1
|
Nyberg KG, Navales FG, Keles E, Nguyen JQ, Hertz LM, Carthew RW. Robust and heritable knockdown of gene expression using a self-cleaving ribozyme in Drosophila. Genetics 2024; 227:iyae067. [PMID: 38701221 PMCID: PMC11304983 DOI: 10.1093/genetics/iyae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
The current toolkit for genetic manipulation in the model animal Drosophila melanogaster is extensive and versatile but not without its limitations. Here, we report a powerful and heritable method to knockdown gene expression in D. melanogaster using the self-cleaving N79 hammerhead ribozyme, a modification of a naturally occurring ribozyme found in the parasite Schistosoma mansoni. A 111-bp ribozyme cassette, consisting of the N79 ribozyme surrounded by insulating spacer sequences, was inserted into 4 independent long noncoding RNA genes as well as the male-specific splice variant of doublesex using scarless CRISPR/Cas9-mediated genome editing. Ribozyme-induced RNA cleavage resulted in robust destruction of 3' fragments typically exceeding 90%. Single molecule RNA fluorescence in situ hybridization results suggest that cleavage and destruction can even occur for nascent transcribing RNAs. Knockdown was highly specific to the targeted RNA, with no adverse effects observed in neighboring genes or the other splice variants. To control for potential effects produced by the simple insertion of 111 nucleotides into genes, we tested multiple catalytically inactive ribozyme variants and found that a variant with scrambled N79 sequence best recapitulated natural RNA levels. Thus, self-cleaving ribozymes offer a novel approach for powerful gene knockdown in Drosophila, with potential applications for the study of noncoding RNAs, nuclear-localized RNAs, and specific splice variants of protein-coding genes.
Collapse
Affiliation(s)
- Kevin G Nyberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Fritz Gerald Navales
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Eren Keles
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Joseph Q Nguyen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Laura M Hertz
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons National Institute for Theory and Mathematics in Biology, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Zhang S, Wang C, Xie M, Liu J, Kong Z, Su H. Actin Bundles in The Pollen Tube. Int J Mol Sci 2018; 19:ijms19123710. [PMID: 30469514 PMCID: PMC6321563 DOI: 10.3390/ijms19123710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
The angiosperm pollen tube delivers two sperm cells into the embryo sac through a unique growth strategy, named tip growth, to accomplish fertilization. A great deal of experiments have demonstrated that actin bundles play a pivotal role in pollen tube tip growth. There are two distinct actin bundle populations in pollen tubes: the long, rather thick actin bundles in the shank and the short, highly dynamic bundles near the apex. With the development of imaging techniques over the last decade, great breakthroughs have been made in understanding the function of actin bundles in pollen tubes, especially short subapical actin bundles. Here, we tried to draw an overall picture of the architecture, functions and underlying regulation mechanism of actin bundles in plant pollen tubes.
Collapse
Affiliation(s)
- Shujuan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Chunbo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Min Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Jinyu Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Zhe Kong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Wang Y, George SP, Roy S, Pham E, Esmaeilniakooshkghazi A, Khurana S. Both the anti- and pro-apoptotic functions of villin regulate cell turnover and intestinal homeostasis. Sci Rep 2016; 6:35491. [PMID: 27765954 PMCID: PMC5073230 DOI: 10.1038/srep35491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022] Open
Abstract
In the small intestine, epithelial cells are derived from stem cells in the crypts, migrate up the villus as they differentiate and are ultimately shed from the villus tips. This process of proliferation and shedding is tightly regulated to maintain the intestinal architecture and tissue homeostasis. Apoptosis regulates both the number of stem cells in the crypts as well as the sloughing of cells from the villus tips. Previously, we have shown that villin, an epithelial cell-specific actin-binding protein functions as an anti-apoptotic protein in the gastrointestinal epithelium. The expression of villin is highest in the apoptosis-resistant villus cells and lowest in the apoptosis-sensitive crypts. In this study we report that villin is cleaved in the intestinal mucosa to generate a pro-apoptotic fragment that is spatially restricted to the villus tips. This cleaved villin fragment severs actin in an unregulated fashion to initiate the extrusion and subsequent apoptosis of effete cells from the villus tips. Using villin knockout mice, we validate the physiological role of villin in apoptosis and cell extrusion from the gastrointestinal epithelium. Our study also highlights the potential role of villin’s pro-apoptotic function in the pathogenesis of inflammatory bowel disease, ischemia-reperfusion injury, enteroinvasive bacterial and parasitic infections.
Collapse
Affiliation(s)
- Yaohong Wang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sudeep P George
- Department of Biology and Biochemistry, University of Houston, Houston TX 77204, USA
| | - Swati Roy
- Department of Biology and Biochemistry, University of Houston, Houston TX 77204, USA
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston TX 77204, USA
| | | | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston TX 77204, USA.,Baylor College of Medicine, Houston TX 77030, USA
| |
Collapse
|
4
|
Newton ILG, Savytskyy O, Sheehan KB. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster. PLoS Pathog 2015; 11:e1004798. [PMID: 25906062 PMCID: PMC4408098 DOI: 10.1371/journal.ppat.1004798] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Wolbachia pipientis is a ubiquitous, maternally transmitted bacterium that infects the germline of insect hosts. Estimates are that Wolbachia infect nearly 40% of insect species on the planet, making it the most prevalent infection on Earth. The bacterium, infamous for the reproductive phenotypes it induces in arthropod hosts, has risen to recent prominence due to its use in vector control. Wolbachia infection prevents the colonization of vectors by RNA viruses, including Drosophila C virus and important human pathogens such as Dengue and Chikungunya. Here we present data indicating that Wolbachia utilize the host actin cytoskeleton during oogenesis for persistence within and transmission between Drosophila melanogaster generations. We show that phenotypically wild type flies heterozygous for cytoskeletal mutations in Drosophila profilin (chic(221/+) and chic(1320/+)) or villin (qua(6-396/+)) either clear a Wolbachia infection, or result in significantly reduced infection levels. This reduction of Wolbachia is supported by PCR evidence, Western blot results and cytological examination. This phenotype is unlikely to be the result of maternal loading defects, defects in oocyte polarization, or germline stem cell proliferation, as the flies are phenotypically wild type in egg size, shape, and number. Importantly, however, heterozygous mutant flies exhibit decreased total G-actin in the ovary, compared to control flies and chic(221) heterozygous mutants exhibit decreased expression of profilin. Additionally, RNAi knockdown of profilin during development decreases Wolbachia titers. We analyze evidence in support of alternative theories to explain this Wolbachia phenotype and conclude that our results support the hypothesis that Wolbachia utilize the actin skeleton for efficient transmission and maintenance within Drosophila.
Collapse
Affiliation(s)
- Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Oleksandr Savytskyy
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Kathy B. Sheehan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
5
|
Huang S, Qu X, Zhang R. Plant villins: versatile actin regulatory proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:40-9. [PMID: 25294278 DOI: 10.1111/jipb.12293] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/01/2014] [Indexed: 05/03/2023]
Abstract
Regulation of actin dynamics is a central theme in cell biology that is important for different aspects of cell physiology. Villin, a member of the villin/gelsolin/fragmin superfamily of proteins, is an important regulator of actin. Villins contain six gelsolin homology domains (G1-G6) and an extra headpiece domain. In contrast to their mammalian counterparts, plant villins are expressed widely, implying that plant villins play a more general role in regulating actin dynamics. Some plant villins have a defined role in modifying actin dynamics in the pollen tube; most of their in vivo activities remain to be ascertained. Recently, our understanding of the functions and mechanisms of action for plant villins has progressed rapidly, primarily due to the advent of Arabidopsis thaliana genetic approaches and imaging capabilities that can visualize actin dynamics at the single filament level in vitro and in living plant cells. In this review, we focus on discussing the biochemical activities and modes of regulation of plant villins. Here, we present current understanding of the functions of plant villins. Finally, we highlight some of the key unanswered questions regarding the functions and regulation of plant villins for future research.
Collapse
Affiliation(s)
- Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | | | | |
Collapse
|
6
|
Jenkins VK, Timmons AK, McCall K. Diversity of cell death pathways: insight from the fly ovary. Trends Cell Biol 2013; 23:567-74. [PMID: 23968895 PMCID: PMC3839102 DOI: 10.1016/j.tcb.2013.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
Multiple types of cell death exist including necrosis, apoptosis, and autophagic cell death. The Drosophila ovary provides a valuable model to study the diversity of cell death modalities, and we review recent progress to elucidate these pathways. At least five distinct types of cell death occur in the ovary, and we focus on two that have been studied extensively. Cell death of mid-stage egg chambers occurs through a novel caspase-dependent pathway that involves autophagy and triggers phagocytosis by surrounding somatic epithelial cells. For every egg, 15 germline nurse cells undergo developmental programmed cell death, which occurs independently of most known cell death genes. These forms of cell death are strikingly similar to cell death observed in the germlines of other organisms.
Collapse
Affiliation(s)
| | - Allison K Timmons
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, USA
| | - Kimberly McCall
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, USA
| |
Collapse
|
7
|
Abstract
Necrosis is a form of cell death characterized by cytoplasmic and organelle swelling, compromised -membrane integrity, intracellular acidification, and increased levels of reactive oxygen species (ROS) and cytosolic Ca(2+). In the Drosophila ovary, two distinct forms of cell death occur naturally. In response to starvation, caspase-dependent cell death occurs during mid-oogenesis. Additionally, the nurse cells, which support the developing oocyte, undergo developmental programmed cell death during late oogenesis after they dump their contents into the oocyte. Evidence suggests that necrosis may be playing an important role during developmental programmed cell death of the nurse cells during late oogenesis. Here, we describe several methods to detect events associated with necrosis in the Drosophila ovary. Propidium iodide is used to detect cells with compromised membrane integrity, and H2DCFDA is used as an indicator of ROS levels in a cell. In addition, LysoTracker detects intracellular acidification and X-rhod-1 detects cytosolic Ca(2+). We also describe transgenic methods to detect Ca(2+) levels and expression patterns. These methods performed in the Drosophila ovary, as well as other tissues, may lead to a further understanding of the mechanisms of necrosis as a form of programmed cell death.
Collapse
|
8
|
Groen CM, Spracklen AJ, Fagan TN, Tootle TL. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling. Mol Biol Cell 2012; 23:4567-78. [PMID: 23051736 PMCID: PMC3510018 DOI: 10.1091/mbc.e12-05-0417] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Prostaglandins (PGs) regulate the actin cytoskeleton. However, their mechanisms of action are unknown. Use of Drosophila oogenesis—specifically nurse cell dumping—as a model shows that PGs regulate the actin bundler Fascin to control parallel actin filament bundle formation and cortical actin integrity. Although prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. Here we provide the first link between Fascin (Drosophila Singed, Sn), an actin-bundling protein, and PGs. Loss of either pxt or fascin results in similar actin defects. Fascin interacts, both pharmacologically and genetically, with PGs, as reduced Fascin levels enhance the effects of COX inhibition and synergize with reduced Pxt levels to cause both parallel bundle and cortical actin defects. Conversely, overexpression of Fascin in the germline suppresses the effects of COX inhibition and genetic loss of Pxt. These data lead to the conclusion that PGs regulate Fascin to control actin remodeling. This novel interaction has implications beyond Drosophila, as both PGs and Fascin-1, in mammalian systems, contribute to cancer cell migration and invasion.
Collapse
Affiliation(s)
- Christopher M Groen
- Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
9
|
Bao C, Wang J, Zhang R, Zhang B, Zhang H, Zhou Y, Huang S. Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:962-75. [PMID: 22563899 DOI: 10.1111/j.1365-313x.2012.05044.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The organization of the actin cytoskeleton has been implicated in sclerenchyma development. However, the molecular mechanisms linking the actin cytoskeleton to this process remain poorly understood. In particular, there have been no studies showing that direct genetic manipulation of the actin cytoskeleton affects sclerenchyma development. Villins belong to the villin/gelsolin/fragmin superfamily and are versatile actin-modifying proteins. Several recent studies have implicated villins in tip growth of single cells, but how villins act in multicellular plant development remains largely unknown. Here, we found that two closely related villin isovariants from Arabidopsis, VLN2 and VLN3, act redundantly in sclerenchyma development. Detailed analysis of cross-sections from inflorescence stems of vln2 vln3 double mutant plants revealed a reduction in stem size and in the number of vascular bundles; however, no defects in synthesis of the secondary cell wall were detected. Surprisingly, the vln2 vln3 double mutation did not affect cell elongation of inter-fascicular fibers. Biochemical analyses showed that recombinant VLN2 was able to cap, sever and bundle actin filaments, similar to VLN3. Consistent with these biochemical activities, loss of function of VLN2 and VLN3 resulted in a decrease in the amount of F-actin and actin bundles in plant cells. Collectively, our findings demonstrate that VLN2 and VLN3 act redundantly in sclerenchyma development via bundling of actin filaments.
Collapse
Affiliation(s)
- Chanchan Bao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
10
|
van der Honing HS, Kieft H, Emons AMC, Ketelaar T. Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. PLANT PHYSIOLOGY 2012; 158:1426-38. [PMID: 22209875 PMCID: PMC3291277 DOI: 10.1104/pp.111.192385] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 05/18/2023]
Abstract
In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actin-bundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion.
Collapse
Affiliation(s)
- Hannie S. van der Honing
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| | - Henk Kieft
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| | - Anne Mie C. Emons
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| |
Collapse
|
11
|
Mazurkiewicz-Kania M, Jędrzejowska I, Kubrakiewicz J. Differences in the relative timing of developmental events during oogenesis in lower dipterans (Nematocera) reveal the autonomy of follicular cells' differentiation program. ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:65-70. [PMID: 21985902 DOI: 10.1016/j.asd.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 05/31/2023]
Abstract
Although the ovaries of Nematocera are of the same meroistic-polytrophic type, they show significant differences in the activity of germ cells (oocytes, nurse cells) and their relative contribution to ribosome synthesis and storage during oogenesis. These different activities result in the different growth rate of the germ cells and may determine the life span of the nurse cells. Comparative analysis revealed that with reference to germ cell activity, two basic types of oogenesis in Nematocera can be distinguished. In the Tinearia type, the nurse cells grow considerably and are active until advanced stages of oogenesis, whereas the oocyte is transcriptionally inert. Conversely, in the Tipula type of oogenesis, the oocyte nucleus contains transcriptionally active multiple nucleoli, while nurse cells probably do not contribute to ribosome synthesis, remain relatively small and degenerate early in oogenesis. We studied and compared the process of somatic follicular cell differentiation in nematoceran species representing both types of oogenesis. Our observations indicate that morphogenesis of the follicular cells is at least partly independent of the nurse cell activity, while the execution of their differentiation does not require direct contacts between the follicular cells and the oocyte.
Collapse
Affiliation(s)
- Marta Mazurkiewicz-Kania
- Department of Animal Developmental Biology, Zoological Institute, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | | | | |
Collapse
|
12
|
McCall K. Genetic control of necrosis - another type of programmed cell death. Curr Opin Cell Biol 2011; 22:882-8. [PMID: 20889324 DOI: 10.1016/j.ceb.2010.09.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 01/24/2023]
Abstract
Necrosis has been thought to be an accidental or uncontrolled type of cell death rather than programmed. Recent studies from diverse organisms show that necrosis follows a stereotypical series of cellular and molecular events: swelling of organelles, increases in reactive oxygen species and cytoplasmic calcium, a decrease in ATP, activation of calpain and cathepsin proteases, and finally rupture of organelles and plasma membrane. Genetic and chemical manipulations demonstrate that necrosis can be inhibited, indicating that necrosis can indeed be controlled and follows a specific 'program.' This review highlights recent findings from C. elegans, yeast, Dictyostelium, Drosophila, and mammals that collectively provide evidence for conserved mechanisms of necrosis.
Collapse
Affiliation(s)
- Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Nuage morphogenesis becomes more complex: two translocation pathways and two forms of nuage coexist in Drosophila germline syncytia. Cell Tissue Res 2011; 344:169-81. [PMID: 21365220 DOI: 10.1007/s00441-011-1145-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/03/2011] [Indexed: 12/18/2022]
Abstract
We have developed a simple and reliable method of preserving antigen immunoreactivity with concomitant excellent retention of the cell ultrastructure. Using this method, we have been able to follow the origin and developmental stages of nuage accumulations within the nurse cell/oocyte syncytium in the ovary of the fruit fly, Drosophila melanogaster, at the ultrastructural level. We have found two morphologically and biochemically distinct forms of nuage material in the nurse cell cytoplasm: translocating accumulations of nuage containing the Vasa protein, termed sponge bodies and stationary polymorphic accumulations of nuage enriched in Argonaute and Survival of motor neuron proteins. Immunogold labeling combined with confocal fluorescent and ultrastructural analyses have revealed that the Vasa-containing nuage accumulations remain closely associated with the cisternae of the endoplasmic reticulum throughout their lifetimes. The migration mechanism of the Vasa-positive nuage appears distinct from the microtubule-dependent translocation of oskar ribonucleoprotein complexes. We postulate that these two distinct nuage translocation pathways converge in the formation of the polar granules within the polar/germ plasm of the oocyte posterior pole. We also provide morphological and immunocytochemical evidence that these polymorphic nuage accumulations correspond to the recently described cytoplasmic domains termed U body-P body complexes.
Collapse
|
14
|
Wu Y, Yan J, Zhang R, Qu X, Ren S, Chen N, Huang S. Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth. THE PLANT CELL 2010; 22:3745-63. [PMID: 21098731 PMCID: PMC3015131 DOI: 10.1105/tpc.110.080283] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 10/09/2010] [Accepted: 11/08/2010] [Indexed: 05/18/2023]
Abstract
Actin cables in pollen tubes serve as molecular tracks for cytoplasmic streaming and organelle movement and are formed by actin bundling factors like villins and fimbrins. However, the precise mechanisms by which actin cables are generated and maintained remain largely unknown. Fimbrins comprise a family of five members in Arabidopsis thaliana. Here, we characterized a fimbrin isoform, Arabidopsis FIMBRIN5 (FIM5). Our results show that FIM5 is required for the organization of actin cytoskeleton in pollen grains and pollen tubes, and FIM5 loss-of-function associates with a delay of pollen germination and inhibition of pollen tube growth. FIM5 decorates actin filaments throughout pollen grains and tubes. Actin filaments become redistributed in fim5 pollen grains and disorganized in fim5 pollen tubes. Specifically, actin cables protrude into the extreme tips, and their longitudinal arrangement is disrupted in the shank of fim5 pollen tubes. Consequently, the pattern and velocity of cytoplasmic streaming were altered in fim5 pollen tubes. Additionally, loss of FIM5 function rendered pollen germination and tube growth hypersensitive to the actin-depolymerizing drug latrunculin B. In vitro biochemical analyses indicated that FIM5 exhibits actin bundling activity and stabilizes actin filaments. Thus, we propose that FIM5 regulates actin dynamics and organization during pollen germination and tube growth via stabilizing actin filaments and organizing them into higher-order structures.
Collapse
Affiliation(s)
- Youjun Wu
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Yan
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruihui Zhang
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolu Qu
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Sulin Ren
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Naizhi Chen
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shanjin Huang
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
15
|
Zhang H, Qu X, Bao C, Khurana P, Wang Q, Xie Y, Zheng Y, Chen N, Blanchoin L, Staiger CJ, Huang S. Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. THE PLANT CELL 2010; 22:2749-67. [PMID: 20807879 PMCID: PMC2947167 DOI: 10.1105/tpc.110.076257] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A dynamic actin cytoskeleton is essential for pollen germination and tube growth. However, the molecular mechanisms underlying the organization and turnover of the actin cytoskeleton in pollen remain poorly understood. Villin plays a key role in the formation of higher-order structures from actin filaments and in the regulation of actin dynamics in eukaryotic cells. It belongs to the villin/gelsolin/fragmin superfamily of actin binding proteins and is composed of six gelsolin-homology domains at its core and a villin headpiece domain at its C terminus. Recently, several villin family members from plants have been shown to sever, cap, and bundle actin filaments in vitro. Here, we characterized a villin isovariant, Arabidopsis thaliana VILLIN5 (VLN5), that is highly and preferentially expressed in pollen. VLN5 loss-of-function retarded pollen tube growth and sensitized actin filaments in pollen grains and tubes to latrunculin B. In vitro biochemical analyses revealed that VLN5 is a typical member of the villin family and retains a full suite of activities, including barbed-end capping, filament bundling, and calcium-dependent severing. The severing activity was confirmed with time-lapse evanescent wave microscopy of individual actin filaments in vitro. We propose that VLN5 is a major regulator of actin filament stability and turnover that functions in concert with oscillatory calcium gradients in pollen and therefore plays an integral role in pollen germination and tube growth.
Collapse
Affiliation(s)
- Hua Zhang
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolu Qu
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chanchan Bao
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Parul Khurana
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907-2064
| | - Qiannan Wang
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yurong Xie
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yiyan Zheng
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Naizhi Chen
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Laurent Blanchoin
- Institut de Recherches en Technologie et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l’Energie Atomique/Centre National de la Recherche Scientifique/Université Joseph Fourier, F38054 Grenoble, France
| | - Christopher J. Staiger
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907-2064
| | - Shanjin Huang
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
16
|
Khurana P, Henty JL, Huang S, Staiger AM, Blanchoin L, Staiger CJ. Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover. THE PLANT CELL 2010; 22:2727-48. [PMID: 20807878 PMCID: PMC2947172 DOI: 10.1105/tpc.110.076240] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/29/2010] [Accepted: 08/17/2010] [Indexed: 05/20/2023]
Abstract
Actin filament bundles are higher-order cytoskeletal structures that are crucial for the maintenance of cellular architecture and cell expansion. They are generated from individual actin filaments by the actions of bundling proteins like fimbrins, LIMs, and villins. However, the molecular mechanisms of dynamic bundle formation and turnover are largely unknown. Villins belong to the villin/gelsolin/fragmin superfamily and comprise at least five isovariants in Arabidopsis thaliana. Different combinations of villin isovariants are coexpressed in various tissues and cells. It is not clear whether these isovariants function together and act redundantly or whether they have unique activities. VILLIN1 (VLN1) is a simple filament-bundling protein and is Ca(2+) insensitive. Based on phylogenetic analyses and conservation of Ca(2+) binding sites, we predict that VLN3 is a Ca(2+)-regulated villin capable of severing actin filaments and contributing to bundle turnover. The bundling activity of both isovariants was observed directly with time-lapse imaging and total internal reflection fluorescence (TIRF) microscopy in vitro, and the mechanism mimics the "catch and zipper" action observed in vivo. Using time-lapse TIRF microscopy, we observed and quantified the severing of individual actin filaments by VLN3 at physiological calcium concentrations. Moreover, VLN3 can sever actin filament bundles in the presence of VLN1 when calcium is elevated to micromolar levels. Collectively, these results demonstrate that two villin isovariants have overlapping and distinct activities.
Collapse
Affiliation(s)
- Parul Khurana
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Jessica L. Henty
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Shanjin Huang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Andrew M. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Laurent Blanchoin
- Institut de Recherches en Technologie et Sciences pour le Vivant, Commissariat à l'Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, Commissariat à l’Energie Atomique Grenoble, F38054 Grenoble, France
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
- The Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
- Address correspondence to
| |
Collapse
|
17
|
Jaglarz MK, Kubrakiewicz J, Bilinski SM. A novel pattern of follicular epithelium morphogenesis in higher dipterans. ZOOLOGY 2010; 113:91-9. [DOI: 10.1016/j.zool.2009.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 11/30/2022]
|
18
|
Zhai Z, Fuchs AL, Lohmann I. Cellular analysis of newly identified Hox downstream genes in Drosophila. Eur J Cell Biol 2009; 89:273-8. [PMID: 20018403 DOI: 10.1016/j.ejcb.2009.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hox genes code for conserved homeodomain transcription factors, which act as regional regulators for the specification of segmental identities along the anterior-posterior axis in all animals studied. They execute their function mainly through the activation or repression of their downstream genes. We have recently identified a large number of genes to be directly or indirectly targeted by Hox proteins through gene expression profiling in the model organism Drosophila. However, the cell-specific regulation of these downstream genes and the functional significance of the regulation are largely unknown. We have validated and functionally studied many of the newly identified downstream genes of the Hox proteins Deformed (Dfd) and Abdominal-B (Abd-B), and provide evidence that Hox proteins regulate a diverse group of downstream genes, from transcription factors to realisators with major and minor roles during morphogenesis.
Collapse
Affiliation(s)
- Zongzhao Zhai
- BIOQUANT Center, Cluster of Excellence - CellNetworks, Heidelberg, University of Heidelberg, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
19
|
Bass BP, Tanner EA, Martín DMS, Blute T, Kinser RD, Dolph PJ, McCall K. Cell-autonomous requirement for DNaseII in nonapoptotic cell death. Cell Death Differ 2009; 16:1362-71. [PMID: 19557011 PMCID: PMC2770252 DOI: 10.1038/cdd.2009.79] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA fragmentation is a critical component of apoptosis but it has not been characterized in nonapoptotic forms of cell death, such as necrosis and autophagic cell death. In mammalian apoptosis, caspase-activated DNase cleaves DNA into nucleosomal fragments in dying cells, and subsequently DNase II, an acid nuclease, completes the DNA degradation but acts non-cell autonomously within lysosomes of engulfing cells. Here we examine the requirement for DNases during two examples of programmed cell death (PCD) that occurs in the Drosophila melanogaster ovary, starvation-induced death of mid-stage egg chambers and developmental nurse cell death in late oogenesis. Surprisingly, we found that DNaseII was required cell autonomously in nurse cells during developmental PCD, indicating that it acts within dying cells. Dying nurse cells contain autophagosomes, indicating that autophagy may contribute to these forms of PCD. Furthermore, we provide evidence that developmental nurse cell PCD in late oogenesis shows hallmarks of necrosis. These findings indicate that DNaseII can act cell autonomously to degrade DNA during nonapoptotic cell death.
Collapse
Affiliation(s)
- B. Paige Bass
- Department of Biology, Boston University, Boston, Massachusetts, 02215
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Boston University, Boston, Massachusetts, 02215
| | - Elizabeth A. Tanner
- Department of Biology, Boston University, Boston, Massachusetts, 02215
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Boston University, Boston, Massachusetts, 02215
| | | | - Todd Blute
- Department of Biology, Boston University, Boston, Massachusetts, 02215
| | | | | | - Kimberly McCall
- Department of Biology, Boston University, Boston, Massachusetts, 02215
| |
Collapse
|
20
|
Abstract
The Drosophila melanogaster ovary is a powerful yet simple system with only a few cell types. Cell death in the ovary can be induced in response to multiple developmental and environmental signals. These cell deaths occur at distinct stages of oogenesis and involve unique mechanisms utilizing apoptotic, autophagic and perhaps necrotic processes. In this review, we summarize recent progress characterizing cell death mechanisms in the fly ovary.
Collapse
|
21
|
Abstract
Ovarioles are the functional unit of the female insect reproductive organs and the number of ovarioles per ovary strongly influences egg-laying rate and fecundity. Social evolution in the honeybee (Apis mellifera) has resulted in queens with 200-360 total ovarioles and workers with usually 20 or less. In addition, variation in ovariole number among workers relates to worker sensory tuning, foraging behavior, and the ability to lay unfertilized male-destined eggs. To study the genetic architecture of worker ovariole number, we performed a series of crosses between Africanized and European bees that differ in worker ovariole number. Unexpectedly, these crosses produced transgressive worker phenotypes with extreme ovariole numbers that were sensitive to the social environment. We used a new selective pooled DNA interval mapping approach with two Africanized backcrosses to identify quantitative trait loci (QTL) underlying the transgressive ovary phenotype. We identified one QTL on chromosome 11 and found some evidence for another QTL on chromosome 2. Both QTL regions contain plausible functional candidate genes. The ovariole number of foragers was correlated with the sugar concentration of collected nectar, supporting previous studies showing a link between worker physiology and foraging behavior. We discuss how the phenotype of extreme worker ovariole numbers and the underlying genetic factors we identified could be linked to the development of queen traits.
Collapse
|
22
|
Bicaudal C and trailer hitch have similar roles in gurken mRNA localization and cytoskeletal organization. Dev Biol 2009; 328:434-44. [PMID: 19217894 DOI: 10.1016/j.ydbio.2009.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 01/13/2009] [Accepted: 02/03/2009] [Indexed: 01/16/2023]
Abstract
Bicaudal C and trailer hitch are both required for dorsoventral patterning of the Drosophila oocyte. Each mutant produces ventralized eggs, a phenotype typically associated with failure of the oocyte to provide a dorsalization signal--the Gurken protein--to the follicle cells. Bicaudal C and trailer hitch are both implicated in post-transcriptional gene regulation. Bicaudal C acts in recruiting a deadenylase to specific mRNAs, leading to translational repression. The role of trailer hitch is less well defined, but mutants have defects in protein secretion, and show aberrant distribution of an endoplasmic reticulum exit site marker whose mRNA is associated with Trailer hitch protein. We show that Bicaudal C and trailer hitch interact genetically. Mutants of these two genes have shared defects in localization of gurken and other anteriorly-localized mRNAs, as well as altered microtubule organization which may underlie the mRNA localization defects. Bicaudal C and trailer hitch mutants also share a syndrome of actin-related abnormalities, including the formation of ectopic actin cages near the anterior of the oocyte. The cages sequester Gurken protein, blocking its secretion and thus interfering with signaling of the follicle cells to specify dorsal fate.
Collapse
|
23
|
Jaglarz MK, Krzeminski W, Bilinski SM. Structure of the ovaries and follicular epithelium morphogenesis in Drosophila and its kin. Dev Genes Evol 2008; 218:399-411. [PMID: 18648852 DOI: 10.1007/s00427-008-0233-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 06/10/2008] [Indexed: 12/27/2022]
Abstract
In insects, the ovarian follicular epithelium morphogenesis has been intensively studied and best characterized in the fruit fly, Drosophila melanogaster. It is well established that initially identical somatic follicular cells (FCs) form a simple epithelium overlying the germline cells, but during oogenesis, they diversify into a number of morphologically distinct subpopulations each responsible for creating specific eggshell structures. In addition, some FC subpopulations (e.g. polar cells) are indispensable in establishing antero-posterior and dorso-ventral ovarian follicle axes and patterning of the developing embryo. The morphological and molecular changes that occur during follicular epithelium morphogenesis in Drosophila are frequently considered as a paradigm of the FC diversification in all flies. However, recent comparative studies indicate that, in dipterans, the functioning of the ovarian follicles is diverse, group-specific and may significantly differ from the Drosophila model system. We discuss the similarities and differences of the ovary structure and follicular epithelium morphogenesis in different dipteran groups and put them into a phylognetic context. We suggest that the migratory activity of the FCs represents an evolutionary novelty that evolved in the ancestors of higher dipterans (Brachycera). Subsequently, during evolution of this subgroup, the number of migrating FC subpopulations has gradually increased from one (in Orthorrhapha) to four (in Cyclorrhapha).
Collapse
Affiliation(s)
- Mariusz K Jaglarz
- Department of Systematic Zoology, Institute of Zoology, Jagiellonian University, 30-060, Kraków, Poland
| | | | | |
Collapse
|
24
|
Tworzydło W, Biliński SM. Structure of ovaries and oogenesis in dermapterans. I. Origin and functioning of the ovarian follicles. ARTHROPOD STRUCTURE & DEVELOPMENT 2008; 37:310-320. [PMID: 18396462 DOI: 10.1016/j.asd.2008.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/10/2008] [Accepted: 01/10/2008] [Indexed: 05/26/2023]
Abstract
The ovaries of the studied earwig species (Forficula auricularia, Chelidurella acanthopygia, Doru lineare and Opisthocosmia silvestris) are meroistic-polytrophic and composed of numerous short ovarioles that consist of a terminal filament, germarium and vitellarium. The germaria of adult females comprise meiotic (pachytene) and postmeiotic (differentiating) germ cell clusters, as well as small prefollicular cells. All germ cell clusters consist of two cells that are connected by a single intercellular bridge. In the vitellarium there are usually 2 ovarian follicles only. The individual follicle consists of a transcriptionally dormant oocyte and a single, polyploid nurse cell and is surrounded by a layer of somatic follicular cells (FCs). During previtellogenesis the nurse cell enlarges and becomes highly transcriptionally active. Concurrently its nucleus attains a characteristic, irregular shape. In the nurse cell nucleus of one studied species, F. auricularia, in addition to chromatin aggregations and RNA- and Ag-NOR-positive nucleoli, a single compact DNA-positive body is present. During advanced vitellogenesis the molecules synthesized in the nurse cells (RNAs, proteins, as well as nurse cell organelles) are transferred to the ooplasm via the intercellular bridge. During this transfer the nurse cell nucleus is retained in the cell centre and does not occlude the intercellular bridge. The results of our studies indicate that such position of the nurse cell nucleus is maintained solely by its extended shape. In other words, the rigid extensions keep the nucleus in the cell centre while the cytoplasm flows, in between these extensions, towards the intercellular bridge connecting the nurse cell with the oocyte.
Collapse
Affiliation(s)
- Wacław Tworzydło
- Department of Systematic Zoology, Institute of Zoology, Jagiellonian University, 30-060 Kraków, Poland.
| | | |
Collapse
|
25
|
Hegan PS, Mermall V, Tilney LG, Mooseker MS. Roles for Drosophila melanogaster myosin IB in maintenance of enterocyte brush-border structure and resistance to the bacterial pathogen Pseudomonas entomophila. Mol Biol Cell 2007; 18:4625-36. [PMID: 17855510 PMCID: PMC2043548 DOI: 10.1091/mbc.e07-02-0191] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Drosophila myosin IB (Myo1B) is one of two class I myosins in the Drosophila genome. In the larval and adult midgut enterocyte, Myo1B is present within the microvillus (MV) of the apical brush border (BB) where it forms lateral tethers between the MV membrane and underlying actin filament core. Expression of green fluorescent protein-Myo1B tail domain in the larval gut showed that the tail domain is sufficient for localization of Myo1B to the BB. A Myo1B deletion mutation exhibited normal larval gut physiology with respect to food uptake, clearance, and pH regulation. However, there is a threefold increase in terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive enterocyte nuclei in the Myo1B mutant. Ultrastructural analysis of mutant midgut revealed many perturbations in the BB, including membrane tethering defects, MV vesiculation, and membrane shedding. The apical localization of both singed (fascin) and Dmoesin is impaired. BBs isolated from mutant and control midgut revealed that the loss of Myo1B causes the BB membrane and underlying cytoskeleton to become destabilized. Myo1B mutant larvae also exhibit enhanced sensitivity to oral infection by the bacterial pathogen Pseudomonas entomophila, and severe cytoskeletal defects are observed in the BB of proximal midgut epithelial cells soon after infection. Resistance to P. entomophila infection is restored in Myo1B mutant larvae expressing a Myo1B transgene. These results indicate that Myo1B may play a role in the local midgut response pathway of the Imd innate immune response to Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Peter S Hegan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
26
|
Neuman-Silberberg FS. Drosophila female sterile mutation spoonbill interferes with multiple pathways in oogenesis. Genesis 2007; 45:369-81. [PMID: 17492752 DOI: 10.1002/dvg.20303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
spoonbill is a Drosophila female-sterile mutation, which displays a range of eggshell and egg chamber patterning defects. Previous analysis has shown that the mutation interfered with the function of two major signaling pathways, GRK/EGFR and DPP. In this report, the nature of spoonbill was further investigated to examine whether it was associated with additional pathways in oogenesis. Clonal analysis, presented here, demonstrated that most of the aberrant phenotypes associated with spoonbill were dependent on a mutant germline. Nevertheless, SPOONBILL may function also in the soma to ensure proper polarization and migration of the border-cell-cluster. Further, genetic interaction studies implicated spoonbill in additional unrelated pathways such as the one(s) involved in actin polymerization/depolymerization. Based on the previous data and the results presented here, it is anticipated that spoonbill may encode a multifunctional protein that perhaps coordinately regulated the activity of multiple signaling pathways during oogenesis.
Collapse
Affiliation(s)
- F Shira Neuman-Silberberg
- Department of Virology and Developmental Genetics, Faculty of Health Sciences and Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
27
|
Riparbelli MG, Gigliotti S, Callaini G. The Drosophila nucleoporin gene nup154 is required for correct microfilament dynamics and cell death during oogenesis. ACTA ACUST UNITED AC 2007; 64:590-604. [PMID: 17410542 DOI: 10.1002/cm.20206] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Drosophila nucleoporin gene nup154 is required in both male and female germline for successful gametogenesis. Mutant flies lack differentiated sperm and lay abnormal eggs. We demonstrated that the egg phenotype was associated with specific alterations of the actin cytoskeleton at different stages of oogenesis. Actually, mutant egg chambers displayed an abnormal organization of both subcortical microfilaments and cytoplasmic actin bundles, that led to defective nurse cell dumping. TUNEL analysis also showed that the dumpless phenotype was associated with delayed apoptosis. The nup154 gene product was localized by conventional immunofluorescence microscopy to the nuclear envelope in a distinct punctuate pattern, characteristic of nuclear pore complex components. TEM analysis revealed that the protein was mainly distributed along filamentous structures that extended radially on the nuclear side of the pore, suggesting that Nup154 could be an integral component of the basket filaments associated with the nuclear pore complexes. We propose that Nup154 is necessary for correct nuclear pore complex functions and that the proper regulation of the actin cytoskeleton dynamics strongly relies upon nuclear pore integrity.
Collapse
|
28
|
Sánchez-Soriano N, Tear G, Whitington P, Prokop A. Drosophila as a genetic and cellular model for studies on axonal growth. Neural Dev 2007; 2:9. [PMID: 17475018 PMCID: PMC1876224 DOI: 10.1186/1749-8104-2-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 05/02/2007] [Indexed: 11/10/2022] Open
Abstract
One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding) of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth.
Collapse
Affiliation(s)
- Natalia Sánchez-Soriano
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Guy Tear
- MRC Centre for Developmental Neurobiology, Guy's Campus, King's College, London, UK
| | - Paul Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | - Andreas Prokop
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
29
|
McCall K. Eggs over easy: cell death in the Drosophila ovary. Dev Biol 2004; 274:3-14. [PMID: 15355784 DOI: 10.1016/j.ydbio.2004.07.017] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 07/07/2004] [Accepted: 07/21/2004] [Indexed: 11/22/2022]
Abstract
Programmed cell death is the most common fate of female germ cells in Drosophila and many animals. In Drosophila, oocytes form in individual egg chambers that are supported by germline nurse cells and surrounded by somatic follicle cells. As oogenesis proceeds, 15 nurse cells die for every oocyte that is produced. In addition to this developmentally regulated cell death, groups of germ cells or entire egg chambers may be induced to undergo apoptosis in response to starvation or other insults. Recent findings suggest that these different types of cell death involve distinct genetic pathways. This review focuses on progress towards elucidating the molecular mechanisms acting during programmed cell death in Drosophila oogenesis.
Collapse
Affiliation(s)
- Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
30
|
Technau U, Miller MA, Bridge D, Steele RE. Arrested apoptosis of nurse cells during Hydra oogenesis and embryogenesis. Dev Biol 2003; 260:191-206. [PMID: 12885564 DOI: 10.1016/s0012-1606(03)00241-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During Hydra oogenesis, an aggregate of germ cells differentiates into one oocyte and thousands of nurse cells. Nurse cells display a number of features typical of apoptotic cells and are phagocytosed by the growing oocyte. Yet, these cells remain unchanged in morphology and number until hatching of the polyp, which can occur up to 12 months later. Treatments with caspase inhibitors can block oocyte development during an early phase of oogenesis, but not after nurse cell phagocytosis has taken place, indicating that initiation of nurse cell apoptosis is essential for oocyte development. The genomic DNA of the phagocytosed nurse cells in the oocyte and embryo shows large-scale fragmentation into 8- to 15-kb pieces, but there is virtually none of the internucleosomal degradation typically seen in apoptotic cells. The arrested nurse cells exhibit high levels of peroxidase activity and are prevented from entering the lysosomal pathway. After hatching of the polyp, apoptosis is resumed and the nurse cells are degraded within 3 days. During this final stage, nurse cells become TUNEL-positive and enter secondary lysosomes in a strongly degraded state. Our results suggest that nurse cell apoptosis consists of caspase-dependent and caspase-independent phases. The independent phase can be arrested at an advanced stage for several months, only to resume after the primary polyp hatches.
Collapse
Affiliation(s)
- Ulrich Technau
- Molecular Cell Biology, Darmstadt University of Technology, Schnittspahnstrassc 10, 64287 Darmstadt, Germany.
| | | | | | | |
Collapse
|
31
|
Kubrakiewicz J, Jabłońska A, Mazurkiewicz M, Biliński SM. Differentiation and diversification of the follicular cells in flies: insight from the studies of the lower brachycerans' ovaries. Genesis 2003; 36:214-24. [PMID: 12929093 DOI: 10.1002/gene.10222] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although all dipteran species have ovaries of the same meroistic-polytrophic type, the structure of individual ovarian follicles (egg chambers) as well as the course of oogenesis in major dipteran taxa are highly diversified and often significantly different from the widely known Drosophila model. In this report we present results of the morphological studies of the ovary structure in the representatives of three families of lower brachycerans (Orthorrhapha) and compare them with the present knowledge of the processes that lead to the formation of a mature egg cell in the model dipteran, the cyclorrhaphan fruit fly, Drosophila melanogaster. The most conspicuous and developmentally significant differences between Drosophila and lower brachycerans were found in the events that accompany the differentiation and diversification of somatic follicular cells. Our observations indicate that the directed migrations of some follicular cells within the egg chamber and the ability of border cells to invade the nurse cell compartment can be considered as evolutionary novelties that evolved in the ancestors of higher brachycerans.
Collapse
|
32
|
Hudson AM, Cooley L. Understanding the function of actin-binding proteins through genetic analysis of Drosophila oogenesis. Annu Rev Genet 2003; 36:455-88. [PMID: 12429700 DOI: 10.1146/annurev.genet.36.052802.114101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much of our knowledge of the actin cytoskeleton has been derived from biochemical and cell biological approaches, through which actin-binding proteins have been identified and their in vitro interactions with actin have been characterized. The study of actin-binding proteins (ABPs) in genetic model systems has become increasingly important for validating and extending our understanding of how these proteins function. New ABPs have been identified through genetic screens, and genetic results have informed the interpretation of in vitro experiments. In this review, we describe the molecular and ultrastructural characteristics of the actin cytoskeleton in the Drosophila ovary, and discuss recent genetic analyses of actin-binding proteins that are required for oogenesis.
Collapse
Affiliation(s)
- Andrew M Hudson
- Departments of Genetics Yale University School of Medicine, P.O. Box 208005, New Haven, Connecticut 06520-8005, USA.
| | | |
Collapse
|
33
|
Michaut L, Flister S, Neeb M, White KP, Certa U, Gehring WJ. Analysis of the eye developmental pathway in Drosophila using DNA microarrays. Proc Natl Acad Sci U S A 2003; 100:4024-9. [PMID: 12655063 PMCID: PMC153041 DOI: 10.1073/pnas.0630561100] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2003] [Indexed: 11/18/2022] Open
Abstract
Pax-6 genes encode evolutionarily conserved transcription factors capable of activating the gene-expression program required to build an eye. When ectopically expressed in Drosophila imaginal discs, Pax-6 genes induce the eye formation on the corresponding appendages of the adult fly. We used two different Drosophila full-genome DNA microarrays to compare gene expression in wild-type leg discs versus leg discs where eyeless, one of the two Drosophila Pax-6 genes, was ectopically expressed. We validated these data by analyzing the endogenous expression of selected genes in eye discs and identified 371 genes that are expressed in the eye imaginal discs and up-regulated when an eye morphogenetic field is ectopically induced in the leg discs. These genes mainly encode transcription factors involved in photoreceptor specification, signal transducers, cell adhesion molecules, and proteins involved in cell division. As expected, genes already known to act downstream of eyeless during eye development were identified, together with a group of genes that were not yet associated with eye formation.
Collapse
Affiliation(s)
- Lydia Michaut
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Staiger CJ, Franklin-Tong VE. The actin cytoskeleton is a target of the self-incompatibility response in Papaver rhoeas. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:103-113. [PMID: 12456760 DOI: 10.1093/jxb/erg003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The integration of signals received by a cell, and their transduction to targets, is essential for all cellular responses. The cytoskeleton has been identified as a major target of signalling cascades in both animal and plant cells. Self-incompatibility (SI) in Papaver rhoeas involves an allele-specific recognition between stigmatic S-proteins and pollen, resulting in the inhibition of incompatible pollen. This highly specific response triggers a Ca(2+)-dependent signalling cascade in incompatible pollen when a stigmatic S-protein interacts with it. It has been demonstrated recently that SI induces dramatic alterations in the organization of the pollen actin cytoskeleton. This implicates the actin cytoskeleton as a key target for the SI-stimulated signals. The cytological alterations to the actin cytoskeleton that are triggered in response to SI are described here and there seem to be several stages that are distinguishable temporally. Evidence was obtained that F-actin depolymerization is also stimulated. The current understanding that the actin cytoskeleton is a target for the signals triggered by the SI response is discussed. It is suggested that these F-actin alterations may be Ca(2+)-mediated and that this could be a mechanism whereby SI-induced tip growth inhibition is achieved. The potential for actin-binding proteins to act as key mediators of this response is discussed and the mechanisms that may be responsible for effecting these changes are described. In particular, the parallels between sustained actin rearrangements during SI and in apoptosis of animal cells are considered.
Collapse
Affiliation(s)
- C J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | |
Collapse
|
35
|
Royzman I, Hayashi-Hagihara A, Dej KJ, Bosco G, Lee JY, Orr-Weaver TL. The E2F cell cycle regulator is required for Drosophila nurse cell DNA replication and apoptosis. Mech Dev 2002; 119:225-37. [PMID: 12464435 DOI: 10.1016/s0925-4773(02)00388-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During Drosophila oogenesis nurse cells become polyploid, enabling them to provide the developing oocyte with vast amounts of maternal messages and products. The nurse cells then die by apoptosis. In nurse cells, as in many other polyploid or polytene tissues, replication is differentially controlled and the heterochromatin is underreplicated. The nurse cell chromosomes also undergo developmentally induced morphological changes from being polytene, with tightly associated sister chromatids, to polyploid, with dispersed sister chromatids. We used female-sterile dE2F1 and dDP mutants to assess the role of the E2F cell cycle regulator in oogenesis and the relative contributions of transcriptional activation versus repression during nurse cell development. We report here that E2F1 transcriptional activity in nurse cells is essential for the robust synthesis of S-phase transcripts that are deposited into the oocyte. dE2F1 and dDP are needed to limit the replication of heterochromatin in nurse cells. In dE2F1 mutants the nurse cell chromosomes do not properly undergo the transition from polyteny to polyploidy. We also find that dDP and dE2F1 are needed for nurse cell apoptosis, implicating transcriptional activation of E2F target genes in this process.
Collapse
Affiliation(s)
- Irena Royzman
- Whitehead Institute, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
36
|
Buszczak M, Lu X, Segraves WA, Chang TY, Cooley L. Mutations in the midway gene disrupt a Drosophila acyl coenzyme A: diacylglycerol acyltransferase. Genetics 2002; 160:1511-8. [PMID: 11973306 PMCID: PMC1462074 DOI: 10.1093/genetics/160.4.1511] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During Drosophila oogenesis, defective or unwanted egg chambers are eliminated during mid-oogenesis by programmed cell death. In addition, final cytoplasm transport from nurse cells to the oocyte depends upon apoptosis of the nurse cells. To study the regulation of germline apoptosis, we analyzed the midway mutant, in which egg chambers undergo premature nurse cell death and degeneration. The midway gene encodes a protein similar to mammalian acyl coenzyme A: diacylglycerol acyltransferase (DGAT), which converts diacylglycerol (DAG) into triacylglycerol (TAG). midway mutant egg chambers contain severely reduced levels of neutral lipids in the germline. Expression of midway in insect cells results in high levels of DGAT activity in vitro. These results show that midway encodes a functional DGAT and that changes in acylglycerol lipid metabolism disrupt normal egg chamber development in Drosophila.
Collapse
Affiliation(s)
- Michael Buszczak
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | | | |
Collapse
|
37
|
Kelso RJ, Hudson AM, Cooley L. Drosophila Kelch regulates actin organization via Src64-dependent tyrosine phosphorylation. J Cell Biol 2002; 156:703-13. [PMID: 11854310 PMCID: PMC2174084 DOI: 10.1083/jcb.200110063] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2001] [Revised: 12/13/2001] [Accepted: 01/14/2002] [Indexed: 12/03/2022] Open
Abstract
The Drosophila kelch gene encodes a member of a protein superfamily defined by the presence of kelch repeats. In Drosophila, Kelch is required to maintain actin organization in ovarian ring canals. We set out to study the actin cross-linking activity of Kelch and how Kelch function is regulated. Biochemical studies using purified, recombinant Kelch protein showed that full-length Kelch bundles actin filaments, and kelch repeat 5 contains the actin binding site. Two-dimensional electrophoresis demonstrated that Kelch is tyrosine phosphorylated in a src64-dependent pathway. Site-directed mutagenesis determined that tyrosine residue 627 is phosphorylated. A Kelch mutant with tyrosine 627 changed to alanine (KelY627A) rescued the actin disorganization phenotype of kelch mutant ring canals, but failed to produce wild-type ring canals. Electron microscopy demonstrated that phosphorylation of Kelch is critical for the proper morphogenesis of actin during ring canal growth, and presence of the nonphosphorylatable KelY627A protein phenocopied src64 ring canals. KelY627A protein in ring canals also dramatically reduced the rate of actin monomer exchange. The phenotypes caused by src64 mutants and KelY627A expression suggest that a major function of Src64 signaling in the ring canal is the negative regulation of actin cross-linking by Kelch.
Collapse
Affiliation(s)
- Reed J Kelso
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | | | | |
Collapse
|
38
|
Zelazowska M, Biliński SM. Ultrastructure and function of nurse cells in phthirapterans. Possible function of ramified nurse cell nuclei in the cytoplasm transfer. ARTHROPOD STRUCTURE & DEVELOPMENT 2001; 30:135-43. [PMID: 18088951 DOI: 10.1016/s1467-8039(01)00030-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Accepted: 08/01/2001] [Indexed: 05/16/2023]
Abstract
The structure of nurse cells as well as the distribution of cytoskeletal elements (actin filaments, microtubules) in three representatives of phthirapterans: the pig louse, Haematopinus suis (Anoplura) and bird lice, Eomenacanthus stramineus, Columbicola columbae (Mallophaga) were investigated. All three species have polytrophic-meroistic ovaries which means that each oocyte remains connected with a group of nurse cells via specialized cytoplasmic canals-intercellular bridges (ring canals). Throughout vitellogenesis, various macromolecules as well as organelles (mitochondria, endoplasmic reticulum vesicles, ribosomes) are transferred from the nurse cells to the oocyte. During this flow, the nurse cell nuclei do not enter the oocyte and are retained in the cell centers. In holometabolous insects (e.g. Drosophila, hymenopterans), the central position of nurse cell nuclei is maintained by cytoskeletal elements (actin filaments or microtubules). In the investigated species, the nurse cells are equipped with large, highly extended (irregularly lobed) nuclei. The inner nuclear membrane is lined with a relatively thick layer of nuclear lamina. Ultrastructural analysis and staining with rhodamine-labeled phalloidin revealed that the nurse cell cytoskeleton is poorly developed and represented only by: (1) single microtubules in the perinuclear cytoplasm; and (2) the F-actin layer in the cortical cytoplasm. In the light of this, we postulate that in phthirapterans the position of nurse cell nuclei during the cytoplasm transfer is maintained not by the cytoskeletal elements, but by a largely extended shape of the nuclei (i.e. their elongated extensions).
Collapse
Affiliation(s)
- M Zelazowska
- Department of Systematic Zoology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, 30-060 Kraków, Poland
| | | |
Collapse
|
39
|
Pepling ME, Spradling AC. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 2001; 234:339-51. [PMID: 11397004 DOI: 10.1006/dbio.2001.0269] [Citation(s) in RCA: 509] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In many organisms, early germline development takes place within cysts of interconnected cells that form by incomplete cytokinesis and later undergo programmed breakdown. We recently identified similar cell clusters within the fetal mouse ovary, but the fate and functional significance of these germ cell cysts remained unclear. Here, we show that mouse cysts undergo programmed breakdown between 20.5-22.5 dpc, during which approximately 33% of the oocytes survive to form primordial follicles. This process accounts for most of the perinatal reduction in germ cell numbers and germ cell apoptosis reported by previous authors, and suggests that perinatal germ cell loss is a developmentally regulated process that is distinct from the follicular atresia that occurs during adult life. Our observations also suggest a novel function for a transient cyst stage of germ cell development. Prior to breakdown, mitochondria and ER reorganize into perinuclear aggregates, and can be seen within the ring canals joining adjacent germ cells. Cysts may ensure that oocytes destined to form primordial follicles acquire populations of functional mitochondria, through an active process that has been evolutionarily conserved.
Collapse
Affiliation(s)
- M E Pepling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution of Washington, 115 W. University Parkway, Baltimore, Maryland 21210, USA
| | | |
Collapse
|
40
|
Abstract
G protein-coupled receptors mediate their biological responses through the generation of second messengers, such as cAMP. The down-regulation of their activity (desensitization) is carried out, in part, by the family of G protein-coupled receptor kinases, which phosphorylate activated receptors. The Gprk2 gene in Drosophila melanogaster is a putative member of this family. The GPRK2 protein is expressed most abundantly in the ovaries and in the mushroom bodies, the brain region that is implicated in learning and memory in insects. Many of the genes that are involved in learning in Drosophila are members of a cAMP-signaling pathway and are also expressed in the mushroom bodies. These observations suggest that the Gprk2 gene may be involved in a cAMP-mediated pathway. To investigate this possibility, we tested for a genetic interaction between Gprk2 and dunce (which encodes cAMP-specific phosphodiesterase). A mutant allele of Gprk2, called gprk2(6936), has decreased fertility as a result of reduced levels of egg laying and hatching, and developing egg chambers display defects in the formation of anterior structures. Similarly, many alleles of dunce are sterile, with an ovary phenotype that resembles gprk2(6936). Introduction of a single copy of a hypomorphic or null allele of dunce into the gprk2(6936) background suppressed all of these defects to a significant degree. Suppression was also observed when a single copy of gprk2(6936) was introduced into a dunce background. Like mutants of rutabaga (which encodes a calcium/calmodulin-dependent adenylate cyclase), gprk2(6936) has reduced levels of cAMP. Ovaries from gprk2(6936) females contain about one third of the normal amount of cAMP. In addition, in every mutant combination where fertility is increased, cAMP levels are closer to wild type levels. These results suggest that Gprk2 is functioning in a cAMP-signaling pathway and that the underlying basis of the interaction between Gprk2 and dunce is a normalization of cAMP levels.
Collapse
Affiliation(s)
- B J Lannutti
- Department of Biology, University of Vermont, 311 Marsh Life Sciences, Burlington, Vermont 05405, USA
| | | |
Collapse
|
41
|
Affiliation(s)
- N Matova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|
42
|
Nezis IP, Stravopodis DJ, Papassideri I, Margaritis LH. Actin cytoskeleton reorganization of the apoptotic nurse cells during the late developmental stages of oogenesis in Dacus oleae. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:224-33. [PMID: 11223953 DOI: 10.1002/1097-0169(200103)48:3<224::aid-cm1011>3.0.co;2-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, we demonstrate the actin cytoskeleton reorganization during nurse cells apoptosis of the olive fruit fly Dacus oleae. At the developmental stage 9A of oogenesis, the actin microfilaments are assembled in numerous ring canals and subcortically support all the nurse cells, as is shown by phalloidin-FITC staining. During the following stages, 9B and 10A, this structural pattern remains the same. The developmental stage 10B is characterized by actin microfilament rearrangement and formation of actin cables that are symmetrically organized around the nurse cell nuclei. At stage 11, when the dumping process begins, these actin cables seem to retain each nurse cell nucleus in the cell center, away from blocking the ring canals. The early stage 12 is characterized by an asynchronous nurse cell nuclear chromatin condensation, while at late stage 12 the actin cables become very thick, as adjacent ones overlap one another and traverse the disorganized apoptotic nurse cell nuclei that already have fragmented DNA, as is demonstrated by acridine orange staining and TUNEL assay. Finally, during stage 13, the apoptotic nuclear remnants are phagocytosed by the neighboring follicle cells. The data presented herein compared to previous reported results in Drosophila [Nezis et al., 2000: Eur J Cell Biol 79:610-620], demonstrate that actin cytoskeleton reorganization during nurse cell apoptosis is a developmentally regulated physiological mechanism, phylogenetically conserved in higher Dipteran.
Collapse
Affiliation(s)
- I P Nezis
- Faculty of Biology, Department of Cell Biology and Biophysics, University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
43
|
Abstract
Extensive programmed cell death occurs in the female germline of many species ranging from C. elegans to humans. One purpose for germline apoptosis is to remove defective cells unable to develop into fertile eggs. In addition, recent work suggests that the death of specific germline cells may also play a vital role by providing essential nutrients to the surviving oocytes. In Drosophila, the genetic control of germline apoptosis and the proteins that carry out the death sentences are beginning to emerge from studies of female sterile mutations. These studies suggest that the morphological changes that occur during the late stages of Drosophila oogenesis may be initiated and driven by a modified form of programmed cell death.
Collapse
Affiliation(s)
- M Buszczak
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
44
|
Nezis IP, Stravopodis DJ, Papassideri I, Robert-Nicoud M, Margaritis LH. Stage-specific apoptotic patterns during Drosophila oogenesis. Eur J Cell Biol 2000; 79:610-20. [PMID: 11043402 DOI: 10.1078/0171-9335-00088] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the present study we demonstrate the existence of two apoptotic patterns in Drosophila nurse cells during oogenesis. One is developmentally regulated and normally occurs at stage 12 and the other is stage-specific and is sporadically observed at stages 7 and 8 of abnormally developed follicles. The apoptotic manifestation of the first pattern begins at stage 11 and is marked by a perinuclear rearrangement of the actin cytoskeleton and the development of extensive lobes and engulfments of the nurse cell nuclei located proximal to the oocyte. Consequently, at late stage 12 (12C), half of the nurse cell nuclei exhibit condensed chromatin, while at late stage 13 all the nuclei have fragmented DNA, as it is clearly shown by TUNEL assay. Finally, the apoptotic vesicles that are formed during stage 13, are phagocytosed by the neighboring follicle cells and at stage 14 the nurse cell nuclear remnants can be easily detected within the adjacent follicle cell phagosomes. In the second sporadic apoptotic pattern, all the nurse cell nuclei are highly condensed with fragmented DNA, accompanied by a completely disorganized actin cytoskeleton. When we induced apoptosis in Drosophila follicles through an etoposide and staurosporine in vitro treatment, we observed a similar pattern of stage-specific cell death at stages 7 and 8. These observations suggest a possible protective mechanism throughout Drosophila oogenesis that results in apoptosis of abnormal, damaged or spontaneously mutated follicles before they reach maturity.
Collapse
Affiliation(s)
- I P Nezis
- Faculty of Biology, Department of Cell Biology and Biophysics, University of Athens, Greece
| | | | | | | | | |
Collapse
|
45
|
Myster DL, Bonnette PC, Duronio RJ. A role for the DP subunit of the E2F transcription factor in axis determination during Drosophila oogenesis. Development 2000; 127:3249-61. [PMID: 10887081 DOI: 10.1242/dev.127.15.3249] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The E2F family of transcription factors contributes to cell cycle control by regulating the transcription of DNA replication factors. Functional ‘E2F’ is a DNA-binding heterodimer composed of E2F and DP proteins. Drosophila contains two E2F genes (dE2F, dE2F2) and one DP gene (dDP). Mutation of either dE2F or dDP eliminates G(1)-S transcription of known replication factors during embryogenesis and compromises DNA replication. However, the analysis of these mutant phenotypes is complicated by the perdurance of maternally supplied gene function. To address this and to further analyze the role of E2F transcription factors in development we have phenotypically characterized mitotic clones of dDP mutant cells in the female germline. Our analysis indicates that dDP is required for several essential processes during oogenesis. In a fraction of the mutant egg chambers the germ cells execute one extra round of mitosis, suggesting that in this tissue dDP is uniquely utilized for cell cycle arrest rather than cell cycle progression. Mutation of dDP in the germline also prevents nurse cell cytoplasm transfer to the oocyte, resulting in a ‘dumpless’ phenotype that blocks oocyte development. This phenotype likely results from both disruption of the actin cytoskeleton and a failure of nurse cell apoptosis, each of which are required for normal cytoplasmic transfer. Lastly, we found that dDP is required for the establishment of the dorsal-ventral axis, as loss of dDP function prevents the localized expression of the EGFR ligand Gurken in the oocyte, which initiates dorsal-ventral polarity in the egg chamber. Thus we have uncovered new functions for E2F transcription factors during development, including an unexpected role in pattern formation.
Collapse
Affiliation(s)
- D L Myster
- Department of Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
46
|
Abstract
Parallel actin bundles are present in a diverse array of structures, where they are critical determinants of cellular shape and physiology. In the past 18 months, new findings have solidified the concept that parallel actin bundles are assembled in cells through the sequential action of multiple actin-bundling proteins and have begun to shed light on the roles played by the individual actin-bundling proteins.
Collapse
Affiliation(s)
- J R Bartles
- Department of Cell and Molecular Biology, Ward 11-185, Northwestern University Medical School, Chicago, IL 60611, USA.
| |
Collapse
|