1
|
Zhang Y, Zhao Y, Dai L, Liu Y, Shi Z. Auriculocondylar syndrome 2 caused by a novel PLCB4 variant in a male Chinese neonate: A case report and review of the literature. Mol Genet Genomic Med 2024; 12:e2441. [PMID: 38618928 PMCID: PMC11017300 DOI: 10.1002/mgg3.2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Auriculocondylar syndrome (ARCND) is a rare congenital craniofacial developmental malformation syndrome of the first and second pharyngeal arches with external ear malformation at the junction between the lobe and helix, micromaxillary malformation, and mandibular condylar hypoplasia. Four subtypes of ARCND have been described so far, that is, ARCND1 (OMIM # 602483), ARCND2 (ARCND2A, OMIM # 614669; ARCND2B, OMIM # 620458), ARCND3 (OMIM # 615706), and ARCND4 (OMIM # 620457). METHODS This study reports a case of ARCND2 resulting from a novel pathogenic variant in the PLCB4 gene, and summarizes PLCB4 gene mutation sites and phenotypes of ARCND2. RESULTS The proband, a 5-day-old male neonate, was referred to our hospital for respiratory distress. Micrognathia, microstomia, distinctive question mark ears, as well as mandibular condyle hypoplasia were identified. Trio-based whole-exome sequencing identified a novel missense variant of NM_001377142.1:c.1928C>T (NP_001364071.1:p.Ser643Phe) in the PLCB4 gene, which was predicted to impair the local structural stability with a result that the protein function might be affected. From a review of the literature, only 36 patients with PLCB4 gene mutations were retrieved. CONCLUSION As with other studies examining familial cases of ARCND2, incomplete penetrance and variable expressivity were observed within different families' heterozygous mutations in PLCB4 gene. Although, motor and intellectual development are in the normal range in the vast majority of patients with ARCND2, long-term follow-up and assessment are still required.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Yuwei Zhao
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Liying Dai
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Yu Liu
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Zifeng Shi
- Radiology Department, Center of Imaging DiagnosisAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| |
Collapse
|
2
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Single-cell profiling of MC1R-inhibited melanocytes. Pigment Cell Melanoma Res 2024; 37:291-308. [PMID: 37972124 DOI: 10.1111/pcmr.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
The human red hair color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to define a MC1R-inhibited Gene Signature (MiGS) comprising a large set of previously unidentified genes which may be implicated in melanogenesis and oncogenic transformation. We show that one of the candidate MiGS genes, TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into further mechanisms by which melanocytes with reduced MC1R signaling may regulate pigmentation and offer new candidates of study toward understanding how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, PT, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, PT, Portugal
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Loss of MC1R signaling implicates TBX3 in pheomelanogenesis and melanoma predisposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532018. [PMID: 37090624 PMCID: PMC10120706 DOI: 10.1101/2023.03.10.532018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The human Red Hair Color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA-sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to reveal a Pheomelanin Gene Signature (PGS) comprising genes implicated in melanogenesis and oncogenic transformation. We show that TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, is part of the PGS and binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into mechanisms by which MC1R signaling regulates pigmentation and how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H. Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Dawn E. Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Kevin M. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, PT
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, PT
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Ono T, Denda R, Tsukahara Y, Nakamura T, Okamoto K, Takayanagi H, Nakashima T. Simultaneous augmentation of muscle and bone by locomomimetism through calcium-PGC-1α signaling. Bone Res 2022; 10:52. [PMID: 35918335 PMCID: PMC9345981 DOI: 10.1038/s41413-022-00225-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/01/2022] [Accepted: 06/19/2022] [Indexed: 11/09/2022] Open
Abstract
Impaired locomotion has been extensively studied worldwide because those afflicted with it have a potential risk of becoming bedridden. Physical exercise at times can be an effective remedy for frailty, but exercise therapy cannot be applied in all clinical cases. Medication is safer than exercise, but there are no drugs that reinforce both muscle and bone when administered alone. Multiple medications increase the risk of adverse events; thus, there is a need for individual drugs targeting both tissues. To this end, we established a novel sequential drug screening system and identified an aminoindazole derivative, locamidazole (LAMZ), which promotes both myogenesis and osteoblastogenesis while suppressing osteoclastogenesis. Administration of this drug enhanced locomotor function, with muscle and bone significantly strengthened. Mechanistically, LAMZ induced Mef2c and PGC-1α in a calcium signaling-dependent manner. As this signaling is activated upon physical exercise, LAMZ mimics physical exercise. Thus, LAMZ is a promising therapeutic drug for locomotor diseases, including sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Ryosuke Denda
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuta Tsukahara
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
- School of Dentistry, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Takashi Nakamura
- Department of Biochemistry, Tokyo Dental College, Kandamisakicho 2-9-18, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
5
|
Raviglione F, Douzgou S, Scala M, Mingarelli A, D'Arrigo S, Freri E, Darra F, Giglio S, Bonaglia MC, Pantaleoni C, Mastrangelo M, Epifanio R, Elia M, Saletti V, Morlino S, Vari MS, De Liso P, Pavaine J, Spaccini L, Cattaneo E, Gardella E, Møller RS, Marchese F, Colonna C, Gandioli C, Gobbi G, Ram D, Palumbo O, Carella M, Germano M, Tonduti D, De Angelis D, Caputo D, Bergonzini P, Novara F, Zuffardi O, Verrotti A, Orsini A, Bonuccelli A, De Muto MC, Trivisano M, Vigevano F, Granata T, Bernardina BD, Tranchina A, Striano P. Electroclinical features of MEF2C haploinsufficiency-related epilepsy: A multicenter European study. Seizure 2021; 88:60-72. [PMID: 33831796 DOI: 10.1016/j.seizure.2021.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Epilepsy is a main manifestation in the autosomal dominant mental retardation syndrome caused by heterozygous variants in MEF2C. We aimed to delineate the electro-clinical features and refine the genotype-phenotype correlations in patients with MEF2C haploinsufficiency. METHODS We thoroughly investigated 25 patients with genetically confirmed MEF2C-syndrome across 12 different European Genetics and Epilepsy Centers, focusing on the epileptic phenotype. Clinical features (seizure types, onset, evolution, and response to therapy), EEG recordings during waking/sleep, and neuroimaging findings were analyzed. We also performed a detailed literature review using the terms "MEF2C", "seizures", and "epilepsy". RESULTS Epilepsy was diagnosed in 19 out of 25 (~80%) subjects, with age at onset <30 months. Ten individuals (40%) presented with febrile seizures and myoclonic seizures occurred in ~50% of patients. Epileptiform abnormalities were observed in 20/25 patients (80%) and hypoplasia/partial agenesis of the corpus callosum was detected in 12/25 patients (~50%). Nine patients harbored a 5q14.3 deletion encompassing MEF2C and at least one other gene. In 7 out of 10 patients with myoclonic seizures, MIR9-2 and LINC00461 were also deleted, whereas ADGRV1 was involved in 3/4 patients with spasms. CONCLUSION The epileptic phenotype of MEF2C-syndrome is variable. Febrile and myoclonic seizures are the most frequent, usually associated with a slowing of the background activity and irregular diffuse discharges of frontally dominant, symmetric or asymmetric, slow theta waves with interposed spike-and-waves complexes. The haploinsufficiency of ADGRV1, MIR9-2, and LINC00461 likely contributes to myoclonic seizures and spasms in patients with MEF2C syndrome.
Collapse
Affiliation(s)
| | - Sofia Douzgou
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Member of ERN-ITHACA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Stefano D'Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Member of ERN EpiCARE
| | - Francesca Darra
- Child Neuropsychiatry Unit, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Sabrina Giglio
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria C Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Chiara Pantaleoni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Mastrangelo
- Paediatric Neurology Unit, Department of Pediatrics, Children's Hospital Vittore Buzzi, Milan, Italy
| | - Roberta Epifanio
- Clinical Neurophysiology Unit, IRCCS, E Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | | | - Veronica Saletti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Morlino
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Maria Stella Vari
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola De Liso
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Julija Pavaine
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Luigina Spaccini
- Clinical Genetics Service, Department of Pediatrics, Vittore Buzzi Hospital, Milan, Italy
| | - Elisa Cattaneo
- Clinical Genetics Service, Department of Pediatrics, Vittore Buzzi Hospital, Milan, Italy
| | - Elena Gardella
- The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE
| | - Rikke S Møller
- The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE
| | - Francesca Marchese
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Clara Colonna
- Hospital Neuropsychiatry Service, ASST Rhodense, Rho, Milan, Italy
| | - Claudia Gandioli
- Hospital Neuropsychiatry Service, ASST Rhodense, Rho, Milan, Italy
| | - Giuseppe Gobbi
- Child Neurology Unit, IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Dipak Ram
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Michele Germano
- Maternal and Pediatric Department, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo (FG) 71013, Italy
| | - Davide Tonduti
- Paediatric Neurology Unit, Department of Pediatrics, Children's Hospital Vittore Buzzi, Milan, Italy
| | - Diego De Angelis
- Pediatric Department, "Sapienza" University of Rome, Rome 00185, Italy
| | - Davide Caputo
- Department of Health Sciences, Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, University of Medicine, Milan, Italy; Member of ERN EpiCARE
| | | | - Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Orsini
- Pediatric Neurology Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Alice Bonuccelli
- Pediatric Neurology Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | | | - Marina Trivisano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Member of ERN EpiCARE
| | - Bernardo Dalla Bernardina
- Child Neuropsychiatry Unit, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Antonia Tranchina
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
6
|
Bonfante B, Faux P, Navarro N, Mendoza-Revilla J, Dubied M, Montillot C, Wentworth E, Poloni L, Varón-González C, Jones P, Xiong Z, Fuentes-Guajardo M, Palmal S, Chacón-Duque JC, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Barquera R, Everardo-Martínez P, Sánchez-Quinto M, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Hünemeier T, Ramallo V, Liu F, Weinberg SM, Shaffer JR, Stergiakouli E, Howe LJ, Hysi PG, Spector TD, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Thauvin-Robinet C, Faivre L, Costedoat C, Balding D, Cox T, Kayser M, Duplomb L, Yalcin B, Cotney J, Adhikari K, Ruiz-Linares A. A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan introgressed region in facial variation. SCIENCE ADVANCES 2021; 7:eabc6160. [PMID: 33547071 PMCID: PMC7864580 DOI: 10.1126/sciadv.abc6160] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/17/2020] [Indexed: 05/25/2023]
Abstract
To characterize the genetic basis of facial features in Latin Americans, we performed a genome-wide association study (GWAS) of more than 6000 individuals using 59 landmark-based measurements from two-dimensional profile photographs and ~9,000,000 genotyped or imputed single-nucleotide polymorphisms. We detected significant association of 32 traits with at least 1 (and up to 6) of 32 different genomic regions, more than doubling the number of robustly associated face morphology loci reported until now (from 11 to 23). These GWAS hits are strongly enriched in regulatory sequences active specifically during craniofacial development. The associated region in 1p12 includes a tract of archaic adaptive introgression, with a Denisovan haplotype common in Native Americans affecting particularly lip thickness. Among the nine previously unidentified face morphology loci we identified is the VPS13B gene region, and we show that variants in this region also affect midfacial morphology in mice.
Collapse
Affiliation(s)
- Betty Bonfante
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille 13005, France
| | - Pierre Faux
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille 13005, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, Dijon 21078, France
- EPHE, PSL University, Paris 75014, France
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris 75015, France
| | - Morgane Dubied
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, Dijon 21078, France
| | - Charlotte Montillot
- INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Emma Wentworth
- Department of Genetics and Genome Sciences, University of Connecticut Health, Farmington, CT 06030, USA
| | - Lauriane Poloni
- Biogéosciences, UMR 6282 CNRS, EPHE, Université Bourgogne Franche-Comté, Dijon 21078, France
- EPHE, PSL University, Paris 75014, France
| | - Ceferino Varón-González
- Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, UA, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris 75005, France
| | - Philip Jones
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Ziyi Xiong
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam 3015GD, Netherlands
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica 1000000, Chile
| | - Sagnik Palmal
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille 13005, France
| | - Juan Camilo Chacón-Duque
- Division of Vertebrates and Anthropology, Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Rodrigo Barquera
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City 14050, Mexico
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena 07745, Germany
| | - Paola Everardo-Martínez
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City 14050, Mexico
| | - Mirsha Sánchez-Quinto
- Forensic Science, Faculty of Medicine, UNAM (Universidad Nacional Autónoma de México), Mexico City 06320, Mexico
| | - Jorge Gómez-Valdés
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City 14050, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | | | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brasil
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn U9129ACD, Argentina
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam 3015GD, Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100864, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - John R Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Evie Stergiakouli
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS1 2LY, UK
- School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, UK
| | - Laurence J Howe
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS1 2LY, UK
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn U9129ACD, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brasil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brasil
| | - Victor Acuña-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City 14050, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica 1000000, Chile
| | - Christel Thauvin-Robinet
- INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon 21000, France
- Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs" de l'Est, Centre de Génétique, FHU TRANSLAD, CHU Dijon, Dijon 21000, France
| | - Laurence Faivre
- INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon 21000, France
- Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs" de l'Est, Centre de Génétique, FHU TRANSLAD, CHU Dijon, Dijon 21000, France
| | | | - David Balding
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Melbourne Integrative Genomics, Schools of BioSciences and Mathematics & Statistics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Timothy Cox
- Department of Oral and Craniofacial Sciences, School of Dentistry and Department of Pediatrics, School of Medicine, University of Missouri, Kansas City, MO 64108, USA
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam 3015GD, Netherlands
| | - Laurence Duplomb
- INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Binnaz Yalcin
- INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut Health, Farmington, CT 06030, USA
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Andrés Ruiz-Linares
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille 13005, France.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, China
| |
Collapse
|
7
|
Adachi N, Bilio M, Baldini A, Kelly RG. Cardiopharyngeal mesoderm origins of musculoskeletal and connective tissues in the mammalian pharynx. Development 2020; 147:147/3/dev185256. [PMID: 32014863 DOI: 10.1242/dev.185256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Cardiopharyngeal mesoderm (CPM) gives rise to muscles of the head and heart. Using genetic lineage analysis in mice, we show that CPM develops into a broad range of pharyngeal structures and cell types encompassing musculoskeletal and connective tissues. We demonstrate that CPM contributes to medial pharyngeal skeletal and connective tissues associated with both branchiomeric and somite-derived neck muscles. CPM and neural crest cells (NCC) make complementary mediolateral contributions to pharyngeal structures, in a distribution established in the early embryo. We further show that biallelic expression of the CPM regulatory gene Tbx1, haploinsufficient in 22q11.2 deletion syndrome patients, is required for the correct patterning of muscles with CPM-derived connective tissue. Our results suggest that CPM plays a patterning role during muscle development, similar to that of NCC during craniofacial myogenesis. The broad lineage contributions of CPM to pharyngeal structures provide new insights into congenital disorders and evolution of the mammalian pharynx.
Collapse
Affiliation(s)
- Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | - Marchesa Bilio
- CNR Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Antonio Baldini
- CNR Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino 111, 80131 Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| |
Collapse
|
8
|
Sucharov J, Ray K, Brooks EP, Nichols JT. Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathway. PLoS Genet 2019; 15:e1008507. [PMID: 31790396 PMCID: PMC6907857 DOI: 10.1371/journal.pgen.1008507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/12/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Deleterious genetic mutations allow developmental biologists to understand how genes control development. However, not all loss of function genetic mutants develop phenotypic changes. Many deleterious mutations only produce a phenotype in a subset of mutant individuals, a phenomenon known as incomplete penetrance. Incomplete penetrance can confound analyses of gene function and our understanding of this widespread phenomenon remains inadequate. To better understand what controls penetrance, we capitalized on the zebrafish mef2ca mutant which produces craniofacial phenotypes with variable penetrance. Starting with a characterized mef2ca loss of function mutant allele, we used classical selective breeding methods to generate zebrafish strains in which mutant-associated phenotypes consistently appear with low or high penetrance. Strikingly, our selective breeding for low penetrance converted the mef2ca mutant allele behavior from homozygous lethal to homozygous viable. Meanwhile, selective breeding for high penetrance converted the mef2ca mutant allele from fully recessive to partially dominant. Comparing the selectively-bred low- and high-penetrance strains revealed that the strains initially respond similarly to the mutation, but then gene expression differences between strains emerge during development. Thus, altered temporal genetic circuitry can manifest through selective pressure to modify mutant penetrance. Specifically, we demonstrate differences in Notch signaling between strains, and further show that experimental manipulation of the Notch pathway phenocopies penetrance changes occurring through selective breeding. This study provides evidence that penetrance is inherited as a liability-threshold trait. Our finding that vertebrate animals can overcome a deleterious mutation by tuning genetic circuitry complements other reported mechanisms of overcoming deleterious mutations such as transcriptional adaptation of compensatory genes, alternative mRNA splicing, and maternal deposition of wild-type transcripts, which are not observed in our system. The selective breeding approach and the resultant genetic circuitry change we uncovered advances and expands our current understanding of genetic and developmental resilience. Some deleterious gene mutations only affect a subset of genetically mutant animals. This widespread phenomenon, known as mutant incomplete penetrance, complicates discovery of causative gene mutations in both model organisms and human disease. This study utilized the zebrafish mef2ca transcription factor mutant that produces craniofacial skeleton defects with incomplete penetrance. Selectively breeding zebrafish families for low- or high-penetrance mutants for many generations created different zebrafish strains with consistently low or high penetrance. Comparing these strains allowed us to gain insight into the mechanisms that control penetrance. Specifically, genes under the control of mef2ca are initially similarly expressed between the two strains, but differences between strains emerge during development. We found that genetic manipulation of these downstream genes mimics the effects of our selective breeding. Thus, selective breeding for penetrance can change the genetic circuitry downstream of the mutated gene. We propose that small differences in gene circuitry between individuals is one mechanism underlying susceptibility or resilience to genetic mutations.
Collapse
Affiliation(s)
- Juliana Sucharov
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kuval Ray
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Elliott P. Brooks
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - James T. Nichols
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
9
|
Zlabinger K, Spannbauer A, Traxler D, Gugerell A, Lukovic D, Winkler J, Mester-Tonczar J, Podesser B, Gyöngyösi M. MiR-21, MiR-29a, GATA4, and MEF2c Expression Changes in Endothelin-1 and Angiotensin II Cardiac Hypertrophy Stimulated Isl-1 +Sca-1 +c-kit + Porcine Cardiac Progenitor Cells In Vitro. Cells 2019; 8:cells8111416. [PMID: 31717562 PMCID: PMC6912367 DOI: 10.3390/cells8111416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cost- and time-intensive porcine translational disease models offer great opportunities to test drugs and therapies for pathological cardiac hypertrophy and can be supported by porcine cell culture models that provide further insights into basic disease mechanisms. Cardiac progenitor cells (CPCs) residing in the adult heart have been shown to differentiate in vitro into cardiomyocytes and could contribute to cardiac regeneration. Therefore, it is important to evaluate their changes on the cellular level caused by disease. We successfully isolated Isl1+Sca1+cKit+ porcine CPCs (pCPCs) from pig hearts and stimulated them with endothelin-1 (ET-1) and angiotensin II (Ang II) in vitro. We also performed a cardiac reprogramming transfection and tested the same conditions. Our results show that undifferentiated Isl1+Sca1+cKit+ pCPCs were significantly upregulated in GATA4, MEF2c, and miR-29a gene expressions and in BNP and MCP-1 protein expressions with Ang II stimulation, but they showed no significant changes in miR-29a and MCP-1 when stimulated with ET-1. Differentiated Isl1+Sca1+cKit+ pCPCs exhibited significantly higher levels of MEF2c, GATA4, miR-29a, and miR-21 as well as Cx43 and BNP with Ang II stimulation. pMx-MGT-transfected Isl1+Sca1+cKit+ pCPCs showed significant elevations in MEF2c, GATA4, and BNP expressions when stimulated with ET-1. Our model demonstrates that in vitro stimulation leads to successful Isl1+Sca1+cKit+ pCPC hypertrophy with upregulation of cardiac remodeling associated genes and profibrotic miRNAs and offers great possibilities for further investigations of disease mechanisms and treatment.
Collapse
Affiliation(s)
- Katrin Zlabinger
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| | - Andreas Spannbauer
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Denise Traxler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Alfred Gugerell
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Dominika Lukovic
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Johannes Winkler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Julia Mester-Tonczar
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Bruno Podesser
- Medical University of Vienna, Department of Biomedical Research, 1090 Vienna, Austria;
| | - Mariann Gyöngyösi
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| |
Collapse
|
10
|
Cdc42 activation by endothelin regulates neural crest cell migration in the cardiac outflow tract. Dev Dyn 2019; 248:795-812. [DOI: 10.1002/dvdy.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
|
11
|
MEF-2 isoforms' (A-D) roles in development and tumorigenesis. Oncotarget 2019; 10:2755-2787. [PMID: 31105874 PMCID: PMC6505634 DOI: 10.18632/oncotarget.26763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor (MEF)-2 plays a critical role in proliferation, differentiation, and development of various cell types in a tissue specific manner. Four isoforms of MEF-2 (A-D) differentially participate in controlling the cell fate during the developmental phases of cardiac, muscle, vascular, immune and skeletal systems. Through their associations with various cellular factors MEF-2 isoforms can trigger alterations in complex protein networks and modulate various stages of cellular differentiation, proliferation, survival and apoptosis. The role of the MEF-2 family of transcription factors in the development has been investigated in various cell types, and the evolving alterations in this family of transcription factors have resulted in a diverse and wide spectrum of disease phenotypes, ranging from cancer to infection. This review provides a comprehensive account on MEF-2 isoforms (A-D) from their respective localization, signaling, role in development and tumorigenesis as well as their association with histone deacetylases (HDACs), which can be exploited for therapeutic intervention.
Collapse
|
12
|
Miano JM, Long X, Lyu Q. CRISPR links to long noncoding RNA function in mice: A practical approach. Vascul Pharmacol 2019; 114:1-12. [PMID: 30822570 PMCID: PMC6435418 DOI: 10.1016/j.vph.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Abstract
Next generation sequencing has uncovered a trove of short noncoding RNAs (e.g., microRNAs) and long noncoding RNAs (lncRNAs) that act as molecular rheostats in the control of diverse homeostatic processes. Meanwhile, the tsunamic emergence of clustered regularly interspaced short palindromic repeats (CRISPR) editing has transformed our influence over all DNA-carrying entities, heralding global CRISPRization. This is evident in biomedical research where the ease and low-cost of CRISPR editing has made it the preferred method of manipulating the mouse genome, facilitating rapid discovery of genome function in an in vivo context. Here, CRISPR genome editing components are updated for elucidating lncRNA function in mice. Various strategies are highlighted for understanding the function of lncRNAs residing in intergenic sequence space, as host genes that harbor microRNAs or other genes, and as natural antisense, overlapping or intronic genes. Also discussed is CRISPR editing of mice carrying human lncRNAs as well as the editing of competing endogenous RNAs. The information described herein should assist labs in the rigorous design of experiments that interrogate lncRNA function in mice where complex disease processes can be modeled thus accelerating translational discovery.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America.
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States of America
| | - Qing Lyu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| |
Collapse
|
13
|
Poltavski DM, Colombier P, Hu J, Duron A, Black BL, Makita T. Venous endothelin modulates responsiveness of cardiac sympathetic axons to arterial semaphorin. eLife 2019; 8:42528. [PMID: 30735130 PMCID: PMC6389285 DOI: 10.7554/elife.42528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
Developing neurons of the peripheral nervous system reach their targets via cues that support directional growth, a process known as axon guidance. In investigating how sympathetic axons reach the heart in mice, we discovered that a combination of guidance cues are employed in sequence to refine axon outgrowth, a process we term second-order guidance. Specifically, endothelin-1 induces sympathetic neurons expressing the receptor Ednra to project to the vena cavae leading to the heart. Endothelin signaling in turn induces expression of the repulsive receptor Plexin-A4, via induction of the transcription factor MEF2C. In the absence of endothelin or plexin signaling, sympathetic neurons misproject to incorrect competing vascular trajectories (the dorsal aorta and intercostal arteries). The same anatomical and physiological consequences occur in Ednra+/-; Plxna4+/- double heterozygotes, genetically confirming functional interaction. Second-order axon guidance therefore multiplexes a smaller number of guidance cues in sequential fashion, allowing precise refinement of axon trajectories.
Collapse
Affiliation(s)
- Denise M Poltavski
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Pauline Colombier
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Jianxin Hu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Alicia Duron
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States.,Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, United States
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Takako Makita
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States.,Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, United States
| |
Collapse
|
14
|
SUR2B/Kir6.1 channel openers correct endothelial dysfunction in chronic heart failure via the miR-1-3p/ET-1 pathway. Biomed Pharmacother 2018; 110:431-439. [PMID: 30530045 DOI: 10.1016/j.biopha.2018.11.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023] Open
Abstract
The SUR2B/Kir6.1 channel openers iptakalim and natakalim reverse cardiac remodeling and ameliorate endothelial dysfunction by re-establishing the balance between the nitric oxide and endothelin systems. In this study, we investigated the microRNAs (miRs) involved in the molecular mechanisms of SUR2B/Kir6.1 channel opening in chronic heart failure. Both iptakalim and natakalim significantly upregulated the expression of miR-1-3p, suggesting that this miR is closely associated with the therapeutic effects against chronic heart failure. Bioinformatic analysis showed that many of the 183 target genes of miR-1-3p are involved in cardiovascular diseases, suggesting that miR-1-3p plays a vital role in such diseases and vascular remodeling. Target gene prediction showed that miR-1-3p combines with the 3' untranslated region (UTR) of endothelin-1 (ET-1) mRNA. Iptakalim and natakalim upregulated miR-1-3p expression and downregulated ET-1 mRNA expression in vitro. The dual luciferase assay confirmed that there is a complementary binding sequence between miR-1-3p and the 3' UTR 158-165 sequence of ET-1 mRNA. To verify the effect of miR-1-3p on ET-1, lentiviral vectors overexpressing or inhibiting miR-1-3p were constructed for the transduction of rat primary cardiac microvascular endothelial cells. The results showed that natakalim enhanced the miR-1-3p level. miR-1-3p overexpression downregulated the expression of ET-1, whereas miR-1-3p inhibition had the opposite effect. Therefore, we verified that SUR2B/Kir6.1 channel openers could correct endothelial imbalance and ameliorate chronic heart failure through the miR-1-3p/ET-1 pathway in endothelial cells. Our study provides comprehensive insights into the molecular mechanisms behind the SUR2B/Kir6.1 channel's activity against chronic heart failure.
Collapse
|
15
|
Materna SC, Sinha T, Barnes RM, Lammerts van Bueren K, Black BL. Cardiovascular development and survival require Mef2c function in the myocardial but not the endothelial lineage. Dev Biol 2018; 445:170-177. [PMID: 30521808 DOI: 10.1016/j.ydbio.2018.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023]
Abstract
MEF2C is a member of the highly conserved MEF2 family of transcription factors and is a key regulator of cardiovascular development. In mice, Mef2c is expressed in the developing heart and vasculature, including the endothelium. Loss of Mef2c function in germline knockout mice leads to early embryonic demise and profound developmental abnormalities in the cardiovascular system. Previous attempts to uncover the cause of embryonic lethality by specifically disrupting Mef2c function in the heart or vasculature failed to recapitulate the global Mef2c knockout phenotype and instead resulted in relatively minor defects that did not compromise viability or result in significant cardiovascular defects. However, previous studies examined the requirement of Mef2c in the myocardial and endothelial lineages using Cre lines that begin to be expressed after the expression of Mef2c has already commenced. Here, we tested the requirement of Mef2c in the myocardial and endothelial lineages using conditional knockout approaches in mice with Cre lines that deleted Mef2c prior to onset of its expression in embryonic development. We found that deletion of Mef2c in the early myocardial lineage using Nkx2-5Cre resulted in cardiac and vascular abnormalities that were indistinguishable from the defects in the global Mef2c knockout. In contrast, early deletion of Mef2c in the vascular endothelium using an Etv2::Cre line active prior to the onset of Mef2c expression resulted in viable offspring that were indistinguishable from wild type controls with no overt defects in vascular development, despite nearly complete early deletion of Mef2c in the vascular endothelium. Thus, these studies support the idea that the requirement of MEF2C for vascular development is secondary to its requirement in the heart and suggest that the observed failure in vascular remodeling in Mef2c knockout mice results from defective heart function.
Collapse
Affiliation(s)
- Stefan C Materna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ralston M Barnes
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly Lammerts van Bueren
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Probing the origin of matching functional jaws: roles of Dlx5/6 in cranial neural crest cells. Sci Rep 2018; 8:14975. [PMID: 30297736 PMCID: PMC6175850 DOI: 10.1038/s41598-018-33207-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Gnathostome jaws derive from the first pharyngeal arch (PA1), a complex structure constituted by Neural Crest Cells (NCCs), mesodermal, ectodermal and endodermal cells. Here, to determine the regionalized morphogenetic impact of Dlx5/6 expression, we specifically target their inactivation or overexpression to NCCs. NCC-specific Dlx5/6 inactivation (NCC∆Dlx5/6) generates severely hypomorphic lower jaws that present typical maxillary traits. Therefore, differently from Dlx5/6 null-embryos, the upper and the lower jaws of NCC∆Dlx5/6 mice present a different size. Reciprocally, forced Dlx5 expression in maxillary NCCs provokes the appearance of distinct mandibular characters in the upper jaw. We conclude that: (1) Dlx5/6 activation in NCCs invariably determines lower jaw identity; (2) the morphogenetic processes that generate functional matching jaws depend on the harmonization of Dlx5/6 expression in NCCs and in distinct ectodermal territories. The co-evolution of synergistic opposing jaws requires the coordination of distinct regulatory pathways involving the same transcription factors in distant embryonic territories.
Collapse
|
17
|
Rambow F, Rogiers A, Marin-Bejar O, Aibar S, Femel J, Dewaele M, Karras P, Brown D, Chang YH, Debiec-Rychter M, Adriaens C, Radaelli E, Wolter P, Bechter O, Dummer R, Levesque M, Piris A, Frederick DT, Boland G, Flaherty KT, van den Oord J, Voet T, Aerts S, Lund AW, Marine JC. Toward Minimal Residual Disease-Directed Therapy in Melanoma. Cell 2018; 174:843-855.e19. [PMID: 30017245 DOI: 10.1016/j.cell.2018.06.025] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/13/2018] [Accepted: 06/12/2018] [Indexed: 01/05/2023]
Abstract
Many patients with advanced cancers achieve dramatic responses to a panoply of therapeutics yet retain minimal residual disease (MRD), which ultimately results in relapse. To gain insights into the biology of MRD, we applied single-cell RNA sequencing to malignant cells isolated from BRAF mutant patient-derived xenograft melanoma cohorts exposed to concurrent RAF/MEK-inhibition. We identified distinct drug-tolerant transcriptional states, varying combinations of which co-occurred within MRDs from PDXs and biopsies of patients on treatment. One of these exhibited a neural crest stem cell (NCSC) transcriptional program largely driven by the nuclear receptor RXRG. An RXR antagonist mitigated accumulation of NCSCs in MRD and delayed the development of resistance. These data identify NCSCs as key drivers of resistance and illustrate the therapeutic potential of MRD-directed therapy. They also highlight how gene regulatory network architecture reprogramming may be therapeutically exploited to limit cellular heterogeneity, a key driver of disease progression and therapy resistance.
Collapse
Affiliation(s)
- Florian Rambow
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Aljosja Rogiers
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Oskar Marin-Bejar
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sara Aibar
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Julia Femel
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Michael Dewaele
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Daniel Brown
- Laboratory of reproductive genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, USA
| | - Maria Debiec-Rychter
- Laboratory for Genetics of Malignant Disorders, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Carmen Adriaens
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Enrico Radaelli
- Comparative Pathology Core, University of Pennsylvania, Department of Pathobiology, Philadelphia, PA, USA
| | - Pascal Wolter
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Oliver Bechter
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Reinhard Dummer
- Department of Dermatology, University of Zürich Hospital, Zürich, Switzerland
| | - Mitchell Levesque
- Department of Dermatology, University of Zürich Hospital, Zürich, Switzerland
| | - Adriano Piris
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Dennie T Frederick
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve Boland
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Keith T Flaherty
- Department of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Thierry Voet
- Laboratory of reproductive genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Amanda W Lund
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Barske L, Rataud P, Behizad K, Del Rio L, Cox SG, Crump JG. Essential Role of Nr2f Nuclear Receptors in Patterning the Vertebrate Upper Jaw. Dev Cell 2018; 44:337-347.e5. [PMID: 29358039 PMCID: PMC5801120 DOI: 10.1016/j.devcel.2017.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/17/2017] [Accepted: 12/20/2017] [Indexed: 01/12/2023]
Abstract
The jaw is central to the extensive variety of feeding and predatory behaviors across vertebrates. The bones of the lower but not upper jaw form around an early-developing cartilage template. Whereas Endothelin1 patterns the lower jaw, the factors that specify upper-jaw morphology remain elusive. Here, we identify Nuclear Receptor 2f genes (Nr2fs) as enriched in and required for upper-jaw formation in zebrafish. Combinatorial loss of Nr2fs transforms maxillary components of the upper jaw into lower-jaw-like structures. Conversely, nr2f5 misexpression disrupts lower-jaw development. Genome-wide analyses reveal that Nr2fs repress mandibular gene expression and early chondrogenesis in maxillary precursors. Rescue of lower-jaw defects in endothelin1 mutants by reducing Nr2f dosage further demonstrates that Nr2f expression must be suppressed for normal lower-jaw development. We propose that Nr2fs shape the upper jaw by protecting maxillary progenitors from early chondrogenesis, thus preserving cells for later osteogenesis.
Collapse
Affiliation(s)
- Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pauline Rataud
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kasra Behizad
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lisa Del Rio
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Samuel G Cox
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
19
|
Gordon C, Tessier A, Demir Z, Goldenberg A, Oufadem M, Voisin N, Pingault V, Bienvenu T, Lyonnet S, de Pontual L, Amiel J. The association of severe encephalopathy and question mark ear is highly suggestive of loss of MEF2C
function. Clin Genet 2017; 93:356-359. [DOI: 10.1111/cge.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022]
Affiliation(s)
- C.T. Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Paris Descartes-Sorbonne Paris Cité University; Institut Imagine; Paris France
| | - A. Tessier
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Paris Descartes-Sorbonne Paris Cité University; Institut Imagine; Paris France
| | - Z. Demir
- Département de Génétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (AP-HP); Paris France
| | - A. Goldenberg
- Service de Génétique, CHU de Rouen; Centre Normand de Génomique Médicale et Médecine Personnalisée; Rouen France
| | - M. Oufadem
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Paris Descartes-Sorbonne Paris Cité University; Institut Imagine; Paris France
| | - N. Voisin
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Paris Descartes-Sorbonne Paris Cité University; Institut Imagine; Paris France
| | - V. Pingault
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Paris Descartes-Sorbonne Paris Cité University; Institut Imagine; Paris France
- Département de Génétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (AP-HP); Paris France
| | - T. Bienvenu
- Laboratoire de biochimie et génétique moléculaire; Hôpital Cochin; Paris France
| | - S. Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Paris Descartes-Sorbonne Paris Cité University; Institut Imagine; Paris France
- Département de Génétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (AP-HP); Paris France
| | - L. de Pontual
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Service de pédiatrie; Hôpital Jean Verdier; Bondy France
| | - J. Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Paris Descartes-Sorbonne Paris Cité University; Institut Imagine; Paris France
- Département de Génétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (AP-HP); Paris France
| |
Collapse
|
20
|
Shin HY, Wang C, Lee HK, Yoo KH, Zeng X, Kuhns T, Yang CM, Mohr T, Liu C, Hennighausen L. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 2017; 8:15464. [PMID: 28561021 PMCID: PMC5460021 DOI: 10.1038/ncomms15464] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/31/2017] [Indexed: 12/29/2022] Open
Abstract
Although CRISPR/Cas9 genome editing has provided numerous opportunities to interrogate the functional significance of any given genomic site, there is a paucity of data on the extent of molecular scars inflicted on the mouse genome. Here we interrogate the molecular consequences of CRISPR/Cas9-mediated deletions at 17 sites in four loci of the mouse genome. We sequence targeted sites in 632 founder mice and analyse 54 established lines. While the median deletion size using single sgRNAs is 9 bp, we also obtain large deletions of up to 600 bp. Furthermore, we show unreported asymmetric deletions and large insertions of middle repetitive sequences. Simultaneous targeting of distant loci results in the removal of the intervening sequences. Reliable deletion of juxtaposed sites is only achieved through two-step targeting. Our findings also demonstrate that an extended analysis of F1 genotypes is required to obtain conclusive information on the exact molecular consequences of targeting events.
Collapse
Affiliation(s)
- Ha Youn Shin
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Cell and Developmental Biology & Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | - Kyung Hyun Yoo
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Xianke Zeng
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyler Kuhns
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chul Min Yang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Teresa Mohr
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
21
|
Powell SK, Gregory J, Akbarian S, Brennand KJ. Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Mol Cell Neurosci 2017; 82:157-166. [PMID: 28549865 DOI: 10.1016/j.mcn.2017.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
Abstract
CRISPR/Cas9 technology has transformed our ability to manipulate the genome and epigenome, from efficient genomic editing to targeted localization of effectors to specific loci. Through the manipulation of DNA- and histone-modifying enzyme activities, activation or repression of gene expression, and targeting of transcriptional regulators, the role of gene-regulatory and epigenetic pathways in basic biology and disease processes can be directly queried. Here, we discuss emerging CRISPR-based methodologies, with specific consideration of neurobiological applications of human induced pluripotent stem cell (hiPSC)-based models.
Collapse
Affiliation(s)
- S K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - J Gregory
- Instructional Technology Group, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - S Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - K J Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
22
|
Dickel DE, Barozzi I, Zhu Y, Fukuda-Yuzawa Y, Osterwalder M, Mannion BJ, May D, Spurrell CH, Plajzer-Frick I, Pickle CS, Lee E, Garvin TH, Kato M, Akiyama JA, Afzal V, Lee AY, Gorkin DU, Ren B, Rubin EM, Visel A, Pennacchio LA. Genome-wide compendium and functional assessment of in vivo heart enhancers. Nat Commun 2016; 7:12923. [PMID: 27703156 PMCID: PMC5059478 DOI: 10.1038/ncomms12923] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/16/2016] [Indexed: 12/04/2022] Open
Abstract
Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function. Identification of non-coding variants has outstripped our ability to annotate and interpret them. Dickel et al. present a compendium of over 80,000 putative human heart enhancers and demonstrate that two conserved enhancers are required for proper cardiac function in mice.
Collapse
Affiliation(s)
- Diane E Dickel
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Iros Barozzi
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yiwen Zhu
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yoko Fukuda-Yuzawa
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Marco Osterwalder
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Brandon J Mannion
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Dalit May
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Cailyn H Spurrell
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Ingrid Plajzer-Frick
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Catherine S Pickle
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Elizabeth Lee
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Tyler H Garvin
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Momoe Kato
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Jennifer A Akiyama
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Veena Afzal
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Ah Young Lee
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - David U Gorkin
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093, USA
| | - Edward M Rubin
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.,U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Axel Visel
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.,U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.,School of Natural Sciences, University of California, Merced, Merced, California 95343, USA
| | - Len A Pennacchio
- Functional Genomics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.,U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| |
Collapse
|
23
|
Miano JM, Zhu QM, Lowenstein CJ. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research. Arterioscler Thromb Vasc Biol 2016; 36:1058-75. [PMID: 27102963 PMCID: PMC4882230 DOI: 10.1161/atvbaha.116.304790] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 12/26/2022]
Abstract
Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions.
Collapse
Affiliation(s)
- Joseph M Miano
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.).
| | - Qiuyu Martin Zhu
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.)
| | - Charles J Lowenstein
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.)
| |
Collapse
|
24
|
Van Otterloo E, Williams T, Artinger KB. The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. Dev Biol 2016; 415:171-187. [PMID: 26808208 DOI: 10.1016/j.ydbio.2016.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/16/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
The craniofacial skeletal structures that comprise the human head develop from multiple tissues that converge to form the bones and cartilage of the face. Because of their complex development and morphogenesis, many human birth defects arise due to disruptions in these cellular populations. Thus, determining how these structures normally develop is vital if we are to gain a deeper understanding of craniofacial birth defects and devise treatment and prevention options. In this review, we will focus on how animal model systems have been used historically and in an ongoing context to enhance our understanding of human craniofacial development. We do this by first highlighting "animal to man" approaches; that is, how animal models are being utilized to understand fundamental mechanisms of craniofacial development. We discuss emerging technologies, including high throughput sequencing and genome editing, and new animal repository resources, and how their application can revolutionize the future of animal models in craniofacial research. Secondly, we highlight "man to animal" approaches, including the current use of animal models to test the function of candidate human disease variants. Specifically, we outline a common workflow deployed after discovery of a potentially disease causing variant based on a select set of recent examples in which human mutations are investigated in vivo using animal models. Collectively, these topics will provide a pipeline for the use of animal models in understanding human craniofacial development and disease for clinical geneticist and basic researchers alike.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|