1
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
2
|
Cheng T, Xing YY, Liu C, Li YF, Huang Y, Liu X, Zhang YJ, Zhao GQ, Dong Y, Fu XX, Tian YM, Shu LP, Megason SG, Xu PF. Nodal coordinates the anterior-posterior patterning of germ layers and induces head formation in zebrafish explants. Cell Rep 2023; 42:112351. [PMID: 37018074 DOI: 10.1016/j.celrep.2023.112351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Much progress has been made toward generating analogs of early embryos, such as gastruloids and embryoids, in vitro. However, methods for how to fully mimic the cell movements of gastrulation and coordinate germ-layer patterning to induce head formation are still lacking. Here, we show that a regional Nodal gradient applied to zebrafish animal pole explant can generate a structure that recapitulates the key cell movements of gastrulation. Using single-cell transcriptome and in situ hybridization analysis, we assess the dynamics of the cell fates and patterning of this structure. The mesendoderm differentiates into the anterior endoderm, prechordal plate, notochord, and tailbud-like cells along an anterior-posterior axis, and an anterior-posterior-patterned head-like structure (HLS) progressively forms during late gastrulation. Among 105 immediate Nodal targets, 14 genes contain axis-induction ability, and 5 of them induce a complete or partial head structure when overexpressed in the ventral side of zebrafish embryos.
Collapse
Affiliation(s)
- Tao Cheng
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Yi Xing
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China
| | - Cong Liu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun-Fei Li
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Huang
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiang Liu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying-Jie Zhang
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guo-Qin Zhao
- Department of Immunology, Guizhou Medical University, Guiyang 550004, China
| | - Yang Dong
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin-Xin Fu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Meng Tian
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li-Ping Shu
- Department of Immunology, Guizhou Medical University, Guiyang 550004, China
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Peng-Fei Xu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Sutton G, Kelsh RN, Scholpp S. Review: The Role of Wnt/β-Catenin Signalling in Neural Crest Development in Zebrafish. Front Cell Dev Biol 2021; 9:782445. [PMID: 34912811 PMCID: PMC8667473 DOI: 10.3389/fcell.2021.782445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
The neural crest (NC) is a multipotent cell population in vertebrate embryos with extraordinary migratory capacity. The NC is crucial for vertebrate development and forms a myriad of cell derivatives throughout the body, including pigment cells, neuronal cells of the peripheral nervous system, cardiomyocytes and skeletogenic cells in craniofacial tissue. NC induction occurs at the end of gastrulation when the multipotent population of NC progenitors emerges in the ectodermal germ layer in the neural plate border region. In the process of NC fate specification, fate-specific markers are expressed in multipotent progenitors, which subsequently adopt a specific fate. Thus, NC cells delaminate from the neural plate border and migrate extensively throughout the embryo until they differentiate into various cell derivatives. Multiple signalling pathways regulate the processes of NC induction and specification. This review explores the ongoing role of the Wnt/β-catenin signalling pathway during NC development, focusing on research undertaken in the Teleost model organism, zebrafish (Danio rerio). We discuss the function of the Wnt/β-catenin signalling pathway in inducing the NC within the neural plate border and the specification of melanocytes from the NC. The current understanding of NC development suggests a continual role of Wnt/β-catenin signalling in activating and maintaining the gene regulatory network during NC induction and pigment cell specification. We relate this to emerging models and hypotheses on NC fate restriction. Finally, we highlight the ongoing challenges facing NC research, current gaps in knowledge, and this field's potential future directions.
Collapse
Affiliation(s)
- Gemma Sutton
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
5
|
Zhang B, Qin G, Qu L, Zhang Y, Li C, Cang C, Lin Q. Wnt8a is one of the candidate genes that play essential roles in the elongation of the seahorse prehensile tail. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:416-426. [PMID: 37073259 PMCID: PMC10077196 DOI: 10.1007/s42995-021-00099-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 05/03/2023]
Abstract
Seahorses are a hallmark of specialized morphological features due to their elongated prehensile tail. However, the underlying genomic grounds of seahorse tail development remain elusive. Herein, we evaluated the roles of essential genes from the Wnt gene family for the tail developmental process in the lined seahorse (Hippocampus erectus). Comparative genomic analysis revealed that the Wnt gene family is conserved in seahorses. The expression profiles and in situ hybridization suggested that Wnt5a, Wnt8a, and Wnt11 may participate in seahorse tail development. Like in other teleosts, Wnt5a and Wnt11 were found to regulate the development of the tail axial mesoderm and tail somitic mesoderm, respectively. However, a significantly extended expression period of Wnt8a during seahorse tail development was observed. Signaling pathway analysis further showed that Wnt8a up-regulated the expression of the tail axial mesoderm gene (Shh), while interaction analysis indicated that Wnt8a could promote the expression of Wnt11. In summary, our results indicate that the special extended expression period of Wnt8a might promote caudal tail axis formation, which contributes to the formation of the elongated tail of the seahorse. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00099-7.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Lili Qu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Yanhong Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Chunyan Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Chunlei Cang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
6
|
Guy B, Zhang JS, Duncan LH, Johnston RJ. Human neural organoids: Models for developmental neurobiology and disease. Dev Biol 2021; 478:102-121. [PMID: 34181916 PMCID: PMC8364509 DOI: 10.1016/j.ydbio.2021.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Human organoids stand at the forefront of basic and translational research, providing experimentally tractable systems to study human development and disease. These stem cell-derived, in vitro cultures can generate a multitude of tissue and organ types, including distinct brain regions and sensory systems. Neural organoid systems have provided fundamental insights into molecular mechanisms governing cell fate specification and neural circuit assembly and serve as promising tools for drug discovery and understanding disease pathogenesis. In this review, we discuss several human neural organoid systems, how they are generated, advances in 3D imaging and bioengineering, and the impact of organoid studies on our understanding of the human nervous system.
Collapse
Affiliation(s)
- Brian Guy
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Jingliang Simon Zhang
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Leighton H Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
7
|
Wang B, Rong X, Zhou Y, Liu Y, Sun J, Zhao B, Deng B, Lu L, Lu L, Li Y, Zhou J. Eukaryotic initiation factor 4A3 inhibits Wnt/β-catenin signaling and regulates axis formation in zebrafish embryos. Development 2021; 148:261699. [PMID: 33914867 DOI: 10.1242/dev.198101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
A key step in the activation of canonical Wnt signaling is the interaction between β-catenin and Tcf/Lefs that forms the transcription activation complex and facilitates the expression of target genes. Eukaryotic initiation factor 4A3 (EIF4A3) is an ATP-dependent DEAD box-family RNA helicase and acts as a core subunit of the exon junction complex (EJC) to control a series of RNA post-transcriptional processes. In this study, we uncover that EIF4A3 functions as a Wnt inhibitor by interfering with the formation of β-catenin/Tcf transcription activation complex. As Wnt stimulation increases, accumulated β-catenin displaces EIF4A3 from a transcriptional complex with Tcf/Lef, allowing the active complex to facilitate the expression of target genes. In zebrafish embryos, eif4a3 depletion inhibited the development of the dorsal organizer and pattern formation of the anterior neuroectoderm by increasing Wnt/β-catenin signaling. Conversely, overexpression of eif4a3 decreased Wnt/β-catenin signaling and inhibited the formation of the dorsal organizer before gastrulation. Our results reveal previously unreported roles of EIF4A3 in the inhibition of Wnt signaling and the regulation of embryonic development in zebrafish.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Yumei Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiqin Sun
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Beibei Zhao
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Bei Deng
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lei Lu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| |
Collapse
|
8
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
9
|
Abstract
The lateral plate mesoderm (LPM) forms the progenitor cells that constitute the heart and cardiovascular system, blood, kidneys, smooth muscle lineage and limb skeleton in the developing vertebrate embryo. Despite this central role in development and evolution, the LPM remains challenging to study and to delineate, owing to its lineage complexity and lack of a concise genetic definition. Here, we outline the processes that govern LPM specification, organization, its cell fates and the inferred evolutionary trajectories of LPM-derived tissues. Finally, we discuss the development of seemingly disparate organ systems that share a common LPM origin. Summary: The lateral plate mesoderm is the origin of several major cell types and organ systems in the vertebrate body plan. How this mesoderm territory emerges and partitions into its downstream fates provides clues about vertebrate development and evolution.
Collapse
Affiliation(s)
- Karin D Prummel
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA .,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
10
|
Green DG, Whitener AE, Mohanty S, Mistretta B, Gunaratne P, Yeh AT, Lekven AC. Wnt signaling regulates neural plate patterning in distinct temporal phases with dynamic transcriptional outputs. Dev Biol 2020; 462:152-164. [PMID: 32243887 DOI: 10.1016/j.ydbio.2020.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
The process that partitions the nascent vertebrate central nervous system into forebrain, midbrain, hindbrain, and spinal cord after neural induction is of fundamental interest in developmental biology, and is known to be dependent on Wnt/β-catenin signaling at multiple steps. Neural induction specifies neural ectoderm with forebrain character that is subsequently posteriorized by graded Wnt signaling: embryological and mutant analyses have shown that progressively higher levels of Wnt signaling induce progressively more posterior fates. However, the mechanistic link between Wnt signaling and the molecular subdivision of the neural ectoderm into distinct domains in the anteroposterior (AP) axis is still not clear. To better understand how Wnt mediates neural AP patterning, we performed a temporal dissection of neural patterning in response to manipulations of Wnt signaling in zebrafish. We show that Wnt-mediated neural patterning in zebrafish can be divided into three phases: (I) a primary AP patterning phase, which occurs during gastrulation, (II) a mes/r1 (mesencephalon-rhombomere 1) specification and refinement phase, which occurs immediately after gastrulation, and (III) a midbrain-hindbrain boundary (MHB) morphogenesis phase, which occurs during segmentation stages. A major outcome of these Wnt signaling phases is the specification of the major compartment divisions of the developing brain: first the MHB, then the diencephalic-mesencephalic boundary (DMB). The specification of these lineage divisions depends upon the dynamic changes of gene transcription in response to Wnt signaling, which we show primarily involves transcriptional repression or indirect activation. We show that otx2b is directly repressed by Wnt signaling during primary AP patterning, but becomes resistant to Wnt-mediated repression during late gastrulation. Also during late gastrulation, Wnt signaling becomes both necessary and sufficient for expression of wnt8b, en2a, and her5 in mes/r1. We suggest that the change in otx2b response to Wnt regulation enables a transition to the mes/r1 phase of Wnt-mediated patterning, as it ensures that Wnts expressed in the midbrain and MHB do not suppress midbrain identity, and consequently reinforce formation of the DMB. These findings integrate important temporal elements into our spatial understanding of Wnt-mediated neural patterning and may serve as an important basis for a better understanding of neural patterning defects that have implications in human health.
Collapse
Affiliation(s)
- David G Green
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Amy E Whitener
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - Saurav Mohanty
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Arne C Lekven
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA.
| |
Collapse
|
11
|
Große A, Perner B, Naumann U, Englert C. Zebrafish Wtx is a negative regulator of Wnt signaling but is dispensable for embryonic development and organ homeostasis. Dev Dyn 2019; 248:866-881. [PMID: 31290212 DOI: 10.1002/dvdy.84] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The X-chromosomally linked gene WTX is a human disease gene and a member of the AMER family. Mutations in WTX are found in Wilms tumor, a form of pediatric kidney cancer and in patients suffering from OSCS (Osteopathia striata with cranial sclerosis), a sclerosing bone disorder. Functional data suggest WTX to be an inhibitor of the Wnt/β-catenin signaling pathway. Deletion of Wtx in mouse leads to perinatal death, impeding the analysis of its physiological role. RESULTS To gain insights into the function of Wtx in development and homeostasis we have used zebrafish as a model and performed both knockdown and knockout studies using morpholinos and transcription activator-like effector nucleases (TALENs), respectively. Wtx knockdown led to increased Wnt activity and embryonic dorsalization. Also, wtx mutants showed a transient upregulation of Wnt target genes in the context of caudal fin regeneration. Surprisingly, however, wtx as well as wtx/amer2/amer3 triple mutants developed normally, were fertile and did not show any anomalies in organ maintenance. CONCLUSIONS Our data show that members of the zebrafish wtx/amer gene family, while sharing a partially overlapping expression pattern do not compensate for each other. This observation demonstrates a remarkable robustness during development and regeneration in zebrafish.
Collapse
Affiliation(s)
- Andreas Große
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Birgit Perner
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Uta Naumann
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
12
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
13
|
Nag JK, Kancharla A, Maoz M, Turm H, Agranovich D, Gupta CL, Uziely B, Bar-Shavit R. Low-density lipoprotein receptor-related protein 6 is a novel coreceptor of protease-activated receptor-2 in the dynamics of cancer-associated β-catenin stabilization. Oncotarget 2018; 8:38650-38667. [PMID: 28418856 PMCID: PMC5503561 DOI: 10.18632/oncotarget.16246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 02/17/2017] [Indexed: 01/28/2023] Open
Abstract
Protease-activated receptor-2 (PAR2) plays a central role in cancer; however, the molecular machinery of PAR2-instigated tumors remains to be elucidated. We show that PAR2 is a potent inducer of β-catenin stabilization, a core process in cancer biology, leading to its transcriptional activity. Novel association of low-density lipoprotein-related protein 6 (LRP6), a known coreceptor of Frizzleds (Fz), with PAR2 takes place following PAR2 activation. The association between PAR2 and LRP6 was demonstrated employing co-immunoprecipitation, bioluminescence resonance energy transfer (BRET), and confocal microscopy analysis. The association was further supported by ZDOCK protein-protein server. PAR2-LRP6 interaction promotes rapid phosphorylation of LRP6, which results in the recruitment of Axin. Confocal microscopy of PAR2-driven mammary gland tumors in vivo, as well as in vitro confirms the association between PAR2 and LRP6. Indeed, shRNA silencing of LRP6 potently inhibits PAR2-induced β-catenin stabilization, demonstrating its critical role in the induced path. We have previously shown a novel link between protease-activated receptor-1 (PAR1) and β-catenin stabilization, both in a transgenic (tg) mouse model with overexpression of human PAR1 (hPar1) in the mammary glands, and in cancer epithelial cell lines. Unlike in PAR1-Gα13 axis, both Gα12 and Gα13 are equally involved in PAR2-induced β-catenin stabilization. Disheveled (DVL) is translocated to the cell nucleus through the DVL-PDZ domain. Collectively, our data demonstrate a novel PAR2-LRP6-Axin interaction as a key axis of PAR2-induced β-catenin stabilization in cancer. This newly described axis enhances our understanding of cancer biology, and opens new avenues for future development of anti-cancer therapies.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Arun Kancharla
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Myriam Maoz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Hagit Turm
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Daniel Agranovich
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Beatrice Uziely
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
14
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
15
|
Marsden AN, Derry SW, Schneider I, Scott CA, Westfall TA, Brastrom LK, Shea MA, Dawson DV, Slusarski DC. The Nkd EF-hand domain modulates divergent wnt signaling outputs in zebrafish. Dev Biol 2018; 434:63-73. [PMID: 29180104 DOI: 10.1016/j.ydbio.2017.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/29/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022]
Abstract
Wnt proteins regulate diverse biological responses by initiating two general outcomes: β-catenin-dependent transcription and β-catenin-independent activation of signaling cascades, the latter including modulation of calcium and regulation of cytoskeletal dynamics (Planar Cell Polarity, PCP). It has been difficult to elucidate the mechanisms by which Wnt signals are directed to effect one or the other outcome due to shared signaling proteins between the β-catenin-dependent and -independent pathways, such as the Dishevelled binding protein Naked. While all Naked paralogs contain a putative calcium-binding domain, the EF-Hand, Drosophila Naked does not bind calcium. Here we find a lineage-specific evolutionary change within the Drosophila Naked EF-hand that is not shared with other insects or vertebrates. We demonstrate the necessary role of the EF-hand for Nkd localization changes in calcium fluxing cells and using in vivo assays, we identify a role for the zebrafish Naked EF-hand in PCP but not in β-catenin antagonism. In contrast, Drosophila-like Nkd does not function in PCP, but is a robust antagonist of Wnt/β-catenin signaling. This work reveals that the zebrafish Nkd1 EF-hand is essential to balance Wnt signaling inputs and modulate the appropriate outputs, while the Drosophila-like EF-Hand primarily functions in β-catenin signaling.
Collapse
Affiliation(s)
- Autumn N Marsden
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah W Derry
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Drake University, Des Moines, IA 50311, USA
| | - Igor Schneider
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem 66075-110, Brazil
| | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Trudi A Westfall
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Lindy K Brastrom
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, UA 52242, USA
| | - Deborah V Dawson
- Departments of Pediatric Dentistry&Biostatistics, University of Iowa, Iowa City 52242, USA
| | - Diane C Slusarski
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Haploinsufficiency of the Chromatin Remodeler BPTF Causes Syndromic Developmental and Speech Delay, Postnatal Microcephaly, and Dysmorphic Features. Am J Hum Genet 2017; 101:503-515. [PMID: 28942966 DOI: 10.1016/j.ajhg.2017.08.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022] Open
Abstract
Bromodomain PHD finger transcription factor (BPTF) is the largest subunit of nucleosome remodeling factor (NURF), a member of the ISWI chromatin-remodeling complex. However, the clinical consequences of disruption of this complex remain largely uncharacterized. BPTF is required for anterior-posterior axis formation of the mouse embryo and was shown to promote posterior neuroectodermal fate by enhancing Smad2-activated wnt8 expression in zebrafish. Here, we report eight loss-of-function and two missense variants (eight de novo and two of unknown origin) in BPTF on 17q24.2. The BPTF variants were found in unrelated individuals aged between 2.1 and 13 years, who manifest variable degrees of developmental delay/intellectual disability (10/10), speech delay (10/10), postnatal microcephaly (7/9), and dysmorphic features (9/10). Using CRISPR-Cas9 genome editing of bptf in zebrafish to induce a loss of gene function, we observed a significant reduction in head size of F0 mutants compared to control larvae. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and phospho-histone H3 (PH3) staining to assess apoptosis and cell proliferation, respectively, showed a significant increase in cell death in F0 mutants compared to controls. Additionally, we observed a substantial increase of the ceratohyal angle of the craniofacial skeleton in bptf F0 mutants, indicating abnormal craniofacial patterning. Taken together, our data demonstrate the pathogenic role of BPTF haploinsufficiency in syndromic neurodevelopmental anomalies and extend the clinical spectrum of human disorders caused by ablation of chromatin remodeling complexes.
Collapse
|
17
|
Xie Y, Dorsky RI. Development of the hypothalamus: conservation, modification and innovation. Development 2017; 144:1588-1599. [PMID: 28465334 DOI: 10.1242/dev.139055] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothalamus, which regulates fundamental aspects of physiological homeostasis and behavior, is a brain region that exhibits highly conserved anatomy across vertebrate species. Its development involves conserved basic mechanisms of induction and patterning, combined with a more plastic process of neuronal fate specification, to produce brain circuits that mediate physiology and behavior according to the needs of each species. Here, we review the factors involved in the induction, patterning and neuronal differentiation of the hypothalamus, highlighting recent evidence that illustrates how changes in Wnt/β-catenin signaling during development may lead to species-specific form and function of this important brain structure.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
18
|
Brafman D, Willert K. Wnt/β-catenin signaling during early vertebrate neural development. Dev Neurobiol 2017; 77:1239-1259. [PMID: 28799266 DOI: 10.1002/dneu.22517] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
The vertebrate central nervous system (CNS) is comprised of vast number of distinct cell types arranged in a highly organized manner. This high degree of complexity is achieved by cellular communication, including direct cell-cell contact, cell-matrix interactions, and cell-growth factor signaling. Among the several developmental signals controlling the development of the CNS, Wnt proteins have emerged as particularly critical and, hence, have captivated the attention of many researchers. With Wnts' evolutionarily conserved function as primordial symmetry breaking signals, these proteins and their downstream effects are responsible for simultaneously establishing cellular diversity and tissue organization. With their expansive repertoire of secreted agonists and antagonists, cell surface receptors, signaling cascades and downstream biological effects, Wnts are ideally suited to control the complex processes underlying vertebrate neural development. In this review, we will describe the mechanisms by which Wnts exert their potent effects on cells and tissues and highlight the many roles of Wnt signaling during neural development, starting from the initial induction of the neural plate, the subsequent patterning along the embryonic axes, to the intricately organized structure of the CNS. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1239-1259, 2017.
Collapse
Affiliation(s)
- David Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287
| | - Karl Willert
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, 92093-0695
| |
Collapse
|
19
|
Naylor RW, Han HI, Hukriede NA, Davidson AJ. Wnt8a expands the pool of embryonic kidney progenitors in zebrafish. Dev Biol 2017; 425:130-141. [PMID: 28359809 DOI: 10.1016/j.ydbio.2017.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 01/15/2023]
Abstract
During zebrafish embryogenesis the pronephric kidney arises from a small population of posterior mesoderm cells that then undergo expansion during early stages of renal organogenesis. While wnt8 is required for posterior mesoderm formation during gastrulation, it is also transiently expressed in the post-gastrula embryo in the intermediate mesoderm, the precursor to the pronephros and some blood/vascular lineages. Here, we show that knockdown of wnt8a, using a low dose of morpholino that does not disrupt early mesoderm patterning, reduces the number of kidney and blood cells. For the kidney, wnt8a deficiency decreases renal progenitor growth during early somitogenesis, as detected by EdU incorporation, but has no effect on apoptosis. The depletion of the renal progenitor pool in wnt8a knockdown embryos leads to cellular deficits in the pronephros at 24 hpf that are characterised by a shortened distal-most segment and stretched proximal tubule cells. A pulse of the canonical Wnt pathway agonist BIO during early somitogenesis is sufficient to rescue the size of the renal progenitor pool while longer treatment expands the number of kidney cells. Taken together, these observations indicate that Wnt8, in addition to its well-established role in posterior mesoderm patterning, also plays a later role as a factor that expands the renal progenitor pool prior to kidney morphogenesis.
Collapse
Affiliation(s)
- Richard W Naylor
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand.
| | - Hwa In Han
- Department of Developmental Biology, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Neil A Hukriede
- Department of Developmental Biology, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
20
|
Rong X, Zhou Y, Liu Y, Zhao B, Wang B, Wang C, Gong X, Tang P, Lu L, Li Y, Zhao C, Zhou J. Glutathione peroxidase 4 inhibits Wnt/β-catenin signaling and regulates dorsal organizer formation in zebrafish embryos. Development 2017; 144:1687-1697. [PMID: 28302747 DOI: 10.1242/dev.144261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin signaling pathway plays pivotal roles in axis formation during embryogenesis and in adult tissue homeostasis. Glutathione peroxidase 4 (GPX4) is a selenoenzyme and participates in the reduction of peroxides. Its synthesis depends on the availability of the element selenium. However, the roles of GPX4 in vertebrate embryonic development and underlying mechanisms are largely unknown. Here, we show that maternal loss of zebrafish gpx4b promotes embryonic dorsal organizer formation, whereas overexpression of gpx4b inhibits the development of the dorsal organizer. Depletion of human GPX4 and zebrafish gpx4b (GPX4/gpx4b) increases, while GPX4/gpx4b overexpression decreases, Wnt/β-catenin signaling in vivo and in vitro Functional and epistatic studies showed that GPX4 functions at the Tcf/Lef level, independently of selenocysteine activation. Mechanistically, GPX4 interacts with Tcf/Lefs and inhibits Wnt activity by preventing the binding of Tcf/Lefs to the promoters of Wnt target genes, resulting in inhibitory action in the presence of Wnt/β-catenin signaling. Our findings unravel GPX4 as a suppressor of Wnt/β-catenin signals, suggesting a possible relationship between the Wnt/β-catenin pathway and selenium via the association of Tcf/Lef family proteins with GPX4.
Collapse
Affiliation(s)
- Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Institute of Evolution and Marine Biodiversity and College of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Yumei Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Beibei Zhao
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Bo Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Caixia Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoxia Gong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Peipei Tang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Chengtian Zhao
- Institute of Evolution and Marine Biodiversity and College of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China .,Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
21
|
Localization in Oogenesis of Maternal Regulators of Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:173-207. [DOI: 10.1007/978-3-319-46095-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Tsai YH, Nattiv R, Dedhia PH, Nagy MS, Chin AM, Thomson M, Klein OD, Spence JR. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development 2016; 144:1045-1055. [PMID: 27927684 PMCID: PMC5358103 DOI: 10.1242/dev.138453] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022]
Abstract
The intestine plays a central role in digestion, nutrient absorption and metabolism, with individual regions of the intestine having distinct functional roles. Many examples of region-specific gene expression in the adult intestine are known, but how intestinal regional identity is established during development is a largely unresolved issue. Here, we have identified several genes that are expressed in a region-specific manner in the developing human intestine. Using human embryonic stem cell-derived intestinal organoids, we demonstrate that the duration of exposure to active FGF and WNT signaling controls regional identity. Short-term exposure to FGF4 and CHIR99021 (a GSK3β inhibitor that stabilizes β-catenin) resulted in organoids with gene expression patterns similar to developing human duodenum, whereas longer exposure resulted in organoids similar to ileum. When region-specific organoids were transplanted into immunocompromised mice, duodenum-like organoids and ileum-like organoids retained their regional identity, demonstrating that regional identity of organoids is stable after initial patterning occurs. This work provides insights into the mechanisms that control regional specification of the developing human intestine and provides new tools for basic and translational research. Summary: Human embryonic stem cell-derived intestinal organoids can be patterned into duodenum-like or ileum-like tissue, recapitulating in vivo human development.
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Roy Nattiv
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA.,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Priya H Dedhia
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melinda S Nagy
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew Thomson
- Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA .,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Abstract
The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity.
Collapse
Affiliation(s)
- Sarah Burbridge
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Stewart
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
24
|
Abstract
ABSTRACT
Wnt signaling regulates a broad variety of processes during embryonic development and disease. A hallmark of the Wnt signaling pathway is the formation of concentration gradients by Wnt proteins across responsive tissues, which determines cell fate in invertebrates and vertebrates. To fulfill its paracrine function, trafficking of the Wnt morphogen from an origin cell to a recipient cell must be tightly regulated. A variety of models have been proposed to explain the extracellular transport of these lipid-modified signaling proteins in the aqueous extracellular space; however, there is still considerable debate with regard to which mechanisms allow the precise distribution of ligand in order to generate a morphogenetic gradient within growing tissue. Recent evidence suggests that Wnt proteins are distributed along signaling filopodia during vertebrate and invertebrate embryogenesis. Cytoneme-mediated transport has profound impact on our understanding of how Wnt signaling propagates through tissues and allows the formation of a precise ligand distribution in the recipient tissue during embryonic growth. In this Commentary, we review extracellular trafficking mechanisms for Wnt proteins and discuss the growing evidence of cytoneme-based Wnt distribution in development and stem cell biology. We will also discuss their implication for Wnt signaling in the formation of the Wnt morphogenetic gradient during tissue patterning.
Collapse
Affiliation(s)
- Eliana Stanganello
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe 76021, Germany
| | - Steffen Scholpp
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe 76021, Germany
| |
Collapse
|
25
|
Cutts J, Brookhouser N, Brafman DA. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs). Methods Mol Biol 2016; 1516:121-144. [PMID: 27106497 DOI: 10.1007/7651_2016_357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population capable of long-term expansion and differentiation into a variety of neuronal subtypes. As such, NPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine. Current methods for the generation of NPCs results in cell populations homogenous for pan-neural markers such as SOX1 and SOX2 but heterogeneous with respect to regional identity. In order to use NPCs and their neuronal derivatives to investigate mechanisms of neurological disorders and develop more physiologically relevant disease models, methods for generation of regionally specific NPCs and neurons are needed. Here, we describe a protocol in which exogenous manipulation of WNT signaling, through either activation or inhibition, during neural differentiation of hPSCs, promotes the formation of regionally homogenous NPCs and neuronal cultures. In addition, we provide methods to monitor and characterize the efficiency of hPSC differentiation to these regionally specific cell identities.
Collapse
Affiliation(s)
- Josh Cutts
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA.
| |
Collapse
|
26
|
Hill EM, Petersen CP. Wnt/Notum spatial feedback inhibition controls neoblast differentiation to regulate reversible growth of the planarian brain. Development 2015; 142:4217-29. [PMID: 26525673 DOI: 10.1242/dev.123612] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022]
Abstract
Mechanisms determining final organ size are poorly understood. Animals undergoing regeneration or ongoing adult growth are likely to require sustained and robust mechanisms to achieve and maintain appropriate sizes. Planarians, well known for their ability to undergo whole-body regeneration using pluripotent adult stem cells of the neoblast population, can reversibly scale body size over an order of magnitude by controlling cell number. Using quantitative analysis, we showed that after injury planarians perfectly restored brain:body proportion by increasing brain cell number through epimorphosis or decreasing brain cell number through tissue remodeling (morphallaxis), as appropriate. We identified a pathway controlling a brain size set-point that involves feedback inhibition between wnt11-6/wntA/wnt4a and notum, encoding conserved antagonistic signaling factors expressed at opposite brain poles. wnt11-6/wntA/wnt4a undergoes feedback inhibition through canonical Wnt signaling but is likely to regulate brain size in a non-canonical pathway independently of beta-catenin-1 and APC. Wnt/Notum signaling tunes numbers of differentiated brain cells in regenerative growth and tissue remodeling by influencing the abundance of brain progenitors descended from pluripotent stem cells, as opposed to regulating cell death. These results suggest that the attainment of final organ size might be accomplished by achieving a balance of positional signaling inputs that regulate the rates of tissue production.
Collapse
Affiliation(s)
- Eric M Hill
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
27
|
Ling L, Camilleri ET, Helledie T, Samsonraj RM, Titmarsh DM, Chua RJ, Dreesen O, Dombrowski C, Rider DA, Galindo M, Lee I, Hong W, Hui JH, Nurcombe V, van Wijnen AJ, Cool SM. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells. Gene 2015; 576:292-303. [PMID: 26484394 DOI: 10.1016/j.gene.2015.10.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/12/2023]
Abstract
Chronic use of heparin as an anti-coagulant for the treatment of thrombosis or embolism invokes many adverse systemic events including thrombocytopenia, vascular reactions and osteoporosis. Here, we addressed whether adverse effects might also be directed to mesenchymal stem cells that reside in the bone marrow compartment. Harvested human bone marrow-derived mesenchymal stem cells (hMSCs) were exposed to varying doses of heparin and their responses profiled. At low doses (<200 ng/ml), serial passaging with heparin exerted a variable effect on hMSC proliferation and multipotentiality across multiple donors, while at higher doses (≥ 100 μg/ml), heparin supplementation inhibited cell growth and increased both senescence and cell size. Gene expression profiling using cDNA arrays and RNA-seq analysis revealed pleiotropic effects of low-dose heparin on signaling pathways essential to hMSC growth and differentiation (including the TGFβ/BMP superfamily, FGFs, and Wnts). Cells serially passaged in low-dose heparin possess a donor-dependent gene signature that reflects their altered phenotype. Our data indicate that heparin supplementation during the culturing of hMSCs can alter their biological properties, even at low doses. This warrants caution in the application of heparin as a culture supplement for the ex vivo expansion of hMSCs. It also highlights the need for careful evaluation of the bone marrow compartment in patients receiving chronic heparin treatment.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Emily T Camilleri
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Torben Helledie
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Rebekah M Samsonraj
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Drew M Titmarsh
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Ren Jie Chua
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Oliver Dreesen
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Christian Dombrowski
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - David A Rider
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Mario Galindo
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70061, Correo 7, Santiago, Chile
| | - Ian Lee
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - James H Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Andre J van Wijnen
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Simon M Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
| |
Collapse
|
28
|
Endocytic Adaptor Protein Tollip Inhibits Canonical Wnt Signaling. PLoS One 2015; 10:e0130818. [PMID: 26110841 PMCID: PMC4482507 DOI: 10.1371/journal.pone.0130818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/26/2015] [Indexed: 01/12/2023] Open
Abstract
Many adaptor proteins involved in endocytic cargo transport exhibit additional functions in other cellular processes which may be either related to or independent from their trafficking roles. The endosomal adaptor protein Tollip is an example of such a multitasking regulator, as it participates in trafficking and endosomal sorting of receptors, but also in interleukin/Toll/NF-κB signaling, bacterial entry, autophagic clearance of protein aggregates and regulation of sumoylation. Here we describe another role of Tollip in intracellular signaling. By performing a targeted RNAi screen of soluble endocytic proteins for their additional functions in canonical Wnt signaling, we identified Tollip as a potential negative regulator of this pathway in human cells. Depletion of Tollip potentiates the activity of β-catenin/TCF-dependent transcriptional reporter, while its overproduction inhibits the reporter activity and expression of Wnt target genes. These effects are independent of dynamin-mediated endocytosis, but require the ubiquitin-binding CUE domain of Tollip. In Wnt-stimulated cells, Tollip counteracts the activation of β-catenin and its nuclear accumulation, without affecting its total levels. Additionally, under conditions of ligand-independent signaling, Tollip inhibits the pathway after the stage of β-catenin stabilization, as observed in human cancer cell lines, characterized by constitutive β-catenin activity. Finally, the regulation of Wnt signaling by Tollip occurs also during early embryonic development of zebrafish. In summary, our data identify a novel function of Tollip in regulating the canonical Wnt pathway which is evolutionarily conserved between fish and humans. Tollip-mediated inhibition of Wnt signaling may contribute not only to embryonic development, but also to carcinogenesis. Mechanistically, Tollip can potentially coordinate multiple cellular pathways of trafficking and signaling, possibly by exploiting its ability to interact with ubiquitin and the sumoylation machinery.
Collapse
|
29
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
30
|
Thisse B, Thisse C. Formation of the vertebrate embryo: Moving beyond the Spemann organizer. Semin Cell Dev Biol 2015; 42:94-102. [PMID: 25999320 DOI: 10.1016/j.semcdb.2015.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
During the course of their classic experiments, Hilde Mangold and Hans Spemann discovered that the dorsal blastopore lip of an amphibian gastrula was able to induce formation of a complete embryonic axis when transplanted into the ventral side of a host gastrula embryo. Since then, the inducing activity of the dorsal lip has been known as the Spemann or dorsal organizer. During the past 25 years, studies performed in a variety of species have led to the identification of molecular factors associated with the properties of this tissue. However, none of them is, by itself, able to induce formation of the main body axis from a population of naive pluripotent embryonic cells. Recently, experiments performed using the zebrafish (Danio rerio) revealed that the organizing activities present in the embryo are not restricted to the Spemann organizer but are distributed along the entire blastula/gastrula margin. These organizing activities result from the interaction between two opposing gradients of morphogens, BMP and Nodal, that are the primary signals that trigger the cascade of developmental events leading to the organization of the embryo. These studies mark the end of the era during which developmental biologists saw the Spemann organizer as the core element for the organization of the vertebrate embryonic axis and, instead, provides opportunities for the experimental control of morphogenesis starting with a population of embryonic pluripotent cells that will be instructed using those two morphogen gradients.
Collapse
Affiliation(s)
- Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Moreno-Ayala R, Schnabel D, Salas-Vidal E, Lomelí H. PIAS-like protein Zimp7 is required for the restriction of the zebrafish organizer and mesoderm development. Dev Biol 2015; 403:89-100. [PMID: 25912688 DOI: 10.1016/j.ydbio.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 12/16/2022]
Abstract
The Zmiz2 (Zimp7) protein and its homolog Zmiz1 (Zimp10) were initially identified in humans as androgen receptor co-activators. Sequence analysis revealed the presence of an SP-RING/Miz domain, which is highly conserved in members of the PIAS family and confers SUMO-conjugating activity. Zimp7 has been shown to interact with components of the Wnt/β-Catenin signaling pathway and with Brg1 and BAF57, components of the ATP-dependent mammalian SWI/SNF-like BAF chromatin-remodeling complexes. In this work, we analyze the role of zygotic Zimp7 in zebrafish development. We describe evidence indicating that Zimp7 is required for mesoderm development and dorsoventral patterning. Morpholino-mediated reduction of zygotic Zimp7 produced axial mesodermal defects that were preceded by up-regulation of organizer genes such as bozozok, goosecoid and floating head at the onset of gastrulation and by down-regulation of the ventral markers vox, vent and eve1 indicating loss of the ventrolateral mesoderm. Consistently, embryos overexpressing zimp7 RNA exhibited midline defects such as loss of forebrain and cyclopia accompanied by transcriptional changes directly opposite of those found in the morphants. In addition, the patterning of ventralized embryos produced by the overexpression of vox and vent was restored by a reduction of Zimp7 activity. Altogether, our findings indicate that Zimp7 is involved in transcriptional regulation of factors that are essential for patterning in the dorsoventral axis.
Collapse
Affiliation(s)
- Roberto Moreno-Ayala
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Denhí Schnabel
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Enrique Salas-Vidal
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
32
|
Larraguibel J, Weiss ARE, Pasula DJ, Dhaliwal RS, Kondra R, Van Raay TJ. Wnt ligand-dependent activation of the negative feedback regulator Nkd1. Mol Biol Cell 2015; 26:2375-84. [PMID: 25904337 PMCID: PMC4462952 DOI: 10.1091/mbc.e14-12-1648] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/16/2015] [Indexed: 02/02/2023] Open
Abstract
Nkd1, a negative feedback regulator of the Wnt pathway, localizes with Dvl2 to the putative Wnt signalosome, where it becomes activated by Wnt. Activated Nkd1 moves away from the membrane to become more cytosolic, where it interacts with β-catenin to prevent nuclear accumulation. Misregulation of Wnt signaling is at the root of many diseases, most notably colorectal cancer, and although we understand the activation of the pathway, we have a very poor understanding of the circumstances under which Wnt signaling turns itself off. There are numerous negative feedback regulators of Wnt signaling, but two stand out as constitutive and obligate Wnt-induced regulators: Axin2 and Nkd1. Whereas Axin2 behaves similarly to Axin in the destruction complex, Nkd1 is more enigmatic. Here we use zebrafish blastula cells that are responsive Wnt signaling to demonstrate that Nkd1 activity is specifically dependent on Wnt ligand activation of the receptor. Furthermore, our results support the hypothesis that Nkd1 is recruited to the Wnt signalosome with Dvl2, where it becomes activated to move into the cytoplasm to interact with β-catenin, inhibiting its nuclear accumulation. Comparison of these results with Nkd function in Drosophila generates a unified and conserved model for the role of this negative feedback regulator in the modulation of Wnt signaling.
Collapse
Affiliation(s)
- Jahdiel Larraguibel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander R E Weiss
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniel J Pasula
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rasmeet S Dhaliwal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roman Kondra
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Terence J Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
33
|
Bedont JL, Newman EA, Blackshaw S. Patterning, specification, and differentiation in the developing hypothalamus. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:445-68. [PMID: 25820448 DOI: 10.1002/wdev.187] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 12/21/2022]
Abstract
Owing to its complex structure and highly diverse cell populations, the study of hypothalamic development has historically lagged behind that of other brain regions. However, in recent years, a greatly expanded understanding of hypothalamic gene expression during development has opened up new avenues of investigation. In this review, we synthesize existing work to present a holistic picture of hypothalamic development from early induction and patterning through nuclear specification and differentiation, with a particular emphasis on determination of cell fate. We will also touch on special topics in the field including the prosomere model, adult neurogenesis, and integration of migratory cells originating outside the hypothalamic neuroepithelium, and how these topics relate to our broader theme.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Newman
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Green D, Whitener AE, Mohanty S, Lekven AC. Vertebrate nervous system posteriorization: Grading the function of Wnt signaling. Dev Dyn 2014; 244:507-12. [DOI: 10.1002/dvdy.24230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- David Green
- Department of Biology; Texas A&M University; College Station Texas
| | - Amy E. Whitener
- Department of Biology; Texas A&M University; College Station Texas
| | - Saurav Mohanty
- Department of Biology; Texas A&M University; College Station Texas
| | - Arne C. Lekven
- Department of Biology; Texas A&M University; College Station Texas
| |
Collapse
|
35
|
Zagozewski JL, Zhang Q, Eisenstat DD. Genetic regulation of vertebrate eye development. Clin Genet 2014; 86:453-60. [PMID: 25174583 DOI: 10.1111/cge.12493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/04/2014] [Accepted: 08/20/2014] [Indexed: 01/14/2023]
Abstract
Eye development is a complex and highly regulated process that consists of several overlapping stages: (i) specification then splitting of the eye field from the developing forebrain; (ii) genesis and patterning of the optic vesicle; (iii) regionalization of the optic cup into neural retina and retina pigment epithelium; and (iv) specification and differentiation of all seven retinal cell types that develop from a pool of retinal progenitor cells in a precise temporal and spatial manner: retinal ganglion cells, horizontal cells, cone photoreceptors, amacrine cells, bipolar cells, rod photoreceptors and Müller glia. Genetic regulation of the stages of eye development includes both extrinsic (such as morphogens, growth factors) and intrinsic factors (primarily transcription factors of the homeobox and basic helix-loop helix families). In the following review, we will provide an overview of the stages of eye development highlighting the role of several important transcription factors in both normal developmental processes and in inherited human eye diseases.
Collapse
Affiliation(s)
- J L Zagozewski
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
36
|
Feng L, Jiang H, Wu P, Marlow FL. Negative feedback regulation of Wnt signaling via N-linked fucosylation in zebrafish. Dev Biol 2014; 395:268-86. [PMID: 25238963 DOI: 10.1016/j.ydbio.2014.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 07/25/2014] [Accepted: 09/09/2014] [Indexed: 01/05/2023]
Abstract
L-fucose, a monosaccharide widely distributed in eukaryotes and certain bacteria, is a determinant of many functional glycans that play central roles in numerous biological processes. The molecular mechanism, however, by which fucosylation mediates these processes remains largely elusive. To study how changes in fucosylation impact embryonic development, we up-regulated N-linked fucosylation via over-expression of a key GDP-Fucose transporter, Slc35c1, in zebrafish. We show that Slc35c1 overexpression causes elevated N-linked fucosylation and disrupts embryonic patterning in a transporter activity dependent manner. We demonstrate that patterning defects associated with enhanced N-linked fucosylation are due to diminished canonical Wnt signaling. Chimeric analyses demonstrate that elevated Slc35c1 expression in receiving cells decreases the signaling range of Wnt8a during zebrafish embryogenesis. Moreover, we provide biochemical evidence that this decrease is associated with reduced Wnt8 ligand and elevated Lrp6 coreceptor, which we show are both substrates for N-linked fucosylation in zebrafish embryos. Strikingly, slc35c1 expression is regulated by canonical Wnt signaling. These results suggest that Wnt limits its own signaling activity in part via up-regulation of a transporter, slc35c1 that promotes terminal fucosylation and thereby limits Wnt activity.
Collapse
Affiliation(s)
- Lei Feng
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| | - Hao Jiang
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| | - Peng Wu
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA.
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| |
Collapse
|
37
|
Kizil C, Küchler B, Yan JJ, Özhan G, Moro E, Argenton F, Brand M, Weidinger G, Antos CL. Simplet/Fam53b is required for Wnt signal transduction by regulating β-catenin nuclear localization. Development 2014; 141:3529-39. [DOI: 10.1242/dev.108415] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Canonical β-catenin-dependent Wnt signal transduction is important for several biological phenomena, such as cell fate determination, cell proliferation, stem cell maintenance and anterior-posterior axis formation. The hallmark of canonical Wnt signaling is the translocation of β-catenin into the nucleus where it activates gene transcription. However, the mechanisms regulating β-catenin nuclear localization are poorly understood. We show that Simplet/Fam53B (Smp) is required for Wnt signaling by positively regulating β-catenin nuclear localization. In the zebrafish embryo, the loss of smp blocks the activity of two β-catenin-dependent reporters and the expression of Wnt target genes, and prevents nuclear accumulation of β-catenin. Conversely, overexpression of smp increases β-catenin nuclear localization and transcriptional activity in vitro and in vivo. Expression of mutant Smp proteins lacking either the nuclear localization signal or the β-catenin interaction domain reveal that the translocation of Smp into the nucleus is essential for β-catenin nuclear localization and Wnt signaling in vivo. We also provide evidence that mammalian Smp is involved in regulating β-catenin nuclear localization: the protein colocalizes with β-catenin-dependent gene expression in mouse intestinal crypts; siRNA knockdown of Smp reduces β-catenin nuclear localization and transcriptional activity; human SMP mediates β-catenin transcriptional activity in a dose-dependent manner; and the human SMP protein interacts with human β-catenin primarily in the nucleus. Thus, our findings identify the evolutionary conserved SMP protein as a regulator of β-catenin-dependent Wnt signal transduction.
Collapse
Affiliation(s)
- Caghan Kizil
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Beate Küchler
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Jia-Jiun Yan
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Günes Özhan
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Enrico Moro
- Department of Molecular Medicine, University of Padua, Via U. Bassi 58/B, Padua 25131, Italy
| | - Francesco Argenton
- Department of Biology, University of Padua, Via U. Bassi 58/B, Padua 35131, Italy
| | - Michael Brand
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden 01307, Germany
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm 89081, Germany
| | - Christopher L. Antos
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| |
Collapse
|
38
|
Aguiar DP, Sghari S, Creuzet S. The facial neural crest controls fore- and midbrain patterning by regulating Foxg1 expression through Smad1 activity. Development 2014; 141:2494-505. [PMID: 24917504 DOI: 10.1242/dev.101790] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The facial neural crest (FNC), a pluripotent embryonic structure forming craniofacial structures, controls the activity of brain organisers and stimulates cerebrum growth. To understand how the FNC conveys its trophic effect, we have studied the role of Smad1, which encodes an intracellular transducer, to which multiple signalling pathways converge, in the regulation of Foxg1. Foxg1 is a transcription factor essential for telencephalic specification, the mutation of which leads to microcephaly and mental retardation. Smad1 silencing, based on RNA interference (RNAi), was performed in pre-migratory FNC cells. Soon after electroporation of RNAi molecules, Smad1 inactivation abolished the expression of Foxg1 in the chick telencephalon, resulting in dramatic microcephaly and partial holoprosencephaly. In addition, the depletion of Foxg1 activity altered the expression Otx2 and Foxa2 in di/mesencephalic neuroepithelium. However, when mutated forms of Smad1 mediating Fgf and Wnt signalling were transfected into FNC cells, these defects were overcome. We also show that, downstream of Smad1 activity, Dkk1, a Wnt antagonist produced by the FNC, initiated the specification of the telencephalon by regulating Foxg1 activity. Additionally, the activity of Cerberus in FNC-derived mesenchyme synergised with Dkk1 to control Foxg1 expression and maintain the balance between Otx2 and Foxa2.
Collapse
Affiliation(s)
- Diego P Aguiar
- Institut de Neurobiologie, Laboratoire de Neurobiologie et Développement, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Soufien Sghari
- Institut de Neurobiologie, Laboratoire de Neurobiologie et Développement, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Sophie Creuzet
- Institut de Neurobiologie, Laboratoire de Neurobiologie et Développement, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
39
|
Rong X, Chen C, Zhou P, Zhou Y, Li Y, Lu L, Liu Y, Zhou J, Duan C. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/β-catenin signaling in zebrafish embryos. PLoS One 2014; 9:e99514. [PMID: 24918770 PMCID: PMC4053527 DOI: 10.1371/journal.pone.0099514] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/15/2014] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.
Collapse
Affiliation(s)
- Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Chen Chen
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Pin Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yumei Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- * E-mail: (CD); (JZ)
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (CD); (JZ)
| |
Collapse
|
40
|
Young JJ, Kjolby RAS, Kong NR, Monica SD, Harland RM. Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus. Development 2014; 141:1683-93. [PMID: 24715458 DOI: 10.1242/dev.099374] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amphibian neural development occurs as a two-step process: (1) induction specifies a neural fate in undifferentiated ectoderm; and (2) transformation induces posterior spinal cord and hindbrain. Signaling through the Fgf, retinoic acid (RA) and Wnt/β-catenin pathways is necessary and sufficient to induce posterior fates in the neural plate, yet a mechanistic understanding of the process is lacking. Here, we screened for factors enriched in posterior neural tissue and identify spalt-like 4 (sall4), which is induced by Fgf. Knockdown of Sall4 results in loss of spinal cord marker expression and increased expression of pou5f3.2 (oct25), pou5f3.3 (oct60) and pou5f3.1 (oct91) (collectively, pou5f3 genes), the closest Xenopus homologs of mammalian stem cell factor Pou5f1 (Oct4). Overexpression of the pou5f3 genes results in the loss of spinal cord identity and knockdown of pou5f3 function restores spinal cord marker expression in Sall4 morphants. Finally, knockdown of Sall4 blocks the posteriorizing effects of Fgf and RA signaling in the neurectoderm. These results suggest that Sall4, activated by posteriorizing signals, represses the pou5f3 genes to provide a permissive environment allowing for additional Wnt/Fgf/RA signals to posteriorize the neural plate.
Collapse
Affiliation(s)
- John J Young
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
41
|
Chen JB, Gao HW, Zhang YL, Zhang Y, Zhou XF, Li CQ, Gao HP. Developmental toxicity of diclofenac and elucidation of gene regulation in zebrafish (Danio rerio). Sci Rep 2014; 4:4841. [PMID: 24788080 PMCID: PMC4007093 DOI: 10.1038/srep04841] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/08/2014] [Indexed: 01/08/2023] Open
Abstract
Environmental pollution by emerging contaminants, e.g. pharmaceuticals, has become a matter of widespread concern in recent years. We investigated the membrane transport of diclofenac and its toxic effects on gene expression and the development of zebrafish embryos. The association of diclofenac with the embryos conformed to the general partition model at low concentration, the partition coefficient being 0.0033 ml per embryo. At high concentration, the interaction fitted the Freundlich model. Most of the diclofenac remained in the extracellular aqueous solution with less than 5% interacting with the embryo, about half of which was adsorbed on the membranes while the rest entered the cytoplasm. Concentrations of diclofenac over 10.13 μM were lethal to all the embryos, while 3.78 μM diclofenac was teratogenic. The development abnormalities at 4 day post treatment (dpt) include shorter body length, smaller eye, pericardial and body edema, lack of liver, intestine and circulation, muscle degeneration, and abnormal pigmentation. The portion of the diclofenac transferred into the embryo altered the expression of certain genes, e.g. down-regulation of Wnt3a and Gata4 and up-regulation of Wnt8a. The alteration of expression of such genes or the regulation of downstream genes could cause defects in the cardiovascular and nervous systems.
Collapse
Affiliation(s)
- Jia-Bin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hong-Wen Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ya-Lei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yong Zhang
- Hunter Biotechnology, Inc., Hangzhou, 311231, China
| | - Xue-Fei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chun-Qi Li
- Hunter Biotechnology, Inc., Hangzhou, 311231, China
| | - Hai-Ping Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
42
|
Kang N, Won M, Rhee M, Ro H. Siah ubiquitin ligases modulate nodal signaling during zebrafish embryonic development. Mol Cells 2014; 37:389-98. [PMID: 24823357 PMCID: PMC4044310 DOI: 10.14348/molcells.2014.0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 01/15/2023] Open
Abstract
Siah2 is a zebrafish homologue of mammalian Siah family. Siah acts as an E3 ubiquitin ligase that binds proteins destined for degradation. Extensive homology between siah and Drosophila Siah homologue (sina) suggests their important physiological roles during embryonic development. However, detailed functional studies of Siah in vertebrate development have not been carried out. Here we report that Siah2 specifically augments nodal related gene expression in marginal blastomeres at late blastula through early gastrula stages of zebrafish embryos. Siah2 dependent Nodal signaling augmentation is confirmed by cell-based reporter gene assays using 293T cells and 3TPluciferase reporter plasmid. We also established a molecular hierarchy of Siah as a upstream regulator of FoxH1/Fast1 transcriptional factor in Nodal signaling. Elevated expression of nodal related genes by overexpression of Siah2 was enough to override the inhibitory effects of atv and lft2 on the Nodal signaling. In particular, E3 ubiquitin ligase activity of Siah2 is critical to limit the duration and/or magnitude of Nodal signaling. Additionally, since the embryos injected with Siah morpholinos mimicked the atv overexpression phenotype at least in part, our data support a model in which Siah is involved in mesendoderm patterning via modulating Nodal signaling.
Collapse
Affiliation(s)
- Nami Kang
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Minho Won
- Program in Genomics of Differentiation, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland,
USA
| | - Myungchull Rhee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| |
Collapse
|
43
|
Robertson JK, Danzmann K, Charles S, Blake K, Olivares A, Bamikole S, Olson M, Raay TJV. Targeting the Wnt pathway in zebrafish as a screening method to identify novel therapeutic compounds. Exp Biol Med (Maywood) 2014; 239:169-76. [DOI: 10.1177/1535370213514322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activating mutations in the Wnt signaling pathway account for the initiation of greater than 90% of all colorectal cancers and this pathway has been implicated in numerous other diseases. Therefore, identifying small molecule inhibitors of this pathway is of critical importance towards identifying clinically relevant drugs. Numerous screens have been employed to identify therapeutic reagents, but none have made it to advanced clinical trials, suggesting that traditional screening methods are ineffective at identifying clinically relevant targets. Here, we describe a novel in vivo screen to identify small molecule inhibitors of the Wnt pathway. Specifically, treatment of zebrafish embryos with LiCl inhibits GSK3 kinase function, resulting in hyperactivation of the signaling pathway and an eyeless phenotype at 1 day post fertilization. Using the small molecule XAV939, a known inhibitor of Wnt signaling, we rescued the LiCl induced eyeless phenotype, confirming efficacy of the screen. We next tested our assay with 400 known small molecule kinase inhibitors, none of which should inhibit Wnt signaling below the level of GSK3 based on their known targets. Accordingly, none of these small molecules rescued the eyeless phenotype, which demonstrates the stringency of the assay. However, several of these small molecule kinase inhibitors did generate a non-Wnt phenotype in accordance with the kinase they targeted. Therefore, combining the efficacy, sensitivity, and stringency of this preliminary screen, this model will provide an alternative to the traditional in vitro screen, generating potentially clinical relevant drugs in a rapid and cost-effective way.
Collapse
Affiliation(s)
- Joshua K Robertson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1L 1A3
| | - Kestral Danzmann
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1L 1A3
| | - Sherise Charles
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1L 1A3
| | - Katherine Blake
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1L 1A3
| | - Annia Olivares
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1L 1A3
| | - Solape Bamikole
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1L 1A3
| | - Meghan Olson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1L 1A3
| | - Terence J Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1L 1A3
| |
Collapse
|
44
|
Luz M, Spannl-Müller S, Özhan G, Kagermeier-Schenk B, Rhinn M, Weidinger G, Brand M. Dynamic association with donor cell filopodia and lipid-modification are essential features of Wnt8a during patterning of the zebrafish neuroectoderm. PLoS One 2014; 9:e84922. [PMID: 24427298 PMCID: PMC3888416 DOI: 10.1371/journal.pone.0084922] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/20/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Wnt proteins are conserved signaling molecules that regulate pattern formation during animal development. Many Wnt proteins are post-translationally modified by addition of lipid adducts. Wnt8a provides a crucial signal for patterning the anteroposterior axis of the developing neural plate in vertebrates. However, it is not clear how this protein propagates from its source, the blastoderm margin, to the target cells in the prospective neural plate, and how lipid-modifications might influence Wnt8a propagation and activity. RESULTS We have dynamically imaged biologically active, fluorescently tagged Wnt8a in living zebrafish embryos. We find that Wnt8a localizes to membrane-associated, punctate structures in live tissue. In Wnt8a expressing cells, these puncta are found on filopodial cellular processes, from where the protein can be released. In addition, Wnt8a is found colocalized with Frizzled receptor-containing clusters on signal receiving cells. Combining in vitro and in vivo assays, we compare the roles of conserved Wnt8a residues in cell and non-cell-autonomous signaling activity and secretion. Non-signaling Wnt8 variants show these residues can regulate Wnt8a distribution in producing cell membranes and filopodia as well as in the receiving tissue. CONCLUSIONS Together, our results show that Wnt8a forms dynamic clusters found on filopodial donor cell and on signal receiving cell membranes. Moreover, they demonstrate a differential requirement of conserved residues in Wnt8a protein for distribution in producing cells and receiving tissue and signaling activity during neuroectoderm patterning.
Collapse
Affiliation(s)
- Marta Luz
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stephanie Spannl-Müller
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Günes Özhan
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Muriel Rhinn
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Gilbert Weidinger
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
45
|
Wylie AD, Fleming JAGW, Whitener AE, Lekven AC. Post-transcriptional regulation of wnt8a is essential to zebrafish axis development. Dev Biol 2013; 386:53-63. [PMID: 24333179 DOI: 10.1016/j.ydbio.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022]
Abstract
wnt8a Is essential for normal patterning during vertebrate embryonic development, and either gain or loss-of-function gene dysregulation results in severe axis malformations. The zebrafish wnt8a locus is structured such that transcripts may possess two regulatory 3' untranslated regions (UTRs), raising the possibility of post-transcriptional regulation as an important mode of wnt8a signaling control. To determine whether both UTRs contribute to post-transcriptional wnt8a gene regulation, each UTR (UTR1 and UTR2) was tested in transient and transgenic reporter assays. Both UTRs suppress EGFP reporter expression in cis, with UTR2 exhibiting a more pronounced effect. UTR2 contains a 6 base sequence necessary for UTR2 regulatory function that is complementary to the seed of the microRNA, miR-430. A target protector morpholino that overlaps the seed complement stabilizes both reporter mRNAs and wnt8a mRNAs, and produces phenotypic abnormalities consistent with wnt8a gain-of-function. In rescue assays, specific functions can be attributed to each of the two wnt8a proteins encoded by the locus. An interplay of wnt8a.1 and wnt8a.2 regulates neural and mesodermal patterning and morphogenesis as well as patterning between brain subdivisions. Thus, post-transcriptional control of wnt8a is essential to fine tune the balance of the signaling outputs of the complex wnt8a locus.
Collapse
Affiliation(s)
- Annika D Wylie
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Jo-Ann G W Fleming
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Amy E Whitener
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Arne C Lekven
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States.
| |
Collapse
|
46
|
Guan R, El-Rass S, Spillane D, Lam S, Wang Y, Wu J, Chen Z, Wang A, Jia Z, Keating A, Hu J, Wen XY. rbm47, a novel RNA binding protein, regulates zebrafish head development. Dev Dyn 2013; 242:1395-404. [PMID: 24038582 DOI: 10.1002/dvdy.24039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/02/2013] [Accepted: 08/14/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Vertebrate trunk induction requires inhibition of bone morphogenetic protein (BMP) signaling, whereas vertebrate head induction requires concerted inhibition of both Wnt and BMP signaling. RNA binding proteins play diverse roles in embryonic development and their roles in vertebrate head development remain to be elucidated. RESULTS We first characterized the human RBM47 as an RNA binding protein that specifically binds RNA but not single-stranded DNA. Next, we knocked down rbm47 gene function in zebrafish using morpholinos targeting the start codon and exon-1/intron-1 splice junction. Down-regulation of rbm47 resulted in headless and small head phenotypes, which can be rescued by a wnt8a blocking morpholino. To further reveal the mechanism of rbm47's role in head development, microarrays were performed to screen genes differentially expressed in normal and knockdown embryos. epcam and a2ml were identified as the most significantly up- and down-regulated genes, respectively. The microarrays also confirmed up-regulation of several genes involved in head development, including gsk3a, otx2, and chordin, which are important regulators of Wnt signaling. CONCLUSIONS Altogether, our findings reveal that Rbm47 is a novel RNA-binding protein critical for head formation and embryonic patterning during zebrafish embryogenesis which may act through a Wnt8a signaling pathway.
Collapse
Affiliation(s)
- Rui Guan
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Physiology and Institute of Medical Science, University of Toronto, Canada; Department of Laboratory Medicine and Pathology, University of Toronto & Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Canada; Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital and Cancer Research Institute, Central South, Hunan Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schulte D, Frank D. TALE transcription factors during early development of the vertebrate brain and eye. Dev Dyn 2013; 243:99-116. [DOI: 10.1002/dvdy.24030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute); University Hospital Frankfurt, J.W. Goethe University; Frankfurt Germany
| | - Dale Frank
- Department of Biochemistry; The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
48
|
Angonin D, Van Raay TJ. Nkd1 functions as a passive antagonist of Wnt signaling. PLoS One 2013; 8:e74666. [PMID: 24009776 PMCID: PMC3756965 DOI: 10.1371/journal.pone.0074666] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022] Open
Abstract
Wnt signaling is involved in many aspects of development and in the homeostasis of stem cells. Its importance is underscored by the fact that misregulation of Wnt signaling has been implicated in numerous diseases, especially colorectal cancer. However, how Wnt signaling regulates itself is not well understood. There are several Wnt negative feedback regulators, which are active antagonists of Wnt signaling, but one feedback regulator, Nkd1, has reduced activity compared to other antagonists, yet is still a negative feedback regulator. Here we describe our efforts to understand the role of Nkd1 using Wnt signaling compromised zebrafish mutant lines. In several of these lines, Nkd1 function was not any more active than it was in wild type embryos. However, we found that Nkd1’s ability to antagonize canonical Wnt/β-catenin signaling was enhanced in the Wnt/Planar Cell Polarity mutants silberblick (slb/wnt11) and trilobite (tri/vangl2). While slb and tri mutants do not display alterations in canonical Wnt signaling, we found that they are hypersensitive to it. Overexpression of the canonical Wnt/β-catenin ligand Wnt8a in slb or tri mutants resulted in dorsalized embryos, with tri mutants being much more sensitive to Wnt8a than slb mutants. Furthermore, the hyperdorsalization caused by Wnt8a in tri could be rescued by Nkd1. These results suggest that Nkd1 functions as a passive antagonist of Wnt signaling, functioning only when homeostatic levels of Wnt signaling have been breached or when Wnt signaling becomes destabilized.
Collapse
Affiliation(s)
- Diane Angonin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Terence J. Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
49
|
Full transcriptome analysis of early dorsoventral patterning in zebrafish. PLoS One 2013; 8:e70053. [PMID: 23922899 PMCID: PMC3726443 DOI: 10.1371/journal.pone.0070053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/14/2013] [Indexed: 11/20/2022] Open
Abstract
Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway.
Collapse
|
50
|
Wang S, Yin J, Chen D, Nie F, Song X, Fei C, Miao H, Jing C, Ma W, Wang L, Xie S, Li C, Zeng R, Pan W, Hao X, Li L. Small-molecule modulation of Wnt signaling via modulating the Axin-LRP5/6 interaction. Nat Chem Biol 2013; 9:579-85. [PMID: 23892894 DOI: 10.1038/nchembio.1309] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 06/26/2013] [Indexed: 01/07/2023]
Abstract
The Wnt/β-catenin signaling pathway has a crucial role in embryonic development, stem cell maintenance and human disease. By screening a synthetic chemical library of lycorine derivatives, we identified 4-ethyl-5-methyl-5,6-dihydro-[1,3]dioxolo[4,5-j]phenanthridine (HLY78) as an activator of the Wnt/β-catenin signaling pathway, which acts in a Wnt ligand-dependent manner. HLY78 targets the DIX domain of Axin and potentiates the Axin-LRP6 association, thus promoting LRP6 phosphorylation and Wnt signaling transduction. Moreover, we identified the critical residues on Axin for HLY78 binding and showed that HLY78 may weaken the autoinhibition of Axin. In addition, HLY78 acts synergistically with Wnt in the embryonic development of zebrafish and increases the expression of the conserved hematopoietic stem cell (HSC) markers, runx1 and cmyb, in zebrafish embryos. Collectively, our study not only provides new insights into the regulation of the Wnt/β-catenin signaling pathway by a Wnt-specific small molecule but also will facilitate therapeutic applications, such as HSC expansion.
Collapse
Affiliation(s)
- Sheng Wang
- 1] State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. [2]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|