1
|
Guo K, Huang Z, Wang C, Liu X, Chen Y, Fang J, Jin W, Xu J, Wu F, Zhou X. Nematicidal effects of silencing arginine kinase in the pine wood nematode, Bursaphelenchus xylophilus, determined using a dsRNA-like siRNA assembly. Int J Biol Macromol 2024; 279:135401. [PMID: 39245109 DOI: 10.1016/j.ijbiomac.2024.135401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The pine wood nematode Bursaphelenchus xylophilus is a highly invasive species responsible for the widespread pine wilt disease. Double-stranded RNA (dsRNA) biopesticides represent a novel strategy for controlling plant-parasitic nematodes. The B. xylophilus arginine kinase (BxAK) features a conserved ATP-binding domain and exhibits nematode-specific divergence in the phylogenetic tree. Notably, whole-mount in situ hybridization signals are evident in the nematode head and middle sections, particularly in the juvenile stage before sex differentiation. In this study, we developed a novel dsRNA-like small interfering RNA (siRNA) assembly that specifically targets BxAK and presents highly nematicidal effects. The RNA interference (RNAi) efficiency achieved a 95.9 % reduction in second-stage juveniles. In bioassays, the median lethal concentrations of this siRNA assembly against B. xylophilus were 168.5 ng/μl for juveniles and 603.8 ng/μl for adults within 48 h. Moreover, transcriptomic results revealed significantly downregulated expression levels of genes related to metabolism and development, suggesting that the mode of action of BxAK silencing is related to disruptions in energy homeostasis and juvenile development. In conclusion, BxAK is a molecular target for controlling B. xylophilus, and our siRNA assembly significantly enhances RNAi efficiency and lowers the lethal concentration required, making it a promising candidate for future biocontrol applications.
Collapse
Affiliation(s)
- Kai Guo
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Ziqian Huang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Chunyu Wang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Xuemeng Liu
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Ye Chen
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Jiadi Fang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Weibo Jin
- Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jinfeng Xu
- Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Fangli Wu
- Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Xiang Zhou
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
2
|
Kong JN, Dipon Ghosh D, Savvidis A, Sando SR, Droste R, Robert Horvitz H. Transcriptional landscape of a hypoxia response identifies cell-specific pathways for adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601765. [PMID: 39005398 PMCID: PMC11245032 DOI: 10.1101/2024.07.02.601765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
How the HIF-1 (Hypoxia-Inducible) transcription factor drives and coordinates distinct responses to low oxygen across diverse cell types is poorly understood. We present a multi-tissue single-cell gene-expression atlas of the hypoxia response of the nematode Caenorhabditis elegans . This atlas highlights how cell-type-specific HIF-1 responses overlap and diverge among and within neuronal, intestinal, and muscle tissues. Using the atlas to guide functional analyses of candidate muscle-specific HIF-1 effectors, we discovered that HIF-1 activation drives downregulation of the tspo-1 ( TSPO, Translocator Protein) gene in vulval muscle cells to modulate a hypoxia-driven change in locomotion caused by contraction of body-wall muscle cells. We further showed that in human cardiomyocytes HIF-1 activation decreases levels of TSPO and thereby alters intracellular cholesterol transport and the mitochondrial network. We suggest that TSPO-1 is an evolutionarily conserved mediator of HIF-1-dependent modulation of muscle and conclude that our gene-expression atlas can help reveal how HIF-1 drives cell-specific adaptations to hypoxia.
Collapse
|
3
|
Stefanakis N, Jiang J, Liang Y, Shaham S. LET-381/FoxF and its target UNC-30/Pitx2 specify and maintain the molecular identity of C. elegans mesodermal glia that regulate motor behavior. EMBO J 2024; 43:956-992. [PMID: 38360995 PMCID: PMC10943081 DOI: 10.1038/s44318-024-00049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
While most glial cell types in the central nervous system (CNS) arise from neuroectodermal progenitors, some, like microglia, are mesodermally derived. To understand mesodermal glia development and function, we investigated C. elegans GLR glia, which envelop the brain neuropil and separate it from the circulatory system cavity. Transcriptome analysis shows that GLR glia combine astrocytic and endothelial characteristics, which are relegated to separate cell types in vertebrates. Combined fate acquisition is orchestrated by LET-381/FoxF, a fate-specification/maintenance transcription factor also expressed in glia and endothelia of other animals. Among LET-381/FoxF targets, the UNC-30/Pitx2 transcription factor controls GLR glia morphology and represses alternative mesodermal fates. LET-381 and UNC-30 co-expression in naive cells is sufficient for GLR glia gene expression. GLR glia inactivation by ablation or let-381 mutation disrupts locomotory behavior and promotes salt-induced paralysis, suggesting brain-neuropil activity dysregulation. Our studies uncover mechanisms of mesodermal glia development and show that like neuronal differentiation, glia differentiation requires autoregulatory terminal selector genes that define and maintain the glial fate.
Collapse
Affiliation(s)
- Nikolaos Stefanakis
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Jessica Jiang
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yupu Liang
- Research Bioinformatics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Alexion Pharmaceuticals, Boston, MA, 02135, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Kwon S, Park KS, Yoon KH. Dissecting the Neuronal Contributions of the Lipid Regulator NHR-49 Function in Lifespan and Behavior in C. elegans. Life (Basel) 2023; 13:2346. [PMID: 38137948 PMCID: PMC10744624 DOI: 10.3390/life13122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Although the importance of lipid homeostasis in neuronal function is undisputed, how they are regulated within neurons to support their unique function is an area of active study. NHR-49 is a nuclear hormone receptor functionally similar to PPARα, and a major lipid regulator in C. elegans. Although expressed in most tissues, little is known about its roles outside the intestine, the main metabolic organ of C. elegans. Here, using tissue- and neuron-type-specific transgenic strains, we examined the contribution of neuronal NHR-49 to cell-autonomous and non-autonomous nhr-49 mutant phenotypes. We examined lifespan, brood size, early egg-laying, and reduced locomotion on food. We found that lifespan and brood size could be rescued by neuronal NHR-49, and that NHR-49 in cholinergic and serotonergic neurons is sufficient to restore lifespan. For behavioral phenotypes, NHR-49 in serotonergic neurons was sufficient to control egg-laying, whereas no single tissue or neuron type was able to rescue the enhanced on-food slowing behavior. Our study shows that NHR-49 can function in single neuron types to regulate C. elegans physiology and behavior, and provides a platform to further investigate how lipid metabolism in neurons impact neuronal function and overall health of the organism.
Collapse
Affiliation(s)
- Saebom Kwon
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University of Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University of Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea
| | - Kyoung-hye Yoon
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
5
|
Wu M, Jiang H, Li Q, Liu Y, Zhang H, Li X, Shao Z. OGT-1 regulates synaptic assembly through the insulin signaling pathway. J Cell Biochem 2023; 124:1919-1930. [PMID: 37991448 DOI: 10.1002/jcb.30497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
The formation and maintenance of synapses are precisely regulated, and the misregulation often leads to neurodevelopmental or neurodegenerative disorders. Besides intrinsic genetically encoded signaling pathways, synaptic structure and function are also regulated by extrinsic factors, such as nutrients. O-GlcNAc transferase (OGT), a nutrient sensor, is abundant in the nervous system and required for synaptic plasticity, learning, and memory. However, whether OGT is involved in synaptic development and the mechanism underlying the process are largely unknown. In this study, we found that OGT-1, the OGT homolog in C. elegans, regulates the presynaptic assembly in AIY interneurons. The insulin receptor DAF-2 acts upstream of OGT-1 to promote the presynaptic assembly by positively regulating the expression of ogt-1. This insulin-OGT-1 axis functions most likely by regulating neuronal activity. In this study, we elucidated a novel mechanism for synaptic development, and provided a potential link between synaptic development and insulin-related neurological disorders.
Collapse
Affiliation(s)
- Mengting Wu
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huihui Jiang
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunhe Liu
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongjun Zhang
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuekun Li
- School of Medicine, The Children's Hospital, Zhejiang University, Hangzhou, China
- School of Medicine, The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhiyong Shao
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Leung AM, Rao MB, Raju N, Chung M, Klinger A, Rowe DJ, Li X, Levine EM. A framework to identify functional interactors that contribute to disrupted early retinal development in Vsx2 ocular retardation J mice. Dev Dyn 2023; 252:1338-1362. [PMID: 37259952 PMCID: PMC10689574 DOI: 10.1002/dvdy.629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND A goal of developmental genetics is to identify functional interactions that underlie phenotypes caused by mutations. We sought to identify functional interactors of Vsx2, which when mutated, disrupts early retinal development. We utilized the Vsx2 loss-of-function mouse, ocular retardation J (orJ), to assess interactions based on principles of positive and negative epistasis as applied to bulk transcriptome data. This was first tested in vivo with Mitf, a target of Vsx2 repression, and then to cultures of orJ retina treated with inhibitors of Retinoid-X Receptors (RXR) to target Rxrg, an up-regulated gene in the orJ retina, and gamma-Secretase, an enzyme required for Notch signaling, a key mediator of retinal proliferation and neurogenesis. RESULTS Whereas Mitf exhibited robust positive epistasis with Vsx2, it only partially accounts for the orJ phenotype, suggesting other functional interactors. RXR inhibition yielded minimal evidence for epistasis between Vsx2 and Rxrg. In contrast, gamma-Secretase inhibition caused hundreds of Vsx2-dependent genes associated with proliferation to deviate further from wild-type, providing evidence for convergent negative epistasis with Vsx2 in regulating tissue growth. CONCLUSIONS Combining in vivo and ex vivo testing with transcriptome analysis revealed quantitative and qualitative characteristics of functional interaction between Vsx2, Mitf, RXR, and gamma-Secretase activities.
Collapse
Affiliation(s)
- Amanda M. Leung
- Department of Cell and Developmental Biology, Vanderbilt
University, Nashville TN 37232
| | - Mahesh B. Rao
- Department of Ophthalmology and Visual Sciences, Vanderbilt
University Medical Center, Nashville TN 37232
| | - Nathan Raju
- Department of Ophthalmology and Visual Sciences, Vanderbilt
University Medical Center, Nashville TN 37232
| | - Minh Chung
- Department of Ophthalmology and Visual Sciences, Vanderbilt
University Medical Center, Nashville TN 37232
| | - Allison Klinger
- Department of Ophthalmology and Visual Sciences, Vanderbilt
University Medical Center, Nashville TN 37232
| | - DiAnna J. Rowe
- Department of Ophthalmology and Visual Sciences, Vanderbilt
University Medical Center, Nashville TN 37232
| | - Xiaodong Li
- Department of Ophthalmology and Visual Sciences, Vanderbilt
University Medical Center, Nashville TN 37232
| | - Edward M. Levine
- Department of Cell and Developmental Biology, Vanderbilt
University, Nashville TN 37232
- Department of Ophthalmology and Visual Sciences, Vanderbilt
University Medical Center, Nashville TN 37232
| |
Collapse
|
7
|
Stefanakis N, Jiang J, Liang Y, Shaham S. LET-381/FoxF and UNC-30/Pitx2 control the development of C. elegans mesodermal glia that regulate motor behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563501. [PMID: 37961181 PMCID: PMC10634723 DOI: 10.1101/2023.10.23.563501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
While most CNS glia arise from neuroectodermal progenitors, some, like microglia, are mesodermally derived. To understand mesodermal glia development and function, we investigated C. elegans GLR glia, which ensheath the brain neuropil and separate it from the circulatory-system cavity. Transcriptome analysis suggests GLR glia merge astrocytic and endothelial characteristics relegated to separate cell types in vertebrates. Combined fate acquisition is orchestrated by LET-381/FoxF, a fate-specification/maintenance transcription factor expressed in glia and endothelia of other animals. Among LET-381/FoxF targets, UNC-30/Pitx2 transcription factor controls GLR glia morphology and represses alternative mesodermal fates. LET-381 and UNC-30 co-expression in naïve cells is sufficient for GLR glia gene expression. GLR glia inactivation by ablation or let-381 mutation disrupts locomotory behavior and induces salt hypersensitivity, suggesting brain-neuropil activity dysregulation. Our studies uncover mechanisms of mesodermal glia development and show that like neurons, glia differentiation requires autoregulatory terminal selector genes that define and maintain the glial fate.
Collapse
|
8
|
Panagiotidou E, Gioran A, Bano D, Chondrogianni N. Neuron-specific proteasome activation exerts cell non-autonomous protection against amyloid-beta (Aβ) proteotoxicity in Caenorhabditis elegans. Redox Biol 2023; 65:102817. [PMID: 37473700 PMCID: PMC10404562 DOI: 10.1016/j.redox.2023.102817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Proteostasis reinforcement is a promising approach in the design of therapeutic interventions against proteinopathies, including Alzheimer's disease. Understanding how and which parts of the proteostasis network should be enhanced is crucial in developing efficient therapeutic strategies. The ability of specific tissues to induce proteostatic responses in distal ones (cell non-autonomous regulation of proteostasis) is attracting interest. Although the proteasome is a major protein degradation node, nothing is known on its cell non-autonomous regulation. We show that proteasome activation in the nervous system can enhance the proteasome activity in the muscle of Caenorhabditis elegans. Mechanistically, this communication depends on Small Clear Vesicles, with glutamate as one of the neurotransmitters required for the distal regulation. More importantly, we demonstrate that this cell non-autonomous proteasome activation is translated into efficient prevention of amyloid-beta (Αβ)-mediated proteotoxic effects in the muscle of C. elegans but notably not to resistance against oxidative stress. Our in vivo data establish a mechanistic link between neuronal proteasome reinforcement and decreased Aβ proteotoxicity in the muscle. The identified distal communication may have serious implications in the design of therapeutic strategies based on tissue-specific proteasome manipulation.
Collapse
Affiliation(s)
- Eleni Panagiotidou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, 41334, Larissa, Greece.
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece.
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece.
| |
Collapse
|
9
|
Chandra R, Farah F, Muñoz-Lobato F, Bokka A, Benedetti KL, Brueggemann C, Saifuddin MFA, Miller JM, Li J, Chang E, Varshney A, Jimenez V, Baradwaj A, Nassif C, Alladin S, Andersen K, Garcia AJ, Bi V, Nordquist SK, Dunn RL, Garcia V, Tokalenko K, Soohoo E, Briseno F, Kaur S, Harris M, Guillen H, Byrd D, Fung B, Bykov AE, Odisho E, Tsujimoto B, Tran A, Duong A, Daigle KC, Paisner R, Zuazo CE, Lin C, Asundi A, Churgin MA, Fang-Yen C, Bremer M, Kato S, VanHoven MK, L'Étoile ND. Sleep is required to consolidate odor memory and remodel olfactory synapses. Cell 2023; 186:2911-2928.e20. [PMID: 37269832 PMCID: PMC10354834 DOI: 10.1016/j.cell.2023.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
Animals with complex nervous systems demand sleep for memory consolidation and synaptic remodeling. Here, we show that, although the Caenorhabditis elegans nervous system has a limited number of neurons, sleep is necessary for both processes. In addition, it is unclear if, in any system, sleep collaborates with experience to alter synapses between specific neurons and whether this ultimately affects behavior. C. elegans neurons have defined connections and well-described contributions to behavior. We show that spaced odor-training and post-training sleep induce long-term memory. Memory consolidation, but not acquisition, requires a pair of interneurons, the AIYs, which play a role in odor-seeking behavior. In worms that consolidate memory, both sleep and odor conditioning are required to diminish inhibitory synaptic connections between the AWC chemosensory neurons and the AIYs. Thus, we demonstrate in a living organism that sleep is required for events immediately after training that drive memory consolidation and alter synaptic structures.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fatima Farah
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Fernando Muñoz-Lobato
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anirudh Bokka
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kelli L Benedetti
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chantal Brueggemann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mashel Fatema A Saifuddin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julia M Miller
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joy Li
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Eric Chang
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Aruna Varshney
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Vanessa Jimenez
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Anjana Baradwaj
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Cibelle Nassif
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sara Alladin
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kristine Andersen
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Angel J Garcia
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Veronica Bi
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sarah K Nordquist
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raymond L Dunn
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Vanessa Garcia
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kateryna Tokalenko
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Emily Soohoo
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Fabiola Briseno
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sukhdeep Kaur
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Malcolm Harris
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Hazel Guillen
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Decklin Byrd
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Brandon Fung
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Andrew E Bykov
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Emma Odisho
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Bryan Tsujimoto
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Alan Tran
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Alex Duong
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kevin C Daigle
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rebekka Paisner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carlos E Zuazo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christine Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aarati Asundi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew A Churgin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Bremer
- Department of Mathematics and Statistics, San José State University, San José, CA 95192, USA
| | - Saul Kato
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miri K VanHoven
- Department of Biological Sciences, San José State University, San José, CA 95192, USA.
| | - Noëlle D L'Étoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
Tsyba N, Feng G, Grub LK, Held JP, Strozak AM, Burkewitz K, Patel MR. Tissue-specific heteroplasmy segregation is accompanied by a sharp mtDNA decline in Caenorhabditis elegans soma. iScience 2023; 26:106349. [PMID: 36968071 PMCID: PMC10031119 DOI: 10.1016/j.isci.2023.106349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Mutations in the mitochondrial genome (mtDNA) can be pathogenic. Owing to the multi-copy nature of mtDNA, wild-type copies can compensate for the effects of mutant mtDNA. Wild-type copies available for compensation vary depending on the mutant load and the total copy number. Here, we examine both mutant load and copy number in the tissues of Caenorhabditis elegans. We found that neurons, but not muscles, have modestly higher mutant load than rest of the soma. We also uncovered different effect of aak-2 knockout on the mutant load in the two tissues. The most surprising result was a sharp decline in somatic mtDNA content over time. The scale of the copy number decline surpasses the modest shifts in mutant load, suggesting that it may exert a substantial effect on mitochondrial function. In summary, measuring both the copy number and the mutant load provides a more comprehensive view of the mutant mtDNA dynamics.
Collapse
Affiliation(s)
- Nikita Tsyba
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Gaomin Feng
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232, USA
| | - Lantana K. Grub
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - James P. Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Adrianna M. Strozak
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristopher Burkewitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232, USA
| | - Maulik R. Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232, USA
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN37232, USA
- Evolutionary Studies, Vanderbilt University, Nashville, TN37235, USA
| |
Collapse
|
11
|
Xiao Y, Yee C, Zhao CZ, Martinez MAQ, Zhang W, Shen K, Matus DQ, Hammell C. An expandable FLP-ON::TIR1 system for precise spatiotemporal protein degradation in Caenorhabditis elegans. Genetics 2023; 223:iyad013. [PMID: 36722258 PMCID: PMC10319979 DOI: 10.1093/genetics/iyad013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
The auxin-inducible degradation system has been widely adopted in the Caenorhabditis elegans research community for its ability to empirically control the spatiotemporal expression of target proteins. This system can efficiently degrade auxin-inducible degron (AID)-tagged proteins via the expression of a ligand-activatable AtTIR1 protein derived from A. thaliana that adapts target proteins to the endogenous C. elegans proteasome. While broad expression of AtTIR1 using strong, ubiquitous promoters can lead to rapid degradation of AID-tagged proteins, cell type-specific expression of AtTIR1 using spatially restricted promoters often results in less efficient target protein degradation. To circumvent this limitation, we have developed an FLP/FRT3-based system that functions to reanimate a dormant, high-powered promoter that can drive sufficient AtTIR1 expression in a cell type-specific manner. We benchmark the utility of this system by generating a number of tissue-specific FLP-ON::TIR1 drivers to reveal genetically separable cell type-specific phenotypes for several target proteins. We also demonstrate that the FLP-ON::TIR1 system is compatible with enhanced degron epitopes. Finally, we provide an expandable toolkit utilizing the basic FLP-ON::TIR1 system that can be adapted to drive optimized AtTIR1 expression in any tissue or cell type of interest.
Collapse
Affiliation(s)
- Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
12
|
Ishikawa S, Iida C, Takezawa Y, Chiba K, Kage-Nakadai E. Avoidance behavior and experience-dependent tolerance in response to bitter compounds in Caenorhabditis elegans. Biosci Biotechnol Biochem 2023; 87:314-319. [PMID: 36494200 DOI: 10.1093/bbb/zbac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
This study investigates the mechanisms governing experience-dependent tolerance of bitter compounds in Caenorhabditis elegans. The nematodes showed an aversion to nicotinamide, MgCl2, isoleucine, and arginine in a Gα-dependent manner. Worms furthermore displayed diminished avoidance of MgCl2 upon MgCl2-preconditioning at the larval stages. AIY interneurons have been suggested to be involved in experience-dependent behavioral plasticity.
Collapse
Affiliation(s)
- Seiryu Ishikawa
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Chiharu Iida
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Yuka Takezawa
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Kyoko Chiba
- Department of Food and Nutrition, Faculty of Human Life Science, Osaka City University, Osaka, Japan
| | - Eriko Kage-Nakadai
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan.,Department of Food and Nutrition, Faculty of Human Life Science, Osaka City University, Osaka, Japan.,Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
13
|
Garcia-Gonzalez B, Avant S, Carassco-Pena A, Miranda MC, Salazar K, Torres E, Holgado A. Investigating the regulation of the unc-33 promoter by environmental stressors. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000651. [PMID: 36317086 PMCID: PMC9617166 DOI: 10.17912/micropub.biology.000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022]
Abstract
Environmental factors such as prenatal stress are hypothesized to contribute to the development of schizophrenia. Lee and colleagues determined rats exposed to prenatal stress exhibited decreased levels of only one protein, DPYSL2, in their prefrontal cortex and hippocampus. DYPSL2, a protein seen to be inactivated in schizophrenic patients, is important for neuronal development. The C. elegans homolog of DPYSL2, UNC-33, is also found to be critical for axonal outgrowth and synapse formation. Herein, we study the effects of environmental stressors such as increasing temperatures and pathogens on the expression of GFP driven by the unc-33 promoter. Results indicate that neuronal GFP expression was lower in C. elegans exposed to these prenatal stressors, making this the first report denoting an environmental regulation of the unc -33 promoter. This study provides insight into unc-33 and the regulation of its expression in relation to temperature and infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrea Holgado
- St. Edward's University
,
Correspondence to: Andrea Holgado (
)
| |
Collapse
|
14
|
Godini R, Fallahi H, Pocock R. The regulatory landscape of neurite development in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:974208. [PMID: 36090252 PMCID: PMC9453034 DOI: 10.3389/fnmol.2022.974208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronal communication requires precise connectivity of neurite projections (axons and dendrites). Developing neurites express cell-surface receptors that interpret extracellular cues to enable correct guidance toward, and connection with, target cells. Spatiotemporal regulation of neurite guidance molecule expression by transcription factors (TFs) is critical for nervous system development and function. Here, we review how neurite development is regulated by TFs in the Caenorhabditis elegans nervous system. By collecting publicly available transcriptome and ChIP-sequencing data, we reveal gene expression dynamics during neurite development, providing insight into transcriptional mechanisms governing construction of the nervous system architecture.
Collapse
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Rasoul Godini,
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Roger Pocock,
| |
Collapse
|
15
|
Aquino Nunez W, Combs B, Gamblin TC, Ackley BD. Age-dependent accumulation of tau aggregation in Caenorhabditis elegans. FRONTIERS IN AGING 2022; 3:928574. [PMID: 36062211 PMCID: PMC9437221 DOI: 10.3389/fragi.2022.928574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Aging is the primary risk factor for Alzheimer's disease (AD) and related disorders (ADRDs). Tau aggregation is a hallmark of AD and other tauopathies. Even in normal aging, tau aggregation is found in brains, but in disease states, significantly more aggregated tau is present in brain regions demonstrating synaptic degeneration and neuronal loss. It is unclear how tau aggregation and aging interact to give rise to the phenotypes observed in disease states. Most AD/ADRD animal models have focused on late stages, after significant tau aggregation has occurred. There are fewer where we can observe the early aggregation events and progression during aging. In an attempt to address this gap, we created C. elegans models expressing a GFP-tagged version of the human tau protein. Here we examined how tau-gfp behaved during aging, comparing wild-type tau (hTau40), a disease-associated mutation (P301S), and an aggregation-prone variant (3PO). We measured age-dependent changes in GFP intensity and correlated those changes to normal aging in the nematode. We found differences in tau stability and accumulation depending on the tau variant expressed. hTau40GFP and P301SGFP were localized to axons and cell bodies, while 3POGFP was more concentrated within cell bodies. Expression of 3POGFP resulted in decreased lifespan and variations in locomotor rate, consistent with a pathological effect. Finally, we found that the human tau interacted genetically with the C. elegans ortholog of human tau, ptl-1, where the loss of ptl-1 significantly accelerated the time to death in animals expressing 3PO.
Collapse
Affiliation(s)
- Wendy Aquino Nunez
- Laboratory Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States
| | - Benjamin Combs
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - T. Chris Gamblin
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas San Antonio, San Antonio, TX, United States
| | - Brian D. Ackley
- Laboratory Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
16
|
Bordet G, Couillault C, Soulavie F, Filippopoulou K, Bertrand V. PRC1 chromatin factors strengthen the consistency of neuronal cell fate specification and maintenance in C. elegans. PLoS Genet 2022; 18:e1010209. [PMID: 35604893 PMCID: PMC9126393 DOI: 10.1371/journal.pgen.1010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
In the nervous system, the specific identity of a neuron is established and maintained by terminal selector transcription factors that directly activate large batteries of terminal differentiation genes and positively regulate their own expression via feedback loops. However, how this is achieved in a reliable manner despite noise in gene expression, genetic variability or environmental perturbations remains poorly understood. We addressed this question using the AIY cholinergic interneurons of C. elegans, whose specification and differentiation network is well characterized. Via a genetic screen, we found that a loss of function of PRC1 chromatin factors induces a stochastic loss of AIY differentiated state in a small proportion of the population. PRC1 factors act directly in the AIY neuron and independently of PRC2 factors. By quantifying mRNA and protein levels of terminal selector transcription factors in single neurons, using smFISH and CRISPR tagging, we observed that, in PRC1 mutants, terminal selector expression is still initiated during embryonic development but the level is reduced, and expression is subsequently lost in a stochastic manner during maintenance phase in part of the population. We also observed variability in the level of expression of terminal selectors in wild type animals and, using correlation analysis, established that this noise comes from both intrinsic and extrinsic sources. Finally, we found that PRC1 factors increase the resistance of AIY neuron fate to environmental stress, and also secure the terminal differentiation of other neuron types. We propose that PRC1 factors contribute to the consistency of neuronal cell fate specification and maintenance by protecting neurons against noise and perturbations in their differentiation program.
Collapse
Affiliation(s)
- Guillaume Bordet
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Carole Couillault
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Fabien Soulavie
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | | | - Vincent Bertrand
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
17
|
Leyva-Díaz E, Hobert O. Robust regulatory architecture of pan-neuronal gene expression. Curr Biol 2022; 32:1715-1727.e8. [PMID: 35259341 PMCID: PMC9050922 DOI: 10.1016/j.cub.2022.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022]
Abstract
Pan-neuronally expressed genes, such as genes involved in the synaptic vesicle cycle or in neuropeptide maturation, are critical for proper function of all neurons, but the transcriptional control mechanisms that direct such genes to all neurons of a nervous system remain poorly understood. We show here that six members of the CUT family of homeobox genes control pan-neuronal identity specification in Caenorhabditis elegans. Single CUT mutants show barely any effects on pan-neuronal gene expression or global nervous system function, but such effects become apparent and progressively worsen upon removal of additional CUT family members, indicating a critical role of gene dosage. Overexpression of each individual CUT gene rescued the phenotype of compound mutants, corroborating that gene dosage, rather than the activity of specific members of the gene family, is critical for CUT gene family function. Genome-wide binding profiles, as well as mutation of CUT homeodomain binding sites by CRISPR/Cas9 genome engineering show that CUT genes directly control the expression of pan-neuronal features. Moreover, CUT genes act in conjunction with neuron-type-specific transcription factors to control pan-neuronal gene expression. Our study, therefore, provides a previously missing key insight into how neuronal gene expression programs are specified and reveals a highly buffered and robust mechanism that controls the most critical functional features of all neuronal cell types.
Collapse
Affiliation(s)
- Eduardo Leyva-Díaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
18
|
Ahn S, Yang H, Son S, Lee HS, Park D, Yim H, Choi HJ, Swoboda P, Lee J. The C. elegans regulatory factor X (RFX) DAF-19M module: A shift from general ciliogenesis to cell-specific ciliary and behavioral specialization. Cell Rep 2022; 39:110661. [PMID: 35417689 DOI: 10.1016/j.celrep.2022.110661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Cilia are important for the interaction with environments and the proper function of tissues. While the basic structure of cilia is well conserved, ciliated cells have various functions. To understand the distinctive identities of ciliated cells, the identification of cell-specific proteins and its regulation is essential. Here, we report the mechanism that confers a specific identity on IL2 neurons in Caenorhabditis elegans, neurons important for the dauer larva-specific nictation behavior. We show that DAF-19M, an isoform of the sole C. elegans RFX transcription factor DAF-19, heads a regulatory subroutine, regulating target genes through an X-box motif variant under the control of terminal selector proteins UNC-86 and CFI-1 in IL2 neurons. Considering the conservation of DAF-19M module in IL2 neurons for nictation and in male-specific neurons for mating behavior, we propose the existence of an evolutionarily adaptable, hard-wired genetic module for distinct behaviors that share the feature "recognizing the environment."
Collapse
Affiliation(s)
- Soungyub Ahn
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Heeseung Yang
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Sangwon Son
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hyun Sik Lee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dongjun Park
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hyunsoo Yim
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Chen YC, Konstantinides N. Integration of Spatial and Temporal Patterning in the Invertebrate and Vertebrate Nervous System. Front Neurosci 2022; 16:854422. [PMID: 35392413 PMCID: PMC8981590 DOI: 10.3389/fnins.2022.854422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
The nervous system is one of the most sophisticated animal tissues, consisting of thousands of interconnected cell types. How the nervous system develops its diversity from a few neural stem cells remains a challenging question. Spatial and temporal patterning mechanisms provide an efficient model through which diversity can be generated. The molecular mechanism of spatiotemporal patterning has been studied extensively in Drosophila melanogaster, where distinct sets of transcription factors define the spatial domains and temporal windows that give rise to different cell types. Similarly, in vertebrates, spatial domains defined by transcription factors produce different types of neurons in the brain and neural tube. At the same time, different cortical neuronal types are generated within the same cell lineage with a specific birth order. However, we still do not understand how the orthogonal information of spatial and temporal patterning is integrated into the progenitor and post-mitotic cells to combinatorially give rise to different neurons. In this review, after introducing spatial and temporal patterning in Drosophila and mice, we discuss possible mechanisms that neural progenitors may use to integrate spatial and temporal information. We finally review the functional implications of spatial and temporal patterning and conclude envisaging how small alterations of these mechanisms can lead to the evolution of new neuronal cell types.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Nikolaos Konstantinides
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| |
Collapse
|
20
|
Rapti G. Open Frontiers in Neural Cell Type Investigations; Lessons From Caenorhabditis elegans and Beyond, Toward a Multimodal Integration. Front Neurosci 2022; 15:787753. [PMID: 35321480 PMCID: PMC8934944 DOI: 10.3389/fnins.2021.787753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Nervous system cells, the building blocks of circuits, have been studied with ever-progressing resolution, yet neural circuits appear still resistant to schemes of reductionist classification. Due to their sheer numbers, complexity and diversity, their systematic study requires concrete classifications that can serve reduced dimensionality, reproducibility, and information integration. Conventional hierarchical schemes transformed through the history of neuroscience by prioritizing criteria of morphology, (electro)physiological activity, molecular content, and circuit function, influenced by prevailing methodologies of the time. Since the molecular biology revolution and the recent advents in transcriptomics, molecular profiling gains ground toward the classification of neurons and glial cell types. Yet, transcriptomics entails technical challenges and more importantly uncovers unforeseen spatiotemporal heterogeneity, in complex and simpler nervous systems. Cells change states dynamically in space and time, in response to stimuli or throughout their developmental trajectory. Mapping cell type and state heterogeneity uncovers uncharted terrains in neurons and especially in glial cell biology, that remains understudied in many aspects. Examining neurons and glial cells from the perspectives of molecular neuroscience, physiology, development and evolution highlights the advantage of multifaceted classification schemes. Among the amalgam of models contributing to neuroscience research, Caenorhabditis elegans combines nervous system anatomy, lineage, connectivity and molecular content, all mapped at single-cell resolution, and can provide valuable insights for the workflow and challenges of the multimodal integration of cell type features. This review reflects on concepts and practices of neuron and glial cells classification and how research, in C. elegans and beyond, guides nervous system experimentation through integrated multidimensional schemes. It highlights underlying principles, emerging themes, and open frontiers in the study of nervous system development, regulatory logic and evolution. It proposes unified platforms to allow integrated annotation of large-scale datasets, gene-function studies, published or unpublished findings and community feedback. Neuroscience is moving fast toward interdisciplinary, high-throughput approaches for combined mapping of the morphology, physiology, connectivity, molecular function, and the integration of information in multifaceted schemes. A closer look in mapped neural circuits and understudied terrains offers insights for the best implementation of these approaches.
Collapse
|
21
|
Yang S, Park D, Manning L, Hill SE, Cao M, Xuan Z, Gonzalez I, Dong Y, Clark B, Shao L, Okeke I, Almoril-Porras A, Bai J, De Camilli P, Colón-Ramos DA. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron 2022; 110:824-840.e10. [PMID: 35065714 PMCID: PMC9017068 DOI: 10.1016/j.neuron.2021.12.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
Autophagy is a cellular degradation pathway essential for neuronal health and function. Autophagosome biogenesis occurs at synapses, is locally regulated, and increases in response to neuronal activity. The mechanisms that couple autophagosome biogenesis to synaptic activity remain unknown. In this study, we determine that trafficking of ATG-9, the only transmembrane protein in the core autophagy pathway, links the synaptic vesicle cycle with autophagy. ATG-9-positive vesicles in C. elegans are generated from the trans-Golgi network via AP-3-dependent budding and delivered to presynaptic sites. At presynaptic sites, ATG-9 undergoes exo-endocytosis in an activity-dependent manner. Mutations that disrupt endocytosis, including a lesion in synaptojanin 1 associated with Parkinson's disease, result in abnormal ATG-9 accumulation at clathrin-rich synaptic foci and defects in activity-induced presynaptic autophagy. Our findings uncover regulated key steps of ATG-9 trafficking at presynaptic sites and provide evidence that ATG-9 exo-endocytosis couples autophagosome biogenesis at presynaptic sites with the activity-dependent synaptic vesicle cycle.
Collapse
Affiliation(s)
- Sisi Yang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Daehun Park
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Laura Manning
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Sarah E Hill
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Mian Cao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Zhao Xuan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ian Gonzalez
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Yongming Dong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Benjamin Clark
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Lin Shao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ifechukwu Okeke
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Agustin Almoril-Porras
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Pietro De Camilli
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Instituto de Neurobiología José del Castillo, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Boulevard del Valle, San Juan, PR 00901, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
22
|
Saul J, Hirose T, Horvitz HR. The transcriptional corepressor CTBP-1 acts with the SOX family transcription factor EGL-13 to maintain AIA interneuron cell identity in Caenorhabditis elegans. eLife 2022; 11:74557. [PMID: 35119366 PMCID: PMC8816384 DOI: 10.7554/elife.74557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cell identity is characterized by a distinct combination of gene expression, cell morphology, and cellular function established as progenitor cells divide and differentiate. Following establishment, cell identities can be unstable and require active and continuous maintenance throughout the remaining life of a cell. Mechanisms underlying the maintenance of cell identities are incompletely understood. Here, we show that the gene ctbp-1, which encodes the transcriptional corepressor C-terminal binding protein-1 (CTBP-1), is essential for the maintenance of the identities of the two AIA interneurons in the nematode Caenorhabditis elegans. ctbp-1 is not required for the establishment of the AIA cell fate but rather functions cell-autonomously and can act in later larval stage and adult worms to maintain proper AIA gene expression, morphology and function. From a screen for suppressors of the ctbp-1 mutant phenotype, we identified the gene egl-13, which encodes a SOX family transcription factor. We found that egl-13 regulates AIA function and aspects of AIA gene expression, but not AIA morphology. We conclude that the CTBP-1 protein maintains AIA cell identity in part by utilizing EGL-13 to repress transcriptional activity in the AIAs. More generally, we propose that transcriptional corepressors like CTBP-1 might be critical factors in the maintenance of cell identities, harnessing the DNA-binding specificity of transcription factors like EGL-13 to selectively regulate gene expression in a cell-specific manner.
Collapse
Affiliation(s)
- Josh Saul
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - Takashi Hirose
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - H Robert Horvitz
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| |
Collapse
|
23
|
Filippopoulou K, Couillault C, Bertrand V. Multiple neural bHLHs ensure the precision of a neuronal specification event in Caenorhabditis elegans. Biol Open 2021; 10:273578. [PMID: 34854469 PMCID: PMC8713986 DOI: 10.1242/bio.058976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Neural bHLH transcription factors play a key role in the early steps of neuronal specification in many animals. We have previously observed that the Achaete-Scute HLH-3, the Olig HLH-16 and their binding partner the E-protein HLH-2 activate the terminal differentiation program of a specific class of cholinergic neurons, AIY, in Caenorhabditis elegans. Here we identify a role for a fourth bHLH, the Neurogenin NGN-1, in this process, raising the question of why so many neural bHLHs are required for a single neuronal specification event. Using quantitative imaging we show that the combined action of different bHLHs is needed to activate the correct level of expression of the terminal selector transcription factors TTX-3 and CEH-10 that subsequently initiate and maintain the expression of a large battery of terminal differentiation genes. Surprisingly, the different bHLHs have an antagonistic effect on another target, the proapoptotic BH3-only factor EGL-1, normally not expressed in AIY and otherwise detrimental for its specification. We propose that the use of multiple neural bHLHs allows robust neuronal specification while, at the same time, preventing spurious activation of deleterious genes. Summary: During neuronal specification, the combined action of several neural bHLHs ensures the robust activation of terminal selector transcription factor expression and prevents the activation of deleterious genes.
Collapse
Affiliation(s)
| | - Carole Couillault
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Vincent Bertrand
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| |
Collapse
|
24
|
Mizeracka K, Rogers JM, Rumley JD, Shaham S, Bulyk ML, Murray JI, Heiman MG. Lineage-specific control of convergent differentiation by a Forkhead repressor. Development 2021; 148:272306. [PMID: 34423346 DOI: 10.1242/dev.199493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
During convergent differentiation, multiple developmental lineages produce a highly similar or identical cell type. However, few molecular players that drive convergent differentiation are known. Here, we show that the C. elegans Forkhead transcription factor UNC-130 is required in only one of three convergent lineages that produce the same glial cell type. UNC-130 acts transiently as a repressor in progenitors and newly-born terminal cells to allow the proper specification of cells related by lineage rather than by cell type or function. Specification defects correlate with UNC-130:DNA binding, and UNC-130 can be functionally replaced by its human homolog, the neural crest lineage determinant FoxD3. We propose that, in contrast to terminal selectors that activate cell type-specific transcriptional programs in terminally differentiating cells, UNC-130 acts early and specifically in one convergent lineage to produce a cell type that also arises from molecularly distinct progenitors in other lineages.
Collapse
Affiliation(s)
- Karolina Mizeracka
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julia M Rogers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan D Rumley
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shai Shaham
- The Rockefeller University, New York, NY 10065, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John I Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
25
|
Godini R, Handley A, Pocock R. Transcription Factors That Control Behavior-Lessons From C. elegans. Front Neurosci 2021; 15:745376. [PMID: 34646119 PMCID: PMC8503520 DOI: 10.3389/fnins.2021.745376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.
Collapse
|
26
|
West ER, Cepko CL. Development and diversification of bipolar interneurons in the mammalian retina. Dev Biol 2021; 481:30-42. [PMID: 34534525 DOI: 10.1016/j.ydbio.2021.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
The bipolar interneurons of the mammalian retina have evolved as a diverse set of cells with distinct subtype characteristics, which reflect specialized contributions to visual circuitry. Fifteen subtypes of bipolar interneurons have been identified in the mouse retina, each with characteristic gene expression, morphology, and light responses. This review provides an overview of the developmental events that underlie the generation of the diverse bipolar cell class, summarizing the current knowledge of genetic programs that establish and maintain bipolar subtype fates, as well as the events that shape the final distribution of bipolar subtypes. With much left to be discovered, bipolar interneurons present an ideal model system for studying the interplay between cell-autonomous and non-cell-autonomous mechanisms that influence neuronal subtype development within the central nervous system.
Collapse
Affiliation(s)
- Emma R West
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Levi-Ferber M, Shalash R, Le-Thomas A, Salzberg Y, Shurgi M, Benichou JI, Ashkenazi A, Henis-Korenblit S. Neuronal regulated ire- 1-dependent mRNA decay controls germline differentiation in Caenorhabditis elegans. eLife 2021; 10:65644. [PMID: 34477553 PMCID: PMC8416019 DOI: 10.7554/elife.65644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Understanding the molecular events that regulate cell pluripotency versus acquisition of differentiated somatic cell fate is fundamentally important. Studies in Caenorhabditis elegans demonstrate that knockout of the germline-specific translation repressor gld-1 causes germ cells within tumorous gonads to form germline-derived teratoma. Previously we demonstrated that endoplasmic reticulum (ER) stress enhances this phenotype to suppress germline tumor progression(Levi-Ferber et al., 2015). Here, we identify a neuronal circuit that non-autonomously suppresses germline differentiation and show that it communicates with the gonad via the neurotransmitter serotonin to limit somatic differentiation of the tumorous germline. ER stress controls this circuit through regulated inositol requiring enzyme-1 (IRE-1)-dependent mRNA decay of transcripts encoding the neuropeptide FLP-6. Depletion of FLP-6 disrupts the circuit’s integrity and hence its ability to prevent somatic-fate acquisition by germline tumor cells. Our findings reveal mechanistically how ER stress enhances ectopic germline differentiation and demonstrate that regulated Ire1-dependent decay can affect animal physiology by controlling a specific neuronal circuit.
Collapse
Affiliation(s)
- Mor Levi-Ferber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Rewayd Shalash
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Adrien Le-Thomas
- Cancer Immunology, Genentech, South San Francisco, United States
| | - Yehuda Salzberg
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Maor Shurgi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jennifer Ic Benichou
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, South San Francisco, United States
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
28
|
Kurashina M, Wang J, Lin J, Lee KK, Johal A, Mizumoto K. Sustained expression of unc-4 homeobox gene and unc-37/Groucho in postmitotic neurons specifies the spatial organization of the cholinergic synapses in C. elegans. eLife 2021; 10:66011. [PMID: 34388088 PMCID: PMC8363302 DOI: 10.7554/elife.66011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/07/2021] [Indexed: 11/13/2022] Open
Abstract
Neuronal cell fate determinants establish the identities of neurons by controlling gene expression to regulate neuronal morphology and synaptic connectivity. However, it is not understood if neuronal cell fate determinants have postmitotic functions in synapse pattern formation. Here we identify a novel role for UNC-4 homeobox protein and its corepressor UNC-37/Groucho, in tiled synaptic patterning of the cholinergic motor neurons in Caenorhabditis elegans. We show that unc-4 is not required during neurogenesis but is required in the postmitotic neurons for proper synapse patterning. In contrast, unc-37 is required in both developing and postmitotic neurons. The synaptic tiling defects of unc-4 mutants are suppressed by bar-1/β-catenin mutation, which positively regulates the expression of ceh-12/HB9. Ectopic ceh-12 expression partly underlies the synaptic tiling defects of unc-4 and unc-37 mutants. Our results reveal a novel postmitotic role of neuronal cell fate determinants in synapse pattern formation through inhibiting the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Mizuki Kurashina
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada
| | - Jane Wang
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jeffrey Lin
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kathy Kyungeun Lee
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Arpun Johal
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada.,Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
29
|
Chakraborty K, Anees P, Surana S, Martin S, Aburas J, Moutel S, Perez F, Koushika SP, Kratsios P, Krishnan Y. Tissue-specific targeting of DNA nanodevices in a multicellular living organism. eLife 2021; 10:e67830. [PMID: 34318748 PMCID: PMC8360651 DOI: 10.7554/elife.67830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid nanodevices present great potential as agents for logic-based therapeutic intervention as well as in basic biology. Often, however, the disease targets that need corrective action are localized in specific organs, and thus realizing the full potential of DNA nanodevices also requires ways to target them to specific cell types in vivo. Here, we show that by exploiting either endogenous or synthetic receptor-ligand interactions and leveraging the biological barriers presented by the organism, we can target extraneously introduced DNA nanodevices to specific cell types in Caenorhabditis elegans, with subcellular precision. The amenability of DNA nanostructures to tissue-specific targeting in vivo significantly expands their utility in biomedical applications and discovery biology.
Collapse
Affiliation(s)
- Kasturi Chakraborty
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Palapuravan Anees
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Sunaina Surana
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Simona Martin
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Jihad Aburas
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Sandrine Moutel
- Recombinant Antibody Platform (TAb-IP), Institut Curie, PSL Research University, CNRS UMR144ParisFrance
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS UMR144ParisFrance
| | - Franck Perez
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS UMR144ParisFrance
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | - Paschalis Kratsios
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Yamuna Krishnan
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| |
Collapse
|
30
|
Glenwinkel L, Taylor SR, Langebeck-Jensen K, Pereira L, Reilly MB, Basavaraju M, Rafi I, Yemini E, Pocock R, Sestan N, Hammarlund M, Miller DM, Hobert O. In silico analysis of the transcriptional regulatory logic of neuronal identity specification throughout the C. elegans nervous system. eLife 2021; 10:e64906. [PMID: 34165430 PMCID: PMC8225391 DOI: 10.7554/elife.64906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The generation of the enormous diversity of neuronal cell types in a differentiating nervous system entails the activation of neuron type-specific gene batteries. To examine the regulatory logic that controls the expression of neuron type-specific gene batteries, we interrogate single cell expression profiles of all 118 neuron classes of the Caenorhabditis elegans nervous system for the presence of DNA binding motifs of 136 neuronally expressed C. elegans transcription factors. Using a phylogenetic footprinting pipeline, we identify cis-regulatory motif enrichments among neuron class-specific gene batteries and we identify cognate transcription factors for 117 of the 118 neuron classes. In addition to predicting novel regulators of neuronal identities, our nervous system-wide analysis at single cell resolution supports the hypothesis that many transcription factors directly co-regulate the cohort of effector genes that define a neuron type, thereby corroborating the concept of so-called terminal selectors of neuronal identity. Our analysis provides a blueprint for how individual components of an entire nervous system are genetically specified.
Collapse
Affiliation(s)
- Lori Glenwinkel
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | | | - Laura Pereira
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Manasa Basavaraju
- Department of Neurobiology, Yale University School of MedicineNew HavenUnited States
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Ibnul Rafi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Eviatar Yemini
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Roger Pocock
- Biotech Research and Innovation Centre, University of CopenhagenCopenhagenDenmark
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash UniversityMelbourneAustralia
| | - Nenad Sestan
- Department of Neurobiology, Yale University School of MedicineNew HavenUnited States
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Marc Hammarlund
- Department of Neurobiology, Yale University School of MedicineNew HavenUnited States
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
31
|
Fan T, Huang Y. Accessible chromatin reveals regulatory mechanisms underlying cell fate decisions during early embryogenesis. Sci Rep 2021; 11:7896. [PMID: 33846424 PMCID: PMC8042068 DOI: 10.1038/s41598-021-86919-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate epigenetic landscape across multiple species and identify transcription factors (TFs) and their roles in controlling cell fate decision events during early embryogenesis. We made a comprehensively joint-research of chromatin accessibility of five species during embryogenesis by integration of ATAC-seq and RNA-seq datasets. Regulatory roles of candidate early embryonic TFs were investigated. Widespread accessible chromatin in early embryos overlapped with putative cis-regulatory sequences. Sets of cell-fate-determining TFs were identified. YOX1, a key cell cycle regulator, were found to homologous to clusters of TFs that are involved in neuron and epidermal cell-fate determination. Our research provides an intriguing insight into evolution of cell-fate decision during early embryogenesis among organisms.
Collapse
Affiliation(s)
- Tongqiang Fan
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| | - Youjun Huang
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| |
Collapse
|
32
|
Pham K, Masoudi N, Leyva-Díaz E, Hobert O. A nervous system-specific subnuclear organelle in Caenorhabditis elegans. Genetics 2021; 217:1-17. [PMID: 33683371 PMCID: PMC8045701 DOI: 10.1093/genetics/iyaa016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
We describe here phase-separated subnuclear organelles in the nematode Caenorhabditis elegans, which we term NUN (NUclear Nervous system-specific) bodies. Unlike other previously described subnuclear organelles, NUN bodies are highly cell type specific. In fully mature animals, 4-10 NUN bodies are observed exclusively in the nucleus of neuronal, glial and neuron-like cells, but not in other somatic cell types. Based on co-localization and genetic loss of function studies, NUN bodies are not related to other previously described subnuclear organelles, such as nucleoli, splicing speckles, paraspeckles, Polycomb bodies, promyelocytic leukemia bodies, gems, stress-induced nuclear bodies, or clastosomes. NUN bodies form immediately after cell cycle exit, before other signs of overt neuronal differentiation and are unaffected by the genetic elimination of transcription factors that control many other aspects of neuronal identity. In one unusual neuron class, the canal-associated neurons, NUN bodies remodel during larval development, and this remodeling depends on the Prd-type homeobox gene ceh-10. In conclusion, we have characterized here a novel subnuclear organelle whose cell type specificity poses the intriguing question of what biochemical process in the nucleus makes all nervous system-associated cells different from cells outside the nervous system.
Collapse
Affiliation(s)
- Kenneth Pham
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
33
|
Lowe EK, Racioppi C, Peyriéras N, Ristoratore F, Christiaen L, Swalla BJ, Stolfi A. A cis-regulatory change underlying the motor neuron-specific loss of Ebf expression in immotile tunicate larvae. Evol Dev 2021; 23:72-85. [PMID: 33355999 PMCID: PMC7920938 DOI: 10.1111/ede.12364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 11/26/2022]
Abstract
Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae. Here, we studied the patterning of the Motor Ganglion (MG) of Molgula occulta, a nonswimming species. We found that spatial patterns of MG neuron regulators in this species are conserved, compared with species with swimming larvae, suggesting that the gene networks regulating their expression are intact despite the loss of swimming. However, expression of the key motor neuron regulatory gene Ebf (Collier/Olf/EBF) was reduced in the developing MG of M. occulta when compared with molgulid species with swimming larvae. This was corroborated by measuring allele-specific expression of Ebf in hybrid embryos from crosses of M. occulta with the swimming species M. oculata. Heterologous reporter construct assays in the model tunicate species Ciona robusta revealed a specific cis-regulatory sequence change that reduces expression of Ebf in the MG, but not in other cells. Taken together, these data suggest that MG neurons are still specified in M. occulta larvae, but their differentiation might be impaired due to reduction of Ebf expression levels.
Collapse
Affiliation(s)
- Elijah K. Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| | - Claudia Racioppi
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Nadine Peyriéras
- Station Biologique de Roscoff, Roscoff, France
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France
- USR3695 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Lionel Christiaen
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Billie J. Swalla
- Station Biologique de Roscoff, Roscoff, France
- Department of Biology, University of Washington, Seattle, WA, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
34
|
Schlotterer A, Masri B, Humpert M, Krämer BK, Hammes HP, Morcos M. Sulforaphane and Vitamin E Protect From Glucotoxic Neurodegeneration and Lifespan Reduction In C. Elegans. Exp Clin Endocrinol Diabetes 2020; 129:887-894. [PMID: 32503075 DOI: 10.1055/a-1158-9248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Caenorhabditis elegans is an established model organism in neurodegeneration and aging research. Oxidative stress and formation of advanced glycation endproducts (AGEs), as they occur under hyperglycemic conditions in diabetes mellitus, contribute to neuronal damage and lifespan reduction. Sulforaphane (SFN) is an indirect antioxidant, alpha-tocopherol (vitamin E) is a direct antioxidant that acts as a free radical scavenger. Aim of this study is to investigate the protective effects of SFN and vitamin E against glucotoxic damages to the neuronal system and lifespan in C. elegans. Culture conditions that mimic clinical hyperglycemia increased the formation of reactive oxygen species (ROS) (p<0.001) and the accumulation of methylglyoxal-derived advanced glycation endproducts (MG-derived AGEs) (p<0.01) with subsequent neuronal damage and neuronal dysfunction, ultimately leading to a significant shortening of lifespan (p<0.01). Treatment with both, 20 µmol/l SFN and 200 µg/ml vitamin E, completely prevented the increase in ROS and MG-derived AGEs, abolished the glucotoxic effects on neuronal structure and function, and preserved lifespan, resulting in a life expectancy similar to untreated controls. These data emphasize the relevance of indirect and direct antioxidants as potential therapeutic options for the prevention of glucotoxic pathologies.
Collapse
Affiliation(s)
- Andrea Schlotterer
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Benan Masri
- Department of Medicine I, Endocrinology and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Bernhard Karl Krämer
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Michael Morcos
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany.,European Center for Angioscience (ECAS), Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
35
|
Estacio-Gómez A, Hassan A, Walmsley E, Le LW, Southall TD. Dynamic neurotransmitter specific transcription factor expression profiles during Drosophila development. Biol Open 2020; 9:9/5/bio052928. [PMID: 32493733 PMCID: PMC7286294 DOI: 10.1242/bio.052928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The remarkable diversity of neurons in the nervous system is generated during development, when properties such as cell morphology, receptor profiles and neurotransmitter identities are specified. In order to gain a greater understanding of neurotransmitter specification we profiled the transcription state of cholinergic, GABAergic and glutamatergic neurons in vivo at three developmental time points. We identified 86 differentially expressed transcription factors that are uniquely enriched, or uniquely depleted, in a specific neurotransmitter type. Some transcription factors show a similar profile across development, others only show enrichment or depletion at specific developmental stages. Profiling of Acj6 (cholinergic enriched) and Ets65A (cholinergic depleted) binding sites in vivo reveals that they both directly bind the ChAT locus, in addition to a wide spectrum of other key neuronal differentiation genes. We also show that cholinergic enriched transcription factors are expressed in mostly non-overlapping populations in the adult brain, implying the absence of combinatorial regulation of neurotransmitter fate in this context. Furthermore, our data underlines that, similar to Caenorhabditis elegans, there are no simple transcription factor codes for neurotransmitter type specification. This article has an associated First Person interview with the first author of the paper. Summary: Transcriptome profiling of cholinergic, GABAergic and glutamatergic neurons in Drosophila identified multiple transcription factors as potential regulators of neurotransmitter fate.
Collapse
Affiliation(s)
- Alicia Estacio-Gómez
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Amira Hassan
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Emma Walmsley
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Lily Wong Le
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| |
Collapse
|
36
|
Cherra SJ, Goncharov A, Boassa D, Ellisman M, Jin Y. C. elegans MAGU-2/Mpp5 homolog regulates epidermal phagocytosis and synapse density. J Neurogenet 2020; 34:298-306. [PMID: 32366143 DOI: 10.1080/01677063.2020.1726915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Synapses are dynamic connections that underlie essential functions of the nervous system. The addition, removal, and maintenance of synapses govern the flow of information in neural circuits throughout the lifetime of an animal. While extensive studies have elucidated many intrinsic mechanisms that neurons employ to modulate their connections, increasing evidence supports the roles of non-neuronal cells, such as glia, in synapse maintenance and circuit function. We previously showed that C. elegans epidermis regulates synapses through ZIG-10, a cell-adhesion protein of the immunoglobulin domain superfamily. Here we identified a member of the Pals1/MPP5 family, MAGU-2, that functions in the epidermis to modulate phagocytosis and the number of synapses by regulating ZIG-10 localization. Furthermore, we used light and electron microscopy to show that this epidermal mechanism removes neuronal membranes from the neuromuscular junction, dependent on the conserved phagocytic receptor CED-1. Together, our study shows that C. elegans epidermis constrains synaptic connectivity, in a manner similar to astrocytes and microglia in mammals, allowing optimized output of neural circuits.
Collapse
Affiliation(s)
- Salvatore J Cherra
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Alexandr Goncharov
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA.,Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Serrano-Saiz E, Vogt MC, Levy S, Wang Y, Kaczmarczyk KK, Mei X, Bai G, Singson A, Grant BD, Hobert O. SLC17A6/7/8 Vesicular Glutamate Transporter Homologs in Nematodes. Genetics 2020; 214:163-178. [PMID: 31776169 PMCID: PMC6944403 DOI: 10.1534/genetics.119.302855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/24/2019] [Indexed: 01/04/2023] Open
Abstract
Members of the superfamily of solute carrier (SLC) transmembrane proteins transport diverse substrates across distinct cellular membranes. Three SLC protein families transport distinct neurotransmitters into synaptic vesicles to enable synaptic transmission in the nervous system. Among them is the SLC17A6/7/8 family of vesicular glutamate transporters, which endows specific neuronal cell types with the ability to use glutamate as a neurotransmitter. The genome of the nematode Caenorhabditis elegans encodes three SLC17A6/7/8 family members, one of which, eat-4/VGLUT, has been shown to be involved in glutamatergic neurotransmission. Here, we describe our analysis of the two remaining, previously uncharacterized SLC17A6/7/8 family members, vglu-2 and vglu-3 These two genes directly neighbor one another and are the result of a recent gene duplication event in C. elegans, but not in other Caenorhabditis species. Compared to EAT-4, the VGLU-2 and VGLU-3 protein sequences display a more distant similarity to canonical, vertebrate VGLUT proteins. We tagged both genomic loci with gfp and detected no expression of vglu-3 at any stage of development in any cell type of both C. elegans sexes. In contrast, vglu-2::gfp is dynamically expressed in a restricted set of distinct cell types. Within the nervous system, vglu-2::gfp is exclusively expressed in a single interneuron class, AIA, where it localizes to vesicular structures in the soma, but not along the axon, suggesting that VGLU-2 may not be involved in synaptic transport of glutamate. Nevertheless, vglu-2 mutants are partly defective in the function of the AIA neuron in olfactory behavior. Outside the nervous system, VGLU-2 is expressed in collagen secreting skin cells where VGLU-2 most prominently localizes to early endosomes, and to a lesser degree to apical clathrin-coated pits, the trans-Golgi network, and late endosomes. On early endosomes, VGLU-2 colocalizes most strongly with the recycling promoting factor SNX-1, a retromer component. Loss of vglu-2 affects the permeability of the collagen-containing cuticle of the worm, and based on the function of a vertebrate VGLUT1 protein in osteoclasts, we speculate that vglu-2 may have a role in collagen trafficking in the skin. We conclude that C. elegans SLC17A6/7/8 family members have diverse functions within and outside the nervous system.
Collapse
Affiliation(s)
- Esther Serrano-Saiz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
- Centro de Biologia Molecular Severo Ochoa/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Sagi Levy
- Rockefeller University, New York, New York 10065
| | - Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Karolina K Kaczmarczyk
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Xue Mei
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Andrew Singson
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| |
Collapse
|
38
|
Tang LT, Diaz-Balzac CA, Rahman M, Ramirez-Suarez NJ, Salzberg Y, Lázaro-Peña MI, Bülow HE. TIAM-1/GEF can shape somatosensory dendrites independently of its GEF activity by regulating F-actin localization. eLife 2019; 8:38949. [PMID: 30694177 PMCID: PMC6370339 DOI: 10.7554/elife.38949] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Dendritic arbors are crucial for nervous system assembly, but the intracellular mechanisms that govern their assembly remain incompletely understood. Here, we show that the dendrites of PVD neurons in Caenorhabditis elegans are patterned by distinct pathways downstream of the DMA-1 leucine-rich transmembrane (LRR-TM) receptor. DMA-1/LRR-TM interacts through a PDZ ligand motif with the guanine nucleotide exchange factor TIAM-1/GEF in a complex with act-4/Actin to pattern higher order 4° dendrite branches by localizing F-actin to the distal ends of developing dendrites. Surprisingly, TIAM-1/GEF appears to function independently of Rac1 guanine nucleotide exchange factor activity. A partially redundant pathway, dependent on HPO-30/Claudin, regulates formation of 2° and 3° branches, possibly by regulating membrane localization and trafficking of DMA-1/LRR-TM. Collectively, our experiments suggest that HPO-30/Claudin localizes the DMA-1/LRR-TM receptor on PVD dendrites, which in turn can control dendrite patterning by directly modulating F-actin dynamics through TIAM-1/GEF.
Collapse
Affiliation(s)
- Leo Th Tang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Carlos A Diaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Maisha Rahman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | | | - Yehuda Salzberg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Maria I Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
39
|
Zheng S, Qu Z, Zanetti M, Lam B, Chin-Sang I. C. elegans PTEN and AMPK block neuroblast divisions by inhibiting a BMP-insulin-PP2A-MAPK pathway. Development 2018; 145:145/23/dev166876. [PMID: 30487179 DOI: 10.1242/dev.166876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
Caenorhabditis elegans that hatch in the absence of food stop their postembryonic development in a process called L1 arrest. Intriguingly, we find that the postembryonic Q neuroblasts divide and migrate during L1 arrest in mutants that have lost the energy sensor AMP-activated protein kinase (AMPK) or the insulin/IGF-1 signaling (IIS) negative regulator DAF-18/PTEN. We report that DBL-1/BMP works upstream of IIS to promote agonistic insulin-like peptides during L1 arrest. However, the abnormal Q cell divisions that occur during L1 arrest use a novel branch of the IIS pathway that is independent of the terminal transcription factor DAF-16/FOXO. Using genetic epistasis and drug interactions we show that AMPK functions downstream of, or in parallel with DAF-18/PTEN and IIS to inhibit PP2A function. Further, we show that PP2A regulates the abnormal Q cell divisions by activating the MPK-1/ERK signaling pathway via LIN-45/RAF, independently of LET-60/RAS. PP2A acts as a tumor suppressor in many oncogenic signaling cascades. Our work demonstrates a new role for PP2A that is needed to induce neuroblast divisions during starvation and is regulated by both insulin and AMPK.
Collapse
Affiliation(s)
- Shanqing Zheng
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Zhi Qu
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Michael Zanetti
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Brandon Lam
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
40
|
Zheng S, Chiu H, Boudreau J, Papanicolaou T, Bendena W, Chin-Sang I. A functional study of all 40 Caenorhabditis elegans insulin-like peptides. J Biol Chem 2018; 293:16912-16922. [PMID: 30206121 PMCID: PMC6204898 DOI: 10.1074/jbc.ra118.004542] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Indexed: 01/27/2023] Open
Abstract
The human genome encodes 10 insulin-like genes, whereas the Caenorhabditis elegans genome remarkably encodes 40 insulin-like genes. Knockout strategies to determine the roles of all the insulin/insulin-like peptide ligands (INS) in C. elegans has been challenging due to functional redundancy. Here, we individually overexpressed each of the 40 ins genes pan-neuronally, and monitored multiple phenotypes including: L1 arrest life span, neuroblast divisions under L1 arrest, dauer formation, and fat accumulation, as readouts to characterize the functions of each INS in vivo Of the 40 INS peptides, we found functions for 35 INS peptides and functionally categorized each as agonists, antagonists, or of pleiotropic function. In particular, we found that 9 of 16 agonistic INS peptides shortened L1 arrest life span and promoted neuroblast divisions during L1 arrest. Our study revealed that a subset of β-class INS peptides that contain a distinct F peptide sequence are agonists. Our work is the first to categorize the structures of INS peptides and relate these structures to the functions of all 40 INS peptides in vivo Our findings will promote the study of insulin function on development, metabolism, and aging-related diseases.
Collapse
Affiliation(s)
- Shanqing Zheng
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hilton Chiu
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jeffrey Boudreau
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tony Papanicolaou
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - William Bendena
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ian Chin-Sang
- From the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
41
|
Li Y, Maine EM. The balance of poly(U) polymerase activity ensures germline identity, survival and development in Caenorhabditis elegans. Development 2018; 145:145/19/dev165944. [PMID: 30305273 DOI: 10.1242/dev.165944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Poly(U) polymerases (PUPs) catalyze 3' uridylation of mRNAs and small RNAs, a modification often correlating with decreased RNA stability. We have investigated the importance of three proteins with in vitro PUP activity, PUP-1/CDE-1, PUP-2 and PUP-3, in C. elegans germline development. Genetic analysis indicates that PUP-1/CDE-1 and PUP-2 are developmentally redundant under conditions of temperature stress during which they ensure germline viability and development. Multiple lines of evidence indicate that pup-1/-2 double mutant germ cells fail to maintain their identity as distinct from soma. Consistent with phenotypic data, PUP-1 and PUP-2 are expressed in embryonic germ cell precursors and throughout germline development. The developmental importance of PUP activity is presumably in regulating gene expression as both a direct and indirect consequence of modifying target RNAs. PUP-3 is significantly overexpressed in the pup-1/-2 germline, and loss of pup-3 function partially suppresses pup-1/-2 germline defects. We conclude that one major function of PUP-1/-2 is to limit PUP-3 expression. Overall, the balance of PUP-1, PUP-2 and PUP-3 activities appears to ensure proper germline development.
Collapse
Affiliation(s)
- Yini Li
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Eleanor M Maine
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
42
|
Chew YL, Tanizawa Y, Cho Y, Zhao B, Yu AJ, Ardiel EL, Rabinowitch I, Bai J, Rankin CH, Lu H, Beets I, Schafer WR. An Afferent Neuropeptide System Transmits Mechanosensory Signals Triggering Sensitization and Arousal in C. elegans. Neuron 2018; 99:1233-1246.e6. [PMID: 30146306 PMCID: PMC6162336 DOI: 10.1016/j.neuron.2018.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
Abstract
Sensitization is a simple form of behavioral plasticity by which an initial stimulus, often signaling danger, leads to increased responsiveness to subsequent stimuli. Cross-modal sensitization is an important feature of arousal in many organisms, yet its molecular and neural mechanisms are incompletely understood. Here we show that in C. elegans, aversive mechanical stimuli lead to both enhanced locomotor activity and sensitization of aversive chemosensory pathways. Both locomotor arousal and cross-modal sensitization depend on the release of FLP-20 neuropeptides from primary mechanosensory neurons and on their receptor FRPR-3. Surprisingly, the critical site of action of FRPR-3 for both sensory and locomotor arousal is RID, a single neuroendocrine cell specialized for the release of neuropeptides that responds to mechanical stimuli in a FLP-20-dependent manner. Thus, FLP-20 peptides function as an afferent arousal signal that conveys mechanosensory information to central neurons that modulate arousal and other behavioral states.
Collapse
Affiliation(s)
- Yee Lian Chew
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yoshinori Tanizawa
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yongmin Cho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Buyun Zhao
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Alex J Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Evan L Ardiel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Ithai Rabinowitch
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada; Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK; Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.
| |
Collapse
|
43
|
Bowitch A, Michaels KL, Yu MC, Ferkey DM. The Protein Arginine Methyltransferase PRMT-5 Regulates SER-2 Tyramine Receptor-Mediated Behaviors in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2018; 8:2389-2398. [PMID: 29760200 PMCID: PMC6027898 DOI: 10.1534/g3.118.200360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/11/2018] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptors are 7-pass transmembrane receptors that couple to heterotrimeric G proteins to mediate cellular responses to a diverse array of stimuli. Understanding the mechanisms that regulate G protein-coupled receptors is crucial to manipulating their signaling for therapeutic benefit. One key regulatory mechanism that contributes to the functional diversity of many signaling proteins is post-translational modification. Whereas phosphorylation remains the best studied of such modifications, arginine methylation by protein arginine methyltransferases is emerging as a key regulator of protein function. We previously published the first functional evidence that arginine methylation of G protein-coupled receptors modulates their signaling. We report here a third receptor that is regulated by arginine methylation, the Caenorhabditis elegans SER-2 tyramine receptor. We show that arginines within a putative methylation motif in the third intracellular loop of SER-2 are methylated by PRMT5 in vitro Our data also suggest that this modification enhances SER-2 signaling in vivo to modulate animal behavior. The identification of a third G protein-coupled receptor to be functionally regulated by arginine methylation suggests that this post-translational modification may be utilized to regulate signaling through a broad array of G protein-coupled receptors.
Collapse
Affiliation(s)
- Alexander Bowitch
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Kerry L Michaels
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Michael C Yu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| |
Collapse
|
44
|
Hori S, Oda S, Suehiro Y, Iino Y, Mitani S. OFF-responses of interneurons optimize avoidance behaviors depending on stimulus strength via electrical synapses. PLoS Genet 2018; 14:e1007477. [PMID: 29939997 PMCID: PMC6034901 DOI: 10.1371/journal.pgen.1007477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/06/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
Optimization of the types and timing of avoidance behaviors depending on the intensity of a noxious stimulus is essential for survival; however, processing in the central nervous system and its developmental basis are largely unknown. Here, we report that Caenorhabditis elegans preferentially selects one of three different types of avoidance behaviors depending on the strength of the noxious stimulus. We screened 210 neuronal transcription factors using a combination of optogenetics and RNA interference methods and identified 19 candidates required for avoidance behaviors. One candidate, gene lin-32 (abnormal cellLINeage32), which encodes an atonal homolog, is required for the neural fate determination of AIB interneurons and functions by regulating the expression of electrical and chemical synapse genes, namely, inx-1 (innexin 1) and AMPA-type ionotropic glutamate receptor glr-1. When examined by Ca imaging, AIB showed an OFF calcium increase to the noxious stimulus. The OFF calcium increase was provoked only by strong stimulation, suggesting a role for optimization of the avoidance behavior. However, lin-32 mutants showed an impaired AIB OFF calcium increase, concomitant with a reduced occurrence of the dynamic avoidance behavior called the "omega turn". The AIB neural responses may be transferred to downstream inter/motor neurons projecting to the neck muscles via electrical synapses comprising inx-1. Finally, we found a correlation between powerful contractions of the neck muscles and omega turns. Thus, the central regulation of the magnitude and timing of activation of the AIB interneurons optimizes the probability of omega turn depending on the stimulus context. For survival, animals exhibit appropriate behaviors depending on the type and strength of a stimulus; however, processing in the central nervous system and its developmental basis are largely unknown. Here, we performed RNA interference screening of 210 transcription factors by observing the avoidance behaviors evoked by a harmful stimulus and identified 19 candidates with behavioral defects. One candidate gene, lin-32, which encodes a homologue of a well-conserved transcription factor, atonal, that plays a key role in cell type specification, is required for the optimization of avoidance behaviors. lin-32 regulates the expression of various synaptic genes in the key neurons required for the optimization of avoidance behaviors. The key neurons respond at the time of the removal of the strong stimulation, and an appropriate magnitude and timing of the calcium increase are required to determine the type and timing of dynamic avoidance behaviors. However, the key neuronal response does not occur in the lin-32 mutants. Activation of the key neurons may be transferred to the downstream neurons projecting to the neck muscles via electrical synapses. Finally, we show a correlation between powerful neck muscle contractions and dynamic avoidance behaviors.
Collapse
Affiliation(s)
- Sayaka Hori
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Shigekazu Oda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
45
|
Ryu L, Cheon Y, Huh YH, Pyo S, Chinta S, Choi H, Butcher RA, Kim K. Feeding state regulates pheromone-mediated avoidance behavior via the insulin signaling pathway in Caenorhabditis elegans. EMBO J 2018; 37:embj.201798402. [PMID: 29925517 DOI: 10.15252/embj.201798402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Animals change sensory responses and their eventual behaviors, depending on their internal metabolic status and external food availability. However, the mechanisms underlying feeding state-dependent behavioral changes remain undefined. Previous studies have shown that Caenorhabditis elegans hermaphrodite exhibits avoidance behaviors to acute exposure of a pheromone, ascr#3 (asc-ΔC9, C9). Here, we show that the ascr#3 avoidance behavior is modulated by feeding state via the insulin signaling pathway. Starvation increases ascr#3 avoidance behavior, and loss-of-function mutations in daf-2 insulin-like receptor gene dampen this starvation-induced ascr#3 avoidance behavior. DAF-2 and its downstream signaling molecules, including the DAF-16 FOXO transcription factor, act in the ascr#3-sensing ADL neurons to regulate synaptic transmission to downstream target neurons, including the AVA command interneurons. Moreover, we found that starvation decreases the secretion of INS-18 insulin-like peptides from the intestine, which antagonizes DAF-2 function in the ADL neurons. Altogether, this study provides insights about the molecular communication between intestine and sensory neurons delivering hunger message to sensory neurons, which regulates avoidance behavior from pheromones to facilitate survival chance.
Collapse
Affiliation(s)
- Leesun Ryu
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - YongJin Cheon
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju-si, Chungcheongbuk-do, Korea
| | - Seondong Pyo
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - Satya Chinta
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Hongsoo Choi
- Robotics Engineering Department, DGIST, Daegu, Korea
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| |
Collapse
|
46
|
Rapid Integration of Multi-copy Transgenes Using Optogenetic Mutagenesis in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2018; 8:2091-2097. [PMID: 29691291 PMCID: PMC5982835 DOI: 10.1534/g3.118.200158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Stably transmitted transgenes are indispensable for labeling cellular components and manipulating cellular functions. In Caenorhabditis elegans, transgenes are generally generated as inheritable multi-copy extrachromosomal arrays, which can be stabilized in the genome through a mutagenesis-mediated integration process. Standard methods to integrate extrachromosomal arrays primarily use protocols involving ultraviolet light plus trimethylpsoralen or gamma- or X-ray irradiation, which are laborious and time-consuming. Here, we describe a one-step integration method, following germline-mutagenesis induced by mini Singlet Oxygen Generator (miniSOG). Upon blue light treatment, miniSOG tagged to histone (Histone-miniSOG) generates reactive oxygen species (ROS) and induces heritable mutations, including DNA double-stranded breaks. We demonstrate that we can bypass the need to first establish extrachromosomal transgenic lines by coupling microinjection of desired plasmids with blue light illumination on Histone-miniSOG worms to obtain integrants in the F3 progeny. We consistently obtained more than one integrant from 12 injected animals in two weeks. This optogenetic approach significantly reduces the amount of time and labor for transgene integration. Moreover, it enables to generate stably expressed transgenes that cause toxicity in animal growth.
Collapse
|
47
|
Schlotterer A, Pfisterer F, Kukudov G, Heckmann B, Henriquez D, Morath C, Krämer BK, Hammes HP, Schwenger V, Morcos M. Neuronal damage and shortening of lifespan in C. elegans by peritoneal dialysis fluid: Protection by glyoxalase-1. Biomed Rep 2018; 8:540-546. [PMID: 29805788 DOI: 10.3892/br.2018.1085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/12/2018] [Indexed: 01/13/2023] Open
Abstract
Glucose and glucose degradation products (GDPs), contained in peritoneal dialysis (PD) fluids, contribute to the formation of advanced glycation end-products (AGEs). Local damaging effects, resulting in functional impairment of the peritoneal membrane, are well studied. It is also supposed that detoxification of AGE precursors by glyoxalase-1 (GLO1) has beneficial effects on GDP-mediated toxicity. The aim of the current study was to analyze systemic detrimental effects of PD fluids and their prevention by glyoxlase-1. Wild-type and GLO1-overexpressing Caenorhabditis elegans (C. elegans) were cultivated in the presence of low- and high-GDP PD fluids containing 1.5 or 4% glucose. Lifespan, neuronal integrity and neuronal functions were subsequently studied. The higher concentrations of glucose and GDP content resulted in a decrease of maximum lifespan by 2 (P<0.01) and 9 days (P<0.001), respectively. Exposure to low- and high-GDP fluids caused reduction of neuronal integrity by 34 (P<0.05) and 41% (P<0.05). Cultivation of animals in the presence of low-GDP fluid containing 4% glucose caused significant impairment of neuronal function, reducing relative and absolute head motility by 58.5 (P<0.01) and 56.7% (P<0.01), respectively; and relative and absolute tail motility by 55.1 (P<0.05) and 55.0% (P<0.05), respectively. Taken together, GLO1 overexpression protected from glucose-induced lifespan reduction, neurostructural damage and neurofunctional damage under low-GDP-conditions. In conclusion, both glucose and GDP content in PD fluids have systemic impact on the lifespan and neuronal integrity of C. elegans. Detoxification of reactive metabolites by GLO1 overexpression was sufficient to protect lifespan, neuronal integrity and neuronal function in a low-GDP environment. These data emphasize the relevance of the GLO1 detoxifying pathway as a potential therapeutic target in the treatment of reactive metabolite-mediated pathologies.
Collapse
Affiliation(s)
- Andrea Schlotterer
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Friederike Pfisterer
- Department of Medicine I and Clinical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| | - Georgi Kukudov
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Britta Heckmann
- Department of Dermatology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Daniel Henriquez
- Department of Nephrology, Centre Hospitalier du Nord, 9080 Ettelbruck, Luxembourg, Germany
| | - Christian Morath
- Department of Nephrology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Bernhard K Krämer
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Vedat Schwenger
- Klinik für Nieren-, Hochdruck- und Autoimmunerkrankungen, Klinikum Stuttgart, D-70174 Stuttgart, Germany
| | - Michael Morcos
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| |
Collapse
|
48
|
Riedinger C, Mendler M, Schlotterer A, Fleming T, Okun J, Hammes HP, Herzig S, Nawroth PP. High-glucose toxicity is mediated by AICAR-transformylase/IMP cyclohydrolase and mitigated by AMP-activated protein kinase in Caenorhabditis elegans. J Biol Chem 2018; 293:4845-4859. [PMID: 29414769 PMCID: PMC5880143 DOI: 10.1074/jbc.m117.805879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/29/2018] [Indexed: 11/06/2022] Open
Abstract
The enzyme AICAR-transformylase/IMP cyclohydrolase (ATIC) catalyzes the last two steps of purine de novo synthesis. It metabolizes 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), which is an AMP analogue, leading to activation of AMP-activated kinase (AMPK). We investigated whether the AICAR-ATIC pathway plays a role in the high glucose (HG)-mediated DNA damage response and AICAR-mediated AMPK activation, explaining the detrimental effects of glucose on neuronal damage and shortening of the lifespan. HG up-regulated the expression and activity of the Caenorhabditis elegans homologue of ATIC, C55F2.1 (atic-1), and increased the levels of reactive oxygen species and methylglyoxal-derived advanced glycation end products. Overexpression of atic-1 decreased the lifespan and head motility and increased neuronal damage under both standard and HG conditions. Inhibition of atic-1 expression, by RNAi, under HG was associated with increased lifespan and head motility and reduced neuronal damage, reactive oxygen species, and methylglyoxal-derived advanced glycation end product accumulation. This effect was independent of an effect on DNA damage or antioxidant defense pathways, such as superoxide dismutase (sod-3) or glyoxalase-1 (glod-4), but was dependent on AMPK and accumulation of AICAR. Through AMPK, AICAR treatment also reduced the negative effects of HG. The mitochondrial inhibitor rotenone abolished the AICAR/AMPK-induced amelioration of HG effects, pointing to mitochondria as a prime target of the glucotoxic effects in C. elegans We conclude that atic-1 is involved in glucotoxic effects under HG conditions, either by blocked atic-1 expression or via AICAR and AMPK induction.
Collapse
Affiliation(s)
- Christin Riedinger
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Michael Mendler
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Andrea Schlotterer
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Jürgen Okun
- Department of Pediatrics, Dietmar Hopp Metabolism Centre, 69120 Heidelberg, Germany
| | - Hans-Peter Hammes
- V. Medical Hospital, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Joint Heidelberg Institute for Diabetes and Cancer Translational Diabetes Program, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Joint Heidelberg Institute for Diabetes and Cancer Translational Diabetes Program, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
49
|
Fu J, Zhang H, Huang W, Zhu X, Sheng Y, Song E, Xu T. AIM interneurons mediate feeding suppression through the TYRA-2 receptor in C. elegans. BIOPHYSICS REPORTS 2018; 4:17-24. [PMID: 29577066 PMCID: PMC5860128 DOI: 10.1007/s41048-018-0046-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/23/2017] [Indexed: 12/02/2022] Open
Abstract
Feeding behavior is the most fundamental behavior in C. elegans. Our previous results have dissected the central integration circuit for the regulation of feeding, which integrates opposing sensory inputs and regulates feeding behavior in a nonlinear manner. However, the peripheral integration that acts downstream of the central integration circuit to modulate feeding remains largely unknown. Here, we find that a Gαi/o-coupled tyramine receptor, TYRA-2, is involved in peripheral feeding suppression. TYRA-2 suppresses feeding behavior via the AIM interneurons, which receive tyramine/octopamine signals from RIM/RIC neurons in the central integration circuit. Our results reveal previously unidentified roles for the receptor TYRA-2 and the AIM interneurons in feeding regulation, providing a further understanding of how biogenic amines tyramine and octopamine regulate feeding behavior.
Collapse
Affiliation(s)
- Jiajun Fu
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Haining Zhang
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,3Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Wenming Huang
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,3Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xinyu Zhu
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,3Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yi Sheng
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,3Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Eli Song
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Tao Xu
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China.,3Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
50
|
Synaptogenesis Is Modulated by Heparan Sulfate in Caenorhabditis elegans. Genetics 2018; 209:195-208. [PMID: 29559501 PMCID: PMC5937176 DOI: 10.1534/genetics.118.300837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/06/2018] [Indexed: 01/06/2023] Open
Abstract
The nervous system regulates complex behaviors through a network of neurons interconnected by synapses. How specific synaptic connections are genetically determined is still unclear. Male mating is the most complex behavior in Caenorhabditis elegans It is composed of sequential steps that are governed by > 3000 chemical connections. Here, we show that heparan sulfates (HS) play a role in the formation and function of the male neural network. HS, sulfated in position 3 by the HS modification enzyme HST-3.1/HS 3-O-sulfotransferase and attached to the HS proteoglycan glypicans LON-2/glypican and GPN-1/glypican, functions cell-autonomously and nonautonomously for response to hermaphrodite contact during mating. Loss of 3-O sulfation resulted in the presynaptic accumulation of RAB-3, a molecule that localizes to synaptic vesicles, and disrupted the formation of synapses in a component of the mating circuits. We also show that the neural cell adhesion protein NRX-1/neurexin promotes and the neural cell adhesion protein NLG-1/neuroligin inhibits the formation of the same set of synapses in a parallel pathway. Thus, neural cell adhesion proteins and extracellular matrix components act together in the formation of synaptic connections.
Collapse
|