blastoderm embryo.
Collapse
Affiliation(s)
- Caitlyn Blake-Hedges
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
6
|
LOTUS domain protein MARF1 binds CCR4-NOT deadenylase complex to post-transcriptionally regulate gene expression in oocytes. Nat Commun 2018; 9:4031. [PMID: 30279526 PMCID: PMC6168497 DOI: 10.1038/s41467-018-06404-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/01/2018] [Indexed: 12/30/2022] Open
Abstract
Post-transcriptional regulation of gene expression plays an essential role during oocyte maturation. Here we report that Drosophila MARF1 (Meiosis Regulator And mRNA Stability Factor 1), which consists of one RNA-recognition motif and six tandem LOTUS domains with unknown molecular function, is essential for oocyte maturation. When tethered to a reporter mRNA, MARF1 post-transcriptionally silences reporter expression by shortening reporter mRNA poly-A tail length and thereby reducing reporter protein level. This activity is mediated by the MARF1 LOTUS domain, which binds the CCR4-NOT deadenylase complex. MARF1 binds cyclin A mRNA and shortens its poly-A tail to reduce Cyclin A protein level during oocyte maturation. This study identifies MARF1 as a regulator in oocyte maturation and defines the conserved LOTUS domain as a post-transcriptional effector domain that recruits CCR4-NOT deadenylase complex to shorten target mRNA poly-A tails and suppress their translation. The RNA-binding protein MARF1 is required for post-transcriptional regulation of mRNAs during mouse oogenesis. Here, by analyzing a Drosophila MARF1 mutant, the authors show that MARF1 recruits CCR4-NOT deadenylase to shorten the poly-A tails of target mRNAs such as cyclin A and suppress their translation during Drosophila oogenesis.
Collapse
|
7
|
Lin Y, Sui LC, Wu RH, Ma RJ, Fu HY, Xu JJ, Qiu XH, Chen L. Nrf2 inhibition affects cell cycle progression during early mouse embryo development. J Reprod Dev 2017; 64:49-55. [PMID: 29249781 PMCID: PMC5830358 DOI: 10.1262/jrd.2017-042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Brusatol, a quassinoid isolated from the fruit of Bruceajavanica, has recently been shown to inhibit nuclear factor erythroid 2-related factor 2 (Nrf2) via Keap1-dependent ubiquitination and
proteasomal degradation or protein synthesis. Nrf2 is a transcription factor that regulates the cellular defense response. Most studies have focused on the effects of Nrf2 in tumor development. Here, the critical roles
of Nrf2 in mouse early embryonic development were investigated. We found that brusatol treatment at the zygotic stage prevented the early embryo development. Most embryos stayed at the two-cell stage after 5 days of
culture (P < 0.05). This effect was associated with the cell cycle arrest, as the mRNA level of CDK1 and cyclin B decreased at the two-cell stage after brusatol treatment. The embryo
development potency was partially rescued by the injection of Nrf2 CRISPR activation plasmid. Thus, brusatol inhibited early embryo development by affecting Nrf2-related cell cycle transition from G2 to M
phase that is dependent on cyclin B-CDK1 complex.
Collapse
Affiliation(s)
- Ying Lin
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China.,School of Life Sciences, Nanjing Normal University, Jiangsu, People's Republic of China
| | - Liu-Cai Sui
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Rong-Hua Wu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Ru-Jun Ma
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Hai-Yan Fu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Juan-Juan Xu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Xu-Hua Qiu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Li Chen
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| |
Collapse
|
8
|
Calpain A controls mitotic synchrony in the Drosophila blastoderm embryo. Mech Dev 2017; 144:141-149. [DOI: 10.1016/j.mod.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
|
9
|
Bergman ZJ, Mclaurin JD, Eritano AS, Johnson BM, Sims AQ, Riggs B. Spatial reorganization of the endoplasmic reticulum during mitosis relies on mitotic kinase cyclin A in the early Drosophila embryo. PLoS One 2015; 10:e0117859. [PMID: 25689737 PMCID: PMC4331435 DOI: 10.1371/journal.pone.0117859] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/24/2014] [Indexed: 11/19/2022] Open
Abstract
Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope.
Collapse
Affiliation(s)
- Zane J. Bergman
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
| | - Justin D. Mclaurin
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
| | - Anthony S. Eritano
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
| | - Brittany M. Johnson
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
| | - Amanda Q. Sims
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
| | - Blake Riggs
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, California, 94132, United States of America
- * E-mail:
| |
Collapse
|
10
|
Bošnjak I, Borra M, Iamunno F, Benvenuto G, Ujević I, Bušelić I, Roje-Busatto R, Mladineo I. Effect of bisphenol A on P-glycoprotein-mediated efflux and ultrastructure of the sea urchin embryo. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:21-9. [PMID: 25127357 DOI: 10.1016/j.aquatox.2014.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/20/2014] [Accepted: 07/24/2014] [Indexed: 05/04/2023]
Abstract
Usage of bisphenol A (BPA) in production of polycarbonate plastics has resulted in global distribution of BPA in the environment. These high concentrations cause numerous negative effects to the aquatic biota, among which the most known is the induction of endocrine disruption. The focus of this research was to determine the effects of two experimentally determined concentrations of BPA (100nM and 4μM) on cellular detoxification mechanisms during the embryonic development (2-cell, pluteus) of the rocky sea urchin (Paracentrotus lividus), primarily the potential involvement of multidrug efflux transport in the BPA intercellular efflux. The results of transport assay, measurements of the intracellular BPA and gene expression surveys, for the first time indicate the importance of P-glycoprotein (P-gp/ABCB1) in defense against BPA. Cytotoxic effects of BPA, validated by the immunohistochemistry (IHC) and the transmission electron microscopy (TEM), induced the aberrant karyokinesis, and consequently, the impairment of embryo development through the first cell division and retardation.
Collapse
Affiliation(s)
- Ivana Bošnjak
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, Croatia
| | - Marco Borra
- Molecular Biology Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Franco Iamunno
- Electron Microscopy Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Giovanna Benvenuto
- Electron Microscopy Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Ivana Ujević
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia
| | - Ivana Bušelić
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia
| | - Romana Roje-Busatto
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia
| | - Ivona Mladineo
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia; Assemble Marine Laboratory, Stazione Zoological Anton Dohrn, Villa Comunale, Naples, Italy.
| |
Collapse
|
11
|
Farrell JA, O'Farrell PH. From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition. Annu Rev Genet 2014; 48:269-94. [PMID: 25195504 DOI: 10.1146/annurev-genet-111212-133531] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many, if not most, embryos begin development with extremely short cell cycles that exhibit unusually rapid DNA replication and no gap phases. The commitment to the cell cycle in the early embryo appears to preclude many other cellular processes that only emerge as the cell cycle slows just prior to gastrulation at a major embryonic transition known as the mid-blastula transition (MBT). As reviewed here, genetic and molecular studies in Drosophila have identified changes that extend S phase and introduce a post-replicative gap phase, G2, to slow the cell cycle. Although many mysteries remain about the upstream regulators of these changes, we review the core mechanisms of the change in cell cycle regulation and discuss advances in our understanding of how these might be timed and triggered. Finally, we consider how the elements of this program may be conserved or changed in other organisms.
Collapse
Affiliation(s)
- Jeffrey A Farrell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138;
| | | |
Collapse
|
12
|
Pushpavalli SNCVL, Sarkar A, Bag I, Hunt CR, Ramaiah MJ, Pandita TK, Bhadra U, Pal-Bhadra M. Argonaute-1 functions as a mitotic regulator by controlling Cyclin B during Drosophila early embryogenesis. FASEB J 2013; 28:655-66. [PMID: 24165481 DOI: 10.1096/fj.13-231167] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of Ago-1 in microRNA (miRNA) biogenesis has been thoroughly studied, but little is known about its involvement in mitotic cell cycle progression. In this study, we established evidence of the regulatory role of Ago-1 in cell cycle control in association with the G2/M cyclin, cyclin B. Immunostaining of early embryos revealed that the maternal effect gene Ago-1 is essential for proper chromosome segregation, mitotic cell division, and spindle fiber assembly during early embryonic development. Ago-1 mutation resulted in the up-regulation of cyclin B-Cdk1 activity and down-regulation of p53, grp, mei-41, and wee1. The increased expression of cyclin B in Ago-1 mutants caused less stable microtubules and probably does not produce enough force to push the nuclei to the cortex, resulting in a decreased number of pole cells. The role of cyclin B in mitotic defects was further confirmed by suppressing the defects in the presence of one mutant copy of cyclin B. We identified involvement of 2 novel embryonic miRNAs--miR-981 and miR--317-for spatiotemporal regulation of cyclin B. In summary, our results demonstrate that the haploinsufficiency of maternal Ago-1 disrupts mitotic chromosome segregation and spindle fiber assembly via miRNA-guided control during early embryogenesis in Drosophila. The increased expression of cyclin B-Cdk1 and decreased activity of the Cdk1 inhibitor and cell cycle checkpoint proteins (mei-41 and grp) in Ago-1 mutant embryos allow the nuclei to enter into mitosis prematurely, even before completion of DNA replication. Thus, our results have established a novel role of Ago-1 as a regulator of the cell cycle.
Collapse
|
13
|
Telley IA, Gáspár I, Ephrussi A, Surrey T. A single Drosophila embryo extract for the study of mitosis ex vivo. Nat Protoc 2013; 8:310-24. [PMID: 23329004 DOI: 10.1038/nprot.2013.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spindle assembly and chromosome segregation rely on a complex interplay of biochemical and mechanical processes. Analysis of this interplay requires precise manipulation of endogenous cellular components and high-resolution visualization. Here we provide a protocol for generating an extract from individual Drosophila syncytial embryos that supports repeated mitotic nuclear divisions with native characteristics. In contrast to the large-scale, metaphase-arrested Xenopus egg extract system, this assay enables the serial generation of extracts from single embryos of a genetically tractable organism, and each extract contains dozens of autonomously dividing nuclei that can be prepared and imaged within 60-90 min after embryo collection. We describe the microscopy setup and micropipette production that facilitate single-embryo manipulation, the preparation of embryos and the steps for making functional extracts that allow time-lapse microscopy of mitotic divisions ex vivo. The assay enables a unique combination of genetic, biochemical, optical and mechanical manipulations of the mitotic machinery.
Collapse
Affiliation(s)
- Ivo A Telley
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | | | | | | |
Collapse
|
14
|
Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 2012; 8:e1003012. [PMID: 23133394 PMCID: PMC3486910 DOI: 10.1371/journal.pgen.1003012] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/22/2012] [Indexed: 11/28/2022] Open
Abstract
Terrestrial arthropods are commonly infected with maternally inherited bacterial symbionts that cause cytoplasmic incompatibility (CI). In CI, the outcome of crosses between symbiont-infected males and uninfected females is reproductive failure, increasing the relative fitness of infected females and leading to spread of the symbiont in the host population. CI symbionts have profound impacts on host genetic structure and ecology and may lead to speciation and the rapid evolution of sex determination systems. Cardinium hertigii, a member of the Bacteroidetes and symbiont of the parasitic wasp Encarsia pergandiella, is the only known bacterium other than the Alphaproteobacteria Wolbachia to cause CI. Here we report the genome sequence of Cardinium hertigii cEper1. Comparison with the genomes of CI–inducing Wolbachia pipientis strains wMel, wRi, and wPip provides a unique opportunity to pinpoint shared proteins mediating host cell interaction, including some candidate proteins for CI that have not previously been investigated. The genome of Cardinium lacks all major biosynthetic pathways but harbors a complete biotin biosynthesis pathway, suggesting a potential role for Cardinium in host nutrition. Cardinium lacks known protein secretion systems but encodes a putative phage-derived secretion system distantly related to the antifeeding prophage of the entomopathogen Serratia entomophila. Lastly, while Cardinium and Wolbachia genomes show only a functional overlap of proteins, they show no evidence of laterally transferred elements that would suggest common ancestry of CI in both lineages. Instead, comparative genomics suggests an independent evolution of CI in Cardinium and Wolbachia and provides a novel context for understanding the mechanistic basis of CI. Many arthropods are infected with bacterial symbionts that are maternally transmitted and have a great impact on their hosts' biology, ecology, and evolution. One of the most common phenotypes of facultative symbionts appears to be cytoplasmic incompatibility (CI), a type of reproductive failure in which bacteria in males modify sperm in a way that reduces the reproductive success of uninfected female mates. In spite of considerable interest, the genetic basis for CI is largely unknown. Cardinium hertigii, a symbiont of tiny parasitic wasps, is the only bacterial group other than the well-studied Wolbachia that is known to cause CI. Analysis of the Cardinium genome indicates that CI evolved independently in Wolbachia and Cardinium. However, a suite of shared proteins was likely involved in mediating host cell interactions, and CI shows functional overlap in both lineages. Our analysis suggests the presence of an unusual phage-derived, putative secretion system and reveals that Cardinium encodes biosynthetic pathways that suggest a potential role in host nutrition. Our findings provide a novel comparative context for understanding the mechanistic basis of CI and substantially increase our knowledge on reproductive manipulator symbionts that do not only severely affect population genetic structure of arthropods but may also serve as powerful tools in pest management.
Collapse
|
15
|
Yuan K, Farrell JA, O'Farrell PH. Different cyclin types collaborate to reverse the S-phase checkpoint and permit prompt mitosis. ACTA ACUST UNITED AC 2012; 198:973-80. [PMID: 22965907 PMCID: PMC3444785 DOI: 10.1083/jcb.201205007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different cyclin types have distinct abilities to reverse the S-phase checkpoint, and timely entry into mitosis after embryonic S phase requires collaborative action of multiple cyclin types. Precise timing coordinates cell proliferation with embryonic morphogenesis. As Drosophila melanogaster embryos approach cell cycle 14 and the midblastula transition, rapid embryonic cell cycles slow because S phase lengthens, which delays mitosis via the S-phase checkpoint. We probed the contributions of each of the three mitotic cyclins to this timing of interphase duration. Each pairwise RNA interference knockdown of two cyclins lengthened interphase 13 by introducing a G2 phase of a distinct duration. In contrast, pairwise cyclin knockdowns failed to introduce a G2 in embryos that lacked an S-phase checkpoint. Thus, the single remaining cyclin is sufficient to induce early mitotic entry, but reversal of the S-phase checkpoint is compromised by pairwise cyclin knockdown. Manipulating cyclin levels revealed that the diversity of cyclin types rather than cyclin level influenced checkpoint reversal. We conclude that different cyclin types have distinct abilities to reverse the checkpoint but that they collaborate to do so rapidly.
Collapse
Affiliation(s)
- Kai Yuan
- Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
16
|
Kang Q, Pomerening JR. Punctuated cyclin synthesis drives early embryonic cell cycle oscillations. Mol Biol Cell 2011; 23:284-96. [PMID: 22130797 PMCID: PMC3258173 DOI: 10.1091/mbc.e11-09-0768] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cyclin B activates cyclin-dependent kinase 1 (CDK1) at mitosis, but conflicting views have emerged on the dynamics of its synthesis during embryonic cycles, ranging from continuous translation to rapid synthesis during mitosis. Here we show that a CDK1-mediated negative-feedback loop attenuates cyclin production before mitosis. Cyclin B plateaus before peak CDK1 activation, and proteasome inhibition caused minimal accumulation during mitosis. Inhibiting CDK1 permitted continual cyclin B synthesis, whereas adding nondegradable cyclin stalled it. Cycloheximide treatment before mitosis affected neither cyclin levels nor mitotic entry, corroborating this repression. Attenuated cyclin production collaborates with its destruction, since excess cyclin B1 mRNA accelerated cyclin synthesis and caused incomplete proteolysis and mitotic arrest. This repression involved neither adenylation nor the 3' untranslated region, but it corresponded with a shift in cyclin B1 mRNA from polysome to nonpolysome fractions. A pulse-driven CDK1-anaphase-promoting complex (APC) model corroborated these results, revealing reduced cyclin levels during an oscillation and permitting more effective removal. This design also increased the robustness of the oscillator, with lessened sensitivity to changes in cyclin synthesis rate. Taken together, the results of this study underscore that attenuating cyclin synthesis late in interphase improves both the efficiency and robustness of the CDK1-APC oscillator.
Collapse
Affiliation(s)
- Qing Kang
- Department of Biology, Indiana University, Bloomington, IN 47405-7003, USA
| | | |
Collapse
|
17
|
Gardner MK, Charlebois BD, Jánosi IM, Howard J, Hunt AJ, Odde DJ. Rapid microtubule self-assembly kinetics. Cell 2011; 146:582-92. [PMID: 21854983 DOI: 10.1016/j.cell.2011.06.053] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/26/2011] [Accepted: 06/30/2011] [Indexed: 12/18/2022]
Abstract
Microtubule assembly is vital for many fundamental cellular processes. Current models for microtubule assembly kinetics assume that the subunit dissociation rate from a microtubule tip is independent of free subunit concentration. Total-Internal-Reflection-Fluorescence (TIRF) microscopy experiments and data from a laser tweezers assay that measures in vitro microtubule assembly with nanometer resolution, provides evidence that the subunit dissociation rate from a microtubule tip increases as the free subunit concentration increases. These data are consistent with a two-dimensional model for microtubule assembly, and are explained by a shift in microtubule tip structure from a relatively blunt shape at low free concentrations to relatively tapered at high free concentrations. We find that because both the association and the dissociation rates increase at higher free subunit concentrations, the kinetics of microtubule assembly are an order-of-magnitude higher than currently estimated in the literature.
Collapse
Affiliation(s)
- Melissa K Gardner
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
18
|
Zhou J, Zhu XS, Cai ZH. The impacts of bisphenol A (BPA) on abalone (Haliotis diversicolor supertexta) embryonic development. CHEMOSPHERE 2011; 82:443-450. [PMID: 20970156 DOI: 10.1016/j.chemosphere.2010.09.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 09/09/2010] [Accepted: 09/16/2010] [Indexed: 05/30/2023]
Abstract
The effects of bisphenol A (BPA) on abalone (Haliotis diversicolor supertexta) embryonic development were investigated by exposing the fertilized eggs to four different concentrations of BPA (0.05, 0.2, 2 and 10 μg mL(-1)). Toxicity endpoints including the embryo development parameters, the physiological features and the expression profile of several reference genes (prohormone convertase 1, PC1; cyclin B, CB; and cyclin-dependent kinase 1, CDK1) were assessed. The results showed that BPA could markedly reduce embryo hatchability, increase developmental malformation, and suppress the metamorphosis behavior of larvae. The possible toxicological mechanisms hidden behind of these effects (i.e. disturbing the embryogenesis) might result from three aspects: (1) BPA disturbance the cellular ionic homeostasis and osmoregulation of abalone embryos by changing the Na+-K+-ATPase and Ca2+-Mg2+-ATPase levels; (2) BPA induced oxidative damage of embryos by significantly altering the peroxidase (POD) activities and the malondialdehyde (MDA) production; and (3) the RT-PCR analysis further demonstrated that BPA perturbed the cellular endocrine regulation and cell cycle progression by down-regulating the PC1 gene, as well as over-expressing the CB and CDK1 genes. This is the first comprehensive study on the developmental toxicity of BPA to the marine abalone at morphological, physiological and molecular levels. The results in this study also indicated that the embryo tests can contribute to the ecological risk assessment of the endocrine disruptors in marine environment.
Collapse
Affiliation(s)
- Jin Zhou
- Life Sciences Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | | | | |
Collapse
|
19
|
Abstract
The cyclins and their cyclin-dependent kinase partners, the Cdks, are the basic components of the machinery that regulates the passage of cells through the cell cycle. Among the cyclins, those known as the A-type cyclins are unique in that in somatic cells, they appear to function at two stages of the cell cycle, at the G1-S transition and again as the cells prepare to enter M-phase. Higher vertebrate organisms have two A-type cyclins, cyclin A1 and cyclin A2, both of which are expressed in the germ line and/or early embryo, following highly specialized patterns that suggest functions in both mitosis and meiosis. Insight into their in vivo functions has been obtained from gene targeting experiments in the mouse model. Loss of cyclin A1 results in disruption of spermatogenesis and male sterility due to cell arrest in the late diplotene stage of the meiotic cell cycle. In contrast, cyclin A2-deficiency is marked by early embryonic lethality; thus, understanding the function of cyclin A2 in the adult germ line awaits conditional mutagenesis or other approaches to knock down its expression.
Collapse
|
20
|
Drosophila Xpd regulates Cdk7 localization, mitotic kinase activity, spindle dynamics, and chromosome segregation. PLoS Genet 2010; 6:e1000876. [PMID: 20300654 PMCID: PMC2837399 DOI: 10.1371/journal.pgen.1000876] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/06/2010] [Indexed: 12/04/2022] Open
Abstract
The trimeric CAK complex functions in cell cycle control by phosphorylating and activating Cdks while TFIIH-linked CAK functions in transcription. CAK also associates into a tetramer with Xpd, and our analysis of young Drosophila embryos that do not require transcription now suggests a cell cycle function for this interaction. xpd is essential for the coordination and rapid progression of the mitotic divisions during the late nuclear division cycles. Lack of Xpd also causes defects in the dynamics of the mitotic spindle and chromosomal instability as seen in the failure to segregate chromosomes properly during ana- and telophase. These defects appear to be also nucleotide excision repair (NER)–independent. In the absence of Xpd, misrouted spindle microtubules attach to chromosomes of neighboring mitotic figures, removing them from their normal location and causing multipolar spindles and aneuploidy. Lack of Xpd also causes changes in the dynamics of subcellular and temporal distribution of the CAK component Cdk7 and local mitotic kinase activity. xpd thus functions normally to re-localize Cdk7(CAK) to different subcellular compartments, apparently removing it from its cell cycle substrate, the mitotic Cdk. This work proves that the multitask protein Xpd also plays an essential role in cell cycle regulation that appears to be independent of transcription or NER. Xpd dynamically localizes Cdk7/CAK to and away from subcellular substrates, thereby controlling local mitotic kinase activity. Possibly through this activity, xpd controls spindle dynamics and chromosome segregation in our model system. This novel role of xpd should also lead to new insights into the understanding of the neurological and cancer aspects of the human XPD disease phenotypes. Mutations in human xpd cause three different syndromes—XP (xeroderma pigmentosum), TTD (trichothiodystrophy), and CS (Cockayne syndrome)—and various different phenotypes, such as sun-induced hyperpigmentation of the skin, cutaneous abnormalities, neuronal degeneration, and developmental retardation. In addition, while some mutations cause a highly elevated cancer risk, others do not. The multitask protein Xpd functions in transcription, nucleotide excision repair (NER), and in cell cycle regulation. In a situation where transcription is not required and NER not induced, we specifically analyzed the cell cycle function of Xpd in Drosophila. In this situation Xpd locally controls the dynamic localization of Cdk7, the catalytic subunit of the Cdk activating kinase (CAK) to and away from its cellular targets, thereby regulating mitotic kinase activity and mitotic exit. Xpd also controls spindle dynamics to prevent formation of multipolar and promiscuous spindles and aneuploidy. Through multitask proteins like Xpd and Cdk7 cells regulate different cellular pathways in a coordinated fashion. In addition to the basic research relevance, the newly gained knowledge about the cell cycle function of Xpd and its control of spindle dynamics is also relevant for human xpd patients because it shows a possible pathway that could lead to highly increased cancer risk and neurological defects.
Collapse
|
21
|
Zhou B, Williams DW, Altman J, Riddiford LM, Truman JW. Temporal patterns of broad isoform expression during the development of neuronal lineages in Drosophila. Neural Dev 2009; 4:39. [PMID: 19883497 PMCID: PMC2780399 DOI: 10.1186/1749-8104-4-39] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 11/02/2009] [Indexed: 12/28/2022] Open
Abstract
Background During the development of the central nervous system (CNS) of Drosophila, neuronal stem cells, the neuroblasts (NBs), first generate a set of highly diverse neurons, the primary neurons that mature to control larval behavior, and then more homogeneous sets of neurons that show delayed maturation and are primarily used in the adult. These latter, 'secondary' neurons show a complex pattern of expression of broad, which encodes a transcription factor usually associated with metamorphosis, where it acts as a key regulator in the transitions from larva and pupa. Results The Broad-Z3 (Br-Z3) isoform appears transiently in most central neurons during embryogenesis, but persists in a subset of these cells through most of larval growth. Some of the latter are embryonic-born secondary neurons, whose development is arrested until the start of metamorphosis. However, the vast bulk of the secondary neurons are generated during larval growth and bromodeoxyuridine incorporation shows that they begin expressing Br-Z3 about 7 hours after their birth, approximately the time that they have finished outgrowth to their initial targets. By the start of metamorphosis, the oldest secondary neurons have turned off Br-Z3 expression, while the remainder, with the exception of the very youngest, maintain Br-Z3 while they are interacting with potential partners in preparation for neurite elaboration. That Br-Z3 may be involved in early sprouting is suggested by ectopically expressing this isoform in remodeling primary neurons, which do not normally express Br-Z3. These cells now sprout into ectopic locations. The expression of Br-Z3 is transient and seen in all interneurons, but two other isoforms, Br-Z4 and Br-Z1, show a more selective expression. Analysis of MARCM clones shows that the Br-Z4 isoform is expressed by neurons in virtually all lineages, but only in those cells born during a window during the transition from the second to the third larval instar. Br-Z4 expression is then maintained in this temporal cohort of cells into the adult. Conclusion These data show the potential for diverse functions of Broad within the developing CNS. The Br-Z3 isoform appears in all interneurons, but not motoneurons, when they first begin to interact with potential targets. Its function during this early sorting phase needs to be defined. Two other Broad isoforms, by contrast, are stably expressed in cohorts of neurons in all lineages and are the first examples of persisting molecular 'time-stamps' for Drosophila postembryonic neurons.
Collapse
Affiliation(s)
- Baohua Zhou
- Department of Biology, University of Washington, Seattle, 98195, USA.
| | | | | | | | | |
Collapse
|
22
|
McCleland ML, Shermoen AW, O'Farrell PH. DNA replication times the cell cycle and contributes to the mid-blastula transition in Drosophila embryos. ACTA ACUST UNITED AC 2009; 187:7-14. [PMID: 19786576 PMCID: PMC2762091 DOI: 10.1083/jcb.200906191] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deletion of S phase disrupts mitotic timing in maternally regulated cycles, but it doesn't alter the cell cycle once zygotic transcription has begun. We examined the contribution of S phase in timing cell cycle progression during Drosophila embryogenesis using an approach that deletes S phase rather than arresting its progress. Injection of Drosophila Geminin, an inhibitor of replication licensing, prevented subsequent replication so that the following mitosis occurred with uninemic chromosomes, which failed to align. The effect of S phase deletion on interphase length changed with development. During the maternally regulated syncytial blastoderm cycles, deleting S phase shortened interphase, and deletion of the last of blastoderm S phase (cycle 14) induced an extra synchronous division and temporarily deferred mid-blastula transition (MBT) events. In contrast, deleting S phase after the MBT in cycle 15 did not dramatically affect mitotic timing, which appears to retain its dependence on developmentally programmed zygotic transcription. We conclude that normal S phase and replication checkpoint activities are important timers of the undisturbed cell cycle before, but not after, the MBT.
Collapse
Affiliation(s)
- Mark L McCleland
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
23
|
Irles P, Bellés X, Piulachs MD. Identifying genes related to choriogenesis in insect panoistic ovaries by Suppression Subtractive Hybridization. BMC Genomics 2009; 10:206. [PMID: 19405973 PMCID: PMC2683872 DOI: 10.1186/1471-2164-10-206] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 04/30/2009] [Indexed: 12/13/2022] Open
Abstract
Background Insect ovarioles are classified into two categories: panoistic and meroistic, the later having apparently evolved from an ancestral panoistic type. Molecular data on oogenesis is practically restricted to meroistic ovaries. If we aim at studying the evolutionary transition from panoistic to meroistic, data on panoistic ovaries should be gathered. To this end, we planned the construction of a Suppression Subtractive Hybridization (SSH) library to identify genes involved in panoistic choriogenesis, using the cockroach Blattella germanica as model. Results We constructed a post-vitellogenic ovary library by SSH to isolate genes involved in choriogenesis in B. germanica. The tester library was prepared with an ovary pool from 6- to 7-day-old females, whereas the driver library was prepared with an ovary pool from 3- to 4-day-old females. From the SSH library, we obtained 258 high quality sequences which clustered into 34 unique sequences grouped in 19 contigs and 15 singlets. The sequences were compared against non-redundant NCBI databases using BLAST. We found that 44% of the unique sequences had homologous sequences in known genes of other organisms, whereas 56% had no significant similarity to any of the databases entries. A Gene Ontology analysis was carried out, classifying the 34 sequences into different functional categories. Seven of these gene sequences, representative of different categories and processes, were chosen to perform expression studies during the first gonadotrophic cycle by real-time PCR. Results showed that they were mainly expressed during post-vitellogenesis, which validates the SSH technique. In two of them corresponding to novel genes, we demonstrated that they are specifically expressed in the cytoplasm of follicular cells in basal oocytes at the time of choriogenesis. Conclusion The SSH approach has proven to be useful in identifying ovarian genes expressed after vitellogenesis in B. germanica. For most of the genes, functions related to choriogenesis are postulated. The relatively high percentage of novel genes obtained and the practical absence of chorion genes typical of meroistic ovaries suggest that mechanisms regulating chorion formation in panoistic ovaries are significantly different from those of meroistic ones.
Collapse
Affiliation(s)
- Paula Irles
- Institut de Biologia Evolutiva (UPF-CSIC), Passeig Marítim de la Barceloneta, Barcelona, Spain.
| | | | | |
Collapse
|
24
|
McCleland ML, Farrell JA, O'Farrell PH. Influence of cyclin type and dose on mitotic entry and progression in the early Drosophila embryo. ACTA ACUST UNITED AC 2009; 184:639-46. [PMID: 19273612 PMCID: PMC2686416 DOI: 10.1083/jcb.200810012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cyclins are key cell cycle regulators, yet few analyses test their role in timing the events that they regulate. We used RNA interference and real-time visualization in embryos to define the events regulated by each of the three mitotic cyclins of Drosophila melanogaster, CycA, CycB, and CycB3. Each individual and pairwise knockdown results in distinct mitotic phenotypes. For example, mitosis without metaphase occurs upon knockdown of CycA and CycB. To separate the role of cyclin levels from the influences of cyclin type, we knocked down two cyclins and reduced the gene dose of the one remaining cyclin. This reduction did not prolong interphase but instead interrupted mitotic progression. Mitotic prophase chromosomes formed, centrosomes divided, and nuclei exited mitosis without executing later events. This prompt but curtailed mitosis shows that accumulation of cyclin function does not directly time mitotic entry in these early embryonic cycles and that cyclin function can be sufficient for some mitotic events although inadequate for others.
Collapse
Affiliation(s)
- Mark L McCleland
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
25
|
Royou A, McCusker D, Kellogg DR, Sullivan W. Grapes(Chk1) prevents nuclear CDK1 activation by delaying cyclin B nuclear accumulation. ACTA ACUST UNITED AC 2008; 183:63-75. [PMID: 18824564 PMCID: PMC2557043 DOI: 10.1083/jcb.200801153] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Entry into mitosis is characterized by a dramatic remodeling of nuclear and cytoplasmic compartments. These changes are driven by cyclin-dependent kinase 1 (CDK1) activity, yet how cytoplasmic and nuclear CDK1 activities are coordinated is unclear. We injected cyclin B (CycB) into Drosophila melanogaster embryos during interphase of syncytial cycles and monitored effects on cytoplasmic and nuclear mitotic events. In untreated embryos or embryos arrested in interphase with a protein synthesis inhibitor, injection of CycB accelerates nuclear envelope breakdown and mitotic remodeling of the cytoskeleton. Upon activation of the Grapes(checkpoint kinase 1) (Grp(Chk1))-dependent S-phase checkpoint, increased levels of CycB drives cytoplasmic but not nuclear mitotic events. Grp(Chk1) prevents nuclear CDK1 activation by delaying CycB nuclear accumulation through Wee1-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Anne Royou
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | | | |
Collapse
|
26
|
Scaria GS, Ramsay G, Katzen AL. Two components of the Myb complex, DMyb and Mip130, are specifically associated with euchromatin and degraded during prometaphase throughout development. Mech Dev 2008; 125:646-61. [PMID: 18424081 DOI: 10.1016/j.mod.2008.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 01/21/2023]
Abstract
The Drosophila Myb protein, DMyb, is a transcription factor important for cell proliferation and development. Unlike the mRNAs produced by mammalian myb genes, Drosophila myb transcripts do not fluctuate substantially during the cell cycle. A comprehensive analysis of the localization and degradation of the DMyb protein has now revealed that DMyb is present in nuclei during S phase of all mitotically active tissues throughout embryogenesis and larval development. However, DMyb and Mip130, another member of the Myb complex, are not uniformly distributed throughout the nucleus. Instead, both proteins, which colocalize, appear to be specifically excluded from heterochromatic regions of chromosomes. Furthermore, DMyb and Mip130 are unstable proteins that are degraded during prometaphase of mitosis. The timing of their degradation is reminiscent of Cyclin A, but at least for DMyb, the mechanism differs; although DMyb degradation is dependent on core APC/C components, it does not depend on the Fizzy or Fizzy-related adaptor proteins. DMyb levels are also high in actively endoreplicating polyploid cells, but there is no indication of cyclical degradation. We conclude that cell cycle specific degradation of DMyb and Mip130 is likely to be utilized as a key regulatory mechanism in down-regulating their levels and the activity of the Myb complex.
Collapse
Affiliation(s)
- George S Scaria
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland Avenue, 2370 MBRB, Chicago IL 60607-7170, USA
| | | | | |
Collapse
|
27
|
Crest J, Oxnard N, Ji JY, Schubiger G. Onset of the DNA replication checkpoint in the early Drosophila embryo. Genetics 2006; 175:567-84. [PMID: 17151243 PMCID: PMC1800604 DOI: 10.1534/genetics.106.065219] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila embryo is a promising model for isolating gene products that coordinate S phase and mitosis. We have reported before that increasing maternal Cyclin B dosage to up to six copies (six cycB) increases Cdk1-Cyclin B (CycB) levels and activity in the embryo, delays nuclear migration at cycle 10, and produces abnormal nuclei at cycle 14. Here we show that the level of CycB in the embryo inversely correlates with the ability to lengthen interphase as the embryo transits from preblastoderm to blastoderm stages and defines the onset of a checkpoint that regulates mitosis when DNA replication is blocked with aphidicolin. A screen for modifiers of the six cycB phenotypes identified 10 new suppressor deficiencies. In addition, heterozygote dRPA2 (a DNA replication gene) mutants suppressed only the abnormal nuclear phenotype at cycle 14. Reduction of dRPA2 also restored interphase duration and checkpoint efficacy to control levels. We propose that lowered dRPA2 levels activate Grp/Chk1 to counteract excess Cdk1-CycB activity and restore interphase duration and the ability to block mitosis in response to aphidicolin. Our results suggest an antagonistic interaction between DNA replication checkpoint activation and Cdk1-CycB activity during the transition from preblastoderm to blastoderm cycles.
Collapse
Affiliation(s)
- Justin Crest
- Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA.
| | | | | | | |
Collapse
|
28
|
Stumpff J, Kellogg DR, Krohne KA, Su TT. Drosophila Wee1 interacts with members of the gammaTURC and is required for proper mitotic-spindle morphogenesis and positioning. Curr Biol 2006; 15:1525-34. [PMID: 16139207 PMCID: PMC3242738 DOI: 10.1016/j.cub.2005.07.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 06/20/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Wee1 kinases delay entry into mitosis by phosphorylating and inactivating cyclin-dependent kinase 1 (Cdk1). Loss of this activity in many systems, including Drosophila, leads to premature mitotic entry. RESULTS We report here that Drosophila Wee1 (dwee1) mutant embryos show mitotic-spindle defects that include ectopic foci of microtubule organization, formation of multipolar spindles from adjacent centrosome pairs, and promiscuous interactions between neighboring spindles. Furthermore, centrosomes are displaced from the embryo cortex in dwee1 mutants. These defects are not observed to the same extent in embryos in which nuclei also enter mitosis prematurely as a result of a lack of checkpoint control or in embryos with elevated Cdk1 activity. dWee1 physically interacts with members of the gamma-tubulin ring complex (gammaTuRC), and gamma-tubulin is phosphorylated in a dwee1-dependent manner in embryo extracts. CONCLUSIONS Some of the abnormalities in dwee1 mutant embryos cannot be explained by premature entry into mitosis or bulk elevation of Cdk1 activity. Instead, dWee1 is also required for phosphorylation of gamma-tubulin, centrosome positioning, and mitotic-spindle integrity. We propose a model to account for these requirements.
Collapse
Affiliation(s)
- Jason Stumpff
- Department of Molecular, Cellular, and Developmental Biology, 347 UCB, University of Colorado, Boulder, Boulder, Colorado 80309
| | - Douglas R. Kellogg
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Kathleen A. Krohne
- Department of Molecular, Cellular, and Developmental Biology, 347 UCB, University of Colorado, Boulder, Boulder, Colorado 80309
| | - Tin Tin Su
- Department of Molecular, Cellular, and Developmental Biology, 347 UCB, University of Colorado, Boulder, Boulder, Colorado 80309
- Correspondence:
| |
Collapse
|
29
|
Benoit B, Mitou G, Chartier A, Temme C, Zaessinger S, Wahle E, Busseau I, Simonelig M. An essential cytoplasmic function for the nuclear poly(A) binding protein, PABP2, in poly(A) tail length control and early development in Drosophila. Dev Cell 2005; 9:511-22. [PMID: 16198293 DOI: 10.1016/j.devcel.2005.09.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 06/23/2005] [Accepted: 09/02/2005] [Indexed: 11/16/2022]
Abstract
Translational control of maternal mRNA through regulation of poly(A) tail length is crucial during early development. The nuclear poly(A) binding protein, PABP2, was identified biochemically from its role in nuclear polyadenylation. Here, we analyze the in vivo function of PABP2 in Drosophila. PABP2 is required in vivo for polyadenylation, and Pabp2 function, including poly(A) polymerase stimulation, is essential for viability. We also demonstrate an unanticipated cytoplasmic function for PABP2 during early development. In contrast to its role in nuclear polyadenylation, cytoplasmic PABP2 acts to shorten the poly(A) tails of specific mRNAs. PABP2, together with the deadenylase CCR4, regulates the poly(A) tails of oskar and cyclin B mRNAs, both of which are also controlled by cytoplasmic polyadenylation. Both Cyclin B protein levels and embryonic development depend upon this regulation. These results identify a regulator of maternal mRNA poly(A) tail length and highlight the importance of this mode of translational control.
Collapse
Affiliation(s)
- Béatrice Benoit
- Génétique du Développement de la Drosophila, Institut de Génétique Humaine, CNRS UPR 1142, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
White J, Stead E, Faast R, Conn S, Cartwright P, Dalton S. Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol Biol Cell 2005; 16:2018-27. [PMID: 15703208 PMCID: PMC1073679 DOI: 10.1091/mbc.e04-12-1056] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To understand cell cycle control mechanisms in early development and how they change during differentiation, we used embryonic stem cells to model embryonic events. Our results demonstrate that as pluripotent cells differentiate, the length of G(1) phase increases substantially. At the molecular level, this is associated with a significant change in the size of active cyclin-dependent kinase (Cdk) complexes, the establishment of cell cycle-regulated Cdk2 activity and the activation of a functional Rb-E2F pathway. The switch from constitutive to cell cycle-dependent Cdk2 activity coincides with temporal changes in cyclin A2 and E1 protein levels during the cell cycle. Transcriptional mechanisms underpin the down-regulation of cyclin levels and the establishment of their periodicity during differentiation. As pluripotent cells differentiate and pRb/p107 kinase activities become cell cycle dependent, the E2F-pRb pathway is activated and imposes cell cycle-regulated transcriptional control on E2F target genes, such as cyclin E1. These results suggest the existence of a feedback loop where Cdk2 controls its own activity through regulation of cyclin E1 transcription. Changes in rates of cell division, cell cycle structure and the establishment of cell cycle-regulated Cdk2 activity can therefore be explained by activation of the E2F-pRb pathway.
Collapse
Affiliation(s)
- Josephine White
- Department of Molecular Biosciences and Center for Molecular Genetics of Development, University of Adelaide, South Australia
| | | | | | | | | | | |
Collapse
|
31
|
Yohn CB, Pusateri L, Barbosa V, Lehmann R. l(3)malignant brain tumor and Three Novel Genes Are Required for Drosophila Germ-Cell Formation. Genetics 2003; 165:1889-900. [PMID: 14704174 PMCID: PMC1462896 DOI: 10.1093/genetics/165.4.1889] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
To identify genes involved in the process of germ-cell formation in Drosophila, a maternal-effect screen using the FLP/FRT-ovoD method was performed on chromosome 3R. In addition to expected mutations in the germ-cell determinant oskar and in other genes known to be involved in the process, several novel mutations caused defects in germ-cell formation. Mutations in any of three genes [l(3)malignant brain tumor, shackleton, and out of sync] affect the synchronous mitotic divisions and nuclear migration of the early embryo. The defects in nuclear migration or mitotic synchrony result in a reduction in germ-cell formation. Mutations in another gene identified in this screen, bebra, do not cause mitotic defects, but appear to act upstream of the localization of oskar. Analysis of our mutants demonstrates that two unique and independent processes must occur to form germ cells—germ-plasm formation and nuclear division/migration.
Collapse
Affiliation(s)
- Christopher B Yohn
- Developmental Genetics Program, Skirball Institute and Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
32
|
Abstract
An intriguing aspect of cell cycle regulation is how cell growth and division are coordinated with developmental signals to produce properly patterned organisms of the appropriate size. Using the foundation laid by a detailed understanding of the regulators that intrinsically control progression through the cell cycle, links between developmental signals and the cell cycle are being elucidated. Considerable progress has been made using Drosophila melanogaster, both in identifying new cell cycle regulators that respond to developmental cues and in defining the impact of extrinsic signals on homologs of mammalian oncogenes and tumor suppressors. In this review, we discuss each cell cycle phase, highlighting differences between archetypal and variant cell cycles employed for specific developmental strategies. We emphasize the interplay between developmental signals and cell cycle transitions. Developmental control of checkpoints, cell cycle exit, and cell growth are also addressed.
Collapse
Affiliation(s)
- Laura A Lee
- Whitehead Institute and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
33
|
Abstract
Several cyclins and cdks have been cloned in Xenopus, but their developmental expression has not been thoroughly examined. We have analyzed the temporal and spatial expression of cdk1, cdk2, cdk4 and cyclins D1, D2, E, A1, A2 and B1 by in situ hybridization. The transcripts of these cyclins and cdks exhibit striking tissue-restricted expression patterns very early in development that cannot be strictly correlated with proliferation. While the cdks and their activating cyclins are expressed in somewhat overlapping patterns, they are not precisely coincident. Additionally, maternal and zygotic cyclin forms demonstrate markedly different expression patterns.
Collapse
Affiliation(s)
- Ann E Vernon
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XZ, UK
| | | |
Collapse
|
34
|
Abstract
Sea urchins are members of a limited group of animals in which meiotic maturation of oocytes is completed prior to fertilization. This is different from oocytes of most animals such as mammals and amphibians in which fertilization reactivates an arrested meiotic cycle. Using a recently developed technique for in vitro maturation of sea urchin oocytes, we analyzed the role of cyclin B, the regulatory component of maturation-promoting factor, in the control of sea urchin oocyte meiotic induction and progression. Oocytes of the sea urchin Lytechinus variegatus accumulate significant amounts of cyclin B mRNA and protein during oogenesis. We analyzed cyclin B synthetic requirements in oocytes and early embryos by inhibiting cyclin B synthesis with DNA and morpholino antisense oligonucleotides. Cyclin B synthesis is not necessary for the entry of G2-arrested oocytes into meiosis; however, it is required for the proper progression through meiotic divisions. Surprisingly, mature sea urchin eggs contain significant cyclin B protein following meiosis that serves as a maternal store for early cleavage divisions. We also find that cyclin A can functionally substitute for cyclin B in early embryos but not in oocytes. These studies provide a foundation for understanding the mechanism of meiotic maturation independent of the zygotic cell cycle.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
35
|
Aegerter S, Jalabert B, Bobe J. Messenger RNA stockpile of cyclin B, insulin-like growth factor I, insulin-like growth factor II, insulin-like growth factor receptor Ib, and p53 in the rainbow trout oocyte in relation with developmental competence. Mol Reprod Dev 2003; 67:127-35. [PMID: 14694427 DOI: 10.1002/mrd.10384] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study, correlations between the oocyte messenger RNA (mRNA) stockpile of Cyclin B, insulin-like growth factor I (IGF-I), insulin-like growth factor (IGF-II), insulin-like growth factor receptor Ib (IGFR Ib), and p53 transcripts and the developmental competence of the oocyte were studied. For this purpose, post-ovulatory ageing was used as a tool to generate oocytes of varying developmental competence. Mature female rainbow trout were held at 12 degrees C and periodically checked for ovulation. Oocytes were collected from each female at ovulation and 5, 14, 21 days later. For each collected egg batch, the abundance of several mRNAs in the oocyte was analyzed by real-time PCR and embryo development was monitored after fertilization. Egg quality was estimated not only through embryonic survival but also by studying the occurrence of specific morphological abnormalities. The present study showed that oocyte post-ovulatory ageing was associated with variations of the relative abundance of several studied transcripts within the oocyte. In addition, the abundance of specific mRNAs could be correlated with either the embryonic survival or the occurrence of malformations. Thus, the abundance of IGFR Ib and Cyclin B transcripts in the oocyte was correlated with the occurrence of morphological abnormalities observed at yolk-sac resorption (negatively for IGFR Ib and positively for Cyclin B), while the maternal stockpile of IGF-I, IGF-II, and IGFR Ib mRNAs was positively correlated with embryonic survival.
Collapse
Affiliation(s)
- Sandrine Aegerter
- Institut National de la Recherche Agronomique, SCRIBE, Campus de Beaulieu, Rennes Cedex, France
| | | | | |
Collapse
|
36
|
Ji JY, Haghnia M, Trusty C, Goldstein LSB, Schubiger G. A genetic screen for suppressors and enhancers of the Drosophila cdk1-cyclin B identifies maternal factors that regulate microtubule and microfilament stability. Genetics 2002; 162:1179-95. [PMID: 12454065 PMCID: PMC1462342 DOI: 10.1093/genetics/162.3.1179] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Coordination between cell-cycle progression and cytoskeletal dynamics is important for faithful transmission of genetic information. In early Drosophila embryos, increasing maternal cyclin B leads to higher Cdk1-CycB activity, shorter microtubules, and slower nuclear movement during cycles 5-7 and delays in nuclear migration to the cortex at cycle 10. Later during cycle 14 interphase of six cycB embryos, we observed patches of mitotic nuclei, chromosome bridges, abnormal nuclear distribution, and small and large nuclei. These phenotypes indicate disrupted coordination between the cell-cycle machinery and cytoskeletal function. Using these sensitized phenotypes, we performed a dosage-sensitive genetic screen to identify maternal proteins involved in this process. We identified 10 suppressors classified into three groups: (1) gene products regulating Cdk1 activities, cdk1 and cyclin A; (2) gene products interacting with both microtubules and microfilaments, Actin-related protein 87C; and (3) gene products interacting with microfilaments, chickadee, diaphanous, Cdc42, quail, spaghetti-squash, zipper, and scrambled. Interestingly, most of the suppressors that rescue the astral microtubule phenotype also reduce Cdk1-CycB activities and are microfilament-related genes. This suggests that the major mechanism of suppression relies on the interactions among Cdk1-CycB, microtubule, and microfilament networks. Our results indicate that the balance among these different components is vital for normal early cell cycles and for embryonic development. Our observations also indicate that microtubules and cortical microfilaments antagonize each other during the preblastoderm stage.
Collapse
Affiliation(s)
- Jun-Yuan Ji
- Department of Zoology, University of Washington, Seattle 98195-1800, USA
| | | | | | | | | |
Collapse
|
37
|
Goto S, Naito K, Ohashi S, Sugiura K, Naruoka H, Iwamori N, Tojo H. Effects of spindle removal on MPF and MAP kinase activities in porcine matured oocytes. Mol Reprod Dev 2002; 63:388-93. [PMID: 12237955 DOI: 10.1002/mrd.90022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intracellular localization of maturation/M-phase promoting factor (MPF) and mitogen activated protein (MAP) kinase in mature oocytes has been examined by immunocytochemical methods and the authors of these studies have reported that they are localized on spindles during M-phase. Although these reports showed the relative localization of MPF and MAPK on spindles, it has never been shown whether these kinases are present in the cytoplasm and, if they are present, how many parts of the kinases are localized on the metaphase spindle. In the present study, we made quantitative analyses of MPF and MAP kinase localized on oocyte spindles by kinase assays and immunoblotting after removal of the spindles from porcine mature oocytes. First, we certified their intracellular distribution by immunocytochemical methods and observed sharp signals of cyclin B1 on spindle poles and MAP kinase signals on the microtubule of metaphase spindles. In contrast to these results by immunostaining, the amounts of MPF and MAP kinase localized on spindles examined by immunoblotting and kinase assays were undetectable and less than 20%, respectively. These results indicate that the immunocytochemical technique is a powerful method for showing relative localization, but it is not suitable for quantitative analysis, and that the removal of metaphase spindles from mature oocytes does not have a severe negative impact on the subsequent MPF and MAP kinase activity and on the cell cycle progression in early embryo development.
Collapse
Affiliation(s)
- Seitaro Goto
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Kashevsky H, Wallace JA, Reed BH, Lai C, Hayashi-Hagihara A, Orr-Weaver TL. The anaphase promoting complex/cyclosome is required during development for modified cell cycles. Proc Natl Acad Sci U S A 2002; 99:11217-22. [PMID: 12169670 PMCID: PMC123236 DOI: 10.1073/pnas.172391099] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Animals and plants use modified cell cycles to achieve particular developmental strategies. In one common example, most animals and plants have tissues in which the cells become polyploid or polytene by means of an S-G cycle, but the mechanism by which mitosis is inhibited in the endo cycle is not understood. The Drosophila morula (mr) gene regulates variant cell cycles, because in addition to disrupting the archetypal cycle (G1-S-G2-M), mr mutations affect the rapid embryonic (S-M) divisions as well as the endo cycle (S-G) that produces polyploid cells. In dividing cells mr mutations cause a metaphase arrest, and endo cycling nurse cells inappropriately reenter mitosis in mr mutants. We show mr encodes the APC2 subunit of the anaphase promoting complex/cyclosome. This finding demonstrates that anaphase promoting complex/cyclosome is required not only in proliferating cells but also to block mitosis in some endo cycles. The mr mutants further indicate that transient mitotic functions in endo cycles change chromosome morphology from polytene to polyploid.
Collapse
Affiliation(s)
- Helena Kashevsky
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
39
|
Lee LA, Elfring LK, Bosco G, Orr-Weaver TL. A genetic screen for suppressors and enhancers of the Drosophila PAN GU cell cycle kinase identifies cyclin B as a target. Genetics 2001; 158:1545-56. [PMID: 11514446 PMCID: PMC1461742 DOI: 10.1093/genetics/158.4.1545] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The early cell cycles of Drosophila embryogenesis involve rapid oscillations between S phase and mitosis. These unique S-M cycles are driven by maternal stockpiles of components necessary for DNA replication and mitosis. Three genes, pan gu (png), plutonium (plu), and giant nuclei (gnu) are required to control the cell cycle specifically at the onset of Drosophila development by inhibiting DNA replication and promoting mitosis. PNG is a protein kinase that is in a complex with PLU. We employed a sensitized png mutant phenotype to screen for genes that when reduced in dosage would dominantly suppress or enhance png. We screened deficiencies covering over 50% of the autosomes and identified both enhancers and suppressors. Mutations in eIF-5A and PP1 87B dominantly suppress png. Cyclin B was shown to be a key PNG target. Mutations in cyclin B dominantly enhance png, whereas png is suppressed by cyclin B overexpression. Suppression occurs via restoration of Cyclin B protein levels that are decreased in png mutants. The plu and gnu phenotypes are also suppressed by cyclin B overexpression. These studies demonstrate that a crucial function of PNG in controlling the cell cycle is to permit the accumulation of adequate levels of Cyclin B protein.
Collapse
Affiliation(s)
- L A Lee
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The cell-division cycle is an orchestrated sequence of events that results in the duplication of a cell. In metazoa, cell proliferation is regulated in response to differentiation signals and body-size parameters, which either induce cell duplication or arrest the cell cycle, to ensure that organs develop to the correct size. In addition, the cell cycle may be altered to meet specialized requirements. This can be seen in the rapid cleavage cycles of vertebrates and insects that lack gap phases, in the nested S phases of Drosophila, and in the endocycles of nematodes, insects, plants and mammals that lack mitosis. Here we present the various modes of cell-cycle regulation in metazoa and discuss their possible generation by a combination of universally conserved molecules and new regulatory circuits.
Collapse
Affiliation(s)
- S J Vidwans
- Department of Biochemistry and Biophysics, University of California at San Francisco, California 94143-0448, USA
| | | |
Collapse
|
41
|
Fenger DD, Carminati JL, Burney-Sigman DL, Kashevsky H, Dines JL, Elfring LK, Orr-Weaver TL. PAN GU: a protein kinase that inhibits S phase and promotes mitosis in early Drosophila development. Development 2000; 127:4763-74. [PMID: 11044392 DOI: 10.1242/dev.127.22.4763] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Following completion of meiosis, DNA replication must be repressed until fertilization. In Drosophila, this replication block requires the products of the pan gu (png), plutonium (plu) and giant nuclei (gnu) genes. These genes also ensure that S phase oscillates with mitosis in the early division cycles of the embryo. We have identified the png gene and shown that it encodes a Ser/Thr protein kinase expressed only in ovaries and early embryos, and that the predicted extent of kinase activity in png mutants inversely correlates with the severity of the mutant phenotypes. The PLU and PNG proteins form a complex that has PNG-dependent kinase activity, and this activity is necessary for normal levels of mitotic cyclins. Our results reveal a novel protein kinase complex that controls S phase at the onset of development apparently by stabilizing mitotic cyclins.
Collapse
Affiliation(s)
- D D Fenger
- Department of Biology, Massachusetts Institute of Technology and Whitehead Institute, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Kolonin MG, Finley RL. A role for cyclin J in the rapid nuclear division cycles of early Drosophila embryogenesis. Dev Biol 2000; 227:661-72. [PMID: 11071782 DOI: 10.1006/dbio.2000.9916] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear division cycles of early Drosophila embryogenesis have a number of unique features that distinguish them from later cell cycles. These features include the lack of some checkpoints that operate in later cell cycles, the absence of gap phases, and very rapid DNA synthesis phases. The molecular mechanisms that control these rapid nuclear division cycles are poorly understood. Here we describe analysis of cyclin J, a previously uncharacterized cyclin which has an RNA expression pattern that suggests a possible role in early embryogenesis. We show that the cyclin J protein is present in early embryos where it forms active kinase complexes with cyclin-dependent kinase (Cdk) 2. To determine whether cyclin J plays a role in controlling the early nuclear cycles we isolated peptide aptamers that specifically bind to cyclin J and inhibit its ability to activate Cdks. We injected the inhibitory aptamers into syncytial Drosophila embryos and demonstrated that they caused defects in chromosome segregation and progression through mitosis. We obtained similar results by injecting cyclin J antibodies into embryos. Our results suggest that a cyclin J-associated kinase activity is required for the early embryonic division cycles.
Collapse
Affiliation(s)
- M G Kolonin
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
43
|
Liu D, Liao C, Wolgemuth DJ. A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice. Dev Biol 2000; 224:388-400. [PMID: 10926775 DOI: 10.1006/dbio.2000.9776] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-cycle transition at G2-M is controlled by MPF (M-phase-promoting factor), a complex consisting of the Cdc2 kinase and a B-type cyclin. We have shown that in mice, targeted disruption of an A-type cyclin gene, cyclin A1, results in a block of spermatogenesis prior to the entry into metaphase I. The meiotic arrest is accompanied by a defect in Cdc2 kinase activation at the G2--M transition, raising the possibility that a cyclin A1-dependent process dictates the activation of MPF. Here we show that like Cdc2, the expression of B-type cyclins is retained in cyclin A1-deficient spermatocytes, while their associated kinases are kept at inactive states. Treatment of arrested germ cells with the protein phosphatase type-1 and -2A inhibitor okadaic acid restores the MPF activity and induces entry into M phase and the formation of normally condensed chromosome bivalents, concomitant with hyperphosphorylation of Cdc25 proteins. Conversely, inhibition of tyrosine phosphatases, including Cdc25s, by vanadate suppresses the okadaic acid-induced metaphase induction. The highest levels of Cdc25A and Cdc25C expression and their subcellular localization during meiotic prophase coincide with that of cyclin A1, and when overexpressed in HeLa cells, cyclin A1 coimmunoprecipitates with Cdc25A. Furthermore, the protein kinase complexes consisting of cyclin A1 and either Cdc2 or Cdk2 phosphorylate both Cdc25A and Cdc25C in vitro. These results suggest that in normal meiotic male germ cells, cyclin A1 participates in the regulation of other protein kinases or phosphatases critical for the G2-M transition. In particular, it may be directly involved in the initial amplification of MPF through the activating phosphorylation on Cdc25 phosphatases.
Collapse
Affiliation(s)
- D Liu
- The Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|