1
|
Amirinezhadfard E, Arjmand P, Azizi H, Rahimi F. Understanding CD-117 gene expression in mouse testicular germ cells: in vitro and in vivo studies. ZYGOTE 2025:1-5. [PMID: 40091781 DOI: 10.1017/s0967199424000455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BACKGROUND The proto-oncogene tyrosine kinase receptor encoded by the W locus (CD-117) has been confirmed to be critical to the processes of germ cell proliferation, migration and survival in the rodent. The purpose of the present study was to examine the expression of germ cell-specific CD-117 marker in testis and germ line stem cells (GSCs). The aim of this study was analysis of CD-117 expression as germ cell marker in the seminiferous tubule of mice. MATERIALS AND METHODS In this experimental study, we employed a comprehensive array of techniques to scrutinize the expression of CD-117. Our analysis encompassed the utilization of immunocytochemistry, immunohistochemistry, Fluidigm real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR), and flow cytometry methodologies. RESULTS The Immuno-history-fluorescent analysis revealed the distribution of the germ cell marker CD-117 in the differentiated compartment of seminiferous tubules. High-magnification of confocal microscopy analysis showed surface expression of CD-117 in testis section. Whereas isolated GSCs colonies clearly express the germ-specific protein CD-117, TSCs (testicular stromal cells) were negative for this marker. Fluidigm real-time RT-PCR result demonstrated a significant expression (P < 0.001) of CD-117 in the neonate and adult GSCs compared to TSCs cells. Similarly, flow cytometry analysis confirmed expression of CD-117 in the GSCs colonies and testis cells. CONCLUSION These results discriminate in spite of stage-specific ectopic, expression of CD-117 is a specific germ cell marker for proliferation and differentiation of GSCs into sperm, and can be beneficial for understanding of the signalling pathways related to differentiation of GSCs.
Collapse
Affiliation(s)
- Elaheh Amirinezhadfard
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, PR China
| | - Pardis Arjmand
- Amol University of Special Modern Technologies, Amol, Iran
- Department of biology, Jahrom branch, Islamic Azad University, Jahrom, Iran
| | - Hossein Azizi
- Amol University of Special Modern Technologies, Amol, Iran
| | - Fatemeh Rahimi
- Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
2
|
Niedenberger BA, Belcher HA, Gilbert EA, Thomas MA, Geyer CB. Utilization of the QuPath open-source software platform for analysis of mammalian spermatogenesis†. Biol Reprod 2025; 112:583-599. [PMID: 39817641 PMCID: PMC11911557 DOI: 10.1093/biolre/ioaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/19/2024] [Accepted: 01/15/2025] [Indexed: 01/18/2025] Open
Abstract
The adult mammalian testis is filled with seminiferous tubules, which contain somatic Sertoli cells along with germ cells undergoing all phases of spermatogenesis. During spermatogenesis in postnatal mice, male germ cells undergo at least 17 different nomenclature changes as they proceed through mitosis as spermatogonia (=8), meiosis as spermatocytes (=6), and spermiogenesis as spermatids (=3). Adding to this complexity, combinations of germ cells at each of these stages of development are clumped together along the length of the seminiferous tubules. Due to this, considerable expertise is required for investigators to accurately analyze changes in spermatogenesis in animals that have spontaneous mutations, have been genetically modified (transgenic or knockout/knockin), or have been treated with pharmacologic agents. Here, we leverage our laboratory's expertise in spermatogenesis to optimize the open-source "Quantitative Pathology & Bioimage Analysis" software platform for automated analyses of germ and somatic cell populations in both the developing and adult mammalian testis.
Collapse
Affiliation(s)
- Bryan A Niedenberger
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Heather A Belcher
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Emma A Gilbert
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Matthew A Thomas
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| |
Collapse
|
3
|
Sugawara T, Sonoda K, Chompusri N, Noguchi K, Okada S, Furuse M, Wakayama T. Claudin-11 regulates immunological barrier formation and spermatogonial proliferation through stem cell factor. Commun Biol 2025; 8:148. [PMID: 39885308 PMCID: PMC11782696 DOI: 10.1038/s42003-025-07592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
Tight junctions (TJs) between adjacent Sertoli cells are believed to form immunological barriers that protect spermatogenic cells expressing autoantigens from autoimmune responses. However, there is no direct evidence that Sertoli cell TJs (SCTJs) do indeed form immunological barriers. Here, we analyzed male mice lacking claudin-11 (Cldn11), which encodes a SCTJ component, and found autoantibodies against antigens of spermatocytes/spermatids in their sera. Defective spermatogenesis in Cldn11-deficient mice was not restored on a recombination activating gene 2 (Rag2) knockout background lacking mature T and B lymphocytes. This suggests that adaptive immune responses to spermatogenic cells are not a cause of defective spermatogenesis in Cldn11-deficient mice. Further analyses showed that Cldn11 knockout impaired Sertoli cell polarization, localization of stem cell factor (SCF) (a key molecule for maintaining differentiating spermatogonia) to the basal compartment of seminiferous tubules, and also proliferation of differentiating spermatogonia. We propose that CLDN11 creates a microenvironment for SCF-mediated spermatogonial proliferation at the basal compartment via Sertoli cell polarization.
Collapse
Affiliation(s)
- Taichi Sugawara
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Nattapran Chompusri
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Noguchi
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
He CM, Zhang D, He Z. Gene regulation and signaling transduction in mediating the self-renewal, differentiation, and apoptosis of spermatogonial stem cells. Asian J Androl 2025; 27:4-12. [PMID: 39162186 PMCID: PMC11784953 DOI: 10.4103/aja202464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/04/2024] [Indexed: 08/21/2024] Open
Abstract
ABSTRACT Infertility has become one of the most serious diseases worldwide, and 50% of this disease can be attributed to male-related factors. Spermatogenesis, by definition, is a complex process by which spermatogonial stem cells (SSCs) self-renew to maintain stem cell population within the testes and differentiate into mature spermatids. It is of great significance to uncover gene regulation and signaling pathways that are involved in the fate determinations of SSCs with aims to better understand molecular mechanisms underlying human spermatogenesis and identify novel targets for gene therapy of male infertility. Significant achievement has recently been made in demonstrating the signaling molecules and pathways mediating the fate decisions of mammalian SSCs. In this review, we address key gene regulation and crucial signaling transduction pathways in controlling the self-renewal, differentiation, and apoptosis of SSCs, and we illustrate the networks of genes and signaling pathways in SSC fate determinations. We also highlight perspectives and future directions in SSC regulation by genes and their signaling pathways. This review could provide novel insights into the genetic regulation of normal and abnormal spermatogenesis and offer molecular targets to develop new approaches for gene therapy of male infertility.
Collapse
Affiliation(s)
- Cai-Mei He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Dong Zhang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| |
Collapse
|
5
|
Li Y, Wang Y, Tan YQ, Yue Q, Guo Y, Yan R, Meng L, Zhai H, Tong L, Yuan Z, Li W, Wang C, Han S, Ren S, Yan Y, Wang W, Gao L, Tan C, Hu T, Zhang H, Liu L, Yang P, Jiang W, Ye Y, Tan H, Wang Y, Lu C, Li X, Xie J, Yuan G, Cui Y, Shen B, Wang C, Guan Y, Li W, Shi Q, Lin G, Ni T, Sun Z, Ye L, Vourekas A, Guo X, Lin M, Zheng K. The landscape of RNA binding proteins in mammalian spermatogenesis. Science 2024; 386:eadj8172. [PMID: 39208083 DOI: 10.1126/science.adj8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Despite continuous expansion of the RNA binding protein (RBP) world, there is a lack of systematic understanding of RBPs in the mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-cross-linked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University, Nanjing 210008, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Weixu Wang
- Institute of Computational Biology, Helmholtz Center Munich, Munich 85764, Germany
| | - Lei Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanyin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenyu Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, Fuzhou 350014, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
6
|
Li J, Zhang SX, Wang DL, Qi JJ, Bai CY, Sun H, Sun BX, Liang S. Thyroxine regulates pig Sertoli cell line proliferation and maturation through the IKK/NFκB and p38 MAPK signaling pathways. Theriogenology 2024; 227:1-8. [PMID: 38981313 DOI: 10.1016/j.theriogenology.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
The aim of this study was to investigate the signaling pathways involved in the proliferation and differentiation of pig Sertoli cells (SCs) mediated by thyroid hormone (T3) to provide a theoretical and practical basis for enhancing pig semen production. The effects of different concentrations of T3 on the proliferation of pig SCs were evaluated using the CCK8 assay. The impact of T3 on the proliferation and differentiation of pig SCs was further examined using RNA-seq, qPCR, and Western Blotting techniques. Additionally, the involvement of the p38 MAPK and NFκB pathways in mediating the effects of T3 on SCs proliferation and differentiation was investigated. Our findings revealed a strong correlation between the dosage of T3 and the inhibition of pig SCs proliferation and promotion of maturation. T3 regulated the activation state of the NFκB signaling pathway by upregulating IKKα, downregulating IKKβ, and promoting IκB phosphorylation. Furthermore, T3 facilitated SCs maturation by upregulating AR and FSHR expression while downregulating KRT-18. In conclusion, T3 inhibits pig SCs proliferation and promote pig SCs maturation through the IKK/NFκB and p38 MAPK pathways. These findings provide valuable insights into the mechanisms by which T3 influences the proliferation and maturation of pig SCs.
Collapse
Affiliation(s)
- Jing Li
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shao-Xuan Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Da-Li Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Chun-Yan Bai
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Li S, Yan RG, Gao X, He Z, Wu SX, Wang YJ, Zhang YW, Tao HP, Zhang XN, Jia GX, Yang QE. Single-cell transcriptome analyses reveal critical regulators of spermatogonial stem cell fate transitions. BMC Genomics 2024; 25:138. [PMID: 38310206 PMCID: PMC10837949 DOI: 10.1186/s12864-024-10072-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/31/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are the foundation cells for continual spermatogenesis and germline regeneration in mammals. SSC activities reside in the undifferentiated spermatogonial population, and currently, the molecular identities of SSCs and their committed progenitors remain unclear. RESULTS We performed single-cell transcriptome analysis on isolated undifferentiated spermatogonia from mice to decipher the molecular signatures of SSC fate transitions. Through comprehensive analysis, we delineated the developmental trajectory and identified candidate transcription factors (TFs) involved in the fate transitions of SSCs and their progenitors in distinct states. Specifically, we characterized the Asingle spermatogonial subtype marked by the expression of Eomes. Eomes+ cells contained enriched transplantable SSCs, and more than 90% of the cells remained in the quiescent state. Conditional deletion of Eomes in the germline did not impact steady-state spermatogenesis but enhanced SSC regeneration. Forced expression of Eomes in spermatogenic cells disrupted spermatogenesis mainly by affecting the cell cycle progression of undifferentiated spermatogonia. After injury, Eomes+ cells re-enter the cell cycle and divide to expand the SSC pool. Eomes+ cells consisted of 7 different subsets of cells at single-cell resolution, and genes enriched in glycolysis/gluconeogenesis and the PI3/Akt signaling pathway participated in the SSC regeneration process. CONCLUSIONS In this study, we explored the molecular characteristics and critical regulators of subpopulations of undifferentiated spermatogonia. The findings of the present study described a quiescent SSC subpopulation, Eomes+ spermatogonia, and provided a dynamic transcriptional map of SSC fate determination.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Medical Technology, Luoyang Polytechnic, Luoyang, Henan, 471000, China
| | - Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Jun Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Ping Tao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Na Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810001, China.
| |
Collapse
|
8
|
Piechka A, Sparanese S, Witherspoon L, Hach F, Flannigan R. Molecular mechanisms of cellular dysfunction in testes from men with non-obstructive azoospermia. Nat Rev Urol 2024; 21:67-90. [PMID: 38110528 DOI: 10.1038/s41585-023-00837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
Male factor infertility affects 50% of infertile couples worldwide; the most severe form, non-obstructive azoospermia (NOA), affects 10-15% of infertile males. Treatment for individuals with NOA is limited to microsurgical sperm extraction paired with in vitro fertilization intracytoplasmic sperm injection. Unfortunately, spermatozoa are only retrieved in ~50% of patients, resulting in live birth rates of 21-46%. Regenerative therapies could provide a solution; however, understanding the cell-type-specific mechanisms of cellular dysfunction is a fundamental necessity to develop precision medicine strategies that could overcome these abnormalities and promote regeneration of spermatogenesis. A number of mechanisms of cellular dysfunction have been elucidated in NOA testicular cells. These mechanisms include abnormalities in both somatic cells and germ cells in NOA testes, such as somatic cell immaturity, aberrant growth factor signalling, increased inflammation, increased apoptosis and abnormal extracellular matrix regulation. Future cell-type-specific investigations in identifying modulators of cellular transcription and translation will be key to understanding upstream dysregulation, and these studies will require development of in vitro models to functionally interrogate spermatogenic niche dysfunction in both somatic and germ cells.
Collapse
Affiliation(s)
- Arina Piechka
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Sydney Sparanese
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke Witherspoon
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Urology, Department of Surgery, University of Ottawa, Ontario, Canada
| | - Faraz Hach
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Guo X, Jiang C, Zhang Y, Chen Z, Hao D, Zhang H. Spermatogonial stem-cell-derived neural-like cell transplantation enhances the functional recovery of a rat spinal cord injury model: characterization of evoked potentials. Front Neurosci 2023; 17:1289581. [PMID: 37908621 PMCID: PMC10613671 DOI: 10.3389/fnins.2023.1289581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Severe spinal cord injuries (SCIs) usually result in the temporary or permanent impairment of strength, sensation or autonomic functions below the sites of injuries. To date, a large number of therapeutic approaches have been used to ameliorate SCIs, and subsequent stem cell transplantation appears to be a promising strategy. The aim of this study was to evaluate the therapeutic effect of stem cells by changes in the evoked potentials at different time points after a transplantation of spermatogonial stem cells (SSCs) to differentiate the source neurons in a rat model with SCIs, as well as through histopathology. A modified Plemel spinal cord lateral compression model was used. The experiment was divided into a blank, a control and a SSC transplantation group. Motor activity scores, sensory evoked potentials (SEPs) and motor evoked potentials (MEPs) were assessed through motor resuscitation as well as histologic evaluation on each experimental group to determine the improvement. Consistent with our results, motor scores and evoked potentials were significantly improved in the SSC transplantation group. In addition, a histologic assessment showed that the transplanted stem cells had a significant restorative effect on the reconstruction of tissue cells. 1 week after the stem cell transplantation, the SSC transplantation group showed improvement in spinal cord functions and spinal cord pathologic injuries. After 2 weeks and beyond, the SSC transplantation group showed significant improvement in spinal cord functions and spinal cord pathology compared to the control group, meanwhile the evoked potentials and motor function of the hind limbs of rats in the SSC transplantation group were significantly improved. Therefore, the therapeutic strategies for spermatogonial stem cells will be an effective program in the study on SCIs, and we suggest the somatosensory evoked potentials as a tool to assess the degree of recovery from SCIs after the transplantation of stem cells.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
- Department of Spine Surgery, Xi'an Honghui Hospital, Xi’an, China
| | - Chao Jiang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yongjie Zhang
- Department of Electromyography, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhe Chen
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Dingjun Hao
- Department of Spine Surgery, Xi'an Honghui Hospital, Xi’an, China
| | - Haihong Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Peng YJ, Tang XT, Shu HS, Dong W, Shao H, Zhou BO. Sertoli cells are the source of stem cell factor for spermatogenesis. Development 2023; 150:297262. [PMID: 36861441 PMCID: PMC10112922 DOI: 10.1242/dev.200706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Several cell types have been proposed to create the required microenvironment for spermatogenesis. However, expression patterns of the key growth factors produced by these somatic cells have not been systematically studied and no such factor has been conditionally deleted from its primary source(s), raising the question of which cell type(s) are the physiological sources of these growth factors. Here, using single-cell RNA sequencing and a series of fluorescent reporter mice, we found that stem cell factor (Scf), one of the essential growth factors for spermatogenesis, was broadly expressed in testicular stromal cells, including Sertoli, endothelial, Leydig, smooth muscle and Tcf21-CreER+ stromal cells. Both undifferentiated and differentiating spermatogonia were associated with Scf-expressing Sertoli cells in the seminiferous tubule. Conditional deletion of Scf from Sertoli cells, but not any other Scf-expressing cells, blocked the differentiation of spermatogonia, leading to complete male infertility. Conditional overexpression of Scf in Sertoli cells, but not endothelial cells, significantly increased spermatogenesis. Our data reveal the importance of anatomical localization for Sertoli cells in regulating spermatogenesis and that SCF produced specifically by Sertoli cells is essential for spermatogenesis.
Collapse
Affiliation(s)
- Yi Jacky Peng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Xinyu Thomas Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Hui Sophie Shu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Wenjie Dong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Hongfang Shao
- Center of Reproductive Medicine, Department of Gynecology and Obstetrics, Shanghai Jiao Tong University School of Medicine-Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Bo O Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, People's Republic of China
| |
Collapse
|
11
|
Wang YJ, Li S, Tao HP, Zhang XN, Fang YG, Yang QE. ARHGEF15 is expressed in undifferentiated spermatogonia but is not required for spermatogenesis in mice. Reprod Biol 2023; 23:100727. [PMID: 36603298 DOI: 10.1016/j.repbio.2022.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Spermatogenesis is a continual process that relies on the activities of undifferentiated spermatogonia, which contain spermatogonial stem cells (SSCs) that serve as the basis of spermatogenesis. The gene expression pattern and molecular control of fate decisions of undifferentiated spermatogonia are not well understood. Rho guanine nucleotide exchange factor 15 (ARHGEF15, also known as EPHEXIN5) is a guanine nucleotide-exchange factor (GEF) that activates the Rho protein. Here, we reported that ARHGEF15 was expressed in undifferentiated spermatogonia and spermatocytes in mouse testes; however, its deletion did not affect spermatogenesis. Arhgef15-/- mice were fertile, and histological examination of the seminiferous tubules of Arhgef15-/- mice revealed complete spermatogenesis with the presence of all types of spermatogenic cells. Proliferation and differentiation of the undifferentiated spermatogonia were not impacted; however, further analysis showed that Arhgef15 deletion resulted in decreased expression of Nanos2, Lin28a and Ddx4. Together, these findings suggest that ARHGEF15 was specifically enriched in undifferentiated spermatogonia and regulated gene expression but dispensable for spermatogenesis in mice.
Collapse
Affiliation(s)
- Yu-Jun Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ping Tao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Na Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Gui Fang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.
| |
Collapse
|
12
|
Sojoudi K, Azizi H, Skutella T. A Fundamental Research in In Vitro Spermatogonial Stem Cell Culturing: What Are Clump Cells? Cell Reprogram 2023; 25:65-72. [PMID: 36847738 DOI: 10.1089/cell.2022.0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are a small group of testicular cells located in the basement membrane of seminiferous tubules and can balance self-renewal and differentiation during spermatogenesis. Our in vitro culture experiments of mouse SSCs indicated heterogeneity of cultured cells. Highly compact colonies were observed next to SSC colonies, which we call clump cells. We used immunocytochemical staining to identify SSCs and somatic cells with VASA and Vimentin antibodies. Subsequently, we compared mRNA expression levels of VASA, DAZL, PLZF, GFRA1, Lin28, Kit, Myc and Vimentin genes using Fluidigm real-time RT-polymerase chain reaction in clump cells, SSCs, and testicular stromal cells. To better understand the functions of selected genes, we created a protein-protein interaction network and performed an enrichment analysis using different databases. Based on the data collected, we state that clump cells do not express the molecular markers of SSCs, so we cannot consider them as SSCs; however, we claim that these cells are altered SSCs. The molecular mechanism of this conversion is still obscure. Therefore, this study can support the analysis of germ cell development both in vitro and in vivo. In addition, it can be effective in finding new and more efficient treatments for male infertility.
Collapse
Affiliation(s)
- Kiana Sojoudi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Ma L, Li B, Ma J, Wu C, Li N, Zhou K, Yan Y, Li M, Hu X, Yan H, Wang Q, Zheng Y, Wu Z. Novel discovery of Schisandrin A regulating the interplay of autophagy and apoptosis in oligoasthenospermia by targeting SCF/c-kit and TRPV1 via biosensors. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
14
|
Kirsanov O, Johnson T, Malachowski T, Niedenberger BA, Gilbert EA, Bhowmick D, Ozdinler PH, Gray DA, Fisher-Wellman K, Hermann BP, Geyer CB. Modeling mammalian spermatogonial differentiation and meiotic initiation in vitro. Development 2022; 149:282465. [PMID: 36250451 PMCID: PMC9845750 DOI: 10.1242/dev.200713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
In mammalian testes, premeiotic spermatogonia respond to retinoic acid by completing an essential lengthy differentiation program before initiating meiosis. The molecular and cellular changes directing these developmental processes remain largely undefined. This wide gap in knowledge is due to two unresolved technical challenges: (1) lack of robust and reliable in vitro models to study differentiation and meiotic initiation; and (2) lack of methods to isolate large and pure populations of male germ cells at each stage of differentiation and at meiotic initiation. Here, we report a facile in vitro differentiation and meiotic initiation system that can be readily manipulated, including the use of chemical agents that cannot be safely administered to live animals. In addition, we present a transgenic mouse model enabling fluorescence-activated cell sorting-based isolation of millions of spermatogonia at specific developmental stages as well as meiotic spermatocytes.
Collapse
Affiliation(s)
- Oleksandr Kirsanov
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Taylor Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Taylor Malachowski
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Bryan A. Niedenberger
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Emma A. Gilbert
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Debajit Bhowmick
- Flow Cytometry Facility, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - P. Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611, USA
| | - Douglas A. Gray
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, K1H 8M5, Canada,Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
| | - Kelsey Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Christopher B. Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA,Author for correspondence ()
| |
Collapse
|
15
|
Xie X, Franěk R, Pšenička M, Chen F, Kašpar V. Optimization of in vitro culture conditions of common carp germ cells for purpose of surrogate production. Front Vet Sci 2022; 9:1036495. [PMID: 36311648 PMCID: PMC9614374 DOI: 10.3389/fvets.2022.1036495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Common carp (Cyprinus carpio) is the fourth most-produced fish species in aquaculture and frequently used model species with significant effort invested in development of biotechnological applications. In present study, we attempted to establish an in vitro germ cell culture condition for short term cell culture, which could facilitate further applications such as surrogacy or gene manipulation. Basal media and different types of feeder cells were investigated to optimize carp germ cell culture condition to favor maintenance of mitotic proliferation. Results indicated that germ cells cultured with hESC media and RTG2 cell line as feeder possessed significantly higher proliferation and survival rate compared to that cultured with StemPro media and Sertoli cell line as feeder. In addition, we compared two dissection strategies to compare risk of cell culture contamination and body cavity was open from dorsal part or from ventral part. As a result, carp open from the dorsal side can minimize the risk of contamination. In summary, this is the first study to optimize the cultivation of germ cells in common carp. This opens up new opportunities for the application of specific techniques in the breeding of those species with high commercial value and frequent use as a model fish. Results obtained in this study are important for implementation of new strategies in common carp breeding, conservation of genetic resources, restoration of lines or development of clonal and isogenic carp lines.
Collapse
Affiliation(s)
- Xuan Xie
- Department of Gynecology & Obstetrics, Xijing Hospital of Airforce Military Medical University, Xi'an, China,Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceské Budějovice, Ceské Budějovice, Czechia,*Correspondence: Xuan Xie
| | - Roman Franěk
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceské Budějovice, Ceské Budějovice, Czechia,Department of Genetics, The Silberman Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Martin Pšenička
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceské Budějovice, Ceské Budějovice, Czechia
| | - Fan Chen
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, China
| | - Vojtech Kašpar
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceské Budějovice, Ceské Budějovice, Czechia
| |
Collapse
|
16
|
Jaffar FHF, Osman K, Hui CK, Zulkefli AF, Ibrahim SF. Long-Term Wi-Fi Exposure From Pre-Pubertal to Adult Age on the Spermatogonia Proliferation and Protective Effects of Edible Bird’s Nest Supplementation. Front Physiol 2022; 13:828578. [PMID: 35360230 PMCID: PMC8963498 DOI: 10.3389/fphys.2022.828578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Children are vulnerable to the radiofrequency radiation (RFR) emitted by Wi-Fi devices. Nevertheless, the severity of the Wi-Fi effect on their reproductive development has been sparsely available. Therefore, this study was conducted to evaluate the Wi-Fi exposure on spermatogonia proliferation in the testis. This study also incorporated an approach to attenuate the effect of Wi-Fi by giving concurrent edible bird’s nest (EBN) supplementation. It was predicted that Wi-Fi exposure reduces spermatogonia proliferation while EBN supplementation protects against it. A total of 30 (N = 30) 3-week-old Sprague Dawley weanlings were divided equally into five groups; Control, Control EBN, Wi-Fi, Sham Wi-Fi, and Wi-Fi + EBN. 2.45 GHz Wi-Fi exposure and 250 mg/kg EBN supplementation were conducted for 14 weeks. Findings showed that the Wi-Fi group had decreased in spermatogonia mitosis status. However, the mRNA and protein expression of c-Kit-SCF showed no significant decrease. Instead, the reproductive hormone showed a reduction in FSH and LH serum levels. Of these, LH serum level was decreased significantly in the Wi-Fi group. Otherwise, supplementing the Wi-Fi + EBN group with 250 mg/kg EBN resulted in a significant increase in spermatogonia mitotic status. Even though EBN supplementation improved c-Kit-SCF mRNA and protein expression, the effects were insignificant. The improvement of spermatogonia mitosis appeared to be associated with a significant increase in blood FSH levels following EBN supplementation. In conclusion, the long-term Wi-Fi exposure from pre-pubertal to adult age reduces spermatogonia proliferation in the testis. On the other hand, EBN supplementation protects spermatogonia proliferation against Wi-Fi exposure.
Collapse
Affiliation(s)
| | - Khairul Osman
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
- *Correspondence: Siti Fatimah Ibrahim,
| |
Collapse
|
17
|
Wright WW. The Regulation of Spermatogonial Stem Cells in an Adult Testis by Glial Cell Line-Derived Neurotrophic Factor. Front Endocrinol (Lausanne) 2022; 13:896390. [PMID: 35721702 PMCID: PMC9203831 DOI: 10.3389/fendo.2022.896390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 12/05/2022] Open
Abstract
This review focuses on the in vivo regulation of spermatogonial stem cells (SSCs) in adult testes by glial cell line-derived neurotrophic factor (GDNF). To study adult mouse testes, we reversibly inhibited GDNF stimulation of SSCs via a chemical-genetic approach. This inhibition diminishes replication and increases differentiation of SSCs, and inhibition for 9 days reduces transplantable SSC numbers by 90%. With more sustained inhibition, all SSCs are lost, and testes eventually resemble human testes with Sertoli cell-only (SCO) syndrome. This resemblance prompted us to ask if GDNF expression is abnormally low in these infertile human testes. It is. Expression of FGF2 and FGF8 is also reduced, but some SCO testes contain SSCs. To evaluate the possible rebuilding of an SSC pool depleted due to inadequate GDNF signaling, we inhibited and then restored signaling to mouse SSCs. Partial rebuilding occurred, suggesting GDNF as therapy for men with SCO syndrome.
Collapse
|
18
|
Djari C, Sahut-Barnola I, Septier A, Plotton I, Montanier N, Dufour D, Levasseur A, Wilmouth J, Pointud JC, Faucz FR, Kamilaris C, Lopez AG, Guillou F, Swain A, Vainio SJ, Tauveron I, Val P, Lefebvre H, Stratakis CA, Martinez A, Lefrançois-Martinez AM. Protein kinase A drives paracrine crisis and WNT4-dependent testis tumor in Carney complex. J Clin Invest 2021; 131:146910. [PMID: 34850745 DOI: 10.1172/jci146910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Large-cell calcifying Sertoli cell tumors (LCCSCTs) are among the most frequent lesions occurring in male Carney complex (CNC) patients. Although they constitute a key diagnostic criterion for this rare multiple neoplasia syndrome resulting from inactivating mutations of the tumor suppressor PRKAR1A, leading to unrepressed PKA activity, LCCSCT pathogenesis and origin remain elusive. Mouse models targeting Prkar1a inactivation in all somatic populations or separately in each cell type were generated to decipher the molecular and paracrine networks involved in the induction of CNC testis lesions. We demonstrate that the Prkar1a mutation was required in both stromal and Sertoli cells for the occurrence of LCCSCTs. Integrative analyses comparing transcriptomic, immunohistological data and phenotype of mutant mouse combinations led to the understanding of human LCCSCT pathogenesis and demonstrated PKA-induced paracrine molecular circuits in which the aberrant WNT4 signal production is a limiting step in shaping intratubular lesions and tumor expansion both in a mouse model and in human CNC testes.
Collapse
Affiliation(s)
- Cyril Djari
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | | - Amandine Septier
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Ingrid Plotton
- UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Hospices Civils de Lyon, Bron, France
| | - Nathanaëlle Montanier
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France.,Université Clermont-Auvergne, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Damien Dufour
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Adrien Levasseur
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - James Wilmouth
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Crystal Kamilaris
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Antoine-Guy Lopez
- Normandie University, UNIROUEN, INSERM U1239, Rouen University Hospital, Department of Endocrinology, Diabetology and Metabolic Diseases and CIC-CRB 140h4, Rouen, France
| | | | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Seppo J Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Igor Tauveron
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France.,Université Clermont-Auvergne, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pierre Val
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Hervé Lefebvre
- Normandie University, UNIROUEN, INSERM U1239, Rouen University Hospital, Department of Endocrinology, Diabetology and Metabolic Diseases and CIC-CRB 140h4, Rouen, France
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Antoine Martinez
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | |
Collapse
|
19
|
Huang L, Xiao K, Zhang J, Zhang P, He W, Tang Y, Yang W, Huang X, Liu R, Liang X, Liu X, Fu Q, Lu Y, Zhang M. Comparative transcriptome analysis reveals potential testosterone function-related regulatory genes/pathways of Leydig cells in immature and mature buffalo (Bubalus bubalis) testes. Gene 2021; 802:145870. [PMID: 34363886 DOI: 10.1016/j.gene.2021.145870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/11/2021] [Accepted: 08/02/2021] [Indexed: 01/27/2023]
Abstract
Leydig cells (LCs) are testosterone-generating endocrine cells that are located outside the seminiferous tubules in the testis, and testosterone is fundamental for retaining spermatogenesis and male fertility. In buffalo, adult Leydig cells (ALCs) are developed by immature Leydig cells (ILCs) in the postnatal testes. However, the genes/pathways associated to the regulation of testosterone secretion function during the development of postnatal LCs remains comprehensively unidentified. The present study comparatively analyzed the transcriptome profiles of ILC and ALC in buffalo with significant differences in testosterone secretion. Differentially expressed genes (DEGs) analysis identified 972 and 1,091 annotated genes that were significantly up- and down-regulated in buffalo ALC. Functional enrichment analysis showed that cAMP signaling being the most significantly enriched pathway, and testosterone synthesis and lipid transport-related genes/pathways were upregulated in ALC. Furthermore, gene set enrichment analysis (GSEA) shows that cAMP signaling and steroid hormone biosynthesis were activated in ALC, demonstrating that cAMP signaling may serve as a positive regulatory pathway in the maintenance of testosterone function during postnatal development of LCs. Protein-protein interaction (PPI) networks analysis highlighted that ADCY8, ADCY2, POMC, CHRM2, SST, PTGER3, SSTR2, SSTR1, NPY1R, and HTR1D as hub genes in the cAMP signaling pathway. In conclusion, this study identified key genes and pathways associated in the regulation of testosterone secretion function during the ILC-ALC transition in buffalo based on bioinformatics analysis, and these key genes might be deeply involved in cAMP generation to influencing testosterone levels in LCs. The results suggest that ALCs might increase testosterone levels by enhancing cAMP production than ILCs. Our data will enhance the understanding of developmental mechanism studies related to testosterone function and provide preliminary evidence for molecular mechanisms of LCs regulating spermatogenesis.
Collapse
Affiliation(s)
- Liangfeng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Kai Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Junjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Pengfei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Wengtan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuyan Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Weihan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Xingchen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Runfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China
| | - Xianwei Liang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Nanning 530001, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China.
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China.
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China.
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
20
|
Jia GX, Lin Z, Yan RG, Wang GW, Zhang XN, Li C, Tong MH, Yang QE. WTAP Function in Sertoli Cells Is Essential for Sustaining the Spermatogonial Stem Cell Niche. Stem Cell Reports 2021; 15:968-982. [PMID: 33053361 PMCID: PMC7566211 DOI: 10.1016/j.stemcr.2020.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Sertoli cells are the major component of the spermatogonial stem cell (SSC) niche; however, regulatory mechanisms in Sertoli cells that dictate SSC fate decisions remain largely unknown. Here we revealed features of the N6-methyladenosine (m6A) mRNA modification in Sertoli cells and demonstrated the functions of WTAP, the key subunit of the m6A methyltransferase complex in spermatogenesis. m6A-sequencing analysis identified 21,909 m6A sites from 15,365 putative m6A-enriched transcripts within 6,122 genes, including many Sertoli cell-specific genes. Conditional deletion of Wtap in Sertoli cells resulted in sterility and the progressive loss of the SSC population. RNA sequencing and ribosome nascent-chain complex-bound mRNA sequencing analyses suggested that alternative splicing events of transcripts encoding SSC niche factors were sharply altered and translation of these transcripts were severely dysregulated by Wtap deletion. Collectively, this study uncovers a novel regulatory mechanism of the SSC niche and provide insights into molecular interactions between stem cells and their cognate niches in mammals. WTAP is highly expressed in Sertoli cell and is essential in spermatogenesis Wtap knockout in Sertoli cell causes defective spermatogonial stem cell maintenance WTAP regulates transcription and translation of m6A-enriched genes in Sertoli cell
Collapse
Affiliation(s)
- Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Na Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
| |
Collapse
|
21
|
Li H, Wang B, Yang H, Wang Y, Xing L, Chen W, Wang J, Zheng N. Furosine Posed Toxic Effects on Primary Sertoli Cells through Regulating Cep55/NF-κB/PI3K/Akt/FOX01/TNF-α Pathway. Int J Mol Sci 2019; 20:ijms20153716. [PMID: 31366014 PMCID: PMC6696181 DOI: 10.3390/ijms20153716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
As one of the Maillard reaction products, furosine has been widely reported in a variety of heat-processed foods, while the toxicity of furosine on the reproductive system and related mechanisms are unclear. Here, we constructed an intragastric gavage male mice model (42-day administration, 0.1/0.25/0.5 g furosine/Kg body weight per day) to investigate its effects on mice testicle index, hormones in serum, and mice sperm quality. Besides, the lipid metabonomics analysis was performed to screen out the special metabolites and relatively altered pathways in mice testicle tissue. Mice primary sertoli cells were separated from male mice testicle to validate the role of special metabolites in regulating pathways. We found that furosine affected testicle index, hormones expression level and sperm quality, as well as caused pathological damages in testicle tissue. Phosphatidylethanolamine (PE) (18:0/16:1) was upregulated by furosine both in mice testicle tissue and in primary sertoli cells, meanwhile, PE(18:0/16:1) was proved to activate Cep55/NF-κB/PI3K/Akt/FOX01/TNF-α pathway, and as a functional protein in dairy products, lactoferrin could inhibit expression of this pathway when combined with furosine. In conclusion, for the first time we validated that furosine posed toxic effects on mice sperms and testicle tissue through upregulating PE(18:0/16:1) and activating Cep55/NF-κB/PI3K/Akt/FOX01/TNF-α pathway.
Collapse
Affiliation(s)
- Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bingyuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huaigu Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yizhen Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Xing
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Chen
- Shanghai Applied Protein Technology Co., Ltd., Shanghai 200030, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
22
|
Paduch DA, Hilz S, Grimson A, Schlegel PN, Jedlicka AE, Wright WW. Aberrant gene expression by Sertoli cells in infertile men with Sertoli cell-only syndrome. PLoS One 2019; 14:e0216586. [PMID: 31071133 PMCID: PMC6508736 DOI: 10.1371/journal.pone.0216586] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Sertoli cell-only (SCO) syndrome is a severe form of human male infertility seemingly characterized by the lack all spermatogenic cells. However, tubules of some SCO testes contain small patches of active spermatogenesis and thus spermatogonial stem cells. We hypothesized that these stem cells cannot replicate and seed spermatogenesis in barren areas of tubule because as-of-yet unrecognized deficits in Sertoli cell gene expression disable most stem cell niches. Performing the first thorough comparison of the transcriptomes of human testes exhibiting complete spermatogenesis with the transcriptomes of testes with SCO syndrome, we defined transcripts that are both predominantly expressed by Sertoli cells and expressed at aberrant levels in SCO testes. Some of these transcripts encode proteins required for the proper assembly of adherent and gap junctions at sites of contact with other cells, including spermatogonial stem cells (SSCs). Other transcripts encode GDNF, FGF8 and BMP4, known regulators of mouse SSCs. Thus, most SCO Sertoli cells can neither organize junctions at normal sites of cell-cell contact nor stimulate SSCs with adequate levels of growth factors. We propose that the critical deficits in Sertoli cell gene expression we have identified contribute to the inability of spermatogonial stem cells within small patches of spermatogenesis in some SCO testes to seed spermatogenesis to adjacent areas of tubule that are barren of spermatogenesis. Furthermore, we predict that one or more of these deficits in gene expression are primary causes of human SCO syndrome.
Collapse
Affiliation(s)
- Darius A. Paduch
- Department of Urology, Weill Cornell Medical College, New York, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, California, United States of America
- Genomic Analysis and Sequencing Core Facility, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Andrew Grimson
- Department of Neurological Surgery, University of California, San Francisco, California, United States of America
| | - Peter N. Schlegel
- Department of Urology, Weill Cornell Medical College, New York, NY, United States of America
| | - Anne E. Jedlicka
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - William W. Wright
- Consulting Research Services, Inc, North Bergen, N.J., United States of America
- * E-mail:
| |
Collapse
|
23
|
Zhuang M, Li B, Huang Y, Lei Q, Yan R, Li N, Sidhu K, Cheng X, Yan X, Miao Y, Zhao S, Hua J. Reelin regulates male mouse reproductive capacity via the sertoli cells. J Cell Biochem 2019; 120:1174-1184. [PMID: 30335884 DOI: 10.1002/jcb.26824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 02/28/2018] [Indexed: 01/24/2023]
Abstract
Reelin plays important roles in brain development. Reeler mutant mice that lack the protein reelin (RELN) suffer from cell type- and region-dependent changes in their neocortical layers, and adult reeler mutant mice have dilated seminiferous tubules. Meanwhile, the mechanism by which Reelin regulates the spermatogenic cell development in mice and their reproductive abilities remains unclear. In the present study, we used reeler mutant mice to investigate the effects of Reelin on reproduction in mice. The results indicated variations in sex hormone expression among the reeler mice, indicating that they produce few offspring and their spermatogenic cells are irregularly developed. Moreover, glial cell line-derived neurotrophic factor (GDNF)/GDNF family receptor alpha 1, Ras/extracellular regulated protein kinases (ERK), and promyelocytic leukemia zinc finger (PLZF)/chemokine (C-X-C motif) receptor 4 (CXCR4) serve as potential regulatory pathways that respond to the changes in sertoli cells and the niche of male germ cells. Our findings provided valuable insights into the role of reeler in the reproductive abilities of male mice and development of their spermatogonia stem cells.
Collapse
Affiliation(s)
- Mengru Zhuang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yangxue Huang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qijing Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruichuan Yan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing, UNSW Medicine, Randwick, New South Wales, Australia
| | - Xiang Cheng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G James Cancer Hospital, Columbus, Ohio
| | - Xinrong Yan
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Yiliang Miao
- College of Animal Sciences & Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shanting Zhao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
24
|
Zhao Y, Yang Z, Wang Y, Luo Y, Da F, Tao W, Zhou L, Wang D, Wei J. Both Gfrα1a and Gfrα1b Are Involved in the Self-renewal and Maintenance of Spermatogonial Stem Cells in Medaka. Stem Cells Dev 2018; 27:1658-1670. [PMID: 30319069 DOI: 10.1089/scd.2018.0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glial cell-derived neurotrophic factor family receptor alpha-1 (GFRα1) plays a crucial role in the self-renewal and maintenance of spermatogonial stem cells (SSCs) from mammals. However, to date, our knowledge about its role in fish SSCs is limited. In the present study, the medaka (Oryzias latipes) gfrα1 duplicate genes, Olgfrα1a and Olgfrα1b, were cloned and characterized. Furthermore, their expression profile and biological activity were investigated. OlGfrα1a and OlGfrα1b predict 524 and 466 amino acid residues, respectively. Both are orthologous to mammalian Gfrα1 by sequence analyses and appear high in spermatogonia by in situ hybridization assay. The knockdown of OlGfrα1a and/or OlGfrα1b via Vivo-Morpholino oligos significantly inhibited the self-renewal and maintenance of SSCs, as evidenced by the decreased proliferation activity of SG3 cells (a spermatogonial stem cell line derived from adult medaka testis) as well as spermatogonia in the testicular organ culture and by the decreased survival rate and expression levels of pluripotency-related genes (klf4, lin28b, bcl6b, and etv5) in SG3 cells. Additionally, our study indicates that OlGfrα1a might function by binding either Gdnfa or Gdnfb (the two medaka Gdnf homologs), whereas OlGfrα1b function by binding Gdnfa not Gdnfb. Taken together, our study indicates that both OlGfrα1a and OlGfrα1b are involved in the self-renewal and maintenance of SSCs by binding Gdnfa and/or Gdnfb, respectively. These findings suggest that the GDNF/GFRα1 signaling pathway might be conserved from mammals to fish species.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Zhuo Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Yuan Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Yubing Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Fan Da
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| |
Collapse
|
25
|
Yang C, Yao C, Tian R, Zhu Z, Zhao L, Li P, Chen H, Huang Y, Zhi E, Gong Y, Xue Y, Wang H, Yuan Q, He Z, Li Z. miR-202-3p Regulates Sertoli Cell Proliferation, Synthesis Function, and Apoptosis by Targeting LRP6 and Cyclin D1 of Wnt/β-Catenin Signaling. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:1-19. [PMID: 30513418 PMCID: PMC6280020 DOI: 10.1016/j.omtn.2018.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) play important roles in mammalian spermatogenesis, which is highly dependent on Sertoli cells. However, the functions and mechanisms of miRNAs in regulating human Sertoli cells remain largely unknown. Here, we report that hsa-miR-202-3p mediates the proliferation, apoptosis, and synthesis function of human Sertoli cells. miR-202-3p was upregulated in Sertoli cells of Sertoli cell-only syndrome (SCOS) patients compared with obstructive azoospermia (OA) patients with normal spermatogenesis. Overexpression of miR-202-3p induced Sertoli cell apoptosis and inhibited cell proliferation and synthesis, and the effects were opposite when miR-202-3p was knocked down. Lipoprotein receptor-related protein 6 (LRP6) and Cyclin D1 of the Wnt/β-catenin signaling pathway were identified as direct targets of miR-202-3p in Sertoli cells, which were validated by bioinformatics tools and dual-luciferase reporter assay. Differentially expressed LRP6 and Cyclin D1 between OA and SCOS Sertoli cells were also verified. LRP6 small interfering RNA (siRNA) interference not only mimicked the effects of miR-202-3p overexpression, but also antagonized the effects of miR-202-3p inhibition on Sertoli cells. Collectively, miR-202-3p controls the proliferation, apoptosis, and synthesis function of human Sertoli cells via targeting LRP6 and Cyclin D1 of the Wnt/β-catenin signaling pathway. This study thus provides a novel insight into fate determinations of human Sertoli cells and niche of human testis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China; Nanjing Medical University, 101 Longmian Dadao, Jiangning District, Nanjing 210029, China
| | - Chencheng Yao
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Ruhui Tian
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Zijue Zhu
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Liangyu Zhao
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Peng Li
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Huixing Chen
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Yuhua Huang
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Erlei Zhi
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Yuehua Gong
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Yunjing Xue
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Hong Wang
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Qingqing Yuan
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai 200135, China
| | - Zuping He
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China; School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Zheng Li
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.
| |
Collapse
|
26
|
Li H, Bian YL, Schreurs N, Zhang XG, Raza SHA, Fang Q, Wang LQ, Hu JH. Effects of five cryoprotectants on proliferation and differentiation-related gene expression of frozen-thawed bovine calf testicular tissue. Reprod Domest Anim 2018; 53:1211-1218. [DOI: 10.1111/rda.13228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Hao Li
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Yi-Lin Bian
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Nicola Schreurs
- Institute of Veterinary, Animal and Biomedical Sciences; Massey University; Palmerston North New Zealand
| | - Xiao-Gang Zhang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | | | - Qian Fang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Li-Qiang Wang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Jian-Hong Hu
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| |
Collapse
|
27
|
Janostiak R, Vyas M, Cicek AF, Wajapeyee N, Harigopal M. Loss of c-KIT expression in breast cancer correlates with malignant transformation of breast epithelium and is mediated by KIT gene promoter DNA hypermethylation. Exp Mol Pathol 2018; 105:41-49. [PMID: 29852185 DOI: 10.1016/j.yexmp.2018.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/26/2018] [Indexed: 12/21/2022]
Abstract
KIT Proto-Oncogene Receptor Tyrosine Kinase (KIT) is a transmembrane receptor tyrosine kinase which plays an important role in regulation of cell proliferation, survival and migration. Interestingly, the role of c-KIT in malignant transformation seems to be highly tissue-specific and it can act either as an oncogene or tumor suppressor gene. Here we analyzed the expression of c-KIT in normal breast tissues and tissues from different stages encompassing major steps of breast tumor development. Our study showed, that the c-KIT protein expression is gradually lost during the process of breast tissue transformation. The analysis of previously published datasets revealed that c-KIT expression in breast malignancies was downregulated at mRNA level. Because sequencing studies did not identify any recurrent mutations or copy number alterations, we proposed a potential epigenetic mechanism for the downregulation of c-KIT expression. In-silico analysis of the KIT promoter revealed the presence of CpG islands, therefore we performed bisulfite sequencing of normal breast epithelial tissues as well as breast tumor samples. We found, that KIT promoter is hypermethylated in breast tumors compared to normal breast tissues. Furthermore, treatment of breast cancer cell lines, that lack the expression of c-KIT, with methyltransferase inhibitor 5-Azacytidine (5Aza-2dC) resulted in increased expression of c-KIT mRNA. Collectively, our studies demonstrate that c-KIT expression is epigenetically downregulated during breast epithelium transformation and cancer development via KIT promoter hypermethylation.
Collapse
Affiliation(s)
- Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Monika Vyas
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ali Fuat Cicek
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Malini Harigopal
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
28
|
Li X, Fok KL, Guo J, Wang Y, Liu Z, Chen Z, Wang C, Ruan YC, Yu SS, Zhao H, Wu J, Jiang X, Chan HC. Retinoic acid promotes stem cell differentiation and embryonic development by transcriptionally activating CFTR. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:605-615. [DOI: 10.1016/j.bbamcr.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/03/2018] [Accepted: 01/07/2018] [Indexed: 01/11/2023]
|
29
|
Koli S, Mukherjee A, Reddy KVR. Retinoic acid triggers c-kit gene expression in spermatogonial stem cells through an enhanceosome constituted between transcription factor binding sites for retinoic acid response element (RARE), spleen focus forming virus proviral integration oncogene (SPFI1) (PU.1) and E26 transformation-specific (ETS). Reprod Fertil Dev 2018; 29:521-543. [PMID: 28442062 DOI: 10.1071/rd15145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/14/2015] [Indexed: 12/19/2022] Open
Abstract
Restricted availability of retinoic acid (RA) in the testicular milieu regulates transcriptional activity of c-kit (KIT, CD117), which aids in the determination of spermatogonial stem-cell differentiation. The effect of RA on c-kit has been reported previously, but its mode of genomic action remains unresolved. We studied the molecular machinery guiding RA responsiveness to the c-kit gene using spermatogonial stem-cell line C18-4 and primary spermatogonial cells. A novel retinoic acid response element (RARE) positioned at -989 nucleotides upstream of the transcription start site (TSS) was identified, providing a binding site for a dimeric RA receptor (i.e. retinoic acid receptor gamma (RARγ) and retinoic X receptor). RA treatment influenced c-kit promoter activity, along with endogenous c-kit expression in C18-4 cells. A comprehensive promoter deletion assay using the pGL3B reporter system characterised the region spanning -271bp and -1011bp upstream of the TSS, which function as minimal promoter and maximal promoter, respectively. In silico analysis predicted that the region -1011 to +58bp comprised the distal enhancer RARE and activators such as spleen focus forming virus proviral integration oncogene (SPFI1) (PU.1), specificity protein 1 (SP1) and four E26 transformation-specific (ETS) tandem binding sites at the proximal region. Gel retardation and chromatin immunoprecipitation (ChIP) assays showed binding for RARγ, PU.1 and SP1 to the predicted consensus binding sequences, whereas GABPα occupied only two out of four ETS binding sites within the c-kit promoter region. We propose that for RA response, an enhanceosome is orchestrated through scaffolding of a CREB-binding protein (CBP)/p300 molecule between RARE and elements in the proximal promoter region, controlling germ-line expression of the c-kit gene. This study outlines the fundamental role played by RARγ, along with other non-RAR transcription factors (PU.1, SP1 and GABPα), in the regulation of c-kit expression in spermatogonial stem cells in response to RA.
Collapse
Affiliation(s)
- Swanand Koli
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M Street, Parel, Mumbai-400 012, India
| | - Ayan Mukherjee
- Department of Biological Science, Kent State University, Kent, OH 44240, USA
| | - Kudumula Venkata Rami Reddy
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M Street, Parel, Mumbai-400 012, India
| |
Collapse
|
30
|
Rehman ZU, Worku T, Davis JS, Talpur HS, Bhattarai D, Kadariya I, Hua G, Cao J, Dad R, Hussain T, Yang L. Role and mechanism of AMH in the regulation of Sertoli cells in mice. J Steroid Biochem Mol Biol 2017; 174:133-140. [PMID: 28851672 DOI: 10.1016/j.jsbmb.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
Sertoli cells produce anti-Müllerian hormone (AMH), a glycoprotein belonging to the transforming growth factor-beta family. AMH mediates the regression of Müllerian ducts in the developing male fetus. However, the role of AMH in the regulation of primary Sertoli cells remains unclear. The present study was designed to investigate the effect of AMH on the viability and proliferation of Sertoli cells, with an additional focus on stem cell factor (SCF). Treatment of Sertoli cells with increasing concentrations of rh-AMH (0, 10, 50, 100, and 800ng/ml) for two days revealed that AMH, at high concentrations, increased apoptosis. These results were confirmed by a significant increase in Caspase-3 and Bax and a decrease in Bcl-2 protein and mRNA expression (P<0.01). Paradoxically, treatment with a low concentration of rh-AMH (10ng/ml), but not higher concentrations (50-800ng/ml), promoted Sertoli cell proliferation, which was verified by an increase in PCNA mRNA (P<0.05). Furthermore, only low concentrations of rh-AMH activated the non-canonical ERK signaling pathway. Similarly, low concentrations of rh-AMH (10-50ng/ml) significantly increased (P<0.05) SCF mRNA and SCF protein levels. These findings indicate that AMH differentially regulates the fate of Sertoli cells in vitro by promoting proliferation at low concentrations and apoptosis at high concentrations. In addition, AMH increased the expression of SCF, an important regulator of Sertoli cell development. Therefore, AMH may play a role in Sertoli cell development.
Collapse
Affiliation(s)
- Zia Ur Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tesfaye Worku
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - John S Davis
- Olson Center for Women's Health, Omaha VA Medical Center, Omaha, NE, USA; Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hira Sajjad Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dinesh Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ishwari Kadariya
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guohua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jing Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rahim Dad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tarique Hussain
- Lab of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese of Academy of Science, Changsha, Hunan, 410125, People's Republic of China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
31
|
Fok KL, Bose R, Sheng K, Chang CW, Katz-Egorov M, Culty M, Su S, Yang M, Ruan YC, Chan HC, Iavarone A, Lasorella A, Cencic R, Pelletier J, Nagano M, Xu W, Wing SS. Huwe1 Regulates the Establishment and Maintenance of Spermatogonia by Suppressing DNA Damage Response. Endocrinology 2017; 158:4000-4016. [PMID: 28938460 DOI: 10.1210/en.2017-00396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022]
Abstract
Spermatogenesis is sustained by a heterogeneous population of spermatogonia that includes the spermatogonial stem cells. However, the mechanisms underlying their establishment from gonocyte embryonic precursors and their maintenance thereafter remain largely unknown. In this study, we report that inactivation of the ubiquitin ligase Huwe1 in male germ cells in mice led to the degeneration of spermatogonia in neonates and resulted in a Sertoli cell-only phenotype in the adult. Huwe1 knockout gonocytes showed a decrease in mitotic re-entry, which inhibited their transition to spermatogonia. Inactivation of Huwe1 in primary spermatogonial culture or the C18-4 cell line resulted in cell degeneration. Degeneration of Huwe1 knockout spermatogonia was associated with an increased level of histone H2AX and an elevated DNA damage response that led to apparent mitotic catastrophe but not apoptosis or senescence. Blocking this increase in H2AX prevented the degeneration of Huwe1-depleted cells. Taken together, these results reveal a previously undefined role of Huwe1 in orchestrating the physiological DNA damage response in the male germline that contributes to the establishment and maintenance of spermatogonia.
Collapse
Affiliation(s)
- Kin Lam Fok
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Rohini Bose
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
| | - Kai Sheng
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
| | - Ching-Wen Chang
- Department of Obstetrics and Gynecology, McGill University and McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Mira Katz-Egorov
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
| | - Martine Culty
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
| | - Sicheng Su
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ming Yang
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ye Chun Ruan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Makoto Nagano
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University and McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Wenming Xu
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Simon S Wing
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
32
|
Park HJ, Lee R, Lee WY, Kim JH, Do JT, Park C, Song H. Stage-specific expression of Sal-like protein 4 in boar testicular germ cells. Theriogenology 2017; 101:44-52. [DOI: 10.1016/j.theriogenology.2017.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
|
33
|
|
34
|
Wen L, Yuan Q, Sun M, Niu M, Wang H, Fu H, Zhou F, Yao C, Wang X, Li Z, He Z. Generation and characteristics of human Sertoli cell line immortalized by overexpression of human telomerase. Oncotarget 2017; 8:16553-16570. [PMID: 28152522 PMCID: PMC5369984 DOI: 10.18632/oncotarget.14985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/24/2017] [Indexed: 12/25/2022] Open
Abstract
Sertoli cells are required for normal spermatogenesis and they can be reprogrammed to other types of functional cells. However, the number of primary Sertoli cells is rare and human Sertoli cell line is unavailable. In this study, we have for the first time reported a stable human Sertoli cell line, namely hS1 cells, by overexpression of human telomerase. The hS1 cells expressed a number of hallmarks for human Sertoli cells, including SOX9, WT1, GDNF, SCF, BMP4, BMP6, GATA4, and VIM, and they were negative for 3β-HSD, SMA, and VASA. Higher levels of AR and FSHR were observed in hS1 cells compared to primary human Sertoli cells. Microarray analysis showed that 70.4% of global gene profiles of hS1 cells were similar to primary human Sertoli cells. Proliferation assay demonstrated that hS1 cells proliferated rapidly and they could be passaged for more than 30 times in 6 months. Neither Y chromosome microdeletion nor tumorgenesis was detected in this cell line and 90% normal karyotypes existed in hS1 cells. Collectively, we have established the first human Sertoli cell line with phenotype of primary human Sertoli cells, an unlimited proliferation potential and high safety, which could offer sufficient human Sertoli cells for basic research as well as reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Liping Wen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Minghui Niu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hong Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongyong Fu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chencheng Yao
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xiaobo Wang
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Zheng Li
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.,Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
35
|
Goodyear S, Brinster R. Spermatogonial Stem Cell Transplantation to the Testis. Cold Spring Harb Protoc 2017; 2017:pdb.prot094235. [PMID: 28373495 DOI: 10.1101/pdb.prot094235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogonial stem cells (SSCs) are located in the basal region of the seminiferous tubules and provide a self-renewing reservoir from which progenitor spermatogonia arise and transiently amplify in number before transition to a differentiating state. SSC transplantation involves grafting mouse testicular cells into the seminiferous tubules of an aspermic recipient testis that is generated either by chemical (e.g., busulfan) treatment or genetic mutations.
Collapse
|
36
|
Pui HP, Saga Y. Gonocytes-to-spermatogonia transition initiates prior to birth in murine testes and it requires FGF signaling. Mech Dev 2017; 144:125-139. [DOI: 10.1016/j.mod.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/01/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023]
|
37
|
|
38
|
Yao C, Sun M, Yuan Q, Niu M, Chen Z, Hou J, Wang H, Wen L, Liu Y, Li Z, He Z. MiRNA-133b promotes the proliferation of human Sertoli cells through targeting GLI3. Oncotarget 2016; 7:2201-19. [PMID: 26755652 PMCID: PMC4823029 DOI: 10.18632/oncotarget.6876] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/03/2016] [Indexed: 12/22/2022] Open
Abstract
Sertoli cells play critical roles in regulating spermatogenesis and they can be reprogrammed to the cells of other lineages, highlighting that they have significant applications in reproductive and regenerative medicine. The fate determinations of Sertoli cells are regulated precisely by epigenetic factors. However, the expression, roles, and targets of microRNA (miRNA) in human Sertoli cells remain unknown. Here we have for the first time revealed that 174 miRNAs were distinctly expressed in human Sertoli cells between Sertoli-cell-only syndrome (SCOS) patients and obstructive azoospermia (OA) patients with normal spermatogenesis using miRNA microarrays and real time PCR, suggesting that these miRNAs may be associated with the pathogenesis of SCOS. MiR-133b is upregulated in Sertoli cells of SCOS patients compared to OA patients. Proliferation assays with miRNA mimics and inhibitors showed that miR-133b enhanced the proliferation of human Sertoli cells. Moreover, we demonstrated that GLI3 was a direct target of miR-133b and the expression of Cyclin B1 and Cyclin D1 was enhanced by miR-133b mimics but decreased by its inhibitors. Gene silencing of GLI3 using RNA inference stimulated the growth of human Sertoli cells. Collectively, miR-133b promoted the proliferation of human Sertoli cells by targeting GLI3. This study thus sheds novel insights into epigenetic regulation of human Sertoli cells and the etiology of azoospermia and offers new targets for treating male infertility
Collapse
Affiliation(s)
- Chencheng Yao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Niu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingmei Hou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Wen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai, China.,Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| |
Collapse
|
39
|
Lin Z, Bao J, Kong Q, Bai Y, Luo F, Songyang Z, Wu Y, Huang J. Effective production of recipient male pigs for spermatogonial stem cell transplantation by intratesticular injection with busulfan. Theriogenology 2016; 89:365-373.e2. [PMID: 27919445 DOI: 10.1016/j.theriogenology.2016.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/24/2016] [Accepted: 10/22/2016] [Indexed: 01/15/2023]
Abstract
Germ cell transplantation has facilitated spermatogonial stem cell (SSC) and spermatogenesis research and shown great potential in the seed-breeding of domestic livestock. However, little progress has been made in large animals, primarily reflecting the difficulties in preparing sterile recipients. Here, we developed a novel protocol to prepare recipient pigs through the direct injection of busulfan into the cavum vaginale of the scrotums of Landrace-Large bi-crossbreeding male pigs and Seghers male pigs, two economically-important types of pigs, to eliminate endogenous spermatogonia. No severe diseases or weight loss was observed in either pig type after the injection with busulfan. Histologic analysis showed an advanced and dose-dependent germ cell loss, with complete germ cell loss observed in the highest dose group, 3.0 mg/kg in the Landrace-Large bi-crossbreeding pigs and 2.0 mg/kg in the Seghers pigs. A smaller seminiferous tubule diameter, a vacuolized seminiferous epithelium and the overproliferation interstitial cells, frequently observed in mouse germ cell deficiency models, were present in the most of the high-dose busulfan-treated groups. Molecular markers detected in Seghers pigs further confirmed the depletion of endogenous germ cells, providing an accessible niche for exogenous SSCs. This study provides a basis to prepare the transplantation recipients of SSCs in pigs.
Collapse
Affiliation(s)
- Zhuoheng Lin
- Guangdong Province Key Laboratory of Reproductive Medicine, the First Affiliated Hospital and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiajing Bao
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Qunfang Kong
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Yaofu Bai
- Guangdong Province Key Laboratory of Reproductive Medicine, the First Affiliated Hospital and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fenhua Luo
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Zhou Songyang
- Guangdong Province Key Laboratory of Reproductive Medicine, the First Affiliated Hospital and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yingji Wu
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China.
| | - Junjiu Huang
- Guangdong Province Key Laboratory of Reproductive Medicine, the First Affiliated Hospital and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
40
|
Pieri N, Souza AF, Mançanares A, Roballo K, Casals JB, Ambrosio CE, Martins DS. Immunolocalization of proteins in the spermatogenesis process of canine. Reprod Domest Anim 2016; 52 Suppl 2:170-176. [PMID: 27774720 DOI: 10.1111/rda.12848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spermatogenesis is a process in which differentiated cells are produced and the adult stem cell population-known as spermatogonial stem cells (SSCs)-is continuously replenished. However, the molecular mechanisms underlying these processes are not fully understood in the canine species. We addressed this in this study by analysing the expression of specific markers in spermatogonia of seminiferous tubules of canine testes. SSCs at different stages of reproductive development (prepubertal and adult) were examined by immunohistochemistry and flow cytometry. Glial cell-derived neurotrophic factor family receptor alpha-1 (GFRA1), deleted in azoospermia-like (DAZL) and promyelocytic leukaemia zinc finger (PLZF) were expressed in SSCs, while stimulated by retinoic acid gene 8 (STRA8) was detected only in undifferentiated spermatogonia in prepubertal testis and differentiated spermatogonia and spermatocytes in adult canine. Octamer-binding transcription factor 4 (OCT4) showed an expression pattern, and the levels did not differ between the groups examined. However, C-kit expression varied as a function of reproductive developmental stage. Our results demonstrate that these proteins play critical roles in the self-renewal and differentiation of SSCs and can serve as markers to identify canine spermatogonia at specific stages of development.
Collapse
Affiliation(s)
- Ncg Pieri
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - A F Souza
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Acf Mançanares
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Kcs Roballo
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - J B Casals
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - C E Ambrosio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - D S Martins
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
41
|
Lopes F, Smith R, Nash S, Mitchell RT, Spears N. Irinotecan metabolite SN38 results in germ cell loss in the testis but not in the ovary of prepubertal mice. Mol Hum Reprod 2016; 22:745-755. [PMID: 27470502 PMCID: PMC5099998 DOI: 10.1093/molehr/gaw051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/18/2016] [Indexed: 11/25/2022] Open
Abstract
STUDY QUESTION Does the Irinotecan metabolite 7-ethyl-10-hydroxycamptothecan (SN38) damage the gonads of male and female prepubertal mice? SUMMARY ANSWER The Irinotecan metabolite SN38 reduces germ cell numbers within the seminiferous tubules of mouse testes at concentrations that are relevant to cancer patients, while in contrast it has little if any effect on the female germ cell population. WHAT IS KNOWN ALREADY Little is known about the role of the chemotherapeutic agent Irinotecan on female fertility, with only one article to date reporting menopausal symptoms in perimenopausal women treated with Irinotecan, while no data are available either on adult male fertility or on the impact of Irinotecan on the subsequent fertility of prepubertal cancer patients, female or male. STUDY DESIGN SIZE, DURATION Male and female gonads were obtained from postnatal day 5 C57BL/6 mice and exposed in vitro to a range of concentrations of the Irinotecan metabolite SN38: 0.002, 0.01, 0.05, 0.1 or 1 µg ml–1 for the testis and 0.1, 1, 2.5 or 5 µg ml–1 for the ovary, with treated gonads compared to control gonads not exposed to SN38. SN38 was dissolved in 0.5% dimethyl sulfoxide, with controls exposed to the same concentration of diluent. The number of testis fragments used for each analysis ranged between 3 and 9 per treatment group, while the number of ovaries used for each analysis ranged between 4 and 12 per treatment group. PARTICIPANTS/MATERIALS, SETTING, METHODS Neonatal mouse gonads were developed in vitro, with tissue analysed at the end of the 4–6 day culture period, following immunofluorescence or hematoxylin and eosin staining. Statistical analyses were performed using one-way ANOVA followed by Bonferroni post-hoc test for normally distributed data and Kruskal-Wallis test followed by Dunns post-test for non-parametric data. MAIN RESULTS AND THE ROLE OF CHANCE Abnormal testis morphology was observed when tissues were exposed to SN38, with a smaller seminiferous tubule diameter at the highest concentration of SN38 (1 µg ml−1, p < 0.001 versus control) and increased number of Sertoli cell-only tubules at the two highest concentrations of SN38 (0.1 µg ml−1, p < 0.001; 1 µg ml−1, p < 0.0001, both versus control). Within seminiferous tubules, a dose response decrease was observed in both germ cell number (mouse vasa homologue (MVH)-positive cells) and in proliferating cell number (bromodeoxyuridine (BrdU)-positive cells), with significance reached at the two highest concentrations of SN38 (0.1 µg ml−1, p < 0.01 for both; 1 µg ml−1, p < 0.001-MVH, p < 0.01-BrdU; all versus control). No change was seen in protein expression of the apoptotic marker cleaved caspase 3. Double immunofluorescence showed that occasional proliferating germ cells were present in treated testes, even after exposure to the highest drug concentration. When prepubertal ovaries were treated with SN38, no effect was seen on germ cell number, apoptosis or cell proliferation, even after exposure to the highest drug concentrations. LIMITATIONS REASONS FOR CAUTION As with any study using in vitro experiments with an experimental animal model, caution is required when extrapolating the present findings to humans. Differences between human and mouse spermatogonial development also need to be considered when assessing the effect of chemotherapeutic exposure. However, the prepubertal testes and ovaries used in the present studies contain germ cell populations that are representative of those found in prepubertal patients, and experimental tissues were exposed to drug concentrations within the range found in patient plasma. WIDER IMPLICATIONS OF THE FINDINGS Our findings demonstrate that the prepubertal mouse ovary is relatively insensitive to exposure to the Irinotecan metabolite SN38, while it induces a marked dose-dependent sensitivity in the testicular germ cell population. The study identifies the importance of further investigation to identify the risk of infertility in young male cancer patients treated with Irinotecan. LARGE SCALE DATA None. STUDY FUNDING AND COMPETING INTEREST(S) Work supported by Medical Research Grant (MRC) grant G1002118 and Children with Cancer UK grant 15-198. The authors declare that there is no conflict of interest that could prejudice the impartiality of the present research.
Collapse
Affiliation(s)
- Federica Lopes
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Rowena Smith
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sophie Nash
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Norah Spears
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
42
|
Lee WY, Do JT, Park C, Kim JH, Chung HJ, Kim KW, Gil CH, Kim NH, Song H. Identification of Putative Biomarkers for the Early Stage of Porcine Spermatogonial Stem Cells Using Next-Generation Sequencing. PLoS One 2016; 11:e0147298. [PMID: 26800048 PMCID: PMC4723225 DOI: 10.1371/journal.pone.0147298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/02/2016] [Indexed: 01/15/2023] Open
Abstract
To identify putative biomarkers of porcine spermatogonial stem cells (pSSCs), total RNA sequencing (RNA-seq) analysis was performed on 5- and 180-day-old porcine testes and on pSSC colonies that were established under low temperature culture conditions as reported previously. In total, 10,184 genes were selected using Cufflink software, followed by a logarithm and quantile normalization of the pairwise scatter plot. The correlation rates of pSSCs compared to 5- and 180-day-old testes were 0.869 and 0.529, respectively and that between 5- and 180-day-old testes was 0.580. Hierarchical clustering data revealed that gene expression patterns of pSSCs were similar to 5-day-old testis. By applying a differential expression filter of four fold or greater, 607 genes were identified between pSSCs and 5-day-old testis, and 2118 genes were identified between the 5- and 180-day-old testes. Among these differentially expressed genes, 293 genes were upregulated and 314 genes were downregulated in the 5-day-old testis compared to pSSCs, and 1106 genes were upregulated and 1012 genes were downregulated in the 180-day-old testis compared to the 5-day-old testis. The following genes upregulated in pSSCs compared to 5-day-old testes were selected for additional analysis: matrix metallopeptidase 9 (MMP9), matrix metallopeptidase 1 (MMP1), glutathione peroxidase 1 (GPX1), chemokine receptor 1 (CCR1), insulin-like growth factor binding protein 3 (IGFBP3), CD14, CD209, and Kruppel-like factor 9 (KLF9). Expression levels of these genes were evaluated in pSSCs and in 5- and 180-day-old porcine testes. In addition, immunohistochemistry analysis confirmed their germ cell-specific expression in 5- and 180-day-old testes. These finding may not only be useful in facilitating the enrichment and sorting of porcine spermatogonia, but may also be useful in the study of the early stages of spermatogenic meiosis.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Food Bioscience, Research Institute for Biomedical & Health Science, College of Biomedical & Health Science, Konkuk University, Chung-ju 380–701, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Chankyu Park
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Jin Hoi Kim
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Hak-Jae Chung
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun 565–851, Republic of Korea
| | - Kyung-Woon Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun 565–851, Republic of Korea
| | - Chang-Hyun Gil
- School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, College of Agriculture, Chungbuk National University, Choung-ju 361–763, Republic of Korea
| | - Hyuk Song
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
- * E-mail:
| |
Collapse
|
43
|
Abstract
Mammalian spermatogenesis is a complex and highly ordered process by which male germ cells proceed through a series of differentiation steps to produce haploid flagellated spermatozoa. Underlying this process is a pool of adult stem cells, the spermatogonial stem cells (SSCs), which commence the spermatogenic lineage by undertaking a differentiation fate decision to become progenitor spermatogonia. Subsequently, progenitors acquire a differentiating spermatogonia phenotype and undergo a series of amplifying mitoses while becoming competent to enter meiosis. After spermatocytes complete meiosis, post-meiotic spermatids must then undergo a remarkable transformation from small round spermatids to a flagellated spermatozoa with extremely compacted nuclei. This chapter reviews the current literature pertaining to spermatogonial differentiation with an emphasis on the mechanisms controlling stem cell fate decisions and early differentiation events in the life of a spermatogonium.
Collapse
Affiliation(s)
- Jennifer M Mecklenburg
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Brian P Hermann
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
44
|
Feng W, Chen S, Do D, Liu Q, Deng Y, Lei X, Luo C, Huang B, Shi D. Isolation and Identification of Prepubertal Buffalo (Bubalus bubalis) Spermatogonial Stem Cells. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 29:1407-15. [PMID: 26954139 PMCID: PMC5003965 DOI: 10.5713/ajas.15.0592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/30/2015] [Accepted: 11/14/2015] [Indexed: 12/13/2022]
Abstract
Isolation and culture of spermatogonial stem cells (SSCs) are attractive for production of genetic modified offspring. In the present study, buffalo spermatogonial stem-like cells were isolated, cultured and expression pattern of different germ cell marker genes were determined. To recover spermatogonia, testes from age 3 to 7 months of buffalo were decapsulated, and seminiferous tubules were enzymatically dissociated. Two types of cells, immature sertoli cell and type A spermatogonia were observed in buffalo testes in this stage. Germ cell marker genes, OCT3/4 (Pou5f1), THY-1, c-kit, PGP9.5 (UCHL-1) and Dolichos biflorus agglutinin, were determined to be expressed both in mRNA and protein level by reverse transcription polymerase chain reaction and immunostaining in buffalo testes and buffalo spermatogonial stem-like cells, respectively. In the following, when the isolated buffalo buffalo spermatogonial stem-like cells were cultured in the medium supplemented 2.5% fetal bovine serum and 40 ng/mL glial cell-derived neurotrophic factor medium, SSCs proliferation efficiency and colony number were significantly improved than those of other groups (p<0.05). These findings may help in isolation and establishing long term in vitro culture system for buffalo spermatogonial stem-like cells, and accelerating the generation of genetic modified buffaloes.
Collapse
Affiliation(s)
- Wanyou Feng
- State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Shibei Chen
- State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.,Center of Reproduction of Nanxishan Hospital, Guilin 541002, China
| | - Dagiang Do
- State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.,Bacgiang Agriculture and Forestry University, Bacgiang 220000 Vietnam
| | - Qinyou Liu
- State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yanfei Deng
- State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Xiaocan Lei
- State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Chan Luo
- State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Ben Huang
- State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| |
Collapse
|
45
|
Sargent KM, Clopton DT, Lu N, Pohlmeier WE, Cupp AS. VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance. Cell Tissue Res 2015; 363:31-45. [PMID: 26553653 DOI: 10.1007/s00441-015-2297-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Abstract
Despite being well-known for regulating angiogenesis in both normal and tumorigenic environments, vascular endothelial growth factor A (VEGFA) has been recently implicated in male fertility, namely in the maintenance of spermatogonial stem cells (SSC). The VEGFA gene can be spliced into multiple distinct isoforms that are either angiogenic or antiangiogenic in nature. Although studies have demonstrated the alternative splicing of VEGFA, including the divergent roles of the two isoform family types, many investigations do not differentiate between them. Data concerning VEGFA in the mammalian testis are limited, but the various angiogenic isoforms appear to promote seminiferous cord formation and to form a gradient across which cells may migrate. Treatment with either antiangiogenic isoforms of VEGFA or with inhibitors to angiogenic signaling impair these processes. Serendipitously, expression of KDR, the primary receptor for both types of VEGFA isoforms, was observed on male germ cells. These findings led to further investigation of the way that VEGFA elicits avascular functions within testes. Following treatment of donor perinatal male mice with either antiangiogenic VEGFA165b or angiogenic VEGFA164 isoforms, seminiferous tubules were less colonized following transplantation with cells from VEGFA165b-treated donors. Thus, VEGFA165b and possibly other antiangiogenic isoforms of VEGFA reduce SSC number either by promoting premature differentiation, inducing cell death, or by preventing SSC formation. Thus, angiogenic isoforms of VEGFA are hypothesized to promote SSC self-renewal, and the divergent isoforms are thought to balance one another to maintain SSC homeostasis in vivo.
Collapse
Affiliation(s)
- Kevin M Sargent
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Debra T Clopton
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Ningxia Lu
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - William E Pohlmeier
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA.
| |
Collapse
|
46
|
Smith LB, O'Shaughnessy PJ, Rebourcet D. Cell-specific ablation in the testis: what have we learned? Andrology 2015; 3:1035-49. [PMID: 26446427 PMCID: PMC4950036 DOI: 10.1111/andr.12107] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 01/15/2023]
Abstract
Testicular development and function is the culmination of a complex process of autocrine, paracrine and endocrine interactions between multiple cell types. Dissecting this has classically involved the use of systemic treatments to perturb endocrine function, or more recently, transgenic models to knockout individual genes. However, targeting genes one at a time does not capture the more wide‐ranging role of each cell type in its entirety. An often overlooked, but extremely powerful approach to elucidate cellular function is the use of cell ablation strategies, specifically removing one cellular population and examining the resultant impacts on development and function. Cell ablation studies reveal a more holistic overview of cell–cell interactions. This not only identifies important roles for the ablated cell type, which warrant further downstream study, but also, and importantly, reveals functions within the tissue that occur completely independently of the ablated cell type. To date, cell ablation studies in the testis have specifically removed germ cells, Leydig cells, macrophages and recently Sertoli cells. These studies have provided great leaps in understanding not possible via other approaches; as such, cell ablation represents an essential component in the researchers’ tool‐kit, and should be viewed as a complement to the more mainstream approaches to advancing our understanding of testis biology. In this review, we summarise the cell ablation models used in the testis, and discuss what each of these have taught us about testis development and function.
Collapse
Affiliation(s)
- L B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - P J O'Shaughnessy
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Glasgow, UK
| | - D Rebourcet
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
47
|
Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, Han J, Chen L, Sun K, Wu J, Wu X, Huang X, Chen J. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis 2015; 6:e1818. [PMID: 26181199 PMCID: PMC4650729 DOI: 10.1038/cddis.2015.182] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022]
Abstract
In mammals, spermatogonial stem cells (SSCs) arise from early germ cells called gonocytes, which are derived from primordial germ cells during embryogenesis and remain quiescent until birth. After birth, these germ cells migrate from the center of testicular cord, through Sertoli cells, and toward the basement membrane to form the SSC pool and establish the SSC niche architecture. However, molecular mechanisms underlying germ cell migration and niche establishment are largely unknown. Here, we show that the actin disassembly factor actin interacting protein 1 (AIP1) is required in both germ cells and Sertoli cells to regulate this process. Germ cell-specific or Sertoli cell-specific deletion of Aip1 gene each led to significant defects in germ cell migration after postnatal day 4 or 5, accompanied by elevated levels of actin filaments (F-actin) in the affected cells. Furthermore, our data demonstrated that interaction between germ cells and Sertoli cells, likely through E-cadherin-mediated cell adhesion, is critical for germ cells' migration toward the basement membrane. At last, Aip1 deletion in Sertoli cells decreased SSC self-renewal, increased spermatogonial differentiation, but did not affect the expression and secretion levels of growth factors, suggesting that the disruption of SSC function results from architectural changes in the postnatal niche.
Collapse
Affiliation(s)
- J Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - P Wan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - M Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - J Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - X Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - B Hu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - J Han
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - L Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - K Sun
- Bio-X Institute, Shanghai Jiaotong University, Shanghai, China
| | - J Wu
- Bio-X Institute, Shanghai Jiaotong University, Shanghai, China
| | - X Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - X Huang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - J Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
48
|
Wu J, Liao M, Zhu H, Kang K, Mu H, Song W, Niu Z, He X, Bai C, Li G, Li X, Hua J. CD49f-positive testicular cells in Saanen dairy goat were identified as spermatogonia-like cells by miRNA profiling analysis. J Cell Biochem 2015; 115:1712-23. [PMID: 24817091 DOI: 10.1002/jcb.24835] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 04/29/2014] [Accepted: 05/08/2014] [Indexed: 11/07/2022]
Abstract
miRNAs, a type of small RNA, play critical roles in mammalian spermatogenesis. Spermatogonia are the foundation of spermatogenesis and are valuable for the study of spermatogenesis. However, the expression profiling of the miRNAs in spermatogonia of dairy goats remains unclear. CD49f has been one of the surface markers used for spermatogonia enrichment by magnetic activated cell sorting (MACS). Therefore, we used a CD49f microbead antibody to purify CD49f-positive and -negative cells of dairy goat testicular cells by MACS and then analysed the miRNA expression in these cells in depth using Illumina sequencing technology. The results of miRNA expression profiling in purified CD49f-positive and -negative testicular cells showed that 933 miRNAs were upregulated in CD49f-positive cells and 916 miRNAs were upregulated in CD49f-negative cells with a twofold increase, respectively; several miRNAs and marker genes specific for spermatogonial stem cells (SSCs) in testis had a higher expression level in CD49f-positive testicular cells, including miR-221, miR-23a, miR-29b, miR-24, miR-29a, miR-199b, miR-199a, miR-27a, and miR-21 and CD90, Gfra1, and Plzf. The bioinformatics analysis of differently expressed miRNAs indicated that the target genes of these miRNAs in CD49f-positive cells were involved in cell-cycle biological processes and the cell-cycle KEGG pathway. In conclusion, our comparative miRNAome data provide useful miRNA profiling data of dairy goat spermatogonia cells and suggest that CD49f could be used to enrich dairy goat spermatogonia-like cells, including SSCs.
Collapse
Affiliation(s)
- Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ebihara C, Ebihara K, Aizawa-Abe M, Mashimo T, Tomita T, Zhao M, Gumbilai V, Kusakabe T, Yamamoto Y, Aotani D, Yamamoto-Kataoka S, Sakai T, Hosoda K, Serikawa T, Nakao K. Seipin is necessary for normal brain development and spermatogenesis in addition to adipogenesis. Hum Mol Genet 2015; 24:4238-49. [PMID: 25934999 DOI: 10.1093/hmg/ddv156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022] Open
Abstract
Seipin, encoded by BSCL2 gene, is a protein whose physiological functions remain unclear. Mutations of BSCL2 cause the most-severe form of congenital generalized lipodystrophy (CGL). BSCL2 mRNA is highly expressed in the brain and testis in addition to the adipose tissue in human, suggesting physiological roles of seipin in non-adipose tissues. Since we found BSCL2 mRNA expression pattern among organs in rat is similar to human while it is not highly expressed in mouse brain, we generated a Bscl2/seipin knockout (SKO) rat using the method with ENU (N-ethyl-N-nitrosourea) mutagenesis. SKO rats showed total lack of white adipose tissues including mechanical fat such as bone marrow and retro-orbital fats, while physiologically functional brown adipose tissue was preserved. Besides the lipodystrophic phenotypes, SKO rats showed impairment of spatial working memory with brain weight reduction and infertility with azoospermia. We confirmed reduction of brain volume and number of sperm in human patients with BSCL2 mutation. This is the first report demonstrating that seipin is necessary for normal brain development and spermatogenesis in addition to white adipose tissue development.
Collapse
Affiliation(s)
| | - Ken Ebihara
- Department of Medicine and Clinical Science, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Megumi Aizawa-Abe
- Department of Medicine and Clinical Science, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | - Toru Kusakabe
- Department of Medicine and Clinical Science, Medical Innovation Center
| | | | - Daisuke Aotani
- Department of Medicine and Clinical Science, Medical Innovation Center
| | | | | | - Kiminori Hosoda
- Department of Medicine and Clinical Science, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan Department of Health and Science, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan and
| | | | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Medical Innovation Center
| |
Collapse
|
50
|
Jung H, Song H, Yoon M. The KIT is a putative marker for differentiating spermatogonia in stallions. Anim Reprod Sci 2015; 152:39-46. [DOI: 10.1016/j.anireprosci.2014.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/18/2014] [Accepted: 11/13/2014] [Indexed: 11/26/2022]
|