1
|
Wang L, Ruan M, Bu Q, Zhao C. Signaling Pathways Driving MSC Osteogenesis: Mechanisms, Regulation, and Translational Applications. Int J Mol Sci 2025; 26:1311. [PMID: 39941080 PMCID: PMC11818554 DOI: 10.3390/ijms26031311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for skeletal development, homeostasis, and repair, primarily through their differentiation into osteoblasts and other skeletal lineage cells. Key signaling pathways, including Wnt, TGF-β/BMP, PTH, Hedgehog, and IGF, act as critical regulators of MSC osteogenesis, playing pivotal roles in maintaining bone homeostasis and facilitating regeneration. These pathways interact in distinct ways at various stages of bone development, mineralization, and remodeling. This review provides an overview of the molecular mechanisms by which these pathways regulate MSC osteogenesis, their influence on bone tissue formation, and their implications in bone diseases and therapeutic strategies. Additionally, we explore the potential applications of these pathways in bone tissue engineering, with a particular focus on promoting the use of MSCs as seed cells for bone defect repair. Ultimately, this review aims to highlight potential avenues for advancing bone biology research, treating bone disorders, and enhancing regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
4
|
Yang R, Chu H, Yue H, Mishina Y, Zhang Z, Liu H, Li B. BMP signaling maintains auricular chondrocyte identity and prevents microtia development by inhibiting protein kinase A. eLife 2024; 12:RP91883. [PMID: 38690987 PMCID: PMC11062634 DOI: 10.7554/elife.91883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.
Collapse
Affiliation(s)
- Ruichen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hongshang Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hua Yue
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yuji Mishina
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghaiChina
| |
Collapse
|
5
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
6
|
Laster DJ, Akel NS, Hendrixson JA, James A, Crawford JA, Fu Q, Berryhill SB, Thostenson JD, Nookaew I, O’Brien CA, Onal M. CRISPR interference provides increased cell type-specificity compared to the Cre-loxP system. iScience 2023; 26:107428. [PMID: 37575184 PMCID: PMC10415806 DOI: 10.1016/j.isci.2023.107428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Cre-mediated recombination is frequently used for cell type-specific loss of function (LOF) studies. A major limitation of this system is recombination in unwanted cell types. CRISPR interference (CRISPRi) has been used effectively for global LOF in mice. However, cell type-specific CRISPRi, independent of recombination-based systems, has not been reported. To test the feasibility of cell type-specific CRISPRi, we produced two novel knock-in mouse models that achieve gene suppression when used together: one expressing dCas9::KRAB under the control of a cell type-specific promoter and the other expressing a single guide RNA from a safe harbor locus. We then compared the phenotypes of mice in which the same gene was targeted by either CRISPRi or the Cre-loxP system, with cell specificity conferred by Dmp1 regulatory elements in both cases. We demonstrate that CRISPRi is effective for cell type-specific LOF and that it provides improved cell type-specificity compared to the Cre-loxP system.
Collapse
Affiliation(s)
- Dominique J. Laster
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nisreen S. Akel
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - James A. Hendrixson
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alicen James
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Julie A. Crawford
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Qiang Fu
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stuart B. Berryhill
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeff D. Thostenson
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Intawat Nookaew
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Charles A. O’Brien
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Melda Onal
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
7
|
Ruan X, Gu J, Chen M, Zhao F, Aili M, Zhang D. Multiple roles of ALK3 in osteoarthritis. Bone Joint Res 2023; 12:397-411. [PMID: 37394235 PMCID: PMC10315222 DOI: 10.1302/2046-3758.127.bjr-2022-0310.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinning Gu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ruan X, Zhang Z, Aili M, Luo X, Wei Q, Zhang D, Bai M. Activin receptor-like kinase 3: a critical modulator of development and function of mineralized tissues. Front Cell Dev Biol 2023; 11:1209817. [PMID: 37457289 PMCID: PMC10347416 DOI: 10.3389/fcell.2023.1209817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Mineralized tissues, such as teeth and bones, pose significant challenges for repair due to their hardness, low permeability, and limited blood flow compared to soft tissues. Bone morphogenetic proteins (BMPs) have been identified as playing a crucial role in mineralized tissue formation and repair. However, the application of large amounts of exogenous BMPs may cause side effects such as inflammation. Therefore, it is necessary to identify a more precise molecular target downstream of the ligands. Activin receptor-like kinase 3 (ALK3), a key transmembrane receptor, serves as a vital gateway for the transmission of BMP signals, triggering cellular responses. Recent research has yielded new insights into the regulatory roles of ALK3 in mineralized tissues. Experimental knockout or mutation of ALK3 has been shown to result in skeletal dysmorphisms and failure of tooth formation, eruption, and orthodontic tooth movement. This review summarizes the roles of ALK3 in mineralized tissue regulation and elucidates how ALK3-mediated signaling influences the physiology and pathology of teeth and bones. Additionally, this review provides a reference for recommended basic research and potential future treatment strategies for the repair and regeneration of mineralized tissues.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaowei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang Luo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiang Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
H’ng CH, Khaladkar A, Rosello-Diez A. Look who's TORking: mTOR-mediated integration of cell status and external signals during limb development and endochondral bone growth. Front Cell Dev Biol 2023; 11:1153473. [PMID: 37152288 PMCID: PMC10154674 DOI: 10.3389/fcell.2023.1153473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The balance of cell proliferation and size is key for the control of organ development and repair. Moreover, this balance has to be coordinated within tissues and between tissues to achieve robustness in the organ's pattern and size. The tetrapod limb has been used to study these topics during development and repair, and several conserved pathways have emerged. Among them, mechanistic target of rapamycin (mTOR) signaling, despite being active in several cell types and developmental stages, is one of the least understood in limb development, perhaps because of its multiple potential roles and interactions with other pathways. In the body of this review, we have collated and integrated what is known about the role of mTOR signaling in three aspects of tetrapod limb development: 1) limb outgrowth; 2) chondrocyte differentiation after mesenchymal condensation and 3) endochondral ossification-driven longitudinal bone growth. We conclude that, given its ability to interact with the most common signaling pathways, its presence in multiple cell types, and its ability to influence cell proliferation, size and differentiation, the mTOR pathway is a critical integrator of external stimuli and internal status, coordinating developmental transitions as complex as those taking place during limb development. This suggests that the study of the signaling pathways and transcription factors involved in limb patterning, morphogenesis and growth could benefit from probing the interaction of these pathways with mTOR components.
Collapse
Affiliation(s)
- Chee Ho H’ng
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Ashwini Khaladkar
- Department of Biochemistry, Central University of Hyderabad, Hyderabad, India
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Alberto Rosello-Diez, ,
| |
Collapse
|
10
|
Kim JM, Yang YS, Hong J, Chaugule S, Chun H, van der Meulen MCH, Xu R, Greenblatt MB, Shim JH. Biphasic regulation of osteoblast development via the ERK MAPK-mTOR pathway. eLife 2022; 11:78069. [PMID: 35975983 PMCID: PMC9417416 DOI: 10.7554/elife.78069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence supports that osteogenic differentiation of skeletal progenitors is a key determinant of overall bone formation and bone mass. Despite extensive studies showing the function of mitogen-activated protein kinases (MAPKs) in osteoblast differentiation, none of these studies show in vivo evidence of a role for MAPKs in osteoblast maturation subsequent to lineage commitment. Here, we describe how the extracellular signal-regulated kinase (ERK) pathway in osteoblasts controls bone formation by suppressing the mechanistic target of rapamycin (mTOR) pathway. We also show that, while ERK inhibition blocks the differentiation of osteogenic precursors when initiated at an early stage, ERK inhibition surprisingly promotes the later stages of osteoblast differentiation. Accordingly, inhibition of the ERK pathway using a small compound inhibitor or conditional deletion of the MAP2Ks Map2k1 (MEK1) and Map2k2 (MEK2), in mature osteoblasts and osteocytes, markedly increased bone formation due to augmented osteoblast differentiation. Mice with inducible deletion of the ERK pathway in mature osteoblasts also displayed similar phenotypes, demonstrating that this phenotype reflects continuous postnatal inhibition of late-stage osteoblast maturation. Mechanistically, ERK inhibition increases mitochondrial function and SGK1 phosphorylation via mTOR2 activation, which leads to osteoblast differentiation and production of angiogenic and osteogenic factors to promote bone formation. This phenotype was partially reversed by inhibiting mTOR. Our study uncovers a surprising dichotomy of ERK pathway functions in osteoblasts, whereby ERK activation promotes the early differentiation of osteoblast precursors, but inhibits the subsequent differentiation of committed osteoblasts via mTOR-mediated regulation of mitochondrial function and SGK1.
Collapse
Affiliation(s)
- Jung-Min Kim
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Yeon-Suk Yang
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Jaehyoung Hong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sachin Chaugule
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Hyonho Chun
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering and Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, United States.,Research Division, Hospital for Special Surgery, New York, United States
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Fujian, China.,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Matthew B Greenblatt
- Research Division, Hospital for Special Surgery, New York, United States.,Department of Pathology and Laboratory Medicine, Weill Cornell, New York, United States
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States.,Horae Gene Therapy Center, Worcester, United States.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Worcester, United States
| |
Collapse
|
11
|
The Emerging Role of Cell Transdifferentiation in Skeletal Development and Diseases. Int J Mol Sci 2022; 23:ijms23115974. [PMID: 35682655 PMCID: PMC9180549 DOI: 10.3390/ijms23115974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The vertebrate musculoskeletal system is known to be formed by mesenchymal stem cells condensing into tissue elements, which then differentiate into cartilage, bone, tendon/ligament, and muscle cells. These lineage-committed cells mature into end-stage differentiated cells, like hypertrophic chondrocytes and osteocytes, which are expected to expire and to be replaced by newly differentiated cells arising from the same lineage pathway. However, there is emerging evidence of the role of cell transdifferentiation in bone development and disease. Although the concept of cell transdifferentiation is not new, a breakthrough in cell lineage tracing allowed scientists to trace cell fates in vivo. Using this powerful tool, new theories have been established: (1) hypertrophic chondrocytes can transdifferentiate into bone cells during endochondral bone formation, fracture repair, and some bone diseases, and (2) tendon cells, beyond their conventional role in joint movement, directly participate in normal bone and cartilage formation, and ectopic ossification. The goal of this review is to obtain a better understanding of the key roles of cell transdifferentiation in skeletal development and diseases. We will first review the transdifferentiation of chondrocytes to bone cells during endochondral bone formation. Specifically, we will include the history of the debate on the fate of chondrocytes during bone formation, the key findings obtained in recent years on the critical factors and molecules that regulate this cell fate change, and the role of chondrocyte transdifferentiation in skeletal trauma and diseases. In addition, we will also summarize the latest discoveries on the novel roles of tendon cells and adipocytes on skeletal formation and diseases.
Collapse
|
12
|
Huang Z, Luo R, Yang L, Chen H, Zhang X, Han J, Wang H, Zhou Z, Wang Z, Shao L. CPT1A-Mediated Fatty Acid Oxidation Promotes Precursor Osteoclast Fusion in Rheumatoid Arthritis. Front Immunol 2022; 13:838664. [PMID: 35273614 PMCID: PMC8902079 DOI: 10.3389/fimmu.2022.838664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/01/2022] [Indexed: 12/29/2022] Open
Abstract
The overproduction of osteoclasts, leading to bone destruction in patients with rheumatoid arthritis (RA), is well established. However, little is known about the metabolic dysfunction of osteoclast precursors (OCPs) in RA. Herein, we show that increasing fatty acid oxidation (FAO) induces OCP fusion. Carnitine palmitoyltransferase IA (CPT1A), which is important for carnitine transportation and is involved in FAO in the mitochondria, is upregulated in RA patients. This metabolic change further increases the expression of clathrin heavy chain (CLTC) and clathrin light chain A (CLTA) by enhancing the binding of the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) to the promoters of CLTA and CLTC. This drives clathrin-dependent endocytosis pathway, which attenuates fusion receptors in the cellular membrane and contributes to increased podosome structure formation. This study reveals a new mechanism through which FAO metabolism participates in joint destruction in RA and provides a novel therapeutic direction for the development of drugs against bone destruction in patients with RA.
Collapse
Affiliation(s)
- Zhaoyang Huang
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rong Luo
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liu Yang
- Department of Rheumatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiqi Chen
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinyao Zhang
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiawen Han
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongxia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongyang Zhou
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhao Wang
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lan Shao
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
Ko FC, Kobelski MM, Zhang W, Grenga GM, Martins JS, Demay MB. Phosphate restriction impairs mTORC1 signaling leading to increased bone marrow adipose tissue and decreased bone in growing mice. J Bone Miner Res 2021; 36:1510-1520. [PMID: 33900666 DOI: 10.1002/jbmr.4312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Bone marrow stromal cells (BMSCs) are multipotent cells that differentiate into cells of the osteogenic and adipogenic lineage. A striking inverse relationship between bone marrow adipose tissue (BMAT) and bone volume is seen in several conditions, suggesting that differentiation of BMSCs into bone marrow adipocytes diverts cells from the osteogenic lineage, thereby compromising the structural and mechanical properties of bone. Phosphate restriction of growing mice acutely decreases bone formation, blocks osteoblast differentiation and increases BMAT. Studies performed to evaluate the cellular and molecular basis for the effects of acute phosphate restriction demonstrate that it acutely increases 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoblasts. This is accompanied by decreased expression of Wnt10b in BMSCs. Phosphate restriction also promotes expression of the key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer binding protein α (CEBPα), in CXCL12 abundant reticular (CAR) cells, which represent undifferentiated BMSCs and are the main source of BMAT and osteoblasts in the adult murine skeleton. Consistent with this, lineage tracing studies reveal that the BMAT observed in phosphate-restricted mice is of CAR cell origin. To determine whether circumventing the decrease in mTORC1 signaling in maturing osteoblasts attenuates the osteoblast and BMAT phenotype, phosphate-restricted mice with OSX-CreERT2 -mediated haploinsufficiency of the mTORC1 inhibitor, TSC2, were generated. TSC2 haploinsufficiency in preosteoblasts/osteoblasts normalized bone volume and osteoblast number in phosphate-restricted mice and attenuated the increase in BMAT observed. Thus, acute phosphate restriction leads to decreased bone and increases BMAT by impairing mTORC1 signaling in osterix-expressing cells. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Frank C Ko
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | - Wanlin Zhang
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gina M Grenga
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Maruyama T, Stevens R, Boka A, DiRienzo L, Chang C, Yu HMI, Nishimori K, Morrison C, Hsu W. BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis. Sci Transl Med 2021; 13:13/583/eabb4416. [PMID: 33658353 DOI: 10.1126/scitranslmed.abb4416] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/19/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Skeletal stem cells from the suture mesenchyme, which are referred to as suture stem cells (SuSCs), exhibit long-term self-renewal, clonal expansion, and multipotency. These SuSCs reside in the suture midline and serve as the skeletal stem cell population responsible for calvarial development, homeostasis, injury repair, and regeneration. The ability of SuSCs to engraft in injury site to replace the damaged skeleton supports their potential use for stem cell-based therapy. Here, we identified BMPR1A as essential for SuSC self-renewal and SuSC-mediated bone formation. SuSC-specific disruption of Bmpr1a in mice caused precocious differentiation, leading to craniosynostosis initiated at the suture midline, which is the stem cell niche. We found that BMPR1A is a cell surface marker of human SuSCs. Using an ex vivo system, we showed that SuSCs maintained stemness properties for an extended period without losing the osteogenic ability. This study advances our knowledge base of congenital deformity and regenerative medicine mediated by skeletal stem cells.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ronay Stevens
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Alan Boka
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laura DiRienzo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Connie Chang
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hsiao-Man Ivy Yu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine and Department of Obesity and Internal Inflammation, Fukushima Medical University, Fukushima City 960-1295, Japan
| | - Clinton Morrison
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wei Hsu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA. .,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
15
|
Hu Y, Hao X, Liu C, Ren C, Wang S, Yan G, Meng Y, Mishina Y, Shi C, Sun H. Acvr1 deletion in osteoblasts impaired mandibular bone mass through compromised osteoblast differentiation and enhanced sRANKL-induced osteoclastogenesis. J Cell Physiol 2021; 236:4580-4591. [PMID: 33251612 PMCID: PMC8048423 DOI: 10.1002/jcp.30183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is well known in bone homeostasis. However, the physiological effects of BMP signaling on mandibles are largely unknown, as the mandible has distinct functions and characteristics from other bones. In this study, we investigated the roles of BMP signaling in bone homeostasis of the mandibles by deleting BMP type I receptor Acvr1 in osteoblast lineage cells with Osterix-Cre. We found mandibular bone loss in conditional knockout mice at the ages of postnatal day 21 and 42 in an age-dependent manner. The decreased bone mass was related to compromised osteoblast differentiation together with enhanced osteoclastogenesis, which was secondary to the changes in osteoblasts in vivo. In vitro study revealed that deletion of Acvr1 in the mandibular bone marrow stromal cells (BMSCs) significantly compromised osteoblast differentiation. When wild type bone marrow macrophages were cocultured with BMSCs lacking Acvr1 both directly and indirectly, both proliferation and differentiation of osteoclasts were induced as evidenced by an increase of multinucleated cells, compared with cocultured with control BMSCs. Furthermore, we demonstrated that the increased osteoclastogenesis in vitro was at least partially due to the secretion of soluble receptor activator of nuclear factor-κB ligand (sRANKL), which is probably the reason for the mandibular bone loss in vivo. Overall, our results proposed that ACVR1 played essential roles in maintaining mandibular bone homeostasis through osteoblast differentiation and osteoblast-osteoclast communication via sRANKL.
Collapse
Affiliation(s)
- Yue Hu
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Xinqing Hao
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Cangwei Liu
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Chunxia Ren
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Shuangshuang Wang
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Guangxing Yan
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Yuan Meng
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of DentistryUniversity of MichiganAnn ArborMichiganUSA
| | - Ce Shi
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| |
Collapse
|
16
|
Song D, He G, Shi Y, Ni J, Long F. Functional interaction between Wnt and Bmp signaling in periosteal bone growth. Sci Rep 2021; 11:10782. [PMID: 34031510 PMCID: PMC8144582 DOI: 10.1038/s41598-021-90324-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Wnt and Bmp proteins are well known to regulate bone development and homeostasis. Although both signals are extensively studied, their potential interaction in vivo is less well understood. Previous studies have shown that deletion of Bmpr1a, a type I receptor for Bmp signaling, results in excessive trabecular bone formation while diminishing periosteal bone growth. Moreover, forced-expression of the Wnt antagonist Sost suppresses the overgrowth of trabecular bone caused by Bmpr1a deletion, thus implicating hyperactive Wnt signaling in the excessive trabecular bone formation. However, it remains uncertain whether Wnt and Bmp signaling interacts in regulating the periosteal bone growth. Here we show that multiple Wnt genes are markedly suppressed in the cortical bone without Bmpr1a. Importantly, overexpression of Wnt7b fully rescues periosteal bone growth in the Bmpr1a-deficient mice. Thus, pharmacological activation of Wnt signaling can restore normal bone size without intact Bmp signaling.
Collapse
Affiliation(s)
- Deye Song
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yu Shi
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiangdong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fanxin Long
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA. .,Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Shen L, Sharma D, Yu Y, Long F, Karner CM. Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation. J Cell Sci 2021; 134:jcs251645. [PMID: 33262314 PMCID: PMC7823158 DOI: 10.1242/jcs.251645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Osteoblasts are the principal bone-forming cells. As such, osteoblasts have enhanced demand for amino acids to sustain high rates of matrix synthesis associated with bone formation. The precise systems utilized by osteoblasts to meet these synthetic demands are not well understood. WNT signaling is known to rapidly stimulate glutamine uptake during osteoblast differentiation. Using a cell biology approach, we identified two amino acid transporters, γ(+)-LAT1 and ASCT2 (encoded by Slc7a7 and Slc1a5, respectively), as the primary transporters of glutamine in response to WNT. ASCT2 mediates the majority of glutamine uptake, whereas γ(+)-LAT1 mediates the rapid increase in glutamine uptake in response to WNT. Mechanistically, WNT signals through the canonical β-catenin (CTNNB1)-dependent pathway to rapidly induce Slc7a7 expression. Conversely, Slc1a5 expression is regulated by the transcription factor ATF4 downstream of the mTORC1 pathway. Targeting either Slc1a5 or Slc7a7 using shRNA reduced WNT-induced glutamine uptake and prevented osteoblast differentiation. Collectively, these data highlight the critical nature of glutamine transport for WNT-induced osteoblast differentiation.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Leyao Shen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yilin Yu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
18
|
Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 2020; 21:696-711. [PMID: 32901139 DOI: 10.1038/s41580-020-00279-w] [Citation(s) in RCA: 607] [Impact Index Per Article: 121.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
Bone development occurs through a series of synchronous events that result in the formation of the body scaffold. The repair potential of bone and its surrounding microenvironment - including inflammatory, endothelial and Schwann cells - persists throughout adulthood, enabling restoration of tissue to its homeostatic functional state. The isolation of a single skeletal stem cell population through cell surface markers and the development of single-cell technologies are enabling precise elucidation of cellular activity and fate during bone repair by providing key insights into the mechanisms that maintain and regenerate bone during homeostasis and repair. Increased understanding of bone development, as well as normal and aberrant bone repair, has important therapeutic implications for the treatment of bone disease and ageing-related degeneration.
Collapse
Affiliation(s)
- Ankit Salhotra
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Harsh N Shah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Zhang H, Zhang Y, Terajima M, Romanowicz G, Liu Y, Omi M, Bigelow E, Joiner DM, Waldorff EI, Zhu P, Raghavan M, Lynch M, Kamiya N, Zhang R, Jepsen KJ, Goldstein S, Morris MD, Yamauchi M, Kohn DH, Mishina Y. Loss of BMP signaling mediated by BMPR1A in osteoblasts leads to differential bone phenotypes in mice depending on anatomical location of the bones. Bone 2020; 137:115402. [PMID: 32360900 PMCID: PMC7354232 DOI: 10.1016/j.bone.2020.115402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic protein (BMP) signaling in osteoblasts plays critical roles in skeletal development and bone homeostasis. Our previous studies showed loss of function of BMPR1A, one of the type 1 receptors for BMPs, in osteoblasts results in increased trabecular bone mass in long bones due to an imbalance between bone formation and bone resorption. Decreased bone resorption was associated with an increased mature-to-immature collagen cross-link ratio and mineral-matrix ratios in the trabecular compartments, and increased tissue-level biomechanical properties. Here, we investigated the bone mass, bone composition and biomechanical properties of ribs and spines in the same genetically altered mouse line to compare outcomes by loss of BMPR1A functions in bones from different anatomic sites and developmental origins. Bone mass was significantly increased in both cortical and trabecular compartments of ribs with minimal to modest changes in compositions. While tissue-levels of biomechanical properties were not changed between control and mutant animals, whole bone levels of biomechanical properties were significantly increased in association with increased bone mass in the mutant ribs. For spines, mutant bones showed increased bone mass in both cortical and trabecular compartments with an increase of mineral content. These results emphasize the differential role of BMP signaling in osteoblasts in bones depending on their anatomical locations, functional loading requirements and developmental origin.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yanshuai Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Masahiko Terajima
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC, USA
| | - Genevieve Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yangjia Liu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; School of Life Sciences, Tsinghua University, Beijing, China
| | - Maiko Omi
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin Bigelow
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Danese M Joiner
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Erik I Waldorff
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Peizhi Zhu
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Mekhala Raghavan
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Nobuhiro Kamiya
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; Tenri University, Nara, Japan
| | - Rongqing Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Steve Goldstein
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Michael D Morris
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.
| |
Collapse
|
20
|
Qian Z, Zhang Y, Kang X, Li H, Zhang Y, Jin X, Gao X, Xu M, Ma Z, Zhao L, Zhang Z, Sun H, Wu S. Postnatal Conditional Deletion of Bmal1 in Osteoblasts Enhances Trabecular Bone Formation Via Increased BMP2 Signals. J Bone Miner Res 2020; 35:1481-1493. [PMID: 32212389 DOI: 10.1002/jbmr.4017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 01/09/2023]
Abstract
A large number of studies in recent years indicated the involvement of peripheral circadian clock in varied pathologies. However, evidence regarding how peripheral clocks regulate bone metabolism is still very limited. The present study aimed to investigate the direct role of Bmal1 (the key activator of peripheral circadian clock system) in vivo during bone developmental and remodeling stages using inducible osteoblast-specific Bmal1 knockout mice. Unexpectedly, the removal of Bmal1 in osteoblasts caused multiple abnormalities of bone metabolism, including a progressive increase in trabecular bone mass in as early as 8 weeks, manifested by an 82.3% increase in bone mineral density and 2.8-fold increase in bone volume per tissue volume. As mice age, an increase in trabecular bone mass persists while cortical bone mass decreases by about 33.7%, concomitant with kyphoscoliosis and malformed intervertebral disk. The increased trabecular bone mass is attributed to increased osteoblast number and osteoblast activity coupled with decreased osteoclastogenesis. Remarkably, the ablation of Bmal1 in osteoblasts promoted the expression level of Bmp2 and phosphorylation of SMAD1, whereas the attenuation of BMP2/SMAD1 signaling partially alleviated the effects of Bmal1 deficiency on osteoblast differentiation and activity. The results revealed that Bmal1 was a transcriptional silencer of Bmp2 by targeting the Bmp2 promoter. The peripheral clock gene Bmal1 in osteoblasts was crucial to coordinate differential effects on trabecular and cortical bones through regulating BMP2/SMAD1 during bone development, thus providing novel insights into a key role of osteoblast Bmal1 in homeostasis and integrity of adult bones. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zhuang Qian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Ying Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Huixia Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xinxin Jin
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xin Gao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Mao Xu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zhengmin Ma
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Liting Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zhuanmin Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
21
|
Du JH, Lin SX, Wu XL, Yang SM, Cao LY, Zheng A, Wu JN, Jiang XQ. The Function of Wnt Ligands on Osteocyte and Bone Remodeling. J Dent Res 2020; 98:930-938. [PMID: 31282847 DOI: 10.1177/0022034519854704] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone homeostasis is continually maintained by the process of bone remodeling throughout life. Recent studies have demonstrated that Wnt signaling pathways play a fundamental role in the process of bone homeostasis and remodeling. Intracellular Wnt signaling cascades are initially triggered by a Wnt ligand-receptor complex formation. In previous studies, the blocking of Wnt ligands from different osteoblastic differentiation stages could cause defective bone development at an early stage. Osteocytes, the most abundant and long-lived type of bone cell, are a crucial orchestrator of bone remodeling. However, the role of Wnt ligands on osteocyte and bone remodeling remains unclear. In our present study, we found that, besides osteoblasts, osteocytes also express multiple Wnt ligands in the bone environment. Then, we used a Dmp1-Cre mouse line, in which there is expression in a subset of osteoblasts but mainly osteocytes, to study the function of Wnt ligands on osteocyte and bone remodeling in vivo. Furthermore, we explored the role of Wnt ligands on osteocytic mineralization ability, as well as the regulatory function of osteocytes on the process of osteoblastic differentiation and osteoclastic migration and maturity in vitro. We concluded that Wnt proteins play an important regulatory role in 1) the process of perilacunar/canalicular remodeling, as mediated by osteocytes, and 2) the balance of osteogenesis and bone resorption at the bone surface, as mediated by osteoblasts and osteoclasts, at least partly through the canonical Wnt/β-catenin signaling pathway and the OPG/RANKL signaling pathway.
Collapse
Affiliation(s)
- J H Du
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - S X Lin
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,5 Department of Prosthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - X L Wu
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - S M Yang
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - L Y Cao
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - A Zheng
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - J N Wu
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - X Q Jiang
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
22
|
BMP9 is a potential therapeutic agent for use in oral and maxillofacial bone tissue engineering. Biochem Soc Trans 2020; 48:1269-1285. [PMID: 32510140 DOI: 10.1042/bst20200376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Oral and maxillofacial surgery is often challenging due to defective bone healing owing to the microbial environment of the oral cavity, the additional involvement of teeth and esthetic concerns. Insufficient bone volume as a consequence of aging and some oral and maxillofacial surgical procedures, such as tumor resection of the jaw, may further impact facial esthetics and cause the failure of certain procedures, such as oral and maxillofacial implantation. Bone morphogenetic protein (BMP) 9 (BMP9) is one of the most effective BMPs to induce the osteogenic differentiation of different stem cells. A large cross-talk network that includes the BMP9, Wnt/β, Hedgehog, EGF, TGF-β and Notch signaling pathways finely regulates osteogenesis induced by BMP9. Epigenetic control during BMP9-induced osteogenesis is mainly dependent on histone deacetylases (HDACs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which adds another layer of complexity. As a result, all these factors work together to orchestrate the molecular and cellular events underlying BMP9-related tissue engineering. In this review, we summarize our current understanding of the SMAD-dependent and SMAD-independent BMP9 pathways, with a particular focus on cross-talk and cross-regulation between BMP9 and other major signaling pathways in BMP9-induced osteogenesis. Furthermore, recently discovered epigenetic regulation of BMP9 pathways and the molecular and cellular basis of the application of BMP9 in tissue engineering in current oral and maxillofacial surgery and other orthopedic-related clinical settings are also discussed.
Collapse
|
23
|
Jing Y, Wang Z, Li H, Ma C, Feng J. Chondrogenesis Defines Future Skeletal Patterns Via Cell Transdifferentiation from Chondrocytes to Bone Cells. Curr Osteoporos Rep 2020; 18:199-209. [PMID: 32219639 PMCID: PMC7717675 DOI: 10.1007/s11914-020-00586-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to obtain a better understanding of how chondrogenesis defines skeletal development via cell transdifferentiation from chondrocytes to bone cells. RECENT FINDINGS A breakthrough in cell lineage tracing allows bone biologists to trace the cell fate and demonstrate that hypertrophic chondrocytes can directly transdifferentiate into bone cells during endochondral bone formation. However, there is a knowledge gap for the biological significance of this lineage extension and the mechanisms controlling this process. This review first introduces the history of the debate on the cell fate of chondrocytes in endochondral bone formation; then summarizes key findings obtained in recent years, which strongly support a new theory: the direct cell transdifferentiation from chondrocytes to bone cells precisely connects chondrogenesis (for providing a template of the future skeleton, classified as phase I) and osteogenesis (for finishing skeletal construction, or phase II) in a continuous lineage-linked process of endochondral bone formation and limb elongation; and finally outlines nutrition factors and molecules that regulate the cell transdifferentiation process during the relay from chondrogenesis to osteogenesis.
Collapse
Affiliation(s)
- Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Hui Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
- State Key Laboratory of Oral Diseases, Department of Traumatic and Plastic Surgery, , West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chi Ma
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Jian Feng
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| |
Collapse
|
24
|
Yu F, Wu F, Li F, Liao X, Wang Y, Li X, Wang C, Shi Y, Ye L. Wnt7b-induced Sox11 functions enhance self-renewal and osteogenic commitment of bone marrow mesenchymal stem cells. Stem Cells 2020; 38:1020-1033. [PMID: 32346881 DOI: 10.1002/stem.3192] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/05/2023]
Abstract
As a profoundly anabolic regulator of bone, Wnt7b is well acknowledged to enhance osteoblast activities. Here, we report that bone marrow mesenchymal stem cells (BMSCs) are another important population responding to Wnt7b. In this study, we systematically investigated the in vivo role of Wnt7b in BMSCs using transgenic mice, high-throughput RNA-seq, immunohistochemistry, RT-qPCR, and in situ hybridization. These methods led us to uncover that Sox11 is induced via Wnt7b in BMSCs. Colony formation assay, flow cytometry, EdU incorporation labeling, RT-qPCR, and Western blot were conducted to detect the self-renewal capacity of BMSCs. Alkaline phosphatase staining, alizarin red staining, and ex vivo BMSCs transplantation were utilized to detect the osteogenic ability of BMSCs. ChIP-qPCR, shRNAs, and immunofluorescence staining were utilized to investigate the underlying mechanisms. Consequently, bone-derived Wnt7b was found to decrease in osteoporosis and elevate in bone fracture healing. During bone fracture healing, Wnt7b was particularly expressed in the mesenchymal cells residing within healing frontiers. RNA-seq data of Wnt7b-overexpressed bones uncovered the significant upregulation of Sox11. Histological results further unveiled that Sox11 is specifically increased in BMSCs. Wnt7b-induced Sox11 was demonstrated to reinforce both self-renewal and osteogenic differentiation of BMSCs. Mechanistically, Wnt7b activates the Ca2+ -dependent Nfatc1 signaling to directly induce Sox11 transcription, which in turn activates the transcriptions of both proliferation-related transcription factors (Ccnb1 and Sox2) and osteogenesis-related factors (Runx2, Sp7) in BMSCs. It is intriguing that this Wnt7b-Sox11 signaling in BMSCs is β-Catenin-independent. Overall, this study provides brand new insights of Wnt7b in bone formation, namely, Wnt7b can enhance both self-renewal and osteogenic differentiation of BMSCs via inducing Sox11. These findings present a new crosstalk between Wnt and Sox signaling in BMSCs.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xueyang Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
25
|
Zhong L, Yao L, Tower RJ, Wei Y, Miao Z, Park J, Shrestha R, Wang L, Yu W, Holdreith N, Huang X, Zhang Y, Tong W, Gong Y, Ahn J, Susztak K, Dyment N, Li M, Long F, Chen C, Seale P, Qin L. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. eLife 2020; 9:e54695. [PMID: 32286228 PMCID: PMC7220380 DOI: 10.7554/elife.54695] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/11/2020] [Indexed: 12/14/2022] Open
Abstract
Bone marrow mesenchymal lineage cells are a heterogeneous cell population involved in bone homeostasis and diseases such as osteoporosis. While it is long postulated that they originate from mesenchymal stem cells, the true identity of progenitors and their in vivo bifurcated differentiation routes into osteoblasts and adipocytes remain poorly understood. Here, by employing large scale single cell transcriptome analysis, we computationally defined mesenchymal progenitors at different stages and delineated their bi-lineage differentiation paths in young, adult and aging mice. One identified subpopulation is a unique cell type that expresses adipocyte markers but contains no lipid droplets. As non-proliferative precursors for adipocytes, they exist abundantly as pericytes and stromal cells that form a ubiquitous 3D network inside the marrow cavity. Functionally they play critical roles in maintaining marrow vasculature and suppressing bone formation. Therefore, we name them marrow adipogenic lineage precursors (MALPs) and conclude that they are a newly identified component of marrow adipose tissue.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, The First Hospital of China Medical UniversityShenyangChina
| | - Robert J Tower
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yulong Wei
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhen Miao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Jihwan Park
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of PennsylvaniaPhiladelphiaUnited States
| | - Rojesh Shrestha
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of PennsylvaniaPhiladelphiaUnited States
| | - Luqiang Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Shandong University Qilu Hospital, Shandong UniversityJinanChina
| | - Wei Yu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Nicholas Holdreith
- Division of Hematology, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaobin Huang
- Department of Pediatrics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaUnited States
| | - Wei Tong
- Division of Hematology, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Yanqing Gong
- Division of Transnational Medicine and Human Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of PennsylvaniaPhiladelphiaUnited States
| | - Nathanial Dyment
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery/Pharmacology, University of Pennsylvania, School of Dental MedicinePhiladelphiaUnited States
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
26
|
Mesenchymal Stem Cell-Specific and Preosteoblast-Specific Ablation of TSC1 in Mice Lead to Severe and Slight Spinal Dysplasia, Respectively. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4572687. [PMID: 32309432 PMCID: PMC7140121 DOI: 10.1155/2020/4572687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/09/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Background TSC1-related signaling plays a pivotal role in intramembranous and endochondral ossification processes during skeletogenesis. This study was aimed at determining the significance of the TSC1 gene at different stages of spinal development. Materials and Methods. TSC1-floxed mice (TSC1flox/flox) were crossed with Prrx1-Cre or BGLAP-Cre transgenic mice or mesenchymal stem cell- and osteoblast-specific TSC1-deficient mice, respectively. Somatic and vertebral differences between WT and Prrx1-TSC1 null mice were examined at 4 weeks after birth. Results No apparent body size abnormalities were apparent in newborn and 4-week- to 2-month-old mice with BGLAP-Cre driver-depleted TSC1. Vertebral and intervertebral discs displayed strong dysplasia in Prrx1-TSC1 null mice. In contrast, vertebrae were only slightly affected, and intervertebral discs from skeletal preparations displayed no apparent changes in BGLAP-TSC1 null mice. Conclusion Our data suggest that the TSC1 gene is crucial for endochondral ossification during postnatal spine development but plays discriminative roles at different stages. Mesenchymal stem cell-specific ablation of TSC1 led to severe spinal dysplasia at early stages of endochondral ossification while osteoblast-specific deletion of TSC1 affected vertebrae slightly and had no detectable effects on intervertebral discs.
Collapse
|
27
|
Wang S, Li J, Sun H, Sha L, Guo Y, Gu G, Mao J, Nie X, Zhai Y, Yu D, Zhai J, Li H, Shan X, Dai C, Wu X, He X, Xin L, Liu J, Heng K, Geng Q. Treatment with soluble bone morphogenetic protein type 1A receptor fusion protein alleviates irradiation-induced bone loss in mice through increased bone formation and reduced bone resorption. Am J Transl Res 2020; 12:743-757. [PMID: 32269709 PMCID: PMC7137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/23/2019] [Indexed: 06/11/2023]
Abstract
An increased fracture risk is often observed in cancer patients undergoing radiotherapy (RT), particularly at sites within the field of radiation. Therefore, the development of appropriate therapeutic options to prevent RT-induced bone loss is urgently needed. A soluble form of the BMP receptor type 1A fusion protein (mBMPR1A-mFc) serves as an antagonist to endogenous BMPR1A. Previous studies have shown that mBMPR1A-mFc treatment increases bone mass in both ovary-intact and ovariectomized via promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption. The present study was designed to investigate whether mBMPR1A-mFc administration prevents radiation-induced bone deterioration in mice. We constructed an animal model of radiation-induced osteoporosis by exposure to a 2-Gy dose of X-rays. Micro-CT, histomorphometric, bone-turnover, and mechanical analyses showed that mBMPR1A-mFc administration prevented trabecular microarchitecture deterioration after RT because of a marked increase in bone formation and a decrease in bone resorption. Mechanistic studies indicated that mBMPR1A-mFc administration promoted osteoblastogenesis by activating Wnt/Lrp5/β-catenin signaling while decreasing osteoclastogenesis by inhibiting the RANKL/RANK/OPG pathway. Our novel findings provide solid evidence for the application of mBMPR1A-mFc as a therapeutic treatment for radiation-induced osteoporosis.
Collapse
Affiliation(s)
- Shen Wang
- Department of Acupuncture, Guangxi Medical UniversityNanning 530000, China
| | - Jie Li
- Department of Orthopedics, Xuzhou Central Hospital, Southeast UniversityXuzhou 221006, China
| | - Huabei Sun
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Liangwei Sha
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Yilong Guo
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Guanqiu Gu
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Jiling Mao
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Xinfa Nie
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Ying Zhai
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Dehong Yu
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Juan Zhai
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Hongnian Li
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Xin Shan
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Chengbai Dai
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Xiangzhi Wu
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| | - Xiaobo He
- Department of Orthopedics, Yangzhou Jiangdu TCM HospitalYangzhou 225200, China
| | - Li Xin
- Department of Osteoporosis, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221004, China
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical UniversityNanjing 210011, China
| | - Ke Heng
- Department of Orthopedics, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical UniversityChangzhou 213003, China
| | - Qinghe Geng
- Lab of Bone and Mineral Research, The Affiliated Pizhou Hospital of Xuzhou Medical UniversityXuzhou 221300, China
| |
Collapse
|
28
|
Inducible expression of Wnt7b promotes bone formation in aged mice and enhances fracture healing. Bone Res 2020; 8:4. [PMID: 32047703 PMCID: PMC6997361 DOI: 10.1038/s41413-019-0081-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/14/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
There remain unmet clinical needs for safe and effective bone anabolic therapies to treat aging-related osteoporosis and to improve fracture healing in cases of nonunion or delayed union. Wnt signaling has emerged as a promising target pathway for developing novel bone anabolic drugs. Although neutralizing antibodies against the Wnt antagonist sclerostin have been tested, Wnt ligands themselves have not been fully explored as a potential therapy. Previous work has demonstrated Wnt7b as an endogenous ligand upregulated during osteoblast differentiation, and that Wnt7b overexpression potently stimulates bone accrual in the mouse. The earlier studies however did not address whether Wnt7b could promote bone formation when specifically applied to aged or fractured bones. Here we have developed a doxycycline-inducible strategy where Wnt7b is temporally induced in the bones of aged mice or during fracture healing. We report that forced expression of Wnt7b for 1 month starting at 15 months of age greatly stimulated trabecular and endosteal bone formation, resulting in a marked increase in bone mass. We further tested the effect of Wnt7b on bone healing in a murine closed femur fracture model. Induced expression of Wnt7b at the onset of fracture did not affect the initial cartilage formation but promoted mineralization of the subsequent bone callus. Thus, targeted delivery of Wnt7b to aged bones or fracture sites may be explored as a potential therapy.
Collapse
|
29
|
Next-Generation Sequencing Panel Analysis of Clinically Relevant Mutations in Circulating Cell-Free DNA from Patients with Gestational Trophoblastic Neoplasia: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1314967. [PMID: 31998776 PMCID: PMC6970497 DOI: 10.1155/2020/1314967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 01/20/2023]
Abstract
Gestational trophoblastic neoplasia (GTN) originates from placental tissue and exhibits the potential for invasion and metastasis. Gene alterations in GTN have not been extensively studied because of a lack of qualified tumor specimens after chemotherapy. GTN has a rapid growth rate and is highly metastatic, which makes circulating tumor DNA (ctDNA) sequencing a promising modality for gene profiling. Accordingly, in this study, we performed targeted next-generation sequencing (NGS) of 559 tumor-associated genes using circulating cell-free DNA (cfDNA) collected prior to chemotherapy from 11 patients with GTN. All sequenced genes were associated with oncogenesis, progression, and targeted therapy. The average cfDNA level was 0.43 ± 0.22 ng/μL. Significant correlations were found between cfDNA concentration and maximum lesion diameter (r = 0.625, p=0.040) and time for human chorionic gonadotropin beta subunit (β-HCG) recovering to normal level (r = 0.609, p=0.047). There were no significant correlations between cfDNA concentrations and β-HCG expression level or lung metastasis. ctDNA mutations were detected in all patients, and 73 mutant genes were detected in 11 patients. BMPR1A (27.3%), LRP1B (27.3%), ERCC4 (18.2%), FGF14 (18.2%), HSP90AA1 (18.2%), KAT6A (18.2%), KMT2D (18.2%), MAP3K1 (18.2%), RANBP2 (18.2%), and ZNF217 (18.2%) mutations were detected as overlapping mutations. The mRNA and protein levels of bone morphogenetic protein receptor type 1A were significantly downregulated in human JAR and JEG-3 choriocarcinoma cells (p < 0.0001), whereas mRNA and protein levels of mitogen-activated protein kinase kinase kinase 1 were upregulated in these two cell lines (p=0.0128, p=0.0012, respectively). These genes may play important roles in GTN initiation and progression and may be candidate targets for GTN treatment. These findings suggested that cfDNA levels could provide potential assessment value in disease severity of GTN and that ctDNA sequencing was a promising approach for identifying gene mutations in GTN.
Collapse
|
30
|
Tao ZS, Lu HL, Ma NF, Zhang RT, Li Y, Yang M, Xu HG. Rapamycin could increase the effects of melatonin against age-dependent bone loss. Z Gerontol Geriatr 2019; 53:671-678. [PMID: 31781847 DOI: 10.1007/s00391-019-01659-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
Abstract
Previous studies have demonstrated the beneficial effect of melatonin (MEL) on bone tissue and bone metabolism. Rapamycin (RAP) promotes osteoblast proliferation and inhibits osteoclast proliferation, and positively affects bone regeneration; however, reports about effects of RAP on bone loss for aged female rats with MEL administration are limited. This study investigated the impact of treatment with RAP on bone loss for aged female rats with MEL administration. Female Sprague-Dawley rats weighing approximately 520 g were randomly divided into 3 groups of 10: group CON, group MEL and group MEL + RAP and received saline, MEL, RAP plus MEL treatment until death at 12 weeks, respectively. The results of maintaining bone mass and bone strength with RAP plus MEL administration were evaluated by histology, microcomputerized tomography (Micro-CT), gene expression analysis and biomechanical testing. Results from this study indicated that MEL + RAP had stronger effects on the prevention and treatment of osteoporosis than MEL administration. Administration of MEL + RAP produced the strongest effects on bone parameters and strength for distal femurs and regulation of OPG/RANKL signalling pathway-related gene expression. These results seemed to indicate that RAP could increase the effects of MEL on age-dependent bone loss.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Han-Li Lu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Neng-Feng Ma
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Rou-Tian Zhang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Yang Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China.
| | - Hong-Guang Xu
- Spine Research Center of Wannan Medical College; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution; Dept of Spine Surgery, Yijishan hospital of Wannan Medical College, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China.
| |
Collapse
|
31
|
Nakajima T, Ikeya M. Insights into the biology of fibrodysplasia ossificans progressiva using patient-derived induced pluripotent stem cells. Regen Ther 2019; 11:25-30. [PMID: 31193176 PMCID: PMC6517845 DOI: 10.1016/j.reth.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
The demand for development of new drugs remains on the upward trend because of the large number of patients suffering from intractable diseases for which effective treatment has not been established yet. Recently, several researchers have attempted to apply induced pluripotent stem cell (iPSC) technology as a powerful tool for studying the mechanisms underlying the onset of various diseases and for new drug screening. This technology has made an enormous breakthrough, since it permits us to recapitulate the disease phenotype in vitro, outside of the patient's body. Here, we discuss the latest findings that uncovered a mechanism underlying the pathology of a rare genetic musculoskeletal disease, fibrodysplasia ossificans progressiva (FOP), by modeling the phenotypes with FOP patient-derived iPSCs, and that discovered promising candidate drugs for FOP treatment. We also discussed future directions of FOP research.
Collapse
Affiliation(s)
- Taiki Nakajima
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
32
|
Wu J, Ren B, Shi F, Hua P, Lin H. BMP and mTOR signaling in heterotopic ossification: Does their crosstalk provide therapeutic opportunities? J Cell Biochem 2019; 120:12108-12122. [PMID: 30989716 DOI: 10.1002/jcb.28710] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/17/2019] [Accepted: 03/22/2019] [Indexed: 12/23/2022]
Abstract
Heterotopic ossification (HO) refers to the pathological formation of ectopic bone in soft tissues, it occurs following severe trauma or in patients with a rare genetic disorder known as fibrodysplasia ossificans progressiva. The pathological process of HO formation is a two-step mechanism: inflammation and destruction of connective tissues, followed by bone formation. The latter is further subdivided into three stages: fibroproliferation/angiogenesis, chondrogenesis, and osteogenesis. Currently, therapeutic options for HO are limited. New potential therapeutics will most likely arise from a more detailed understanding of the signaling pathways implicated in each stage of ectopic bone formation and molecular targets that may be effective at both the early and late stages of HO. Bone morphogenetic protein (BMP) signaling is believed to play a key role in the overall HO process. Recently, the mammalian target of rapamycin (mTOR) signaling pathway has received attention as a critical pathway for chondrogenesis, osteogenesis, and HO. Inhibition of mTOR signaling has been shown to block trauma-induced and genetic HO. Intriguingly, recent studies have revealed crosstalk between mTOR and BMP signaling. Moreover, mTOR has emerged as a factor involved in the early hypoxic and inflammatory stages of HO. We will summarize the current knowledge of the roles of mTOR and BMP signaling in HO, with a particular focus on the crosstalk between mTOR and BMP signaling. We also discuss the activation of AMP activated protein kinase (AMPK) by the most widely used drug for type 2 diabetes, metformin, which exerts a dual negative regulatory effect on mTOR and BMP signaling, suggesting that metformin is a promising drug treatment for HO. The discovery of an mTOR-BMP signaling network may be a potential molecular mechanism of HO and may represent a novel therapeutic target for the pharmacological control of HO.
Collapse
Affiliation(s)
- Jianhui Wu
- Jiangxi Medical School, Nanchang University, Nanchang, Jiangx, China.,Nanchang Joint Programme, Queen Mary University of London, London, UK
| | - Bowen Ren
- Jiangxi Medical School, Nanchang University, Nanchang, Jiangx, China.,Nanchang Joint Programme, Queen Mary University of London, London, UK
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Ping Hua
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
He HL, Liu C, Li BX, Wang CQ, Li HT, Gu L. Estrogen-induced Tgfbr1 and Bmpr1a Expression Repressed via Estrogen Receptor Beta in MC3T3-E1 Cells. Chin Med J (Engl) 2018; 131:2558-2565. [PMID: 30381589 PMCID: PMC6213849 DOI: 10.4103/0366-6999.244117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Estrogen, as an important hormone in human physiological process, is closely related to bone metabolism. The aim of this study was to investigate the mechanism of estrogen on osteoblasts metabolism in MC3T3-E1 cells. Methods We treated the MC3T3-E1 cells with different concentrations of β-estradiol (0.01, 0.1, 1, and 10 nmol/L), observed the morphological changes of the cells, and detected the cell's proliferation and apoptosis of MC3T3-E1 cells. Two transcriptome libraries were constructed and sequenced. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to confirm the differentially expressed genes (DEGs), and then treated the MC3T3-E1 cells with estrogen receptor (ER) inhibitors α and β, respectively, and then examined the expression of Tgfbr1 and Bmpr1a genes. The promoter of Tgfbr1 and Bmpr1a gene was analyzed, and the ER response elements were identified. Finally, ChIP was used to verify the binding of ER to Tgfbr1 and Bmpr1a promoter. Results In the high-concentration β-estradiol treatment group (1 nmol/L and 10 nmol/L), there was no significant difference in the morphology of the cells under the microscope, 1 nmol/L and 10 nmol/L treated group appeared statistically significant difference in cell apoptosis and proliferation (P < 0.05 and P < 0.01, respectively). We found 460 DEGs compared with the control group. Among the DEGs, there were 66 upregulated genes and 394 downregulated genes. Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that many bone metabolism-related biological processes and cell signaling pathways were disordered. The qRT-PCR verification showed that the expressions of Tgfbr1- and Bmpr1a-related genes in bone metabolism pathway in the 10 nmol/L treatment group were significantly decreased (P < 0.05). ER β was involved in the inhibitory effect of Tgfbr1 and Bmpr1a genes. The bioinformatics of the promoter found that there were three ER response elements in the promoter of Tgfbr1, and there were two ER response elements in Bmpr1a promoter regions. ChIP experiments showed that estrogen could enhance the binding of ERs to Tgfbr1 and Bmpr1a genes. Conclusions Estrogen can promote the apoptosis and proliferation of osteoblasts simultaneously, and the mechanism may be the joint action of transforming growth factor-beta, Wnt, mitogen-activated protein kinase, and nuclear factor-kappaB bone metabolism-related signaling pathway. Estrogen inhibits the expression of Tgfbr1 and Bmpr1a genes through ER β and affects the metabolism of MC3T3-E1 osteoblasts.
Collapse
Affiliation(s)
- Han-Liang He
- Department of Orthopedics, Benq Medical Center of Suzhou, Suzhou, Jiangsu 215000, China
| | - Chao Liu
- Department of Orthopedics, Benq Medical Center of Suzhou, Suzhou, Jiangsu 215000, China
| | - Bing-Xue Li
- Department of Orthopedics, Benq Medical Center of Suzhou, Suzhou, Jiangsu 215000, China
| | - Chen-Qiu Wang
- Department of Neurosurgery, Benq Medical Center of Suzhou, Suzhou, Jiangsu 215000, China
| | - Hai-Tao Li
- Department of Orthopedics, Benq Medical Center of Suzhou, Suzhou, Jiangsu 215000, China
| | - Lin Gu
- Department of Endocrinology, Benq Medical Center of Suzhou, Suzhou, Jiangsu 215000, China
| |
Collapse
|
34
|
Liu Q, Liu C, Yang Y, Yang H, Chen J. Osteocyte‐intrinsic mTORC1 signaling restrains trabecular bone accrual in mice. J Cell Biochem 2018; 119:8743-8749. [PMID: 30160781 DOI: 10.1002/jcb.27470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Qingbai Liu
- Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou China
- Department of Orthopedics Lianshui County People's Hospital Huaian China
| | - Cunchang Liu
- Orthopedic Institute, Medical College, Soochow University Suzhou China
| | - Yanjun Yang
- Orthopedic Institute, Medical College, Soochow University Suzhou China
| | - Huilin Yang
- Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou China
- Orthopedic Institute, Medical College, Soochow University Suzhou China
| | - Jianquan Chen
- Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou China
- Orthopedic Institute, Medical College, Soochow University Suzhou China
| |
Collapse
|
35
|
BMPRIA is required for osteogenic differentiation and RANKL expression in adult bone marrow mesenchymal stromal cells. Sci Rep 2018; 8:8475. [PMID: 29855498 PMCID: PMC5981611 DOI: 10.1038/s41598-018-26820-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/10/2018] [Indexed: 11/08/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) activate the canonical Smad1/5/8 and non-canonical Tak1-MAPK pathways via BMP receptors I and II to regulate skeletal development and bone remodeling. Specific ablation of Bmpr1a in immature osteoblasts, osteoblasts, or osteocytes results in an increase in cancellous bone mass, yet opposite results have been reported regarding the underlying mechanisms. Moreover, the role for BMPRIA-mediated signaling in bone marrow mesenchymal stromal cells (BM-MSCs) has not been explored. Here, we specifically ablated Bmpr1a in BM-MSCs in adult mice to study the function of BMPR1A in bone remodeling and found that the mutant mice showed an increase in cancellous and cortical bone mass, which was accompanied by a decrease in bone formation rate and a greater decrease in bone resorption. Decreased bone formation was associated with a defect in BM-MSC osteogenic differentiation whereas decreased bone resorption was associated with a decrease in RANKL production and osteoclastogenesis. However, ablation of Tak1, a critical non-canonical signaling molecule downstream of BMP receptors, in BM-MSCs at adult stage did not affect bone remodeling. These results suggest that BMP signaling through BMPRIA controls BM-MSC osteogenic differentiation/bone formation and RANKL expression/osteoclastogenesis in adult mice independent of Tak1 signaling.
Collapse
|
36
|
Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. TGF-β Family Signaling in Mesenchymal Differentiation. Cold Spring Harb Perspect Biol 2018; 10:a022202. [PMID: 28507020 PMCID: PMC5932590 DOI: 10.1101/cshperspect.a022202] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into several lineages during development and also contribute to tissue homeostasis and regeneration, although the requirements for both may be distinct. MSC lineage commitment and progression in differentiation are regulated by members of the transforming growth factor-β (TGF-β) family. This review focuses on the roles of TGF-β family signaling in mesenchymal lineage commitment and differentiation into osteoblasts, chondrocytes, myoblasts, adipocytes, and tenocytes. We summarize the reported findings of cell culture studies, animal models, and interactions with other signaling pathways and highlight how aberrations in TGF-β family signaling can drive human disease by affecting mesenchymal differentiation.
Collapse
Affiliation(s)
- Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Stefanie Alexander
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Jonathan R Peterson
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Taylor Nicholas Snider
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Benjamin Levi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
37
|
Watt J, Baker AH, Meeks B, Pajevic PD, Morgan EF, Gerstenfeld LC, Schlezinger JJ. Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice. J Cell Physiol 2018; 233:7007-7021. [PMID: 29380368 DOI: 10.1002/jcp.26495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR.
Collapse
Affiliation(s)
- James Watt
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Amelia H Baker
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Brett Meeks
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Paola D Pajevic
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts
| | - Elise F Morgan
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts.,Department of Mechanical Engineering, Boston University, Boston, Massachusetts
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
38
|
Shi C, Mandair GS, Zhang H, Vanrenterghem GG, Ridella R, Takahashi A, Zhang Y, Kohn DH, Morris MD, Mishina Y, Sun H. Bone morphogenetic protein signaling through ACVR1 and BMPR1A negatively regulates bone mass along with alterations in bone composition. J Struct Biol 2018; 201:237-246. [PMID: 29175363 PMCID: PMC5820174 DOI: 10.1016/j.jsb.2017.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
Bone quantity and bone quality are important factors in determining the properties and the mechanical functions of bone. This study examined the effects of disrupting bone morphogenetic protein (BMP) signaling through BMP receptors on bone quantity and bone quality. More specifically, we disrupted two BMP receptors, Acvr1 and Bmpr1a, respectively, in Osterix-expressing osteogenic progenitor cells in mice. We examined the structural changes to the femora from 3-month old male and female conditional knockout (cKO) mice using micro-computed tomography (micro-CT) and histology, as well as compositional changes to both cortical and trabecular compartments of bone using Raman spectroscopy. We found that the deletion of Acvr1 and Bmpr1a, respectively, in an osteoblast-specific manner resulted in higher bone mass in the trabecular compartment. Disruption of Bmpr1a resulted in a more significantly increased bone mass in the trabecular compartment. We also found that these cKO mice showed lower mineral-to-matrix ratio, while tissue mineral density was lower in the cortical compartment. Collagen crosslink ratio was higher in both cortical and trabecular compartments of male cKO mice. Our study suggested that BMP signaling in osteoblast mediated by BMP receptors, namely ACVR1 and BMPR1A, is critical in regulating bone quantity and bone quality.
Collapse
Affiliation(s)
- Ce Shi
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130000, China; Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Gurjit S Mandair
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Gloria G Vanrenterghem
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Ryan Ridella
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48108-1055, USA
| | - Akira Takahashi
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Yanshuai Zhang
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - David H Kohn
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA; Biomedical Engineering College of Engineering, University of Michigan, MI 48109-2110, USA.
| | - Michael D Morris
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48108-1055, USA.
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130000, China.
| |
Collapse
|
39
|
Abstract
PURPOSE The authors' purpose is to reveal the value of osteoblast-derived exosomes in bone diseases. METHODS Microvesicles from supernatants of mouse Mc3t3 were isolated by ultracentrifugation and then the authors presented the protein profile by proteomics analysis. RESULTS The authors detected a total number of 1536 proteins by mass spectrometry and found 172 proteins overlap with bone database. The Ingenuity Pathway Analysis shows network of "Skeletal and Muscular System Development and Function, Developmental Disorder, Hereditary Disorder" and pathway about osteogenesis. EFNB1 and transforming growth factor beta receptor 3 in the network, LRP6, bone morphogenetic protein receptor type-1, and SMURF1 in the pathway seemed to be valuable in the exosome research of related bone disease. CONCLUSIONS The authors' study unveiled the content of osteoblast-derived exosome and discussed valuable protein in it which might provide novel prospective in bone diseases research.
Collapse
|
40
|
Marie PJ, Cohen-Solal M. The Expanding Life and Functions of Osteogenic Cells: From Simple Bone-Making Cells to Multifunctional Cells and Beyond. J Bone Miner Res 2018; 33:199-210. [PMID: 29206311 DOI: 10.1002/jbmr.3356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
During the last three decades, important progress in bone cell biology and in human and mouse genetics led to major advances in our understanding of the life and functions of cells of the osteoblast lineage. Previously unrecognized sources of osteogenic cells have been identified. Novel cellular and molecular mechanisms controlling osteoblast differentiation and senescence have been determined. New mechanisms of communications between osteogenic cells, osteocytes, osteoclasts, and chondrocytes, as well as novel links between osteogenic cells and blood vessels have been identified. Additionally, cells of the osteoblast lineage were shown to be important components of the hematopoietic niche and to be implicated in hematologic dysfunctions and malignancy. Lastly, unexpected interactions were found between osteogenic cells and several soft tissues, including the central nervous system, gut, muscle, fat, and testis through the release of paracrine factors, making osteogenic cells multifunctional regulatory cells, in addition to their bone-making function. These discoveries considerably enlarged our vision of the life and functions of osteogenic cells, which may lead to the development of novel therapeutics with immediate applications in bone disorders. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martine Cohen-Solal
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
41
|
mTOR signaling in skeletal development and disease. Bone Res 2018; 6:1. [PMID: 29423330 PMCID: PMC5802487 DOI: 10.1038/s41413-017-0004-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that integrates inputs from nutrients and growth factors to control many fundamental cellular processes through two distinct protein complexes mTORC1 and mTORC2. Recent mouse genetic studies have established that mTOR pathways play important roles in regulating multiple aspects of skeletal development and homeostasis. In addition, mTORC1 has emerged as a common effector mediating the bone anabolic effect of Igf1, Wnt and Bmp. Dysregulation of mTORC1 could contribute to various skeletal diseases including osteoarthritis and osteoporosis. Here we review the current understanding of mTOR signaling in skeletal development and bone homeostasis, as well as in the maintenance of articular cartilage. We speculate that targeting mTOR signaling may be a valuable approach for treating skeletal diseases. Drugs directed at a key cellular signaling pathway could prove useful for treating skeletal diseases. Jianquan Chen from Soochow University in Suzhou, China, and Fanxin Long from Washington University School of Medicine in St. Louis, Missouri, USA, provide an overview of how proteins involved in the mechanistic target of rapamycin (mTOR) signaling pathway sense and integrate a range of environmental cues to regulate bone and cartilage development. In particular, they review the differing roles of the two distinct mTOR-containing protein complexes, mTORC1 and mTORC2. Both seem to mediate bone formation and resorption but in different ways, with implications for how best to treat osteoarthritis, osteoporosis, and other degenerative skeletal diseases. The authors suggest that more specific mTOR inhibitors with minimal side effects are needed to help stimulate bone growth in these diseases.
Collapse
|
42
|
Ko FC, Van Vliet M, Ellman R, Grasso D, Brooks DJ, Spatz JM, Conlon C, Aguirre JI, Wronski TJ, Bouxsein ML. Treatment With a Soluble Bone Morphogenetic Protein Type 1A Receptor (BMPR1A) Fusion Protein Increases Bone Mass and Bone Formation in Mice Subjected to Hindlimb Unloading. JBMR Plus 2017; 1:66-72. [PMID: 30283882 PMCID: PMC6124165 DOI: 10.1002/jbm4.10012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/15/2017] [Accepted: 06/25/2017] [Indexed: 01/26/2023] Open
Abstract
Previous work has shown that the soluble murine BMPR1A-fusion protein (mBMPR1A-mFc) binds to BMP2 and BMP4 with high affinity, preventing downstream signaling. Further, treatment of intact and ovariectomized mice with mBMPR1A-mFc leads to increased bone mass, and improved bone microarchitecture and strength, via increased bone formation and reduced resorption. In this study, we tested the effects of mBMPR1A-mFc on disuse-induced bone loss caused by 21 days of hindlimb unloading (HLU) via tail suspension versus cage controls (CONs). Adult female C57BL/6J mice (12 weeks old) were assigned to one of four groups (n = 10 each): CON-VEH; CON-mBMPR1A-mFc; HLU-VEH; and HLU-mBMPR1A-mFc. Mice were injected subcutaneously with VEH or mBMPR1A-mFc (4.5 mg/kg, 2×/week). Leg BMD declined in the HLU-VEH group (-5.3% ± 1.3%), whereas it was unchanged in HLU-mBMPR1A-mFc (-0.3% ± 0.9%, p < 0.05 versus HLU-VEH). Leg BMD increased significantly more in CON-mBMPR1A-mFc than CON-VEH (10.2% ± 0.6% versus 4.4% ± 0.8%). In the femur, trabecular, and cortical bone microarchitecture was worse in the HLU-VEH compared to CON-VEH mice, whereas mBMPR1A-mFc treatment for 3 weeks led to greater Tb.BV/TV, Tb.Th, and midshaft Ct.Th in both the HLU and CON groups compared to comparable VEH-treated counterparts (p < 0.05). HLU-mBMPR1A-mFc mice also had 21% greater failure load (p < 0.05) compared to their VEH-treated counterparts. Dynamic histomorphometry indicated that treatment with mBMPR1A-mFc led to significantly greater mineralizing surface and mineral apposition rate, resulting in a 3.5-fold and fivefold higher bone formation rate in the mBMPR1A-mFc-treated CON and HLU animals versus VEH groups, respectively. mBMPR1A-mFc-treated mice had a similar osteoblast surface but significantly lower osteoclast surface than VEH-treated animals in both the CON and HLU groups. Altogether, these findings suggest that treatment with the soluble BMPR1A fusion protein may be useful for maintenance of skeletal integrity in the setting of disuse-induced bone loss.
Collapse
Affiliation(s)
- Frank C. Ko
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical CenterBostonMAUSA
- Endocrine UnitMassachusetts General HospitalBostonMAUSA
| | - Miranda Van Vliet
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical CenterBostonMAUSA
| | - Rachel Ellman
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical CenterBostonMAUSA
- Massachusetts Institute of Technology (MIT) Health Sciences and Technology ProgramCambridgeMAUSA
| | - Daniel Grasso
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical CenterBostonMAUSA
| | - Daniel J Brooks
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical CenterBostonMAUSA
| | - Jordan M Spatz
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical CenterBostonMAUSA
- Massachusetts Institute of Technology (MIT) Health Sciences and Technology ProgramCambridgeMAUSA
| | - Chrissy Conlon
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical CenterBostonMAUSA
| | - J Ignacio Aguirre
- Department of Physiological SciencesUniversity of FloridaGainesvilleFLUSA
| | - Thomas J Wronski
- Department of Physiological SciencesUniversity of FloridaGainesvilleFLUSA
| | - Mary L Bouxsein
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical CenterBostonMAUSA
- Endocrine UnitMassachusetts General HospitalBostonMAUSA
- Department of Orthopedic SurgeryHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
43
|
Zhong ZA, Kot A, Lay YAE, Zhang H, Jia J, Lane NE, Yao W. Sex-Dependent, Osteoblast Stage-Specific Effects of Progesterone Receptor on Bone Acquisition. J Bone Miner Res 2017; 32:1841-1852. [PMID: 28569405 PMCID: PMC5611815 DOI: 10.1002/jbmr.3186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/22/2017] [Accepted: 05/27/2017] [Indexed: 12/12/2022]
Abstract
The role of the progesterone receptor (PR) in the regulation of sexual dimorphism in bone has yet to be determined. Here we utilized genetic fate mapping and Western blotting to demonstrate age-dependent PR expression in the mouse femoral metaphysis and diaphysis. To define sex-dependent and osteoblast stage-specific effects of PR on bone acquisition, we selectively deleted PR at different stages of osteoblast differentiation. We found that when Prx1-Cre mice were crossed with PR floxed mice to generate a mesenchymal stem cell (MSC) conditional KO model (Prx1; PRcKO), the mutant mice developed greater trabecular bone volume with higher mineral apposition rate and bone formation. This may be explained by increased number of MSCs and greater osteogenic potential, particularly in males. Age-related trabecular bone loss was similar between the Prx1; PRcKO mice and their WT littermates in both sexes. Hormone deficiency during the period of rapid bone growth induced rapid trabecular bone loss in both the WT and the Prx1; PRcKO mice in both sexes. No differences in trabecular bone mass was observed when PR was deleted in mature osteoblasts using osteocalcin-Cre (Bglap-Cre). Also, there were no differences in cortical bone mass in all three PRcKO mice. In conclusion, PR inactivation in early osteoprogenitor cells but not in mature osteoblasts influenced trabecular bone accrual in a sex-dependent manner. PR deletion in osteoblast lineage cells did not affect cortical bone mass. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zhendong A. Zhong
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Center for Cancer and Cell Biology, Program in Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids MI 49503, USA
| | - Alexander Kot
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Yu-An E. Lay
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Hongliang Zhang
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Department of Emergency Medicine, Center for Rare Diseases, Second Xiangya Hospital of the Central-South University, Hunan, Changsha, China
| | - Junjing Jia
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Nancy E. Lane
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
44
|
Chondrogenesis and osteogenesis are one continuous developmental and lineage defined biological process. Sci Rep 2017. [PMID: 28855706 DOI: 10.1038/s41598‐017‐10048‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although chondrogenesis and osteogenesis are considered as two separate processes during endochondral bone formation after birth, recent studies have demonstrated the direct cell transformation from chondrocytes into bone cells in postnatal bone growth. Here we use cell lineage tracing and multiple in vivo approaches to study the role of Bmpr1a in endochondrogenesis. Our data showed profound changes in skeletal shape, size and structure when Bmpr1a was deleted using Aggrecan-Cre ERT2 in early cartilage cells with a one-time tamoxifen injection. We observed the absence of lineage progression of chondrocyte-derived bone cells to form osteoblasts and osteocytes in metaphyses. Furthermore, we demonstrated the key contribution of growth plate chondrocytes and articular chondrocytes, not only for long bone growth, but also for bone remodeling. In contrast, deleting Bmpr1a in early osteoblasts with 3.6 Col 1-Cre had little impact on skeletal shape and size except for a sharp increase in osteoblasts and osteocytes, leading to a profound increase in bone volume. We conclude that chondrogenesis and osteogenesis are one continuous developmental and lineage-defined biological process, in which Bmpr1a signaling in chondrocytes is necessary for the formation of a pool or niche of osteoprogenitors that then contributes in a major way to overall bone formation and growth.
Collapse
|
45
|
Jing Y, Jing J, Ye L, Liu X, Harris SE, Hinton RJ, Feng JQ. Chondrogenesis and osteogenesis are one continuous developmental and lineage defined biological process. Sci Rep 2017; 7:10020. [PMID: 28855706 PMCID: PMC5577112 DOI: 10.1038/s41598-017-10048-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/02/2017] [Indexed: 02/05/2023] Open
Abstract
Although chondrogenesis and osteogenesis are considered as two separate processes during endochondral bone formation after birth, recent studies have demonstrated the direct cell transformation from chondrocytes into bone cells in postnatal bone growth. Here we use cell lineage tracing and multiple in vivo approaches to study the role of Bmpr1a in endochondrogenesis. Our data showed profound changes in skeletal shape, size and structure when Bmpr1a was deleted using Aggrecan-CreERT2 in early cartilage cells with a one-time tamoxifen injection. We observed the absence of lineage progression of chondrocyte-derived bone cells to form osteoblasts and osteocytes in metaphyses. Furthermore, we demonstrated the key contribution of growth plate chondrocytes and articular chondrocytes, not only for long bone growth, but also for bone remodeling. In contrast, deleting Bmpr1a in early osteoblasts with 3.6 Col 1-Cre had little impact on skeletal shape and size except for a sharp increase in osteoblasts and osteocytes, leading to a profound increase in bone volume. We conclude that chondrogenesis and osteogenesis are one continuous developmental and lineage-defined biological process, in which Bmpr1a signaling in chondrocytes is necessary for the formation of a pool or niche of osteoprogenitors that then contributes in a major way to overall bone formation and growth.
Collapse
Affiliation(s)
- Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
| | - Junjun Jing
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.,State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ling Ye
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.,Department of Dental Research, Naval Post-Graduate Dental School, Navy Medicine Professional Development Center Walter Reed National Military Medical Center; Postgraduate Dental College Uniformed Services, University of the Health Sciences, 8955 Wood Road Bethesda, MD, 20889, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Robert J Hinton
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
| |
Collapse
|
46
|
Strategic Targeting of Multiple BMP Receptors Prevents Trauma-Induced Heterotopic Ossification. Mol Ther 2017; 25:1974-1987. [PMID: 28716575 DOI: 10.1016/j.ymthe.2017.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/08/2023] Open
Abstract
Trauma-induced heterotopic ossification (tHO) is a condition of pathologic wound healing, defined by the progressive formation of ectopic bone in soft tissue following severe burns or trauma. Because previous studies have shown that genetic variants of HO, such as fibrodysplasia ossificans progressiva (FOP), are caused by hyperactivating mutations of the type I bone morphogenetic protein receptor (T1-BMPR) ACVR1/ALK2, studies evaluating therapies for HO have been directed primarily toward drugs for this specific receptor. However, patients with tHO do not carry known T1-BMPR mutations. Here we show that, although BMP signaling is required for tHO, no single T1-BMPR (ACVR1/ALK2, BMPR1a/ALK3, or BMPR1b/ALK6) alone is necessary for this disease, suggesting that these receptors have functional redundancy in the setting of tHO. By utilizing two different classes of BMP signaling inhibitors, we developed a translational approach to treatment, integrating treatment choice with existing diagnostic options. Our treatment paradigm balances either immediate therapy with reduced risk for adverse effects (Alk3-Fc) or delayed therapy with improved patient selection but greater risk for adverse effects (LDN-212854).
Collapse
|
47
|
Differential involvement of Wnt signaling in Bmp regulation of cancellous versus periosteal bone growth. Bone Res 2017; 5:17016. [PMID: 28607813 PMCID: PMC5460368 DOI: 10.1038/boneres.2017.16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Bone morphogenetic proteins (Bmp) are well-known to induce bone formation following chondrogenesis, but the direct role of Bmp signaling in the osteoblast lineage is not completely understood. We have recently shown that deletion of the receptor Bmpr1a in the osteoblast lineage with Dmp1-Cre reduces osteoblast activity in general but stimulates proliferation of preosteoblasts specifically in the cancellous bone region, resulting in diminished periosteal bone growth juxtaposed with excessive cancellous bone formation. Because expression of sclerostin (SOST), a secreted Wnt antagonist, is notably reduced in the Bmpr1a-deficient osteocytes, we have genetically tested the hypothesis that increased Wnt signaling might mediate the increase in cancellous bone formation in response to Bmpr1a deletion. Forced expression of human SOST from a Dmp1 promoter fragment partially rescues preosteoblast hyperproliferation and cancellous bone overgrowth in the Bmpr1a mutant mice, demonstrating functional interaction between Bmp and Wnt signaling in the cancellous bone compartment. To test whether increased Wnt signaling can compensate for the defect in periosteal growth caused by Bmpr1a deletion, we have generated compound mutants harboring a hyperactive mutation (A214V) in the Wnt receptor Lrp5. However, the mutant Lrp5 does not restore periosteal bone growth in the Bmpr1a-deficient mice. Thus, Bmp signaling restricts cancellous bone accrual partly through induction of SOST that limits preosteoblast proliferation, but promotes periosteal bone growth apparently independently of Wnt activation.
Collapse
|
48
|
Abstract
When normal physiologic functions go awry, disorders and disease occur. This is universal; even for the osteocyte, a cell embedded within the mineralized matrix of bone. It was once thought that this cell was simply a placeholder in bone. Within the last decade, the number of studies of osteocytes has increased dramatically, leading to the discovery of novel functions of these cells. With the discovery of novel physiologic functions came the discoveries of how these cells can also be responsible for not only bone diseases and disorders, but also those of the kidney, heart, and potentially muscle.
Collapse
Affiliation(s)
- Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, VanNuys Medical Science Building, MS 5055, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Anatomy and Cell Biology, VanNuys Medical Science Building, MS 5035, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, 1120 West Michigan Street, Suite 600, Indianapolis, IN 46202, USA.
| |
Collapse
|
49
|
Bmp Induces Osteoblast Differentiation through both Smad4 and mTORC1 Signaling. Mol Cell Biol 2017; 37:MCB.00253-16. [PMID: 27920253 DOI: 10.1128/mcb.00253-16] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/16/2016] [Indexed: 02/03/2023] Open
Abstract
The bone morphogenetic protein (Bmp) family of secreted molecules has been extensively studied in the context of osteoblast differentiation. However, the intracellular signaling cascades that mediate the osteoblastogenic function of Bmp have not been fully elucidated. By profiling mRNA expression in the bone marrow mesenchymal progenitor cell line ST2, we discover that BMP2 induces not only genes commonly associated with ossification and mineralization but also genes important for general protein synthesis. We define the two groups of genes as mineralization related versus protein anabolism signatures of osteoblasts. Although it induces the expression of several Wnt genes, BMP2 activates the osteogenic program largely independently of de novo Wnt secretion. Remarkably, although Smad4 is necessary for the activation of the mineralization-related genes, it is dispensable for BMP2 to induce the protein anabolism signature, which instead critically depends on the transcription factor Atf4. Upstream of Atf4, BMP2 activates mTORC1 to stimulate protein synthesis, resulting in an endoplasmic reticulum stress response mediated by Perk. Thus, Bmp signaling induces osteoblast differentiation through both Smad4- and mTORC1-dependent mechanisms.
Collapse
|
50
|
Lim J, Burclaff J, He G, Mills JC, Long F. Unintended targeting of Dmp1-Cre reveals a critical role for Bmpr1a signaling in the gastrointestinal mesenchyme of adult mice. Bone Res 2017; 5:16049. [PMID: 28163952 PMCID: PMC5282469 DOI: 10.1038/boneres.2016.49] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/10/2016] [Accepted: 09/18/2016] [Indexed: 12/20/2022] Open
Abstract
Cre/loxP technology has been widely used to study cell type-specific functions of genes. Proper interpretation of such data critically depends on a clear understanding of the tissue specificity of Cre expression. The Dmp1-Cre mouse, expressing Cre from a 14-kb DNA fragment of the mouse Dmp1 gene, has become a common tool for studying gene function in osteocytes, but the presumed cell specificity is yet to be fully established. By using the Ai9 reporter line that expresses a red fluorescent protein upon Cre recombination, we find that in 2-month-old mice, Dmp1-Cre targets not only osteocytes within the bone matrix but also osteoblasts on the bone surface and preosteoblasts at the metaphyseal chondro-osseous junction. In the bone marrow, Cre activity is evident in certain stromal cells adjacent to the blood vessels, but not in adipocytes. Outside the skeleton, Dmp1-Cre marks not only the skeletal muscle fibers, certain cells in the cerebellum and the hindbrain but also gastric and intestinal mesenchymal cells that express Pdgfra. Confirming the utility of Dmp1-Cre in the gastrointestinal mesenchyme, deletion of Bmpr1a with Dmp1-Cre causes numerous large polyps along the gastrointestinal tract, consistent with prior work involving inhibition of BMP signaling. Thus, caution needs to be exercised when using Dmp1-Cre because it targets not only the osteoblast lineage at an earlier stage than previously appreciated, but also a number of non-skeletal cell types.
Collapse
Affiliation(s)
- Joohyun Lim
- Department of Orthopaedic Surgery, Washington University School of Medicine , St. Louis, MO, USA
| | - Joseph Burclaff
- Division of Gastroenterology, Departments of Medicine and Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Guangxu He
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, China
| | - Jason C Mills
- Division of Gastroenterology, Departments of Medicine and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fanxin Long
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|