1
|
Kanda K, Iwata H. Tris(2-chloroethyl) phosphate (TCEP) exposure inhibits the epithelial-mesenchymal transition (EMT), mesoderm differentiation, and cardiovascular development in early chicken embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171242. [PMID: 38417504 DOI: 10.1016/j.scitotenv.2024.171242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) is an organophosphorus flame retardant used worldwide and has been detected in the tissues and eggs of wild birds. Our previous study reported that exposure to TCEP induced developmental delay and cardiovascular dysfunction with attenuated heart rate and vasculogenesis in early chicken embryos. This study aimed to investigate the molecular mechanisms underlying the cardiovascular effects of TCEP on chicken embryos using cardiac transcriptome analysis and to examine whether TCEP exposure affects epithelial-mesenchymal transition (EMT) and mesoderm differentiation during gastrulation. Transcriptome analysis revealed that TCEP exposure decreased the expression of cardiac conduction-related genes and transcription factors on day 5 of incubation. In extraembryonic blood vessels, the expression levels of genes related to fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) were significantly reduced by TCEP exposure and vasculogenesis was suppressed. TCEP exposure also attenuated Snail family transcriptional repressor 2 (SNAI2) and T-box transcription factor T (TBXT) signaling in the chicken primitive streak, indicating that TCEP inhibits EMT and mesoderm differentiation during gastrulation at the early developmental stage. These effects on EMT and mesoderm differentiation may be related to subsequent phenotypic defects, including suppression of heart development and blood vessel formation.
Collapse
Affiliation(s)
- Kazuki Kanda
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
2
|
Zhang T, Mo Q, Jiang N, Wu Y, Yang X, Chen W, Li Q, Yang S, Yang J, Zeng J, Huang F, Huang Q, Luo J, Wu J, Wang L. The combination of machine learning and transcriptomics reveals a novel megakaryopoiesis inducer, MO-A, that promotes thrombopoiesis by activating FGF1/FGFR1/PI3K/Akt/NF-κB signaling. Eur J Pharmacol 2023; 944:175604. [PMID: 36804544 DOI: 10.1016/j.ejphar.2023.175604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Radiation-induced thrombocytopenia (RIT) occurs widely and causes high mortality and morbidity in cancer patients who receive radiotherapy. However, specific drugs for treating RIT remain woefully inadequate. Here, we first developed a drug screening model using naive Bayes, a machine learning (ML) algorithm, to virtually screen the active compounds promoting megakaryopoiesis and thrombopoiesis. A natural product library was screened by the model, and methylophiopogonanone A (MO-A) was identified as the most active compound. The activity of MO-A was then validated in vitro and showed that MO-A could markedly induce megakaryocyte (MK) differentiation of K562 and Meg-01 cells in a concentration-dependent manner. Furthermore, the therapeutic action of MO-A on RIT was evaluated, and MO-A significantly accelerated platelet level recovery, platelet activation, megakaryopoiesis, MK differentiation in RIT mice. Moreover, RNA-sequencing (RNA-seq) indicated that the PI3K cascade was closely related to MK differentiation induced by MO-A. Finally, experimental verification demonstrated that MO-A obviously induced the expression of FGF1 and FGFR1, and increased the phosphorylation of PI3K, Akt and NF-κB. Blocking FGFR1 with its inhibitor dovitinib suppressed MO-A-induced MK differentiation, and PI3K, Akt and NF-κB phosphorylation. Similarly, inhibition of PI3K-Akt signal pathway by its inhibitor LY294002 suppressed MK differentiation, and PI3K, Akt and NF-κB phosphorylation induced by MO-A. Taken together, our study provides an efficient drug discovery strategy for hematological diseases, and demonstrates that MO-A is a novel countermeasure for treating RIT through activation of the FGF1/FGFR1/PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qi Mo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Nan Jiang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuesong Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Wang Chen
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qinyao Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shuo Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Yang
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jing Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qianqian Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jiesi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
3
|
Hu YX, Jing Q. Zebrafish: a convenient tool for myelopoiesis research. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:2. [PMID: 36595106 PMCID: PMC9810781 DOI: 10.1186/s13619-022-00139-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/29/2022] [Indexed: 04/18/2023]
Abstract
Myelopoiesis is the process in which the mature myeloid cells, including monocytes/macrophages and granulocytes, are developed. Irregular myelopoiesis may cause and deteriorate a variety of hematopoietic malignancies such as leukemia. Myeloid cells and their precursors are difficult to capture in circulation, let alone observe them in real time. For decades, researchers had to face these difficulties, particularly in in-vivo studies. As a unique animal model, zebrafish possesses numerous advantages like body transparency and convenient genetic manipulation, which is very suitable in myelopoiesis research. Here we review current knowledge on the origin and regulation of myeloid development and how zebrafish models were applied in these studies.
Collapse
Affiliation(s)
- Yang-Xi Hu
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
4
|
Mattonet K, Riemslagh FW, Guenther S, Prummel KD, Kesavan G, Hans S, Ebersberger I, Brand M, Burger A, Reischauer S, Mosimann C, Stainier DYR. Endothelial versus pronephron fate decision is modulated by the transcription factors Cloche/Npas4l, Tal1, and Lmo2. SCIENCE ADVANCES 2022; 8:eabn2082. [PMID: 36044573 PMCID: PMC9432843 DOI: 10.1126/sciadv.abn2082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/11/2022] [Indexed: 05/17/2023]
Abstract
Endothelial specification is a key event during embryogenesis; however, when, and how, endothelial cells separate from other lineages is poorly understood. In zebrafish, Npas4l is indispensable for endothelial specification by inducing the expression of the transcription factor genes etsrp, tal1, and lmo2. We generated a knock-in reporter in zebrafish npas4l to visualize endothelial progenitors and their derivatives in wild-type and mutant embryos. Unexpectedly, we find that in npas4l mutants, npas4l reporter-expressing cells contribute to the pronephron tubules. Single-cell transcriptomics and live imaging of the early lateral plate mesoderm in wild-type embryos indeed reveals coexpression of endothelial and pronephron markers, a finding confirmed by creERT2-based lineage tracing. Increased contribution of npas4l reporter-expressing cells to pronephron tubules is also observed in tal1 and lmo2 mutants and is reversed in npas4l mutants injected with tal1 mRNA. Together, these data reveal that Npas4l/Tal1/Lmo2 regulate the fate decision between the endothelial and pronephron lineages.
Collapse
Affiliation(s)
- Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- DZL (German Center for Lung Research), partner site, 43, D-61231 Bad Nauheim
| | - Fréderike W. Riemslagh
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Stefan Guenther
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Karin D. Prummel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Gokul Kesavan
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Ingo Ebersberger
- Goethe University Frankfurt am Main, Institute of Cell Biology and Neuroscience, Frankfurt 60438, Germany
- Senckenberg Biodiversity and Climate Research Center (S-BIKF), Frankfurt 60325, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt 60325, Germany
| | - Michael Brand
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Alexa Burger
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
| | - Christian Mosimann
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- DZL (German Center for Lung Research), partner site, 43, D-61231 Bad Nauheim
| |
Collapse
|
5
|
Wang YF, Liu C, Xu PF. Deciphering and reconstitution of positional information in the human brain development. ACTA ACUST UNITED AC 2021; 10:29. [PMID: 34467458 PMCID: PMC8408296 DOI: 10.1186/s13619-021-00091-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022]
Abstract
Organoid has become a novel in vitro model to research human development and relevant disorders in recent years. With many improvements on the culture protocols, current brain organoids could self-organize into a complicated three-dimensional organization that mimics most of the features of the real human brain at the molecular, cellular, and further physiological level. However, lacking positional information, an important characteristic conveyed by gradients of signaling molecules called morphogens, leads to the deficiency of spatiotemporally regulated cell arrangements and cell–cell interactions in the brain organoid development. In this review, we will overview the role of morphogen both in the vertebrate neural development in vivo as well as the brain organoid culture in vitro, the strategies to apply morphogen concentration gradients in the organoid system and future perspectives of the brain organoid technology.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Zhejiang University and University of Edinburgh, Jiaxing, Zhejiang, China.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Cong Liu
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng-Fei Xu
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Bruveris FF, Ng ES, Stanley EG, Elefanty AG. VEGF, FGF2, and BMP4 regulate transitions of mesoderm to endothelium and blood cells in a human model of yolk sac hematopoiesis. Exp Hematol 2021; 103:30-39.e2. [PMID: 34437953 DOI: 10.1016/j.exphem.2021.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Exogenous growth factors play an important role in mediating hematopoietic differentiation of human pluripotent stem cells. We explored the role of different factors in early human blood cell production using blast colony formation in methylcellulose as a surrogate assay for yolk sac hematopoiesis. A reporter cell line that read out endothelial (SOX17+) and hematopoietic (RUNX1C+) progenitors facilitated the identification of basic fibroblast growth and vascular endothelial growth factor as critical signals for the progression of mesoderm into endothelium. Bone morphogenetic protein 4 was needed for the subsequent generation of blood from hemogenic endothelium, and this was antagonized by Activin A or high concentrations of the WNT agonist CHIR-99021. Manipulations of the Hedgehog pathway or inhibition of Notch signaling reduced blast colony frequency but did not perturb cell differentiation. These data help to define distinct roles for prerequisite growth factors that commit mesoderm to hemogenic endothelium and subsequently allocate cells to blood lineages.
Collapse
Affiliation(s)
- Freya F Bruveris
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
7
|
Loss of FGFR3 Accelerates Bone Marrow Suppression-Induced Hematopoietic Stem and Progenitor Cell Expansion by Activating FGFR1-ELK1-Cyclin D1 Signaling. Transplant Cell Ther 2020; 27:45.e1-45.e10. [PMID: 32966879 DOI: 10.1016/j.bbmt.2020.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Patients with chemotherapy or radiation therapy often generate anemia and low immunity due to the therapy-induced bone marrow (BM) suppression. To enhance hematopoietic regeneration during the therapy-induced BM suppression urgently need to be solved. Fibroblast growth factors (FGFs) play important regulatory roles in hematopoietic stem and progenitor cell (HSPC) expansion in vitro and in vivo by the FGF receptor (FGFR1-4)-mediated signaling pathway. FGFR3 is an important member of the FGFR family, and its regulatory function in hematopoiesis is largely unknown. Using knockout (KO) mice of FGFR3, we found that loss of FGFR3 does not affect HSPC functions or lineage differentiation during steady-state hematopoiesis, but FGFR3 deletion accelerates HSPC expansion and hematopoiesis recovery via a cell-autonomous manner under 5-fluorouracil-induced BM suppression. Our results showed that FGFR3 inactivation accelerates BM suppression-induced HSPC expansion by upregulating FGFR1 and its downstream transcriptional factor, ELK, which regulates the expression of the cyclin D1 gene at the level of transcription. Further studies confirmed that loss of FGFR3 in hematopoietic cells inhibits in vivo leukemogenesis under BM suppression. Our data found a novel hematopoietic regulatory mechanism by which FGFR3 deletion promotes HSPC expansion under BM suppression and also provided a promising approach to enhance antileukemia and hematopoietic regeneration by inhibiting FGFR3 functions in HSPCs combined with leukemic chemotherapy.
Collapse
|
8
|
Slukvin II, Kumar A. The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells. Cell Mol Life Sci 2018; 75:3507-3520. [PMID: 29992471 PMCID: PMC6328351 DOI: 10.1007/s00018-018-2871-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Mesenchymoangioblast (MB) is the earliest precursor for endothelial and mesenchymal cells originating from APLNR+PDGFRα+KDR+ mesoderm in human pluripotent stem cell cultures. MBs are identified based on their capacity to form FGF2-dependent compact spheroid colonies in a serum-free semisolid medium. MBs colonies are composed of PDGFRβ+CD271+EMCN+DLK1+CD73- primitive mesenchymal cells which are generated through endothelial/angioblastic intermediates (cores) formed during first 3-4 days of clonogenic cultures. MB-derived primitive mesenchymal cells have potential to differentiate into mesenchymal stromal/stem cells (MSCs), pericytes, and smooth muscle cells. In this review, we summarize the specification and developmental potential of MBs, emphasize features that distinguish MBs from other mesenchymal progenitors described in the literature and discuss the value of these findings for identifying molecular pathways leading to MSC and vasculogenic cell specification, and developing cellular therapies using MB-derived progeny.
Collapse
Affiliation(s)
- Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin, 1220 Capitol Ct., Madison, WI, 53715, USA.
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53707, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 1685 Highland Ave, Madison, WI, 53705, USA.
| | - Akhilesh Kumar
- Wisconsin National Primate Research Center, University of Wisconsin, 1220 Capitol Ct., Madison, WI, 53715, USA
| |
Collapse
|
9
|
Teichweyde N, Kasperidus L, Carotta S, Kouskoff V, Lacaud G, Horn PA, Heinrichs S, Klump H. HOXB4 Promotes Hemogenic Endothelium Formation without Perturbing Endothelial Cell Development. Stem Cell Reports 2018; 10:875-889. [PMID: 29456178 PMCID: PMC5919293 DOI: 10.1016/j.stemcr.2018.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/25/2022] Open
Abstract
Generation of hematopoietic stem cells (HSCs) from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known. However, its identification is a prerequisite to unambiguously identify the molecular circuits controlling hematopoiesis, since the activity of HOX proteins is highly cell and context dependent. To identify that stage, we retrovirally expressed HOXB4 in differentiating mouse embryonic stem cells (ESCs). Through the use of Runx1(-/-) ESCs containing a doxycycline-inducible Runx1 coding sequence, we uncovered that HOXB4 promoted the formation of hemogenic endothelium cells without altering endothelial cell development. Whole-transcriptome analysis revealed that its expression mediated the upregulation of transcription of core transcription factors necessary for hematopoiesis, culminating in the formation of blood progenitors upon initiation of Runx1 expression.
Collapse
Affiliation(s)
- Nadine Teichweyde
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Lara Kasperidus
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany; Department of Bone Marrow Transplantation, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Sebastian Carotta
- Cancer Cell Signaling, Boehringer Ingelheim RCV, Dr Boehringer-Gasse, 1120 Vienna, Austria
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany.
| |
Collapse
|
10
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:dev151423. [PMID: 29321181 PMCID: PMC5825862 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
11
|
Teratani T, Quinn G, Yamamoto Y, Sato T, Yamanokuchi H, Asari A, Ochiya T. Long-Term Maintenance of Liver-Specific Functions in Cultured ES Cell-Derived Hepatocytes with Hyaluronan Sponge. Cell Transplant 2017; 14:629-35. [PMID: 16405073 DOI: 10.3727/000000005783982611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study investigated the three-dimensional culture of hepatocytes differentiated from mouse embryonic stem (ES) cells with a porous hyaluronan (HA) sponge support. Hepatocytes were immobilized within the pores of the support. Spheroids could be observed within the support, each containing between 20 and 50 hepatocytes. To examine the liver-specific functions of the hepatocytes in the culture, the levels of albumin secreted into the medium were analyzed. The secretion of albumin was stable over the course of 32 days, longer than that in both conventional monolayer and collagen sponge cultures. To elucidate further the liver-specific functions of hepatocytes embedded in the HA sponge, metabolic activities of the hepatocytes were examined for their ability to eliminate ammonia from culture media and the synthesis of urea nitrogen. While rates of ammonia removal and urea nitrogen synthesis were similar to those in both conventional monolayer and in collagen sponge cultures, these functions were maintained for longer duration in cells embedded in the HA sponge. These results demonstrate that the porous HA sponge is an effective support for the in vitro culture of ES-derived hepatocytes used for both basic and applied studies for cell transplantation.
Collapse
Affiliation(s)
- Takumi Teratani
- National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhao H, Xu C, Lee TJ, Liu F, Choi K. ETS transcription factor ETV2/ER71/Etsrp in hematopoietic and vascular development, injury, and regeneration. Dev Dyn 2017; 246:318-327. [DOI: 10.1002/dvdy.24483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Haiyong Zhao
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Canxin Xu
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Tae-Jin Lee
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Fang Liu
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Kyunghee Choi
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
- Developmental; Regenerative, and Stem Cell Biology Program, Washington University School of Medicine; St. Louis Missouri
| |
Collapse
|
13
|
Alexandrakis MG, Passam FH, Pappa CA, Damilakis J, Tsirakis G, Kandidaki E, Passam AM, Stathopoulos EN, Kyriakou DS. Serum Evaluation of Angiogenic Cytokines Basic Fibroblast Growth Factor, Hepatocyte Growth Factor and TNF-ALPHA in Patients with Myelodysplastic Syndromes: Correlation with Bone Marrow Microvascular Density. Int J Immunopathol Pharmacol 2016; 18:287-95. [PMID: 15888251 DOI: 10.1177/039463200501800211] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent studies have documented that angiogenesis plays a significant role in haematological malignancies, including mylodysplastic syndromes (MDS). Basic fibroblast growth factor (b-FGF), Hepatocyte growth factor (HGF) and Tumor necrosis factor-α (TNF-α) are multifunctional cytokines that potently stimulate angiogenesis. The aim of the present study was to evaluate the microvascular density (MVD) and the serum levels of these angiogenic factors in patients with myelodysplastic syndromes (MDS). In 61 patients with MDS, MVD was measured in bone marrow biopsies and b-FGF, HGF and TNF-α were determined in the serum of the same patients by enzyme-linked immunosorbent assay (ELISA). Serum levels of b-FGF, HGF and TNF-α as well as MVD in the bone marrow were increased in MDS patients compared to healthy controls (p<0.0001). Levels of b-FGF, HGF and TNF-α were also significantly higher in high-risk for leukemic transformation MDS than in low-risk (p<0.0001). Significant differences were also found regarding MVD in high and low risk patients (p<0.001). Both b-FGF and HGF levels were significant predictors of survival (p<0.0005, log-rank test). The present study showed that serum levels of b-FGF, HGF and TNF-α are significantly increased and dependent on the severity of MDS suggesting that the determination of these parameters may offer considerable information regarding disease progression and prognosis.
Collapse
Affiliation(s)
- M G Alexandrakis
- Department of Hematology, University Hospital of Heraklion, Crete, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
15
|
Sumanas S, Choi K. ETS Transcription Factor ETV2/ER71/Etsrp in Hematopoietic and Vascular Development. Curr Top Dev Biol 2016; 118:77-111. [PMID: 27137655 DOI: 10.1016/bs.ctdb.2016.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective establishment of the hematopoietic and vascular systems is prerequisite for successful embryogenesis. The ETS transcription factor Etv2 has proven to be essential for hematopoietic and vascular development. Etv2 expression marks the onset of the hematopoietic and vascular development and its deficiency leads to an absolute block in hematopoietic and vascular development. Etv2 is transiently expressed during development and is mainly expressed in testis in adults. Consistent with its expression pattern, Etv2 is transiently required for the generation of the optimal levels of the hemangiogenic cell population. Deletion of this gene after the hemangiogenic progenitor formation leads to normal hematopoietic and vascular development. Mechanistically, ETV2 induces the hemangiogenic program by activating blood and endothelial cell lineage specifying genes and enhancing VEGF signaling. Moreover, ETV2 establishes an ETS hierarchy by directly activating other Ets genes, which in the face of transient Etv2 expression, presumably maintain blood and endothelial cell program initiated by ETV2 through an ETS switching mechanism. Current studies suggest that the hemangiogenic progenitor population is exclusively sensitive to ETV2-dependent FLK1 signaling. Any perturbation in the ETV2, VEGF, and FLK1 balance causing insufficient hemangiogenic progenitor cell generation would lead to defects in hematopoietic and endothelial cell development.
Collapse
Affiliation(s)
- S Sumanas
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - K Choi
- Washington University, School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
16
|
Chen T, Wang F, Wu M, Wang ZZ. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells. J Cell Biochem 2016; 116:1179-89. [PMID: 25740540 DOI: 10.1002/jcb.25097] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 01/04/2023]
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose.
Collapse
Affiliation(s)
- Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fen Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengyao Wu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| |
Collapse
|
17
|
Oh SY, Kim JY, Park C. The ETS Factor, ETV2: a Master Regulator for Vascular Endothelial Cell Development. Mol Cells 2015; 38:1029-36. [PMID: 26694034 PMCID: PMC4696993 DOI: 10.14348/molcells.2015.0331] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/15/2023] Open
Abstract
Appropriate vessel development and its coordinated function is essential for proper embryogenesis and homeostasis in the adult. Defects in vessels cause birth defects and are an important etiology of diseases such as cardiovascular disease, tumor and diabetes retinopathy. The accumulative data indicate that ETV2, an ETS transcription factor, performs a potent and indispensable function in mediating vessel development. This review discusses the recent progress of the study of ETV2 with special focus on its regulatory mechanisms and cell fate determining role in developing mouse embryos as well as somatic cells.
Collapse
Affiliation(s)
- Se-Yeong Oh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
| | - Ju Young Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
| | - Changwon Park
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
- Biochemistry, Cell Biology and Developmental Biology Program, Emory University School of Medicine, Atlanta, GA,
USA
| |
Collapse
|
18
|
CD41 and CD45 expression marks the angioformative initiation of neovascularisation in human haemangioblastoma. Tumour Biol 2015; 37:3765-74. [DOI: 10.1007/s13277-015-4200-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
|
19
|
Navarro A, Marín S, Riol N, Carbonell-Uberos F, Miñana MD. Fibroblast-Negative CD34-Negative Cells from Human Adipose Tissue Contain Mesodermal Precursors for Endothelial and Mesenchymal Cells. Stem Cells Dev 2015; 24:2280-96. [DOI: 10.1089/scd.2015.0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Amparo Navarro
- Regenerative Medicine Laboratory, Fundación Hospital General Universitario, Valencia, Spain
| | - Severiano Marín
- Department of Plastic and Reconstructive Surgery, Consorcio Hospital General Universitario, Valencia, Spain
| | - Nicasia Riol
- Immunohematology Service, Centro de Transfusiones, Valencia, Spain
| | | | - María Dolores Miñana
- Regenerative Medicine Laboratory, Fundación Hospital General Universitario, Valencia, Spain
| |
Collapse
|
20
|
Agas D, Marchetti L, Douni E, Sabbieti MG. The unbearable lightness of bone marrow homeostasis. Cytokine Growth Factor Rev 2015; 26:347-59. [DOI: 10.1016/j.cytogfr.2014.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/22/2014] [Accepted: 12/17/2014] [Indexed: 01/10/2023]
|
21
|
Gullo F, van der Garde M, Russo G, Pennisi M, Motta S, Pappalardo F, Watt S. Computational modeling of the expansion of human cord blood CD133+ hematopoietic stem/progenitor cells with different cytokine combinations. Bioinformatics 2015; 31:2514-22. [PMID: 25810433 DOI: 10.1093/bioinformatics/btv172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Many important problems in cell biology require dense non-linear interactions between functional modules to be considered. The importance of computer simulation in understanding cellular processes is now widely accepted, and a variety of simulation algorithms useful for studying certain subsystems have been designed. Expansion of hematopoietic stem and progenitor cells (HSC/HPC) in ex vivo culture with cytokines and small molecules is a method to increase the restricted numbers of stem cells found in umbilical cord blood (CB), while also enhancing the content of early engrafting neutrophil and platelet precursors. The efficacy of the expanded product depends on the composition of the cocktail of cytokines and small molecules used for culture. Testing the influence of a cytokine or small molecule on the expansion of HSC/HPC is a laborious and expensive process. We therefore developed a computational model based on cellular signaling interactions that predict the influence of a cytokine on the survival, duplication and differentiation of the CD133(+) HSC/HPC subset from human umbilical CB. RESULTS We have used results from in vitro expansion cultures with different combinations of one or more cytokines to develop an ordinary differential equation model that includes the effect of cytokines on survival, duplication and differentiation of the CD133(+) HSC/HPC. Comparing the results of in vitro and in silico experiments, we show that the model can predict the effect of a cytokine on the fold expansion and differentiation of CB CD133(+) HSC/HPC after 8-day culture on a 3D scaffold. Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Francesca Gullo
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK, NHS Blood and Transplant Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Mark van der Garde
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK, NHS Blood and Transplant Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - Marzio Pennisi
- Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy
| | - Santo Motta
- Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy
| | | | - Suzanne Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK, NHS Blood and Transplant Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
22
|
MiR-24 is required for hematopoietic differentiation of mouse embryonic stem cells. PLoS Genet 2015; 11:e1004959. [PMID: 25634354 PMCID: PMC4310609 DOI: 10.1371/journal.pgen.1004959] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Overexpression of miRNA, miR-24, in mouse hematopoietic progenitors increases monocytic/ granulocytic differentiation and inhibits B cell development. To determine if endogenous miR-24 is required for hematopoiesis, we antagonized miR-24 in mouse embryonic stem cells (ESCs) and performed in vitro differentiations. Suppression of miR-24 resulted in an inability to produce blood and hematopoietic progenitors (HPCs) from ESCs. The phenotype is not a general defect in mesoderm production since we observe production of nascent mesoderm as well as mesoderm derived cardiac muscle and endothelial cells. Results from blast colony forming cell (BL-CFC) assays demonstrate that miR-24 is not required for generation of the hemangioblast, the mesoderm progenitor that gives rise to blood and endothelial cells. However, expression of the transcription factors Runx1 and Scl is greatly reduced, suggesting an impaired ability of the hemangioblast to differentiate. Lastly, we observed that known miR-24 target, Trib3, is upregulated in the miR-24 antagonized embryoid bodies (EBs). Overexpression of Trib3 alone in ESCs was able to decrease HPC production, though not as great as seen with miR-24 knockdown. These results demonstrate an essential role for miR-24 in the hematopoietic differentiation of ESCs. Although many miRNAs have been implicated in regulation of hematopoiesis, this is the first miRNA observed to be required for the specification of mammalian blood progenitors from early mesoderm. Studies of mouse embryos and embryonic stem cells (ESCs) have defined the ontogeny of mammalian embryonic hematopoietic cells. The ESC differentiation system has been valuable for dissecting the molecular regulation of the development of mesoderm into HPCs. Extracellular signals regulate a complex network of transcription factors to direct embryonic hematopoietic development. Mammalian miRNAs have previously not been described to regulate this genetic network during embryonic hematopoiesis. However, a role for miRNAs in producing the hemangioblast, and hemogenic endothelium in Xenopus has been described. Our work with ESCs demonstrates a specific requirement for the miRNA, miR-24, in the development of hematopoietic progenitors cells (HPCs). Antagonizing miR-24 in ESCs does not affect generation of BL-CFCs, the in vitro equivalent of the hemangioblast, but does compromise the ability of those BL-CFCs to produced HPCs. Expression of transcription factors required for HPC production downstream of the hemangioblast, Scl, and Runx1, is greatly reduced by antagonizing miR-24. These results identify miR-24, as a mammalian miRNA required for the development of blood from newly formed mesoderm.
Collapse
|
23
|
Vereide DT, Vickerman V, Swanson SA, Chu LF, McIntosh BE, Thomson JA. An expandable, inducible hemangioblast state regulated by fibroblast growth factor. Stem Cell Reports 2014; 3:1043-57. [PMID: 25458896 PMCID: PMC4264065 DOI: 10.1016/j.stemcr.2014.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022] Open
Abstract
During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that “trap” murine cells in a proliferative state and endow them with a hemangioblast potential. These “expandable” hemangioblasts (eHBs) are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines. Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1 induce and maintain a hemangioblast state FGF2 promotes the expansion of these progenitors and impacts their potency
Collapse
Affiliation(s)
- David T Vereide
- Morgridge Institute for Research, Madison, WI 53715, USA; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | - Li-Fang Chu
- Morgridge Institute for Research, Madison, WI 53715, USA
| | | | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
24
|
Matsumoto K, Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. J Biochem 2014; 156:1-10. [DOI: 10.1093/jb/mvu031] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
25
|
Cheng A, Hardingham TE, Kimber SJ. Generating cartilage repair from pluripotent stem cells. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:257-66. [PMID: 23957872 DOI: 10.1089/ten.teb.2012.0757] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The treatment of degeneration and injury of articular cartilage has been very challenging for scientists and surgeons. As an avascular and hypocellular tissue, cartilage has a very limited capacity for self-repair. Chondrocytes are the only cell type in cartilage, in which they are surrounded by the extracellular matrix that they secrete and assemble. Autologous chondrocyte implantation for cartilage defects has achieved good results, but the limited resources and complexity of the procedure have hindered wider application. Stem cells form an alternative to chondrocytes as a source of chondrogenic cells due to their ability to proliferate extensively while retaining the potential for differentiation. Adult stem cells such as mesenchymal stem cells have been differentiated into chondrocytes, but the limitations in their proliferative ability and the heterogeneous cell population hinder their adoption as a prime alternative source for generating chondrocytes. Human embryonic stem cells (hESCs) are attractive as candidates for cell replacement therapy because of their unlimited self-renewal and ability for differentiation into mesodermal derivatives as well as other lineages. In this review, we focus on current protocols for chondrogenic differentiation of ESCs, in particular the chemically defined culture system developed in our lab that could potentially be adapted for clinical application.
Collapse
Affiliation(s)
- Aixin Cheng
- 1 North West Embryonic Stem Cell Centre, Faculty of Life Science, University of Manchester , Manchester, United Kingdom
| | | | | |
Collapse
|
26
|
Liu F, Bhang S, Arentson E, Sawada A, Kim C, Kang I, Yu J, Sakurai N, Kim S, Yoo J, Kim P, Pahng S, Xia Y, Solnica-Krezel L, Choi K. Enhanced hemangioblast generation and improved vascular repair and regeneration from embryonic stem cells by defined transcription factors. Stem Cell Reports 2013; 1:166-182. [PMID: 24052951 PMCID: PMC3757752 DOI: 10.1016/j.stemcr.2013.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 01/06/2023] Open
Abstract
The fetal liver kinase 1 (FLK-1)(+) hemangioblast can generate hematopoietic, endothelial, and smooth muscle cells (SMCs). ER71/ETV2, GATA2, and SCL form a core transcriptional network in hemangioblast development. Transient coexpression of these three factors during mesoderm formation stage in mouse embryonic stem cells (ESCs) robustly enhanced hemangioblast generation by activating bone morphogenetic protein (BMP) and FLK-1 signaling while inhibiting phosphatidylinositol 3-kinase, WNT signaling, and cardiac output. Moreover, etsrp, gata2, and scl inhibition converted hematopoietic field of the zebrafish anterior lateral plate mesoderm to cardiac. FLK-1(+) hemangioblasts generated by transient coexpression of the three factors (ER71-GATA2-SCL [EGS]-induced FLK-1(+)) effectively produced hematopoietic, endothelial, and SMCs in culture and in vivo. Importantly, EGS-induced FLK-1(+) hemangioblasts, when codelivered with mesenchymal stem cells as spheroids, were protected from apoptosis and generated functional endothelial cells and SMCs in ischemic mouse hindlimbs, resulting in improved blood perfusion and limb salvage. ESC-derived, EGS-induced FLK-1(+) hemangioblasts could provide an attractive cell source for future hematopoietic and vascular repair and regeneration.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suk Ho Bhang
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth Arentson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Atsushi Sawada
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chan Kyu Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Inyoung Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Developmental, Regenerative, and Stem Cell Biology Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jinsheng Yu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nagisa Sakurai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suk Hyung Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Judy Ji Woon Yoo
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul Kim
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Seong Ho Pahng
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Younan Xia
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Developmental, Regenerative, and Stem Cell Biology Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Developmental, Regenerative, and Stem Cell Biology Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
Abstract
The establishment and maintenance of the vascular system is critical for embryonic development and postnatal life. Defects in endothelial cell development and vessel formation and function lead to embryonic lethality and are important in the pathogenesis of vascular diseases. Here, we review the underlying molecular mechanisms of endothelial cell differentiation, plasticity, and the development of the vasculature. This review focuses on the interplay among transcription factors and signaling molecules that specify the differentiation of vascular endothelial cells. We also discuss recent progress on reprogramming of somatic cells toward distinct endothelial cell lineages and its promise in regenerative vascular medicine.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pharmacology, Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
28
|
A novel role for receptor activator of nuclear factor (NF)-κβ ligand (RANKL) in atorvastatin-mediated mobilization of endothelial progenitor cells. J Mol Cell Cardiol 2013; 59:148-50. [DOI: 10.1016/j.yjmcc.2013.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/10/2013] [Accepted: 02/20/2013] [Indexed: 11/21/2022]
|
29
|
Oldershaw RA. Cell sources for the regeneration of articular cartilage: the past, the horizon and the future. Int J Exp Pathol 2012; 93:389-400. [PMID: 23075006 DOI: 10.1111/j.1365-2613.2012.00837.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/15/2012] [Indexed: 11/29/2022] Open
Abstract
Avascular, aneural articular cartilage has a low capacity for self-repair and as a consequence is highly susceptible to degradative diseases such as osteoarthritis. Thus the development of cell-based therapies that repair focal defects in otherwise healthy articular cartilage is an important research target, aiming both to delay the onset of degradative diseases and to decrease the need for joint replacement surgery. This review will discuss the cell sources which are currently being investigated for the generation of chondrogenic cells. Autologous chondrocyte implantation using chondrocytes expanded ex vivo was the first chondrogenic cellular therapy to be used clinically. However, limitations in expansion potential have led to the investigation of adult mesenchymal stem cells as an alternative cell source and these therapies are beginning to enter clinical trials. The chondrogenic potential of human embryonic stem cells will also be discussed as a developmentally relevant cell source, which has the potential to generate chondrocytes with phenotype closer to that of articular cartilage. The clinical application of these chondrogenic cells is much further away as protocols and tissue engineering strategies require additional optimization. The efficacy of these cell types in the regeneration of articular cartilage tissue that is capable of withstanding biomechanical loading will be evaluated according to the developing regulatory framework to determine the most appropriate cellular therapy for adoption across an expanding patient population.
Collapse
Affiliation(s)
- Rachel A Oldershaw
- North East England Stem Cell Institute (NESCI), Institute of Cellular Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.
| |
Collapse
|
30
|
Goldie LC, Nix MK, Hirschi KK. Embryonic vasculogenesis and hematopoietic specification. Organogenesis 2012; 4:257-63. [PMID: 19337406 DOI: 10.4161/org.4.4.7416] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 02/15/2007] [Indexed: 01/13/2023] Open
Abstract
Vasculogenesis is the process by which blood vessels are formed de novo. In mammals, vasculogenesis occurs in parallel with hematopoiesis, the formation of blood cells. Thus, it is debated whether vascular endothelial cells and blood cells are derived from a common progenitor. Whether or not this is the case, there certainly is commonality among regulatory factors that control the differentiation and differentiated function of both cell lineages. VEGF is a major regulator of both cell types and plays a critical role, in coordination with other signaling pathways and transcriptional regulators, in controlling the differentiation and behavior of endothelial and blood cells during early embryonic development, as further discussed herein.
Collapse
Affiliation(s)
- Lauren C Goldie
- Department of Pediatrics and Molecular and Cellular Biology; Children's Nutrition Research Center; Center for Cell and Gene Therapy; Baylor College of Medicine; Houston, Texas USA
| | | | | |
Collapse
|
31
|
Abstract
Previous studies have shown that fibroblast growth factor (FGF) signaling promotes hematopoietic stem and progenitor cell (HSPC) expansion in vitro. However, it is unknown whether FGF promotes HSPC expansion in vivo. Here we examined FGF receptor 1 (FGFR1) expression and investigated its in vivo function in HSPCs. Conditional knockout (CKO) of Fgfr1 did not affect phenotypical number of HSPCs and homeostatic hematopoiesis, but led to a reduced engraftment only in the secondary transplantation. When treated with 5-fluorouracil (5FU), the Fgfr1 CKO mice showed defects in both proliferation and subsequent mobilization of HSPCs. We identified megakaryocytes (Mks) as a major resource for FGF production, and further discovered a novel mechanism by which Mks underwent FGF-FGFR signaling dependent expansion to accelerate rapid FGF production under stress. Within HSPCs, we observed an up-regulation of nuclear factor κB and CXCR4, a receptor for the chemoattractant SDF-1, in response to bone marrow damage only in control but not in Fgfr1 CKO model, accounting for the corresponding defects in proliferation and migration of HSPCs. This study provides the first in vivo evidence that FGF signaling facilitates postinjury recovery of the mouse hematopoietic system by promoting proliferation and facilitating mobilization of HSPCs.
Collapse
|
32
|
Wareing S, Mazan A, Pearson S, Göttgens B, Lacaud G, Kouskoff V. The Flk1-Cre-mediated deletion of ETV2 defines its narrow temporal requirement during embryonic hematopoietic development. Stem Cells 2012; 30:1521-31. [PMID: 22570122 DOI: 10.1002/stem.1115] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During embryonic development, the emergence of hematopoiesis and vasculogenesis is tightly associated, with many transcription factors implicated in both developmental processes. Among those factors, ETV2 acts at the top of the hierarchy and controls the formation of both lineages. However, it is not known at which stage of mesoderm development ETV2 is acting and whether ETV2 activity is further required once mesodermal precursors have been specified to the hematopoietic and endothelial fates. In this study, we characterize the developmental window during which ETV2 expression is required for hematopoietic and endothelial development. Using cre-mediated deletion of ETV2, we demonstrate that ETV2 is acting prior to or at the time of FLK1 expression in mesodermal precursors to initiate the hematopoietic and endothelial program. Using the in vitro differentiation of embryonic stem cells as a model system, we further show that ETV2 re-expression in Etv2(-/-) Flk1-negative precursors drives hematopoiesis specification and switches on the expression of most genes known to be implicated in hematopoietic and endothelial development. Among the downstream targets of ETV2, we identify the transcription factors SCL, GATA2, and FLI1 known to operate a recursive loop controlling hematopoietic development. Surprisingly, SCL re-expression in Etv2(-/-) cells fully rescues hematopoiesis, while the re-expression of FLI1 or GATA2 promotes only a very limited rescue. Altogether, our data establish that ETV2 is required very transiently to specify mesodermal precursors to hematopoiesis and vasculogenesis and that SCL is one of the key downstream targets of ETV2 in controlling hematopoietic specification.
Collapse
Affiliation(s)
- Sarah Wareing
- Cancer Research UK Stem Cell Hematopoiesis Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Cerdan C, McIntyre BAS, Mechael R, Levadoux-Martin M, Yang J, Lee JB, Bhatia M. Activin A promotes hematopoietic fated mesoderm development through upregulation of brachyury in human embryonic stem cells. Stem Cells Dev 2012; 21:2866-77. [PMID: 22548442 DOI: 10.1089/scd.2012.0053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The development of the hematopoietic system involves multiple cellular steps beginning with the formation of the mesoderm from the primitive streak, followed by emergence of precursor populations that become committed to either the endothelial or hematopoietic lineages. A number of growth factors such as activins and fibroblast growth factors (FGFs) are known to regulate the early specification of hematopoietic fated mesoderm, notably in amphibians. However, the potential roles of these factors in the development of mesoderm and subsequent hematopoiesis in the human have yet to be delineated. Defining the cellular and molecular mechanisms by which combinations of mesoderm-inducing factors regulate this stepwise process in human cells in vitro is central to effectively directing human embryonic stem cell (hESC) hematopoietic differentiation. Herein, using hESC-derived embryoid bodies (EBs), we show that Activin A, but not basic FGF/FGF2 (bFGF), promotes hematopoietic fated mesodermal specification from pluripotent human cells. The effect of Activin A treatment relies on the presence of bone morphogenetic protein 4 (BMP4) and both of the hematopoietic cytokines stem cell factor and fms-like tyrosine kinase receptor-3 ligand, and is the consequence of 2 separate mechanisms occurring at 2 different stages of human EB development from mesoderm to blood. While Activin A promotes the induction of mesoderm, as indicated by the upregulation of Brachyury expression, which represents the mesodermal precursor required for hematopoietic development, it also contributes to the expansion of cells already committed to a hematopoietic fate. As hematopoietic development requires the transition through a Brachyury+ intermediate, we demonstrate that hematopoiesis in hESCs is impaired by the downregulation of Brachyury, but is unaffected by its overexpression. These results demonstrate, for the first time, the functional significance of Brachyury in the developmental program of hematopoietic differentiation from hESCs and provide an in-depth understanding of the molecular cues that orchestrate stepwise development of hematopoiesis in a human system.
Collapse
Affiliation(s)
- Chantal Cerdan
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Costa G, Kouskoff V, Lacaud G. Origin of blood cells and HSC production in the embryo. Trends Immunol 2012; 33:215-23. [PMID: 22365572 DOI: 10.1016/j.it.2012.01.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/13/2012] [Accepted: 01/18/2012] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSCs) are capable of self-renewal and differentiation into all blood cell types. During adult life, they reside in the bone marrow in a quiescent state. By contrast, in the growing embryo hematopoiesis is sequentially found in several developmental niches. This review provides an overview of the still controversial contribution of each of these embryonic sites to the final pool of adult HSCs and discusses new insights into the cellular origin and the molecular regulation implicated in the generation of blood progenitor cells. A better understanding of HSC development during ontogeny is essential to develop new strategies to amplify HSCs or to generate them from embryonic stem cells or by somatic cell reprogramming.
Collapse
Affiliation(s)
- Guilherme Costa
- Cancer Research UK Stem Cell Hematopoiesis Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | | |
Collapse
|
35
|
Costa G, Mazan A, Gandillet A, Pearson S, Lacaud G, Kouskoff V. SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of haematopoietic development. Development 2012; 139:1587-98. [PMID: 22492353 DOI: 10.1242/dev.071282] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
At early stages of vertebrate ontogeny, blood and endothelial cells develop from a common mesodermal progenitor, the haemangioblast. Upon haematopoietic commitment, the haemangioblast generates blood precursors through populations of endothelial cells with haemogenic properties. Although several transcription factors have been implicated in haemangioblast differentiation, the precise mechanisms governing cell fate decisions towards the generation of haemogenic endothelium precursors remain largely unknown. Under defined conditions, embryonic stem (ES) cells can be differentiated into haemangioblast-like progenitors that faithfully recapitulate early embryonic haematopoiesis. Here, we made use of mouse ES cells as a model system to understand the role of SOX7, a member of a large family of transcription factors involved in a wide range of developmental processes. During haemangioblast differentiation, SOX7 is expressed in haemogenic endothelium cells and is downregulated in nascent blood precursors. Gain-of-function assays revealed that the enforced expression of Sox7 in haemangioblast-derived blast colonies blocks further differentiation and sustains the expression of endothelial markers. Thus, to explore the transcriptional activity of SOX7, we focused on the endothelial-specific adhesion molecule VE-cadherin. Similar to SOX7, VE-cadherin is expressed in haemogenic endothelium and is downregulated during blood cell formation. We show that SOX7 binds and activates the promoter of VE-cadherin, demonstrating that this gene is a novel downstream transcriptional target of SOX7. Altogether, our findings suggest that SOX7 is involved in the transcriptional regulation of genes expressed in the haemogenic endothelium and provide new clues to decipher the molecular pathways that drive early embryonic haematopoiesis.
Collapse
Affiliation(s)
- Guilherme Costa
- Cancer Research UK Stem Cell Research Group, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The early blood vessels of the embryo and yolk sac in mammals develop by aggregation of de novo-forming angioblasts into a primitive vascular plexus, which then undergoes a complex remodeling process. Angiogenesis is also important for disease progression in the adult. However, the precise molecular mechanism of vascular development remains unclear. It is therefore of great interest to determine which genes are specifically expressed in developing endothelial cells (ECs). Here, we used Flk1-deficient mouse embryos, which lack ECs, to perform a genome-wide survey for genes related to vascular development. We identified 184 genes that are highly enriched in developing ECs. The human orthologs of most of these genes were also expressed in HUVECs, and small interfering RNA knockdown experiments on 22 human orthologs showed that 6 of these genes play a role in tube formation by HUVECs. In addition, we created Arhgef15 knockout and RhoJ knockout mice by a gene-targeting method and found that Arhgef15 and RhoJ were important for neonatal retinal vascularization. Thus, the genes identified in our survey show high expression in ECs; further analysis of these genes should facilitate our understanding of the molecular mechanisms of vascular development in the mouse.
Collapse
|
37
|
Modeling human hematopoietic cell development from pluripotent stem cells. Exp Hematol 2012; 40:601-11. [PMID: 22510344 DOI: 10.1016/j.exphem.2012.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/04/2012] [Indexed: 11/20/2022]
Abstract
Understanding the steps and cues that allow hematopoietic cells to be generated during development holds great clinical as well as biological interest. Analysis of these events in mice has provided many important insights into the processes involved, but features that might be unique to humans remain challenging to elucidate because they cannot be studied directly in vivo. Human embryonic stem or induced pluripotent stem cells offer attractive in vitro alternatives to analyze the process. Here we review recent efforts to develop defined and quantitative systems to address outstanding developmental questions against a background of what we know about the development of hematopoietic cells in the fetus and derived from mouse embryonic stem cells.
Collapse
|
38
|
ER71 specifies Flk-1+ hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling. Blood 2012; 119:3295-305. [PMID: 22343916 DOI: 10.1182/blood-2012-01-403766] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Two distinct types of Flk-1(+) mesoderm, hemangiogenic and cardiogenic, are thought to contribute to blood, vessel, and cardiac cell lineages. However, our understanding of how Flk-1(+) mesoderm is specified is currently limited. In the present study, we investigated whether ER71, an Ets transcription factor essential for hematopoietic and endothelial cell lineage development, could modulate the hemangiogenic or cardiogenic outcome of the Flk-1(+) mesoderm. We show that Flk-1(+) mesoderm can be divided into Flk-1(+)PDGFRα(-) hemangiogenic and Flk-1(+)PDGFRα(+) cardiogenic mesoderm. ER71-deficient embryonic stem cells produced only the Flk-1(+)PDGFRα(+) cardiogenic mesoderm, which generated SMCs and cardiomyocytes. Enforced ER71 expression in the wild-type embryonic stem cells skewed toward the Flk-1(+)PDGFRα(-) mesoderm formation, which generated hematopoietic and endothelial cells. Whereas hematopoietic and endothelial cell genes were positively regulated by ER71, cardiac and Wnt signaling pathway genes were negatively regulated by ER71. We show that ER71 could inhibit Wnt signaling in VE-cadherin-independent as well as VE-cadherin-dependent VE-cadherin/β-catenin/Flk-1 complex formation. Enforced β-catenin could rescue cardiogenic mesoderm in the context of ER71 overexpression. In contrast, ER71-deficient Flk-1(+) mesoderm displayed enhanced Wnt signaling, which was reduced by ER71 re-introduction. We provide the molecular basis for the antagonistic relationship between hemangiogenic and cardiogenic mesoderm specification by ER71 and Wnt signaling.
Collapse
|
39
|
Romero-Lanman EE, Pavlovic S, Amlani B, Chin Y, Benezra R. Id1 maintains embryonic stem cell self-renewal by up-regulation of Nanog and repression of Brachyury expression. Stem Cells Dev 2011; 21:384-93. [PMID: 22013995 DOI: 10.1089/scd.2011.0428] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the mechanism by which embryonic stem (ES) cells self-renew is crucial for the realization of their therapeutic potential. Earlier, overexpression of Id proteins was shown to be sufficient to maintain mouse ES cells in a self-renewing state even in the absence of serum. Here, we use ES cells derived from Id deficient mice to investigate the requirement for Id proteins in maintaining ES cell self-renewal. We find that Id1(-/-) ES cells have a defect in self-renewal and a propensity to differentiate. We observe that chronic or acute loss of Id1 leads to a down-regulation of Nanog, a critical regulator of self-renewal. In addition, in the absence of Id1, ES cells express elevated levels of Brachyury, a marker of mesendoderm differentiation. We find that loss of both Nanog and Id1 is required for the up-regulation of Brachyury, and ectopic Nanog expression in Id1(-/-) ES cells rescues the self-renewal defect, indicating that Nanog is the major downstream target of Id1. These results identify Id1 as a critical factor in the maintenance of ES cell self-renewal and suggest a plausible mechanism for its control of lineage commitment.
Collapse
Affiliation(s)
- Elizabeth E Romero-Lanman
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
40
|
Ishitobi H, Wakamatsu A, Liu F, Azami T, Hamada M, Matsumoto K, Kataoka H, Kobayashi M, Choi K, Nishikawa SI, Takahashi S, Ema M. Molecular basis for Flk1 expression in hemato-cardiovascular progenitors in the mouse. Development 2011; 138:5357-68. [PMID: 22071109 DOI: 10.1242/dev.065565] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mouse Flk1 gene is expressed in various mesodermal progenitor cells of developing embryos. Recent studies have shown that Flk1 expression marks multipotent mesodermal progenitors, giving rise to various hemato-cardiovascular cell lineages during development. Flk1 expression also marks hemato-cardiovascular cell lineages in differentiating embryonic stem (ES) cells, which may be used in transplantation decisions to treat cardiovascular diseases. Despite its developmental and clinical importance in cardiovascular tissues, the transcriptional regulatory system of Flk1 has remained unclear. Here, we report a novel enhancer of the mouse Flk1 gene directing early mesodermal expression during development as well as ES differentiation. The enhancer enriches various mesodermal progenitors, such as primitive erythropoietic progenitors, hemangioblast (BL-CFC) and cardiovascular progenitors (CV-CFC). The enhancer is activated by Bmp, Wnt and Fgf, and it contains Gata-, Cdx-, Tcf/Lef-, ER71/Etv2- and Fox-binding sites, some of which are bound specifically by each of these transcription factors. As these transcription factors are known to act under the control of the Bmp, Wnt and Fgf families, early Flk1 expression may be induced by cooperative interactions between Gata, Tcf/Lef, Cdx and ER71/Etv2 under the control of Bmp, Wnt and Fgf signaling. The enhancer is required for early Flk1 expression and for hemangioblast development during ES differentiation.
Collapse
Affiliation(s)
- Hiroyuki Ishitobi
- Department of Anatomy and Embryology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai,Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Simões FC, Peterkin T, Patient R. Fgf differentially controls cross-antagonism between cardiac and haemangioblast regulators. Development 2011; 138:3235-45. [PMID: 21750034 PMCID: PMC3133915 DOI: 10.1242/dev.059634] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2011] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor (Fgf) has been implicated in the control of heart size during development, although whether this is by controlling cell fate, survival or proliferation has not been clear. Here, we show that Fgf, without affecting survival or proliferation, acts during gastrulation to drive cardiac fate and restrict anterior haemangioblast fate in zebrafish embryos. The haemangioblast programme was thought to be activated before the cardiac programme and is repressive towards it, suggesting that activation by Fgf of the cardiac programme might be via suppression of the haemangioblast programme. However, we show that the cardiac regulator nkx2.5 can also repress the haemangioblast programme and, furthermore, that cardiac specification still requires Fgf signalling even when haemangioblast regulators are independently suppressed. We further show that nkx2.5 and the cloche candidate gene lycat are expressed during gastrulation and regulated by Fgf, and that nkx2.5 overexpression, together with loss of the lycat targets etsrp and scl can stably induce expansion of the heart. We conclude that Fgf controls cardiac and haemangioblast fates by the simultaneous regulation of haemangioblast and cardiac regulators. We propose that elevation of Fgf signalling in the anterior haemangioblast territory could have led to its recruitment into the heart field during evolution, increasing the size of the heart.
Collapse
Affiliation(s)
- Filipa Costa Simões
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headington OX3 9DS, UK
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Tessa Peterkin
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headington OX3 9DS, UK
| | - Roger Patient
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headington OX3 9DS, UK
| |
Collapse
|
42
|
Coskun S, Hirschi KK. Establishment and regulation of the HSC niche: Roles of osteoblastic and vascular compartments. ACTA ACUST UNITED AC 2011; 90:229-42. [PMID: 21181885 DOI: 10.1002/bdrc.20194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hematopoietic stem cells (HSC) are multi-potent cells that function to generate a lifelong supply of all blood cell types. During mammalian embryogenesis, sites of hematopoiesis change over the course of gestation: from extraembryonic yolk sac and placenta, to embryonic aorta-gonad-mesonephros region, fetal liver, and finally fetal bond marrow where HSC reside postnatally. These tissues provide microenviroments for de novo HSC formation, as well as HSC maturation and expansion. Within adult bone marrow, HSC self-renewal and differentiation are thought to be regulated by two major cellular components within their so-called niche: osteoblasts and vascular endothelial cells. This review focuses on HSC generation within, and migration to, different tissues during development, and also provides a summary of major regulatory factors provided by osteoblasts and vascular endothelial cells within the adult bone marrow niche.
Collapse
Affiliation(s)
- Suleyman Coskun
- Center for Cell and Gene Therapy, Baylor College of Medicine; Houston, Texas, 77030, USA
| | | |
Collapse
|
43
|
Cao N, Yao ZX. The hemangioblast: from concept to authentication. Anat Rec (Hoboken) 2011; 294:580-8. [PMID: 21370498 DOI: 10.1002/ar.21360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/13/2011] [Indexed: 11/06/2022]
Abstract
The hemangioblast hypothesis has been hotly debated for over a century. Hemangioblasts are defined as multipotent cells that can give rise to both hematopoietic cells and endothelial cells. The existence of hemangioblasts has now been confirmed and many important molecules and several signaling pathways are involved in their generation and differentiation. Fibroblast growth factor, renin-angiotensin system and runt-related transcription factor 1 (Runx1) direct the formation of hemangioblasts through highly selective gene expression patterns. On the other hand, the hemogenic endothelium theory and a newly discovered pattern of hematopoietic/endothelial differentiation make the genesis of hemangioblasts more complicated. But how hemangioblasts are formed and how hematopoietic cells or endothelial cells are derived from remains largely unknown. Here we summarize the current knowledge of the signaling pathways and molecules involved in hemangioblast development and suggest some future clinical applications.
Collapse
Affiliation(s)
- Nian Cao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | |
Collapse
|
44
|
Retinoic acid enhances the generation of hematopoietic progenitors from human embryonic stem cell–derived hemato-vascular precursors. Blood 2010; 116:4786-94. [DOI: 10.1182/blood-2010-01-263335] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Current induction schemes directing hematopoietic differentiation of human embryonic stem cells (hESCs) are not well defined to mimic the sequential stages of hematopoietic development in vivo. Here, we report a 3-stage method to direct differentiation of hESCs toward hematopoietic progenitors in chemically defined mediums. In the first 2 stages, we efficiently generated T-positive primitive streak/mesendoderm cells and kinase domain receptor–positive (KDR+) platelet-derived growth factor receptor α–negative (PDGFRα−) hemato-vascular precursors sequentially. In the third stage, we found that cells in a spontaneous differentiation condition mainly formed erythroid colonies. Addition of all-trans retinoic acid (RA) greatly enhanced generation of hematopoietic progenitors in this stage while suppressing erythroid development. The RA-treated cells highly expressed definitive hematopoietic genes, formed large numbers of multilineage and myeloid colonies, and gave rise to greater than 45% CD45+ hematopoietic cells. When hematopoietic progenitors were selected with CD34 and C-Kit, greater than 95% CD45+ hematopoietic cells could be generated. In addition, we found that endogenous RA signaling at the second stage was required for vascular endothelial growth factor/basic fibroblast growth factor–induced hemato-vascular specification, whereas exogenously applied RA efficiently induced KDR−PDGFRα+ paraxial mesoderm cells. Our study suggests that RA signaling plays diverse roles in human mesoderm and hematopoietic development.
Collapse
|
45
|
Oldershaw RA, Baxter MA, Lowe ET, Bates N, Grady LM, Soncin F, Brison DR, Hardingham TE, Kimber SJ. Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 2010; 28:1187-94. [PMID: 20967028 DOI: 10.1038/nbt.1683] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/23/2010] [Indexed: 12/18/2022]
Abstract
We report a chemically defined, efficient, scalable and reproducible protocol for differentiation of human embryonic stem cells (hESCs) toward chondrocytes. HESCs are directed through intermediate developmental stages using substrates of known matrix proteins and chemically defined media supplemented with exogenous growth factors. Gene expression analysis suggests that the hESCs progress through primitive streak or mesendoderm to mesoderm, before differentiating into a chondrocytic culture comprising cell aggregates. At this final stage, 74% (HUES1 cells) and up to 95-97% (HUES7 and HUES8 cells) express the chondrogenic transcription factor SOX9. The cell aggregates also express cell surface CD44 and aggrecan and deposit a sulfated glycosaminoglycan and cartilage-specific collagen II matrix, but show very low or no expression of genes and proteins associated with nontarget cell types. Our protocol should facilitate studies of chondrocyte differentiation and of cell replacement therapies for cartilage repair.
Collapse
Affiliation(s)
- Rachel A Oldershaw
- North West Embryonic Stem Cell Centre, Faculty of Life Sciences, Core Technology Facility, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bai H, Gao Y, Arzigian M, Wojchowski DM, Wu WS, Wang ZZ. BMP4 regulates vascular progenitor development in human embryonic stem cells through a Smad-dependent pathway. J Cell Biochem 2010; 109:363-74. [PMID: 19950207 DOI: 10.1002/jcb.22410] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The signals that direct pluripotent stem cell differentiation into lineage-specific cells remain largely unknown. Here, we investigated the roles of BMP on vascular progenitor development from human embryonic stem cells (hESCs). In a serum-free condition, hESCs sequentially differentiated into CD34+CD31-, CD34+CD31+, and then CD34-CD31+ cells during vascular cell development. CD34+CD31+ cells contained vascular progenitor population that gives rise to endothelial cells and smooth muscle cells. BMP4 promoted hESC differentiation into CD34+CD31+ cells at an early stage. In contrast, TGFbeta suppressed BMP4-induced CD34+CD31+ cell development, and promoted CD34+CD31- cells that failed to give rise to either endothelial or smooth muscle cells. The BMP-Smad inhibitor, dorsomorphin, inhibited phosphorylation of Smad1/5/8, and blocked hESC differentiation to CD34+CD31+ progenitor cells, suggesting that BMP Smad-dependent signaling is critical for CD34+CD31+ vascular progenitor development. Our findings provide new insight into how pluripotent hESCs differentiate into vascular cells.
Collapse
Affiliation(s)
- Hao Bai
- Maine Medical Center, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | |
Collapse
|
47
|
Prahalad P, Dakshanamurthy S, Ressom H, Byers SW. Retinoic acid mediates regulation of network formation by COUP-TFII and VE-cadherin expression by TGFbeta receptor kinase in breast cancer cells. PLoS One 2010; 5:e10023. [PMID: 20386594 PMCID: PMC2850308 DOI: 10.1371/journal.pone.0010023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/11/2010] [Indexed: 11/19/2022] Open
Abstract
Tumor development, growth, and metastasis depend on the provision of an adequate vascular supply. This can be due to regulated angiogenesis, recruitment of circulating endothelial progenitors, and/or vascular transdifferentiation. Our previous studies showed that retinoic acid (RA) treatment converts a subset of breast cancer cells into cells with significant endothelial genotypic and phenotypic elements including marked induction of VE-cadherin, which was responsible for some but not all morphological changes. The present study demonstrates that of the endothelial-related genes induced by RA treatment, only a few were affected by knockdown of VE-cadherin, ruling it out as a regulator of the RA-induced endothelial genotypic switch. In contrast, knockdown of the RA-induced gene COUP-TFII prevented the formation of networks in Matrigel but had no effect on VE-cadherin induction or cell fusion. Two pan-kinase inhibitors markedly blocked RA-induced VE-cadherin expression and cell fusion. However, RA treatment resulted in a marked and broad reduction in tyrosine kinase activity. Several genes in the TGFβ signaling pathway were induced by RA, and specific inhibition of the TGFβ type I receptor blocked both RA-induced VE-cadherin expression and cell fusion. Together these data indicate a role for the TGFβ pathway and COUP-TFII in mediating the endothelial transdifferentiating properties of RA.
Collapse
Affiliation(s)
- Priya Prahalad
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D. C., United States of America
| | - Sivanesan Dakshanamurthy
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D. C., United States of America
| | - Habtom Ressom
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D. C., United States of America
| | - Stephen W. Byers
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D. C., United States of America
- * E-mail:
| |
Collapse
|
48
|
Williamson AJ, Whetton AD. Development of approaches for systematic analysis of protein networks in stem cells. ACTA ACUST UNITED AC 2010; 50:273-84. [DOI: 10.1016/j.advenzreg.2009.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood 2009; 114:4813-22. [DOI: 10.1182/blood-2009-06-226290] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
The molecular mechanisms that regulate the balance between proliferation and differentiation of precursors at the onset of hematopoiesis specification are poorly understood. By using a global gene expression profiling approach during the course of embryonic stem cell differentiation, we identified Sox7 as a potential candidate gene involved in the regulation of blood lineage formation from the mesoderm germ layer. In the present study, we show that Sox7 is transiently expressed in mesodermal precursors as they undergo specification to the hematopoietic program. Sox7 knockdown in vitro significantly decreases the formation of both primitive erythroid and definitive hematopoietic progenitors as well as endothelial progenitors. In contrast, Sox7-sustained expression in the earliest committed hematopoietic precursors promotes the maintenance of their multipotent and self-renewing status. Removal of this differentiation block driven by Sox7-enforced expression leads to the efficient differentiation of hematopoietic progenitors to all erythroid and myeloid lineages. This study identifies Sox7 as a novel and important player in the molecular regulation of the first committed blood precursors. Furthermore, our data demonstrate that the mere sustained expression of Sox7 is sufficient to completely alter the balance between proliferation and differentiation at the onset of hematopoiesis.
Collapse
|
50
|
Differentiation of reprogrammed somatic cells into functional hematopoietic cells. Differentiation 2009; 78:151-8. [DOI: 10.1016/j.diff.2009.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/07/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|