1
|
Perez RC, Yang X, Familari M, Martinez G, Lovicu FJ, Hime GR, de Iongh RU. TOB1 and TOB2 mark distinct RNA processing granules in differentiating lens fiber cells. J Mol Histol 2024; 55:121-138. [PMID: 38165569 DOI: 10.1007/s10735-023-10177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/12/2023] [Indexed: 01/04/2024]
Abstract
Differentiation of lens fiber cells involves a complex interplay of signals from growth factors together with tightly regulated gene expression via transcriptional and post-transcriptional regulators. Various studies have demonstrated that RNA-binding proteins, functioning in ribonucleoprotein granules, have important roles in regulating post-transcriptional expression during lens development. In this study, we examined the expression and localization of two members of the BTG/TOB family of RNA-binding proteins, TOB1 and TOB2, in the developing lens and examined the phenotype of mice that lack Tob1. By RT-PCR, both Tob1 and Tob2 mRNA were detected in epithelial and fiber cells of embryonic and postnatal murine lenses. In situ hybridization showed Tob1 and Tob2 mRNA were most intensely expressed in the early differentiating fibers, with weaker expression in anterior epithelial cells, and both appeared to be downregulated in the germinative zone of E15.5 lenses. TOB1 protein was detected from E11.5 to E16.5 and was predominantly detected in large cytoplasmic puncta in early differentiating fiber cells, often co-localizing with the P-body marker, DCP2. Occasional nuclear puncta were also observed. By contrast, TOB2 was detected in a series of interconnected peri-nuclear granules, in later differentiating fiber cells of the inner cortex. TOB2 did not appear to co-localize with DCP2 but did partially co-localize with an early stress granule marker (EIF3B). These data suggest that TOB1 and TOB2 are involved with different aspects of the mRNA processing cycle in lens fiber cells. In vitro experiments using rat lens epithelial explants treated with or without a fiber differentiating dose of FGF2 showed that both TOB1 and TOB2 were up-regulated during FGF-induced differentiation. In differentiating explants, TOB1 also co-localized with DCP2 in large cytoplasmic granules. Analyses of Tob1-/- mice revealed relatively normal lens morphology but a subtle defect in cell cycle arrest of some cells at the equator and in the lens fiber mass of E13.5 embryos. Overall, these findings suggest that TOB proteins play distinct regulatory roles in RNA processing during lens fiber differentiation.
Collapse
Affiliation(s)
- Rafaela C Perez
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xenia Yang
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mary Familari
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gemma Martinez
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences and Save Sight Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gary R Hime
- Stem Cell Genetics Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robb U de Iongh
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
2
|
Gerhart J, George-Weinstein M. Myo/Nog Cells: The Jekylls and Hydes of the Lens. Cells 2023; 12:1725. [PMID: 37443759 PMCID: PMC10340492 DOI: 10.3390/cells12131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Herein, we review a unique and versatile lineage composed of Myo/Nog cells that may be beneficial or detrimental depending on their environment and nature of the pathological stimuli they are exposed to. While we will focus on the lens, related Myo/Nog cell behaviors and functions in other tissues are integrated into the narrative of our research that spans over three decades, examines multiple species and progresses from early stages of embryonic development to aging adults. Myo/Nog cells were discovered in the embryonic epiblast by their co-expression of the skeletal muscle-specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin and brain-specific angiogenesis inhibitor 1. They were tracked from the epiblast into the developing lens, revealing heterogeneity of cell types within this structure. Depletion of Myo/Nog cells in the epiblast results in eye malformations arising from the absence of Noggin. In the adult lens, Myo/Nog cells are the source of myofibroblasts whose contractions produce wrinkles in the capsule. Eliminating this population within the rabbit lens during cataract surgery reduces posterior capsule opacification to below clinically significant levels. Parallels are drawn between the therapeutic potential of targeting Myo/Nog cells to prevent fibrotic disease in the lens and other ocular tissues.
Collapse
|
3
|
FGF-2 Differentially Regulates Lens Epithelial Cell Behaviour during TGF-β-Induced EMT. Cells 2023; 12:cells12060827. [PMID: 36980168 PMCID: PMC10046997 DOI: 10.3390/cells12060827] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Fibroblast growth factor (FGF) and transforming growth factor-beta (TGF-β) can regulate and/or dysregulate lens epithelial cell (LEC) behaviour, including proliferation, fibre differentiation, and epithelial–mesenchymal transition (EMT). Earlier studies have investigated the crosstalk between FGF and TGF-β in dictating lens cell fate, that appears to be dose dependent. Here, we tested the hypothesis that a fibre-differentiating dose of FGF differentially regulates the behaviour of lens epithelial cells undergoing TGF-β-induced EMT. Postnatal 21-day-old rat lens epithelial explants were treated with a fibre-differentiating dose of FGF-2 (200 ng/mL) and/or TGF-β2 (50 pg/mL) over a 7-day culture period. We compared central LECs (CLECs) and peripheral LECs (PLECs) using immunolabelling for changes in markers for EMT (α-SMA), lens fibre differentiation (β-crystallin), epithelial cell adhesion (β-catenin), and the cytoskeleton (alpha-tropomyosin), as well as Smad2/3- and MAPK/ERK1/2-signalling. Lens epithelial explants cotreated with FGF-2 and TGF-β2 exhibited a differential response, with CLECs undergoing EMT while PLECs favoured more of a lens fibre differentiation response, compared to the TGF-β-only-treated explants where all cells in the explants underwent EMT. The CLECs cotreated with FGF and TGF-β immunolabelled for α-SMA, with minimal β-crystallin, whereas the PLECs demonstrated strong β-crystallin reactivity and little α-SMA. Interestingly, compared to the TGF-β-only-treated explants, α-SMA was significantly decreased in the CLECs cotreated with FGF/TGF-β. Smad-dependent and independent signalling was increased in the FGF-2/TGF-β2 co-treated CLECs, that had a heightened number of cells with nuclear localisation of Smad2/3 compared to the PLECs, that in contrast had more pronounced ERK1/2-signalling over Smad2/3 activation. The current study has confirmed that FGF-2 is influential in differentially regulating the behaviour of LECs during TGF-β-induced EMT, leading to a heterogenous cell population, typical of that observed in the development of post-surgical, posterior capsular opacification (PCO). This highlights the cooperative relationship between FGF and TGF-β leading to lens pathology, providing a different perspective when considering preventative measures for controlling PCO.
Collapse
|
4
|
Kubo E, Shibata S, Shibata T, Sasaki H, Singh DP. Role of Decorin in the Lens and Ocular Diseases. Cells 2022; 12:cells12010074. [PMID: 36611867 PMCID: PMC9818407 DOI: 10.3390/cells12010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Decorin is an archetypal member of the small leucine-rich proteoglycan gene family and is involved in various biological functions and many signaling networks, interacting with extra-cellular matrix (ECM) components, growth factors, and receptor tyrosine kinases. Decorin also modulates the growth factors, cell proliferation, migration, and angiogenesis. It has been reported to be involved in many ischemic and fibrotic eye diseases, such as congenital stromal dystrophy of the cornea, anterior subcapsular fibrosis of the lens, proliferative vitreoretinopathy, et al. Furthermore, recent evidence supports its role in secondary posterior capsule opacification (PCO) after cataract surgery. The expression of decorin mRNA in lens epithelial cells in vitro was found to decrease upon transforming growth factor (TGF)-β-2 addition and increase upon fibroblast growth factor (FGF)-2 addition. Wound healing of the injured lens in mice transgenic for lens-specific human decorin was promoted by inhibiting myofibroblastic changes. Decorin may be associated with epithelial-mesenchymal transition and PCO development in the lens. Gene therapy and decorin administration have the potential to serve as excellent therapeutic approaches for modifying impaired wound healing, PCO, and other eye diseases related to fibrosis and angiogenesis. In this review, we present findings regarding the roles of decorin in the lens and ocular diseases.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
- Correspondence: ; Tel.: +81-76-286-2211 (ext. 3412); Fax: +81-76-286-1010
| | - Shinsuke Shibata
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
| | - Dhirendra P. Singh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Lin X, Yang T, Liu X, Fan F, Zhou X, Li H, Luo Y. TGF-β/Smad Signalling Activation by HTRA1 Regulates the Function of Human Lens Epithelial Cells and Its Mechanism in Posterior Subcapsular Congenital Cataract. Int J Mol Sci 2022; 23:14431. [PMID: 36430917 PMCID: PMC9692351 DOI: 10.3390/ijms232214431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Congenital cataract is the leading cause of blindness among children worldwide. Patients with posterior subcapsular congenital cataract (PSC) in the central visual axis can result in worsening vision and stimulus deprivation amblyopia. However, the pathogenesis of PSC remains unclear. This study aims to explore the functional regulation and mechanism of HTRA1 in human lens epithelial cells (HLECs). HTRA1 was significantly downregulated in the lens capsules of children with PSC compared to normal controls. HTRA1 is a suppression factor of transforming growth factor-β (TGF-β) signalling pathway, which plays a key role in cataract formation. The results showed that the TGF-β/Smad signalling pathway was activated in the lens tissue of PSC. The effect of HTRA1 on cell proliferation, migration and apoptosis was measured in HLECs. In primary HLECs, the downregulation of HTRA1 can promote the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway and can significantly upregulate the TGF-β/Smad downstream target genes FN1 and α-SMA. HTRA1 was also knocked out in the eyes of C57BL/6J mice via adeno-associated virus-mediated RNA interference. The results showed that HTRA1 knockout can significantly upregulate p-Smad2/3 and activate the TGF-β/Smad signalling pathway, resulting in abnormal proliferation and irregular arrangement of lens epithelial cells and leading to the occurrence of subcapsular cataract. To conclude, HTRA1 was significantly downregulated in children with PSC, and the downregulation of HTRA1 enhanced the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway, which led to the occurrence of PSC.
Collapse
Affiliation(s)
- Xiaolei Lin
- Department of Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China;
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Tianke Yang
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Xin Liu
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Fan Fan
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Xiyue Zhou
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Hongzhe Li
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Yi Luo
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| |
Collapse
|
6
|
Xiao Y, Xiang JW, Gao Q, Bai YY, Huang ZX, Hu XH, Wang L, Li DWC. MAB21L1 promotes survival of lens epithelial cells through control of αB-crystallin and ATR/CHK1/p53 pathway. Aging (Albany NY) 2022; 14:6128-6148. [PMID: 35951367 PMCID: PMC9417230 DOI: 10.18632/aging.204203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
The male abnormal gene family 21 (mab21), was initially identified in C. elegans. Since its identification, studies from different groups have shown that it regulates development of ocular tissues, brain, heart and liver. However, its functional mechanism remains largely unknown. Here, we demonstrate that Mab21L1 promotes survival of lens epithelial cells. Mechanistically, Mab21L1 upregulates expression of αB-crystallin. Moreover, our results show that αB-crystallin prevents stress-induced phosphorylation of p53 at S-20 and S-37 through abrogating the activation of the upstream kinases, ATR and CHK1. As a result of suppressing p53 activity by αB-crystallin, Mab21L1 downregulates expression of Bak but upregulates Mcl-1 during stress insult. Taken together, our results demonstrate that Mab21L1 promotes survival of lens epithelial cells through upregulation of αB-crystallin to suppress ATR/CHK1/p53 pathway.
Collapse
Affiliation(s)
- Yuan Xiao
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Qian Gao
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Yue-Yue Bai
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Zhao-Xia Huang
- Department of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 121212, Guizhou, China
| | - Xiao-Hui Hu
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China
| | - Ling Wang
- The Academician Work Station, Changsha Medical University, Changsha 410219, Hunan, China
| | - David Wan-Cheng Li
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| |
Collapse
|
7
|
Lin X, Li H, Yang T, Liu X, Fan F, Zhou X, Luo Y. Transcriptomics Analysis of Lens from Patients with Posterior Subcapsular Congenital Cataract. Genes (Basel) 2021; 12:1904. [PMID: 34946854 PMCID: PMC8702110 DOI: 10.3390/genes12121904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 01/30/2023] Open
Abstract
To gain insight into the aetiology of posterior subcapsular congenital cataract from the perspective of transcriptional changes, we conducted an mRNA sequencing analysis of the lenses in posterior subcapsular congenital cataract patients and in normal children. There were 1533 differentially expressed genes from 19,072 genes in the lens epithelial cells of the posterior subcapsular congenital cataract patients compared to in the normal controls at a cut-off criteria of |log2 fold change| of >1 and a p-value of <0.05, including 847 downregulated genes and 686 upregulated genes. To further narrow down the DEGs, we utilised the stricter criteria of |log2 fold change| of >1 and an FDR value of <0.05, and we identified 551 DEGs, including 97 upregulated genes and 454 downregulated genes. This study also identified 1263 differentially expressed genes of the 18,755 genes in lens cortex and nuclear fibres, including 646 downregulated genes and 617 upregulated genes. The downregulated genes in epithelial cells were significantly enriched in the structural constituent of lenses, lens development and lens fibre cell differentiation. After filtering the DEGs using the databases iSyTE and Cat-Map, several high-priority candidate genes related to posterior subcapsular congenital cataract such as GRIFIN, HTRA1 and DAPL1 were identified. The findings of our study may provide a deeper understanding of the mechanisms of posterior subcapsular congenital cataract and help in the prevention and treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Luo
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (X.L.); (H.L.); (T.Y.); (X.L.); (F.F.); (X.Z.)
| |
Collapse
|
8
|
DNA-based eyelid trait prediction in Chinese Han population. Int J Legal Med 2021; 135:1743-1752. [PMID: 33969445 DOI: 10.1007/s00414-021-02570-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
The eyelid folding represents one of the most distinguishing features of East Asian faces, involving the absence or presence of the eyelid crease, i.e., single vs. double eyelid. Recently, a genome-wide association study (GWAS) identified two SNPs (rs12570134 and rs1415425) showing genome-wide significant association with the double eyelid phenotype in Japanese. Here we report a confirmatory study in 697 Chinese individuals of exclusively Han origin. Only rs1415425 was statistically significant (P-value = 0.011), and the allele effect was on the same direction with that reported in Japanese. This SNP combined with gender and age explained 10.0% of the total variation in eyelid folding. DNA-based prediction model for the eyelid trait was developed and evaluated using logistic regression. The model showed mild to moderate predictive capacity (AUC = 0.69, sensitivity = 63%, and specificity = 70%). We further selected six additional SNPs by massive parallel sequencing of 19 candidate genes in 24 samples, and one SNP rs2761882 was statistically significant (P-value = 0.027). All predictors including these two SNPs (rs1415425 and rs2761882), gender, and age explained 11.2% of the total variation. The combined prediction model obtained an improved predictive capacity (AUC = 0.72, sensitivity = 62%, and specificity = 66%). Our study thus provided a confirmation of previous GWAS findings and a DNA-based prediction of the eyelid trait in Chinese Han individuals. This model may add value to forensic DNA phenotyping applications considering gender and age can be separately inferred from genetic and epigenetic markers. To further improve the prediction accuracy, future studies should focus on identifying more informative SNPs by large GWASs in East Asian populations.
Collapse
|
9
|
Lens-specific conditional knockout of tropomyosin 1 gene in mice causes abnormal fiber differentiation and lens opacity. Mech Ageing Dev 2021; 196:111492. [PMID: 33862037 DOI: 10.1016/j.mad.2021.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 11/24/2022]
Abstract
Tropomyosin (Tpm) 1 and 2 are important in the epithelial mesenchymal transition of lens epithelial cells; however, the effect of Tpm1 depletion during aging remains obscure. We analyzed the age-related changes in the crystalline lens of Tpm1- conditional knockout mice (Tpm1-CKO). Floxed alleles of Tpm1 were conditionally deleted in the lens, using Pax6-cre transgenic mice. Lenses of embryonic day (ED) 14, postnatal 1-, 11-, and 48-week-old Tpm1-CKO and wild type mice were dissected to prepare paraffin sections, which subsequently underwent histological and immunohistochemical analysis. Tpm1 and α smooth muscle actin (αSMA) mRNA expression were assessed using RT-PCR. The homozygous Tpm1-CKO (Tpm1-/-) lenses displayed a dramatic reduction in Tpm1 transcript, with no change to αSMA mRNA expression. Tpm1-/- mice had small lenses with disorganized, vesiculated fiber cells, and loss of epithelial cells. The lenses of Tpm1-/- mice had abnormal and disordered lens fiber cells with cortical and peri-nuclear liquefaction. Expression of filamentous-actin was reduced in the equator region of lenses derived from ED14, 1-, 11-, and 48-week-old Tpm1-/- mice. Therefore, Tpm1 plays an integral role in mediating the integrity and fate of lens fiber differentiation and lens homeostasis during aging. Age-related Tpm1 dysregulation or deficiency may induce cataract formation.
Collapse
|
10
|
Shibata S, Shibata N, Ohtsuka S, Yoshitomi Y, Kiyokawa E, Yonekura H, Singh DP, Sasaki H, Kubo E. Role of Decorin in Posterior Capsule Opacification and Eye Lens Development. Cells 2021; 10:863. [PMID: 33918979 PMCID: PMC8070370 DOI: 10.3390/cells10040863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Decorin (DCN) is involved in a variety of physiological and pathological processes. Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) has been proposed as a major cause for the development of posterior capsule opacification (PCO) after cataract surgery. We investigated the plausible target gene(s) that suppress PCO. The expression of Dcn was significantly upregulated in rat PCO tissues compared to that observed in the control using a microarray-based approach. LECs treated with fibroblast growth factor (FGF) 2 displayed an enhanced level of DCN expression, while LECs treated with transforming growth factor (TGF)β-2 showed a decrease in DCN expression. The expression of tropomyosin 1 (Tpm1), a marker of lens EMT increased after the addition of TGFβ-2 in human LEC; however, upregulation of Tpm1 mRNA or protein expression was reduced in human LECs overexpressing human DCN (hDCN). No phenotypic changes were observed in the lenses of 8- and 48-week-old transgenic mice for lens-specific hDCN (hDCN-Tg). Injury-induced EMT of the mouse lens, and the expression patterns of α smooth muscle actin, were attenuated in hDCN-Tg mice lenses. Overexpression of DCN inhibited the TGFβ-2-induced upregulation of Tpm1 and EMT observed during wound healing of the lens, but it did not affect mouse lens morphology until 48 weeks of age. Our findings demonstrate that DCN plays a significant role in regulating EMT formation of LECs and PCO, and suggest that for therapeutic intervention, maintenance of physiological expression of DCN is essential to attenuate EMT progression and PCO formation.
Collapse
Affiliation(s)
- Shinsuke Shibata
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan; (S.S.); (N.S.); (H.S.)
| | - Naoko Shibata
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan; (S.S.); (N.S.); (H.S.)
| | - Satoshi Ohtsuka
- Medical Research Institute, Kanazawa Medical University, Ishikawa 9200293, Japan;
- Laboratory for Experimental Animals, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Yasuo Yoshitomi
- Department of Biochemistry, Kanazawa Medical University, Ishikawa 9200293, Japan; (Y.Y.); (H.Y.)
| | - Etsuko Kiyokawa
- Department of Oncogenic Pathology, Kanazawa Medical University, Ishikawa 9200293, Japan;
| | - Hideto Yonekura
- Department of Biochemistry, Kanazawa Medical University, Ishikawa 9200293, Japan; (Y.Y.); (H.Y.)
| | - Dhirendra P. Singh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan; (S.S.); (N.S.); (H.S.)
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan; (S.S.); (N.S.); (H.S.)
| |
Collapse
|
11
|
Richardson RB, Ainsbury EA, Prescott CR, Lovicu FJ. Etiology of posterior subcapsular cataracts based on a review of risk factors including aging, diabetes, and ionizing radiation. Int J Radiat Biol 2020; 96:1339-1361. [DOI: 10.1080/09553002.2020.1812759] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health Branch, Canadian Nuclear Laboratories (CNL), Chalk River, Canada
- McGill University’s Medical Physics Unit, Cedars Cancer Centre, Montreal, Canada
| | - Elizabeth A. Ainsbury
- Public Health England’s Centre for Chemical, Radiological and Environmental Hazards, Oxford, UK
| | | | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
12
|
Nakazawa K, Shichino Y, Iwasaki S, Shiina N. Implications of RNG140 (caprin2)-mediated translational regulation in eye lens differentiation. J Biol Chem 2020; 295:15029-15044. [PMID: 32839273 DOI: 10.1074/jbc.ra120.012715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 08/07/2020] [Indexed: 01/02/2023] Open
Abstract
Regulation of gene expression at the translational level is key to determining cell fate and function. An RNA-binding protein, RNG140 (caprin2), plays a role in eye lens differentiation and has been reported to function in translational regulation. However, the mechanism and its role in eyes has remained unclear. Here, we show that RNG140 binds to the translation initiation factor eukaryotic initiation factor 3 (eIF3) and suppresses translation through mechanisms involving suppression of eIF3-dependent translation initiation. Comprehensive ribosome profiling revealed that overexpression of RNG140 in cultured Chinese hamster ovary cells reduces translation of long mRNAs, including those associated with cell proliferation. RNG140-mediated translational regulation also operates in the mouse eye, where RNG140 knockout increased the translation of long mRNAs. mRNAs involved in lens differentiation, such as crystallin mRNAs, are short and can escape translational inhibition by RNG140 and be translated in differentiating lenses. Thus, this study provides insights into the mechanistic basis of lens cell transition from proliferation to differentiation via RNG140-mediated translational regulation.
Collapse
Affiliation(s)
- Kaori Nakazawa
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan; Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan; Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, Japan.
| |
Collapse
|
13
|
Liu S, Hu C, Luo Y, Yao K. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract. Epigenomics 2020; 12:771-788. [PMID: 32516005 DOI: 10.2217/epi-2019-0254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To investigate the possible epigenetic pathogenesis of sporadic congenital cataract. Materials & methods: We conducted whole genome bisulfite sequencing on peripheral blood from sporadic binocular or monocular congenital cataract patients and cataract-free participants. Results: We found massive differentially methylated regions within the whole genomes between any two groups. Meanwhile, we identified five genes (ACTN4, ACTG1, TUBA1A, TUBA1C, TUBB4B) for the binocular and control groups and TUBA1A for the monocular and control groups as the core differentially methylated region-related genes. The proteins encoded by these core genes are involved in building cytoskeleton and intercellular junctions. Conclusion: Changes in the methylation levels of core genes may disturb the function of cytoskeleton and intercellular junctions, eventually leading to sporadic congenital cataract.
Collapse
Affiliation(s)
- Siyu Liu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Chenyang Hu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Yueqiu Luo
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Ke Yao
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| |
Collapse
|
14
|
Vetrivel S, Tiso N, Kügler A, Irmler M, Horsch M, Beckers J, Hladik D, Giesert F, Gailus-Durner V, Fuchs H, Sabrautzki S, Hrabě de Angelis M, Graw J. Mutation in the mouse histone gene Hist2h3c1 leads to degeneration of the lens vesicle and severe microphthalmia. Exp Eye Res 2019; 188:107632. [PMID: 30991053 PMCID: PMC6876282 DOI: 10.1016/j.exer.2019.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/20/2019] [Accepted: 03/30/2019] [Indexed: 12/21/2022]
Abstract
During an ENU (N-ethyl-N-nitrosourea) mutagenesis screen, we observed a dominant small-eye mutant mouse with viable homozygotes. A corresponding mutant line was established and referred to as Aey69 (abnormality of the eye #69). Comprehensive phenotyping of the homozygous Aey69 mutants in the German Mouse Clinic revealed only a subset of statistically significant alterations between wild types and homozygous mutants. The mutation causes microphthalmia without a lens but with retinal hyperproliferation. Linkage was demonstrated to mouse chromosome 3 between the markers D3Mit188 and D3Mit11. Sequencing revealed a 358 A-> C mutation (Ile120Leu) in the Hist2h3c1 gene and a 71 T-> C (Val24Ala) mutation in the Gja8 gene. Detailed analysis of eye development in the homozygous mutant mice documented a perturbed lens development starting from the lens vesicle stage including decreasing expression of crystallins as well as of lens-specific transcription factors like PITX3 and FOXE3. In contrast, we observed an early expression of retinal progenitor cells characterized by several markers including BRN3 (retinal ganglion cells) and OTX2 (cone photoreceptors). The changes in the retina at the early embryonic stages of E11.5-E15.5 happen in parallel with apoptotic processes in the lens at the respective stages. The excessive retinal hyperproliferation is characterized by an increased level of Ki67. The hyperproliferation, however, does not disrupt the differentiation and appearance of the principal retinal cell types at postnatal stages, even if the overgrowing retina covers finally the entire bulbus of the eye. Morpholino-mediated knock-down of the hist2h3ca1 gene in zebrafish leads to a specific perturbation of lens development. When injected into zebrafish zygotes, only the mutant mouse mRNA leads to severe malformations, ranging from cyclopia to severe microphthalmia. The wild-type Hist2h3c1 mRNA can rescue the morpholino-induced defects corroborating its specific function in lens development. Based upon these data, it is concluded that the ocular function of the Hist2h3c1 gene (encoding a canonical H3.2 variant) is conserved throughout evolution. Moreover, the data highlight also the importance of Hist2h3c1 in the coordinated formation of lens and retina during eye development. A dominant small-eye mutant mouse is caused by a mutation in the histone gene Hist2H3c1. Morpholino-mediated knock-down of hist2h3ca1 in the zebrafish validated this finding. The mutation leads to degeneration of the lens vesicle and retina hyperproliferation.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany
| | - Natascia Tiso
- Department of Biology, University of Padova, I-35131 Padova, Italy.
| | - Andrea Kügler
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany
| | - Martin Irmler
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany
| | - Marion Horsch
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany
| | - Johannes Beckers
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, D-85354 Freising, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| | - Daniela Hladik
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany
| | - Florian Giesert
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany
| | - Valerie Gailus-Durner
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany
| | - Helmut Fuchs
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany
| | - Sibylle Sabrautzki
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany; Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit Comparative Medicine, D-85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, D-85354 Freising, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| | - Jochen Graw
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany.
| |
Collapse
|
15
|
Mochizuki T, Kojima Y, Nishiwaki Y, Harakuni T, Masai I. Endocytic trafficking factor VPS45 is essential for spatial regulation of lens fiber differentiation in zebrafish. Development 2018; 145:145/20/dev170282. [PMID: 30322969 PMCID: PMC6215396 DOI: 10.1242/dev.170282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 01/20/2023]
Abstract
In vertebrate lens, lens epithelial cells cover the anterior half of the lens fiber core. Lens epithelial cells proliferate, move posteriorly and start to differentiate into lens fiber cells at the lens equator. Although FGF signaling promotes this equatorial commencement of lens fiber differentiation, the underlying mechanism is not fully understood. Here, we show that lens epithelial cells abnormally enter lens fiber differentiation without passing through the equator in zebrafish vps45 mutants. VPS45 belongs to the Sec1/Munc18-like protein family and promotes endosome trafficking, which differentially modulates signal transduction. Ectopic lens fiber differentiation in vps45 mutants does not depend on FGF, but is mediated through activation of TGFβ signaling and inhibition of canonical Wnt signaling. Thus, VPS45 normally suppresses lens fiber differentiation in the anterior region of lens epithelium by modulating TGFβ and canonical Wnt signaling pathways. These data indicate a novel role of endosome trafficking to ensure equator-dependent commencement of lens fiber differentiation. Summary: The endocytic regulator VPS45 suppresses FGF-independent lens fiber differentiation and ensures the spatial pattern of lens development.
Collapse
Affiliation(s)
- Toshiaki Mochizuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Yutaka Kojima
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Yuko Nishiwaki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Tetsuya Harakuni
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| |
Collapse
|
16
|
Roles of TGF β and FGF Signals in the Lens: Tropomyosin Regulation for Posterior Capsule Opacity. Int J Mol Sci 2018; 19:ijms19103093. [PMID: 30304871 PMCID: PMC6212802 DOI: 10.3390/ijms19103093] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023] Open
Abstract
Transforming growth factor (TGF) β and fibroblast growth factor (FGF) 2 are related to the development of posterior capsule opacification (PCO) after lens extraction surgery and other processes of epithelial–mesenchymal transition (EMT). Oxidative stress seems to activate TGF β1 largely through reactive oxygen species (ROS) production, which in turn alters the transcription of several survival genes, including lens epithelium-cell derived growth factor (LEDGF). Higher ROS levels attenuate LEDGF function, leading to down-regulation of peroxiredoxin 6 (Prdx6). TGF β is regulated by ROS in Prdx6 knock-out lens epithelial cells (LECs) and induces the up-regulation of tropomyosins (Tpms) 1/2, and EMT of LECs. Mouse and rat PCO are accompanied by elevated expression of Tpm2. Further, the expression of Tpm1/2 is induced by TGF β2 in LECs. Importantly, we previously showed that TGF β2 and FGF2 play regulatory roles in LECs in a contrasting manner. An injury-induced EMT of a mouse lens as a PCO model was attenuated in the absence of Tpm2. In this review, we present findings regarding the roles of TGF β and FGF2 in the differential regulation of EMT in the lens. Tpms may be associated with TGF β2- and FGF2-related EMT and PCO development.
Collapse
|
17
|
Kahata K, Dadras MS, Moustakas A. TGF-β Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022194. [PMID: 28246184 DOI: 10.1101/cshperspect.a022194] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelia exist in the animal body since the onset of embryonic development; they generate tissue barriers and specify organs and glands. Through epithelial-mesenchymal transitions (EMTs), epithelia generate mesenchymal cells that form new tissues and promote healing or disease manifestation when epithelial homeostasis is challenged physiologically or pathologically. Transforming growth factor-βs (TGF-βs), activins, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs) have been implicated in the regulation of epithelial differentiation. These TGF-β family ligands are expressed and secreted at sites where the epithelium interacts with the mesenchyme and provide paracrine queues from the mesenchyme to the neighboring epithelium, helping the specification of differentiated epithelial cell types within an organ. TGF-β ligands signal via Smads and cooperating kinase pathways and control the expression or activities of key transcription factors that promote either epithelial differentiation or mesenchymal transitions. In this review, we discuss evidence that illustrates how TGF-β family ligands contribute to epithelial differentiation and induce mesenchymal transitions, by focusing on the embryonic ectoderm and tissues that form the external mammalian body lining.
Collapse
Affiliation(s)
- Kaoru Kahata
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Mahsa Shahidi Dadras
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
18
|
Wang D, Wang E, Liu K, Xia CH, Li S, Gong X. Roles of TGFβ and FGF signals during growth and differentiation of mouse lens epithelial cell in vitro. Sci Rep 2017; 7:7274. [PMID: 28779082 PMCID: PMC5544739 DOI: 10.1038/s41598-017-07619-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/29/2017] [Indexed: 11/29/2022] Open
Abstract
Transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling pathways play important roles in the proliferation and differentiation of lens epithelial cells (LECs) during development. Low dosage bFGF promotes cell proliferation while high dosage induces differentiation. TGFβ signaling regulates LEC proliferation and differentiation as well, but also promotes epithelial-mesenchymal transitions that lead to cataracts. Thus far, it has been difficult to recapitulate the features of germinative LECs in vitro. Here, we have established a LEC culture protocol that uses SB431542 (SB) compound to inhibit TGFβ/Smad activation, and found that SB treatment promoted mouse LEC proliferation, maintained LECs’ morphology and distinct markers including N-cadherin, c-Maf, Prox1, and αA-, αB-, and β-crystallins. In contrast, low-dosage bFGF was unable to sustain those markers and, combined with SB, altered LECs’ morphology and β-crystallin expression. We further found that Matrigel substrate coatings greatly increased cell proliferation and uniquely affected β-crystallin expression. Cultured LECs retained the ability to differentiate into γ-crystallin-positive lentoids by high-dosage bFGF treatment. Thus, a suppression of TGFβ/Smad signaling in vitro is critical to maintaining characteristic features of mouse LECs, especially expression of the key transcription factors c-Maf and Prox1.
Collapse
Affiliation(s)
- Dong Wang
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Los Angeles, California, 90095, USA
| | - Eddie Wang
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA
| | - Kelsey Liu
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA
| | - Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA
| | - Song Li
- Department of Bioengineering, University of California, Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Los Angeles, California, 90095, USA.,Department of Medicine, University of California, Los Angeles, California, 90095, USA
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California Berkeley, California, 94720, USA.
| |
Collapse
|
19
|
Hollmann AK, Dammann I, Wemheuer WM, Wemheuer WE, Chilla A, Tipold A, Schulz-Schaeffer WJ, Beck J, Schütz E, Brenig B. Morgagnian cataract resulting from a naturally occurring nonsense mutation elucidates a role of CPAMD8 in mammalian lens development. PLoS One 2017; 12:e0180665. [PMID: 28683140 PMCID: PMC5500361 DOI: 10.1371/journal.pone.0180665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/19/2017] [Indexed: 11/23/2022] Open
Abstract
To investigate the genetic basis of hereditary lens opacities we analyzed 31 cases of bilateral congenital cataract in Red Holstein Friesian cattle. A genome-wide association study revealed a significant association on bovine chromosome 7 at positions 6,166,179 and 12,429,691. Whole genome re-sequencing of one case and four relatives showed a nonsense mutation (g.5995966C>T) in the PZP-like, alpha-2-macroglobulin domain containing 8 (CPAMD8) gene leading to a premature stop codon (CPAMD8 p.Gln74*) associated with cataract development in cattle. With immunohistochemistry we confirmed a physiological expression of CPAMD8 in the ciliary body epithelium of the eye in unaffected cattle, while the protein was not detectable in the ciliary body of cattle with cataracts. RNA expression of CPAMD8 was detected in healthy adult, fetal and cataractous lenses.
Collapse
Affiliation(s)
- Anne K. Hollmann
- University of Goettingen, Institute of Veterinary Medicine, Goettingen, Germany
| | - Insa Dammann
- University Medical Center Goettingen, Department of Neuropathology, Prion and Dementia Research Unit, Goettingen, Germany
| | - Wiebke M. Wemheuer
- University of the Saarland, Institute of Neuropathology, Homburg, Germany
| | - Wilhelm E. Wemheuer
- University of Goettingen, Institute of Veterinary Medicine, Goettingen, Germany
| | - Almuth Chilla
- University of Goettingen, Institute of Veterinary Medicine, Goettingen, Germany
| | - Andrea Tipold
- University of Veterinary Medicine Hannover, Foundation, Department of Small Animal Medicine and Surgery, Hannover, Germany
| | | | | | - Ekkehard Schütz
- University of Goettingen, Institute of Veterinary Medicine, Goettingen, Germany
| | - Bertram Brenig
- University of Goettingen, Institute of Veterinary Medicine, Goettingen, Germany
- * E-mail:
| |
Collapse
|
20
|
Boswell BA, Korol A, West-Mays JA, Musil LS. Dual function of TGFβ in lens epithelial cell fate: implications for secondary cataract. Mol Biol Cell 2017; 28:907-921. [PMID: 28209733 PMCID: PMC5385940 DOI: 10.1091/mbc.e16-12-0865] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/29/2022] Open
Abstract
The most common vision-disrupting complication of cataract surgery is posterior capsule opacification (PCO; secondary cataract). PCO is caused by residual lens cells undergoing one of two very different cell fates: either transdifferentiating into myofibroblasts or maturing into lens fiber cells. Although TGFβ has been strongly implicated in lens cell fibrosis, the factors responsible for the latter process have not been identified. We show here for the first time that TGFβ can induce purified primary lens epithelial cells within the same culture to undergo differentiation into either lens fiber cells or myofibroblasts. Marker analysis confirmed that the two cell phenotypes were mutually exclusive. Blocking the p38 kinase pathway, either with direct inhibitors of the p38 MAP kinase or a small-molecule therapeutic that also inhibits the activation of p38, prevented TGFβ from inducing epithelial-myofibroblast transition and cell migration but did not prevent fiber cell differentiation. Rapamycin had the converse effect, linking MTOR signaling to induction of fiber cell differentiation by TGFβ. In addition to providing novel potential therapeutic strategies for PCO, our findings extend the so-called TGFβ paradox, in which TGFβ can induce two disparate cell fates, to a new epithelial disease state.
Collapse
Affiliation(s)
- Bruce A Boswell
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239
| | - Anna Korol
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, ON L8N 3Z5, Canada
| | - Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, ON L8N 3Z5, Canada
| | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
21
|
Kubo E, Shibata S, Shibata T, Kiyokawa E, Sasaki H, Singh DP. FGF2 antagonizes aberrant TGFβ regulation of tropomyosin: role for posterior capsule opacity. J Cell Mol Med 2016; 21:916-928. [PMID: 27976512 PMCID: PMC5387175 DOI: 10.1111/jcmm.13030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor (TGF) β2 and fibroblast growth factor (FGF) 2 are involved in regulation of posterior capsule opacification (PCO) and other processes of epithelial–mesenchymal transition (EMT) such as cancer progression, wound healing and tissue fibrosis as well as normal embryonic development. We previously used an in vivo rodent PCO model to show the expression of tropomyosin (Tpm) 1/2 was aberrantly up‐regulated in remodelling the actin cytoskeleton during EMT. In this in vitro study, we show the Tpms family of cytoskeleton proteins are involved in regulating and stabilizing actin microfilaments (F‐actin) and are induced by TGFβ2 during EMT in lens epithelial cells (LECs). Importantly, we found TGFβ2 and FGF2 played contrasting roles. Stress fibre formation and up‐regulation of α‐smooth muscle actin (αSMA) induced by TGFβ2 could be reversed by Tpm1/2 knock‐down by siRNA. Expression of Tpm1/2 and stress fibre formation induced by TGFβ2 could be reversed by FGF2. Furthermore, FGF2 delivery to TGFβ‐treated LECs perturbed EMT by reactivating the mitogen‐activated protein kinase (MAPK)/ extracellular signal‐regulated kinase (ERK) pathway and subsequently enhanced EMT. Conversely, MEK inhibitor (PD98059) abated the FGF2‐mediated Tpm1/2 and αSMA suppression. However, we found that normal LECs which underwent EMT showed enhanced migration in response to combined TGFβ and FGF2 stimulation. These findings may help clarify the mechanism reprogramming the actin cytoskeleton during morphogenetic EMT cell proliferation and fibre regeneration in PCO. We propose that understanding the physiological link between levels of FGF2, Tpm1/2 expression and TGFβs‐driven EMT orchestration may provide clue(s) to develop therapeutic strategies to treat PCO based on Tpm1/2.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, Japan
| | - Shinsuke Shibata
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, Japan
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, Japan
| | - Etsuko Kiyokawa
- Department of Oncogenic Pathology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, Japan
| | - Dhirendra P Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
22
|
Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract. Exp Eye Res 2015; 142:92-101. [PMID: 26003864 DOI: 10.1016/j.exer.2015.02.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/22/2015] [Accepted: 02/03/2015] [Indexed: 12/22/2022]
Abstract
Cataract is a common age-related condition that is caused by progressive clouding of the normally clear lens. Cataract can be effectively treated by surgery; however, like any surgery, there can be complications and the development of a secondary cataract, known as posterior capsule opacification (PCO), is the most common. PCO is caused by aberrant growth of lens epithelial cells that are left behind in the capsular bag after surgical removal of the fiber mass. An epithelial-to-mesenchymal transition (EMT) is central to fibrotic PCO and forms of fibrotic cataract, including anterior/posterior polar cataracts. Transforming growth factor β (TGFβ) has been shown to induce lens EMT and consequently research has focused on identifying ways of blocking its action. Intriguingly, recent studies in animal models have shown that EMT and cataract developed when a class of negative-feedback regulators, Sprouty (Spry)1 and Spry2, were conditionally deleted from the lens. Members of the Spry family act as general antagonists of the receptor tyrosine kinase (RTK)-mediated MAPK signaling pathway that is involved in many physiological and developmental processes. As the ERK/MAPK signaling pathway is a well established target of Spry proteins, and overexpression of Spry can block aberrant TGFβ-Smad signaling responsible for EMT and anterior subcapsular cataract, this indicates a role for the ERK/MAPK pathway in TGFβ-induced EMT. Given this and other supporting evidence, a case is made for focusing on RTK antagonists, such as Spry, for cataract prevention. In addition, and looking to the future, this review also looks at possibilities for supplanting EMT with normal fiber differentiation and thereby promoting lens regenerative processes after cataract surgery. Whilst it is now known that the epithelial to fiber differentiation process is driven by FGF, little is known about factors that coordinate the precise assembly of fibers into a functional lens. However, recent research provides key insights into an FGF-activated mechanism intrinsic to the lens that involves interactions between the Wnt-Frizzled and Jagged/Notch signaling pathways. This reciprocal epithelial-fiber cell interaction appears to be critical for the assembly and maintenance of the highly ordered three-dimensional architecture that is central to lens function. This information is fundamental to defining the specific conditions and stimuli needed to recapitulate developmental programs and promote regeneration of lens structure and function after cataract surgery.
Collapse
Affiliation(s)
- F J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia; Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia.
| | - E H Shin
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia
| | - J W McAvoy
- Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia
| |
Collapse
|
23
|
De Stefano I, Tanno B, Giardullo P, Leonardi S, Pasquali E, Antonelli F, Tanori M, Casciati A, Pazzaglia S, Saran A, Mancuso M. The Patched 1 tumor-suppressor gene protects the mouse lens from spontaneous and radiation-induced cataract. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:85-95. [PMID: 25452120 DOI: 10.1016/j.ajpath.2014.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/17/2014] [Accepted: 09/04/2014] [Indexed: 11/16/2022]
Abstract
Age-related cataract is the most common cause of visual impairment. Moreover, traumatic cataracts form after injury to the eye, including radiation damage. We report herein that sonic hedgehog (Shh) signaling plays a key role in cataract development and in normal lens response to radiation injury. Mice heterozygous for Patched 1 (Ptch1), the Shh receptor and negative regulator of the pathway, develop spontaneous cataract and are highly susceptible to cataract induction by exposure to ionizing radiation in early postnatal age, when lens epithelial cells undergo rapid expansion in the lens epithelium. Neonatally irradiated and control Ptch1(+/-) mice were compared for markers of progenitors, Shh pathway activation, and epithelial-to-mesenchymal transition (EMT). Molecular analyses showed increased expression of the EMT-related transforming growth factor β/Smad signaling pathway in the neonatally irradiated lens, and up-regulation of mesenchymal markers Zeb1 and Vim. We further show a link between proliferation and the stemness property of lens epithelial cells, controlled by Shh. Our results suggest that Shh and transforming growth factor β signaling cooperate to promote Ptch1-associated cataract development by activating EMT, and that the Nanog marker of pluripotent cells may act as the primary transcription factor on which both signaling pathways converge after damage. These findings highlight a novel function of Shh signaling unrelated to cancer and provide a new animal model to investigate the molecular pathogenesis of cataract formation.
Collapse
Affiliation(s)
- Ilaria De Stefano
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - Barbara Tanno
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Paola Giardullo
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - Simona Leonardi
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Francesca Antonelli
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Mirella Tanori
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Arianna Casciati
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Anna Saran
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy.
| | - Mariateresa Mancuso
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy.
| |
Collapse
|
24
|
Mommer BC, Bell AM. Maternal experience with predation risk influences genome-wide embryonic gene expression in threespined sticklebacks (Gasterosteus aculeatus). PLoS One 2014; 9:e98564. [PMID: 24887438 PMCID: PMC4041765 DOI: 10.1371/journal.pone.0098564] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/05/2014] [Indexed: 12/04/2022] Open
Abstract
There is growing evidence for nongenetic effects of maternal experience on offspring. For example, previous studies have shown that female threespined stickleback fish (Gasterosteus aculeatus) exposed to predation risk produce offspring with altered behavior, metabolism and stress physiology. Here, we investigate the effect of maternal exposure to predation risk on the embryonic transcriptome in sticklebacks. Using RNA-sequencing we compared genome-wide transcription in three day post-fertilization embryos of predator-exposed and control mothers. There were hundreds of differentially expressed transcripts between embryos of predator-exposed mothers and embryos of control mothers including several non-coding RNAs. Gene Ontology analysis revealed biological pathways involved in metabolism, epigenetic inheritance, and neural proliferation and differentiation that differed between treatments. Interestingly, predation risk is associated with an accelerated life history in many vertebrates, and several of the genes and biological pathways that were identified in this study suggest that maternal exposure to predation risk accelerates the timing of embryonic development. Consistent with this hypothesis, embryos of predator-exposed mothers were larger than embryos of control mothers. These findings point to some of the molecular mechanisms that might underlie maternal effects.
Collapse
Affiliation(s)
- Brett C. Mommer
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| | - Alison M. Bell
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
25
|
Gerhart J, Greenbaum M, Scheinfeld V, FitzGerald P, Crawford M, Bravo-Nuevo A, Pitts M, George-Weinstein M. Myo/Nog cells: targets for preventing the accumulation of skeletal muscle-like cells in the human lens. PLoS One 2014; 9:e95262. [PMID: 24736495 PMCID: PMC3988172 DOI: 10.1371/journal.pone.0095262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/25/2014] [Indexed: 12/13/2022] Open
Abstract
Posterior capsule opacification (PCO) is a vision impairing condition that arises in some patients following cataract surgery. The fibrotic form of PCO is caused by myofibroblasts that may emerge in the lens years after surgery. In the chick embryo lens, myofibroblasts are derived from Myo/Nog cells that are identified by their expression of the skeletal muscle specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin, and the epitope recognized by the G8 monoclonal antibody. The goal of this study was to test the hypothesis that depletion of Myo/Nog cells will prevent the accumulation of myofibroblasts in human lens tissue. Myo/Nog cells were present in anterior, equatorial and bow regions of the human lens, cornea and ciliary processes. In anterior lens tissue removed by capsulorhexis, Myo/Nog cells had synthesized myofibroblast and skeletal muscle proteins, including vimentin, MyoD and sarcomeric myosin. Alpha smooth muscle actin (α-SMA) was detected in a subpopulation of Myo/Nog cells. Areas of the capsule denuded of epithelial cells were surrounded by Myo/Nog cells. Some of these cell free areas contained a wrinkle in the capsule. Depletion of Myo/Nog cells eliminated cells expressing skeletal muscle proteins in 5-day cultures but did not affect cells immunoreactive for beaded filament proteins that accumulate in differentiating lens epithelial cells. Transforming growth factor-betas 1 and 2 that mediate an epithelial-mesenchymal transition, did not induce the expression of skeletal muscle proteins in lens cells following Myo/Nog cell depletion. This study demonstrates that Myo/Nog cells in anterior lens tissue removed from cataract patients have undergone a partial differentiation to skeletal muscle. Myo/Nog cells appear to be the source of skeletal muscle-like cells in explants of human lens tissue. Targeting Myo/Nog cells with the G8 antibody during cataract surgery may reduce the incidence of PCO.
Collapse
Affiliation(s)
- Jacquelyn Gerhart
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Marvin Greenbaum
- Lankenau Medical Center, Wynnewood, Pennsylvania, United States of America
| | - Victoria Scheinfeld
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Paul FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Mitchell Crawford
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Arturo Bravo-Nuevo
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Meghan Pitts
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Mindy George-Weinstein
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| |
Collapse
|
26
|
Mochizuki T, Masai I. The lens equator: a platform for molecular machinery that regulates the switch from cell proliferation to differentiation in the vertebrate lens. Dev Growth Differ 2014; 56:387-401. [PMID: 24720470 DOI: 10.1111/dgd.12128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/17/2023]
Abstract
The vertebrate lens is a transparent, spheroidal tissue, located in the anterior region of the eye that focuses visual images on the retina. During development, surface ectoderm associated with the neural retina invaginates to form the lens vesicle. Cells in the posterior half of the lens vesicle differentiate into primary lens fiber cells, which form the lens fiber core, while cells in the anterior half maintain a proliferative state as a monolayer lens epithelium. After formation of the primary fiber core, lens epithelial cells start to differentiate into lens fiber cells at the interface between the lens epithelium and the primary lens fiber core, which is called the equator. Differentiating lens fiber cells elongate and cover the old lens fiber core, resulting in growth of the lens during development. Thus, lens fiber differentiation is spatially regulated and the equator functions as a platform that regulates the switch from cell proliferation to cell differentiation. Since the 1970s, the mechanism underlying lens fiber cell differentiation has been intensively studied, and several regulatory factors that regulate lens fiber cell differentiation have been identified. In this review, we focus on the lens equator, where these regulatory factors crosstalk and cooperate to regulate lens fiber differentiation. Normally, lens epithelial cells must pass through the equator to start lens fiber differentiation. However, there are reports that when the lens epithelium structure is collapsed, lens fiber cell differentiation occurs without passing the equator. We also discuss a possible mechanism that represses lens fiber cell differentiation in lens epithelium.
Collapse
Affiliation(s)
- Toshiaki Mochizuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | | |
Collapse
|
27
|
Antosova B, Smolikova J, Borkovcova R, Strnad H, Lachova J, Machon O, Kozmik Z. Ectopic activation of Wnt/β-catenin signaling in lens fiber cells results in cataract formation and aberrant fiber cell differentiation. PLoS One 2013; 8:e78279. [PMID: 24205179 PMCID: PMC3813504 DOI: 10.1371/journal.pone.0078279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/09/2013] [Indexed: 12/04/2022] Open
Abstract
The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of β-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/β-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/β-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency.
Collapse
Affiliation(s)
- Barbora Antosova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jana Smolikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Romana Borkovcova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jitka Lachova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondrej Machon
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
28
|
New insights into the mechanism of lens development using zebra fish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:1-61. [PMID: 22559937 DOI: 10.1016/b978-0-12-394307-1.00001-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On the basis of recent advances in molecular biology, genetics, and live-embryo imaging, direct comparisons between zebra fish and human lens development are being made. The zebra fish has numerous experimental advantages for investigation of fundamental biomedical problems that are often best studied in the lens. The physical characteristics of visible light can account for the highly coordinated cell differentiation during formation of a beautifully transparent, refractile, symmetric optical element, the biological lens. The accessibility of the zebra fish lens for direct investigation during rapid development will result in new knowledge about basic functional mechanisms of epithelia-mesenchymal transitions, cell fate, cell-matrix interactions, cytoskeletal interactions, cytoplasmic crowding, membrane transport, cell adhesion, cell signaling, and metabolic specialization. The lens is well known as a model for characterization of cell and molecular aging. We review the recent advances in understanding vertebrate lens development conducted with zebra fish.
Collapse
|
29
|
Sousounis K, Tsonis PA. Patterns of gene expression in microarrays and expressed sequence tags from normal and cataractous lenses. Hum Genomics 2012; 6:14. [PMID: 23244575 PMCID: PMC3563465 DOI: 10.1186/1479-7364-6-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022] Open
Abstract
In this contribution, we have examined the patterns of gene expression in normal and cataractous lenses as presented in five different papers using microarrays and expressed sequence tags. The purpose was to evaluate unique and common patterns of gene expression during development, aging and cataracts.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| | | |
Collapse
|
30
|
Qiu X, Yang J, Liu T, Jiang Y, Le Q, Lu Y. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells. PLoS One 2012; 7:e32612. [PMID: 22403680 PMCID: PMC3293838 DOI: 10.1371/journal.pone.0032612] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/31/2012] [Indexed: 12/18/2022] Open
Abstract
The development of a technique to induce the transformation of somatic cells to a pluripotent state via the ectopic expression of defined transcription factors was a transformational event in the field of regenerative medicine. The development of this technique also impacted ophthalmology, as patient-specific induced pluripotent stemcells (iPSCs) may be useful resources for some ophthalmological diseases. The lens is a key refractive element in the eye that focuses images of the visual world onto the retina. To establish a new model for drug screening to treat lens diseases and investigating lens aging and development, we examined whether human lens epithelial cells (HLECs) could be induced into iPSCs and if lens-specific differentiation of these cells could be achieved under defined chemical conditions. We first efficiently reprogrammed HLECs from age-related cataract patients to iPSCs with OCT-4, SOX-2, and KLF-4. The resulting HLEC-derived iPS (HLE-iPS) colonies were indistinguishable from human ES cells with respect to morphology, gene expression, pluripotent marker expression and their ability to generate all embryonic germ-cell layers. Next, we performed a 3-step induction procedure: HLE-iPS cells were differentiated into large numbers of lens progenitor-like cells with defined factors (Noggin, BMP and FGF2), and we determined that these cells expressed lens-specific markers (PAX6, SOX2, SIX3, CRYAB, CRYAA, BFSP1, and MIP). In addition, HLE-iPS-derived lens cells exhibited reduced expression of epithelial mesenchymal transition (EMT) markers compared with human embryonic stem cells (hESCs) and fibroblast-derived iPSCs. Our study describes a highly efficient procedure for generating lens progenitor cells from cataract patient HLEC-derived iPSCs. These patient-derived pluripotent cells provide a valuable model for studying the developmental and molecular biological mechanisms that underlie cell determination in lens development and cataract pathophysiology.
Collapse
Affiliation(s)
- Xiaodi Qiu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jin Yang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Tianjin Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy for Sciences, Shanghai, People's Republic of China
| | - Yongxiang Jiang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Qihua Le
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yi Lu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
31
|
The lens in focus: a comparison of lens development in Drosophila and vertebrates. Mol Genet Genomics 2011; 286:189-213. [PMID: 21877135 DOI: 10.1007/s00438-011-0643-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 12/24/2022]
Abstract
The evolution of the eye has been a major subject of study dating back centuries. The advent of molecular genetics offered the surprising finding that morphologically distinct eyes rely on conserved regulatory gene networks for their formation. While many of these advances often stemmed from studies of the compound eye of the fruit fly, Drosophila melanogaster, and later translated to discoveries in vertebrate systems, studies on vertebrate lens development far outnumber those in Drosophila. This may be largely historical, since Spemann and Mangold's paradigm of tissue induction was discovered in the amphibian lens. Recent studies on lens development in Drosophila have begun to define molecular commonalities with the vertebrate lens. Here, we provide an overview of Drosophila lens development, discussing intrinsic and extrinsic factors controlling lens cell specification and differentiation. We then summarize key morphological and molecular events in vertebrate lens development, emphasizing regulatory factors and networks strongly associated with both systems. Finally, we provide a comparative analysis that highlights areas of research that would help further clarify the degree of conservation between the formation of dioptric systems in invertebrates and vertebrates.
Collapse
|
32
|
Lovicu FJ, McAvoy JW, de Iongh RU. Understanding the role of growth factors in embryonic development: insights from the lens. Philos Trans R Soc Lond B Biol Sci 2011; 366:1204-18. [PMID: 21402581 PMCID: PMC3061110 DOI: 10.1098/rstb.2010.0339] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Growth factors play key roles in influencing cell fate and behaviour during development. The epithelial cells and fibre cells that arise from the lens vesicle during lens morphogenesis are bathed by aqueous and vitreous, respectively. Vitreous has been shown to generate a high level of fibroblast growth factor (FGF) signalling that is required for secondary lens fibre differentiation. However, studies also show that FGF signalling is not sufficient and roles have been identified for transforming growth factor-β and Wnt/Frizzled families in regulating aspects of fibre differentiation. In the case of the epithelium, key roles for Wnt/β-catenin and Notch signalling have been demonstrated in embryonic development, but it is not known if other factors are required for its formation and maintenance. This review provides an overview of current knowledge about growth factor regulation of differentiation and maintenance of lens cells. It also highlights areas that warrant future study.
Collapse
Affiliation(s)
- F. J. Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW 2006, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW 2001, Australia
- Vision Cooperative Research Centre, Sydney, Australia
| | - J. W. McAvoy
- Save Sight Institute, University of Sydney, Sydney, NSW 2001, Australia
- Vision Cooperative Research Centre, Sydney, Australia
| | - R. U. de Iongh
- Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
33
|
Su SP, McArthur JD, Truscott RJW, Aquilina JA. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:647-56. [PMID: 21447408 DOI: 10.1016/j.bbapap.2011.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/14/2011] [Accepted: 03/22/2011] [Indexed: 11/30/2022]
Abstract
The optical properties of the lens are dependent upon the integrity of proteins within the fiber cells. During aging, crystallins, the major intra-cellular structural proteins of the lens, aggregate and become water-insoluble. Modifications to crystallins and the lens intermediate filaments have been implicated in this phenomenon. In this study, we examined changes to, and interactions between, human lens crystallins and intermediate filament proteins in lenses from a variety of age groups (0-86years). Among the lens-specific intermediate filament proteins, filensin was extensively cleaved in all postnatal lenses, with truncated products of various sizes being found in both the lens cortical and nuclear extracts. Phakinin was also truncated and was not detected in the lens nucleus. The third major intermediate filament protein, vimentin, remained intact in lens cortical fiber cells across the age range except for an 86year lens, where a single ~49kDa breakdown product was observed. An αB-crystallin fusion protein (maltose-binding protein-αB-crystallin) was found to readily exchange subunits with endogenous α-crystallin, and following mild heat stress, to bind to filensin, phakinin and vimentin and to several of their truncated products. Tryptic digestion of a truncated form of filensin suggested that the binding site for α-crystallin may be in the N-terminal region. The presence of significant amounts of small peptides derived from γS- and βB1-crystallins in the water-insoluble fraction of the lens indicates that these interact tightly with cytoskeletal or membrane components. Interestingly, water-soluble complexes (~40kDa) contained predominantly γS- and βB1-crystallins, suggesting that cross-linking is an alternative pathway for modified β- and γ-crystallins in the lens.
Collapse
Affiliation(s)
- Shih-Ping Su
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | |
Collapse
|
34
|
Abstract
Lens regeneration among vertebrates is basically restricted to some amphibians. The most notable cases are the ones that occur in premetamorphic frogs and in adult newts. Frogs and newts regenerate their lens in very different ways. In frogs the lens is regenerated by transdifferentiation of the cornea and is limited only to a time before metamorphosis. On the other hand, regeneration in newts is mediated by transdifferentiation of the pigment epithelial cells of the dorsal iris and is possible in adult animals as well. Thus, the study of both systems could provide important information about the process. Molecular tools have been developed in frogs and recently also in newts. Thus, the process has been studied at the molecular and cellular levels. A synthesis describing both systems was long due. In this review we describe the process in both Xenopus and the newt. The known molecular mechanisms are described and compared.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
35
|
Imai F, Yoshizawa A, Fujimori-Tonou N, Kawakami K, Masai I. The ubiquitin proteasome system is required for cell proliferation of the lens epithelium and for differentiation of lens fiber cells in zebrafish. Development 2010; 137:3257-68. [PMID: 20724448 DOI: 10.1242/dev.053124] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the developing vertebrate lens, epithelial cells differentiate into fiber cells, which are elongated and flat in shape and form a multilayered lens fiber core. In this study, we identified the zebrafish volvox (vov) mutant, which shows defects in lens fiber differentiation. In the vov mutant, lens epithelial cells fail to proliferate properly. Furthermore, differentiating lens fiber cells do not fully elongate, and the shape and position of lens fiber nuclei are affected. We found that the vov mutant gene encodes Psmd6, the subunit of the 26S proteasome. The proteasome regulates diverse cellular functions by degrading polyubiquitylated proteins. Polyubiquitylated proteins accumulate in the vov mutant. Furthermore, polyubiquitylation is active in nuclei of differentiating lens fiber cells, suggesting roles of the proteasome in lens fiber differentiation. We found that an E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is involved in lens defects in the vov mutant. These data suggest that the ubiquitin proteasome system is required for cell proliferation of lens epithelium and for the differentiation of lens fiber cells in zebrafish.
Collapse
Affiliation(s)
- Fumiyasu Imai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology (OIST), Onna, Okinawa, Japan
| | | | | | | | | |
Collapse
|
36
|
Yang C, Yang Y, Brennan L, Bouhassira EE, Kantorow M, Cvekl A. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. FASEB J 2010; 24:3274-83. [PMID: 20410439 DOI: 10.1096/fj.10-157255] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The eye lens is an encapsulated avascular organ whose function is to focus light on the retina. Lens comprises a single progenitor cell lineage in multiple states of differentiation. Disruption of lens function leading to protein aggregation and opacity results in age-onset cataract. Cataract is a complex disease involving genetic and environmental factors. Here, we report the development of a new 3-stage system that differentiates human embryonic stem cells (hESCs) into large quantities of lens progenitor-like cells and differentiated 3-dimensional lentoid bodies. Inhibition of BMP signaling by noggin triggered differentiation of hESCs toward neuroectoderm. Subsequent reactivation of BMP and activation of FGF signaling stimulated formation of lens progenitor cells marked by the expression of PAX6 and alpha-crystallins. The formation of lentoid bodies was most efficient in the presence of FGF2 and Wnt-3a, yielding approximately 1000 lentoid bodies/30-mm well. Lentoid bodies expressed and accumulated lens-specific markers including alphaA-, alphaB-, beta-, and gamma-crystallins, filensin, CP49, and MIP/aquaporin 0. Collectively, these studies identify a novel procedure to generate lens cells from hESCs that can be applied for studies of lens differentiation and cataractogenesis using induced pluripotent stem (iPS) cells derived from various cataract patients.
Collapse
Affiliation(s)
- Chunbo Yang
- Department of Ophthalmology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
37
|
Lois N, Reid B, Song B, Zhao M, Forrester J, McCaig C. Electric currents and lens regeneration in the rat. Exp Eye Res 2009; 90:316-23. [PMID: 19931246 DOI: 10.1016/j.exer.2009.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 10/13/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
We studied the process of lens regeneration in the rat following an extracapsular lens extraction preserving the anterior lens capsule and anterior lens epithelium. We assessed clinically the clarity of the newly regenerated lens, evaluated changes in the lens electrical currents following surgery and during the regeneration process and correlated these changes with findings on light microscopy. Protein analysis of the regenerated lens was also undertaken. Experiments were performed in 41 Sprague-Dawley rats, sacrificed at 0, 2, 4 and 8 weeks postoperatively. Our results showed that complete lens regeneration occurred 8 weeks postoperatively only if the anterior epithelium was preserved and the lens capsule was closed surgically. Lens electrical currents, altered following surgery, recovered in parallel with the process of regeneration of the lens. The newly regenerated lens was optically clear and biochemical analysis revealed a pattern of protein expression resembling that observed during lens development. In conclusion, complete lens regeneration occurs in the rat and it is possible that lens electrical signals, together with other cues, may play an important role in this process.
Collapse
Affiliation(s)
- Noemi Lois
- The Department of Ophthalmology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Gerhart J, Pfautz J, Neely C, Elder J, DuPrey K, Menko AS, Knudsen K, George-Weinstein M. Noggin producing, MyoD-positive cells are crucial for eye development. Dev Biol 2009; 336:30-41. [PMID: 19778533 DOI: 10.1016/j.ydbio.2009.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 11/15/2022]
Abstract
A subpopulation of cells expresses MyoD mRNA and the cell surface G8 antigen in the epiblast prior to the onset of gastrulation. When an antibody to the G8 antigen was applied to the epiblast, labeled cells were later found in the ocular primordia and muscle and non-muscle forming tissues of the eyes. In the lens, retina and periocular mesenchyme, G8-positive cells synthesized MyoD mRNA and the bone morphogenetic protein inhibitor Noggin. MyoD expressing cells were ablated in the epiblast by labeling them with the G8 MAb and lysing them with complement. Their ablation in the epiblast resulted in eye defects, including anopthalmia, micropthalmia, altered pigmentation and malformations of the lens and/or retina. The right eye was more severely affected than the left eye. The asymmetry of the eye defects in ablated embryos correlated with differences in the number of residual Noggin producing, MyoD-positive cells in ocular tissues. Exogenously supplied Noggin compensated for the ablated epiblast cells. This study demonstrates that MyoD expressing cells serve as a Noggin delivery system to regulate the morphogenesis of the lens and optic cup.
Collapse
Affiliation(s)
- Jacquelyn Gerhart
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Malloch EL, Perry KJ, Fukui L, Johnson VR, Wever J, Beck CW, King MW, Henry JJ. Gene expression profiles of lens regeneration and development in Xenopus laevis. Dev Dyn 2009; 238:2340-56. [PMID: 19681139 PMCID: PMC2773617 DOI: 10.1002/dvdy.21998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Seven hundred and thirty-four unique genes were recovered from a cDNA library enriched for genes up-regulated during the process of lens regeneration in the frog Xenopus laevis. The sequences represent transcription factors, proteins involved in RNA synthesis/processing, components of prominent cell signaling pathways, genes involved in protein processing, transport, and degradation (e.g., the ubiquitin/proteasome pathway), matrix metalloproteases (MMPs), as well as many other proteins. The findings implicate specific signal transduction pathways in the process of lens regeneration, including the FGF, TGF-beta, MAPK, Retinoic acid, Wnt, and hedgehog signaling pathways, which are known to play important roles in eye/lens development and regeneration in various systems. In situ hybridization revealed that the majority of genes recovered are expressed during embryogenesis, including in eye tissues. Several novel genes specifically expressed in lenses were identified. The suite of genes was compared to those up-regulated in other regenerating tissues/organisms, and a small degree of overlap was detected.
Collapse
Affiliation(s)
- Erica L. Malloch
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Kimberly J. Perry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Lisa Fukui
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Verity R. Johnson
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Jason Wever
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Caroline W. Beck
- University of Otago, Department of Zoology, 340 Great King Street, Dunedin, New Zealand
| | - Michael W. King
- Indiana University School of Medicine and Center for Regenerative Biology and Medicine, Terre Haute, IN 47809
| | - Jonathan J. Henry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| |
Collapse
|
40
|
Rivera C, Yamben IF, Shatadal S, Waldof M, Robinson ML, Griep AE. Cell-autonomous requirements for Dlg-1 for lens epithelial cell structure and fiber cell morphogenesis. Dev Dyn 2009; 238:2292-308. [PMID: 19623611 PMCID: PMC3016059 DOI: 10.1002/dvdy.22036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cell polarity and adhesion are thought to be key determinants in organismal development. In Drosophila, discs large (dlg) has emerged as an important regulator of epithelial cell proliferation, adhesion, and polarity. Herein, we investigated the role of the mouse homolog of dlg (Dlg-1) in the development of the mouse ocular lens. Tissue-specific ablation of Dlg-1 throughout the lens early in lens development led to an expansion and disorganization of the epithelium that correlated with changes in the distribution of adhesion and polarity factors. In the fiber cells, differentiation defects were observed. These included alterations in cell structure and the disposition of cell adhesion/cytoskeletal factors, delay in denucleation, and reduced levels of alpha-catenin, pERK1/2, and MIP26. These fiber cell defects were recapitulated when Dlg-1 was disrupted only in fiber cells. These results suggest that Dlg-1 acts in a cell autonomous manner to regulate epithelial cell structure and fiber cell differentiation.
Collapse
Affiliation(s)
- Charlene Rivera
- Department of Anatomy University of Wisconsin School of Medicine and Public Health Madison, WI 53706
| | - Idella F. Yamben
- Department of Anatomy University of Wisconsin School of Medicine and Public Health Madison, WI 53706
| | - Shalini Shatadal
- Department of Anatomy University of Wisconsin School of Medicine and Public Health Madison, WI 53706
| | - Malinda Waldof
- Department of Anatomy University of Wisconsin School of Medicine and Public Health Madison, WI 53706
| | | | - Anne E. Griep
- Department of Anatomy University of Wisconsin School of Medicine and Public Health Madison, WI 53706
| |
Collapse
|
41
|
Abstract
The ocular lens assembles two separate intermediate filament systems sequentially with differentiation. Canonical 8-11 nm IFs composed of Vimentin are assembled in lens epithelial cells and younger fiber cells, while the fiber cell-specific beaded filaments are switched on as fiber cell elongation initiates. Some of the key features of both filament systems are reviewed.
Collapse
Affiliation(s)
- Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Chepelinsky AB. Structural function of MIP/aquaporin 0 in the eye lens; genetic defects lead to congenital inherited cataracts. Handb Exp Pharmacol 2008:265-97. [PMID: 19096783 DOI: 10.1007/978-3-540-79885-9_14] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Aquaporin 0 (AQP0) was originally characterized as a membrane intrinsic protein, specifically expressed in the lens fibers of the ocular lens and designated MIP, for major intrinsic protein of the lens. Once the gene was cloned, an internal repeat was identified, encoding for the amino acids Asp-Pro-Ala, the NPA repeat. Shortly, the MIP gene family was emerging, with members being characterized in mammals, insects, and plants. Once Peter Agre's laboratory developed a functional assay for water channels, the MIP family became the aquaporin family and MIP became known as aquaporin 0. Besides functioning as a water channel, aquaporin 0 also plays a structural role, being required for maintaining the transparency and optical accommodation of the ocular lens. Mutations in the AQP0 gene in human and mice result in genetic cataracts; deletion of the MIP/AQP0 gene in mice results in lack of suture formation required for maintenance of the lens fiber architecture, resulting in perturbed accommodation and focus properties of the ocular lens. Crystallography studies support the notion of the double function of aquaporin 0 as a water channel (open configuration) or adhesion molecule (closed configuration) in the ocular lens fibers. The functions of MIP/AQP0, both as a water channel and an adhesive molecule in the lens fibers, contribute to the narrow intercellular space of the lens fibers that is required for lens transparency and accommodation.
Collapse
Affiliation(s)
- Ana B Chepelinsky
- National Institutes of Health, National Eye Institute, Bldg. 31, Room 6A-32, Bethesda, MD, 20892-2510, USA.
| |
Collapse
|
43
|
Chen Y, Stump RJ, Lovicu FJ, Shimono A, McAvoy JW. Wnt signaling is required for organization of the lens fiber cell cytoskeleton and development of lens three-dimensional architecture. Dev Biol 2008; 324:161-76. [PMID: 18824165 PMCID: PMC2651430 DOI: 10.1016/j.ydbio.2008.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 12/12/2022]
Abstract
How an organ develops its characteristic shape is a major issue. This is particularly critical for the eye lens as its function depends on having appropriately ordered three-dimensional cellular architecture. Recent in vitro studies indicate that Wnt signaling plays key roles in regulating morphological events in FGF-induced fiber cell differentiation in the mammalian lens. To further investigate this the Wnt signaling antagonist, secreted frizzled-related protein 2 (Sfrp2), was overexpressed in lens fiber cells of transgenic mice. In these mice fiber cell elongation was attenuated and individual fibers exhibited irregular shapes and consequently did not align or pack regularly; microtubules, microfilaments and intermediate filaments were clearly disordered in these fibers. Furthermore, a striking feature of transgenic lenses was that fibers did not develop the convex curvature typically seen in normal lenses. This appears to be related to a lack of protrusive processes that are required for directed migratory activity at their apical and basal tips as well as for the formation of interlocking processes along their lateral margins. Components of the Wnt/Planar Cell Polarity (PCP) pathway were downregulated or inhibited. Taken together this supports a role for Wnt/PCP signaling in orchestrating the complex organization and dynamics of the fiber cell cytoskeleton.
Collapse
Affiliation(s)
- Yongjuan Chen
- Save Sight Institute, The University of Sydney, NSW 2001, Australia
| | - Richard J.W. Stump
- Save Sight Institute, The University of Sydney, NSW 2001, Australia
- Vision Cooperative Research Centre, Sydney, Australia
| | - Frank J. Lovicu
- Save Sight Institute, The University of Sydney, NSW 2001, Australia
- Vision Cooperative Research Centre, Sydney, Australia
- Anatomy and Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Akihiko Shimono
- Oncology Research Institute, National University of Singapore, Singapore 117456
| | - John W. McAvoy
- Save Sight Institute, The University of Sydney, NSW 2001, Australia
- Vision Cooperative Research Centre, Sydney, Australia
| |
Collapse
|
44
|
Cain S, Martinez G, Kokkinos MI, Turner K, Richardson RJ, Abud HE, Huelsken J, Robinson ML, de Iongh RU. Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol 2008; 321:420-33. [PMID: 18652817 DOI: 10.1016/j.ydbio.2008.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 06/27/2008] [Accepted: 07/01/2008] [Indexed: 11/18/2022]
Abstract
Recent studies implicate Wnt/beta-catenin signaling in lens differentiation (Stump, R. J., et al., 2003. A role for Wnt/beta-catenin signaling in lens epithelial differentiation. Dev Biol;259:48-61). Beta-catenin is a component of adherens junctions and functions as a transcriptional activator in canonical Wnt signaling. We investigated the effects of Cre/LoxP-mediated deletion of beta-catenin during lens development using two Cre lines that specifically deleted beta-catenin in whole lens or only in differentiated fibers, from E13.5. We found that beta-catenin was required in lens epithelium and during early fiber differentiation but appeared to be redundant in differentiated fiber cells. Complete loss of beta-catenin resulted in an abnormal and deficient epithelial layer with loss of E-cadherin and Pax6 expression as well as abnormal expression of c-Maf and p57(kip2) but not Prox1. There was also disrupted fiber cell differentiation, characterized by poor cell elongation, decreased beta-crystallin expression, epithelial cell cycle arrest at G(1)-S transition and premature cell cycle exit. Despite cell cycle arrest there was no induction of apoptosis. Mutant fiber cells displayed altered apical-basal polarity as evidenced by altered distribution of the tight junction protein, ZO1, disruption of apical actin filaments and abnormal deposition of extracellular matrix, resulting in a deficient lens capsule. Loss of beta-catenin also affected the formation of adhesion junctions as evidenced by dissociation of N-cadherin and F-actin localization in differentiating fiber cells. However, loss of beta-catenin from terminally differentiating fibers had no apparent effects on adhesion junctions between adjacent embryonic fibers. These data indicate that beta-catenin plays distinct functions during lens fiber differentiation and is involved in both Wnt signaling and adhesion-related mechanisms that regulate lens epithelium and early fiber differentiation.
Collapse
Affiliation(s)
- Sarah Cain
- Ocular Development Laboratory, Anatomy and Cell Biology Department, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Maddala R, Reneker LW, Pendurthi B, Rao PV. Rho GDP dissociation inhibitor-mediated disruption of Rho GTPase activity impairs lens fiber cell migration, elongation and survival. Dev Biol 2008; 315:217-31. [PMID: 18234179 PMCID: PMC2364637 DOI: 10.1016/j.ydbio.2007.12.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/06/2023]
Abstract
To explore the role of the Rho GTPases in lens morphogenesis, we overexpressed bovine Rho GDP dissociation inhibitor (Rho GDI alpha), which serves as a negative regulator of Rho, Rac and Cdc42 GTPase activity, in a lens-specific manner in transgenic mice. This was achieved using a chimeric promoter of delta-crystallin enhancer and alpha A-crystallin, which is active at embryonic day 12. Several individual transgenic (Tg) lines were obtained, and exhibited ocular specific phenotype comprised of microphthalmic eyes with lens opacity. The overexpression of bovine Rho GDI alpha disrupted membrane translocation of Rho, Rac and Cdc42 GTPases in Tg lenses. Transgenic lenses also revealed abnormalities in the migration pattern, elongation and organization of lens fibers. These changes appeared to be associated with impaired organization of the actin cytoskeleton and cell-cell adhesions. At E14.5, the size of the Rho GDI alpha Tg lenses was larger compared to wild type (WT) and the central lens epithelium and differentiating fibers exhibited an abnormal increase of bromo-deoxy-uridine incorporation. Postnatal Tg eyes, however, were much smaller in size compared to WT eyes, revealing increased apoptosis in the disrupted lens fibers. Taken together, these data demonstrate a critical role for Rho GTPase-dependent signaling pathways in processes underlying morphogenesis, fiber cell migration, elongation and survival in the developing lens.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
46
|
O'Connor MD, Wederell ED, de Iongh R, Lovicu FJ, McAvoy JW. Generation of transparency and cellular organization in lens explants. Exp Eye Res 2008; 86:734-45. [PMID: 18343368 DOI: 10.1016/j.exer.2008.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/02/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
Abstract
The lens grows via the proliferation and differentiation of lens epithelial cells into lens fibres. This differentiation process, thought to be controlled by factors present in the vitreous fluid, generates tightly-packed, parallel-aligned fibre cells that confer transparency to the lens. Using lens epithelial-cell explants we examined how explant orientation and growth factor treatment can affect cellular arrangement and explant transparency. Fibre cell differentiation was induced in lens explants by culturing cells with fibroblast growth factor (FGF) or bovine vitreous. Cell shape and arrangement was investigated using confocal microscopy, electron microscopy, immunofluorescence and in situ hybridization. Explant transparency was measured using light microscopy. Confocal microscopy demonstrated that explant orientation determined cellular arrangement, irrespective of the differentiation stimuli used. In explants where epithelial cells were confined between their normal basement membrane (the lens capsule) and the base of the culture dish, the cells became elongated, thin and parallel-aligned. In contrast, in explants cultured with cells directly exposed to the culture media the cells appeared to be shorter, globular and haphazardly arranged. FGF initiated the differentiation of most lens epithelial cells; however, abnormal cellular morphologies developed with subsequent culture of the cells. As a result, the transparency of these explants decreased with prolonged culture. Interestingly, explants cultured with vitreous (i) did not develop abnormal cellular morphologies, (ii) contained two distinct cell types (retained epithelial cells and newly differentiated fibre cells) and (iii) remained transparent throughout the lengthy culture period. In summary, we have developed a culture system that generates a transparent tissue with a cellular arrangement resembling that of the lens in vivo. We have shown that while FGF and vitreous initiate differentiation within this system, better maintenance of fibre cell integrity, more appropriate regulation of molecular events, and better maintenance of explant transparency was achieved in the presence of vitreous. This system offers an opportunity to further investigate the process of lens fibre cell differentiation as well as a means of better identifying the factors that contribute to the development of tissue transparency in vitro.
Collapse
Affiliation(s)
- Michael D O'Connor
- Save Sight Institute and Department of Clinical Ophthalmology & Eye Health, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
47
|
Long AC, Agler A, Colitz CMH, Zhang J, Hayek MG, Failla ML, Bomser JA. Isolation and characterization of primary canine lens epithelial cells. Vet Ophthalmol 2008; 11:38-42. [DOI: 10.1111/j.1463-5224.2007.00599.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Expression of PTPIP51 during mouse eye development. Histochem Cell Biol 2007; 129:345-56. [DOI: 10.1007/s00418-007-0361-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2007] [Indexed: 12/14/2022]
|
49
|
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
50
|
Jamieson RV, Farrar N, Stewart K, Perveen R, Mihelec M, Carette M, Grigg JR, McAvoy JW, Lovicu FJ, Tam PPL, Scambler P, Lloyd IC, Donnai D, Black GCM. Characterization of a familial t(16;22) balanced translocation associated with congenital cataract leads to identification of a novel gene, TMEM114, expressed in the lens and disrupted by the translocation. Hum Mutat 2007; 28:968-77. [PMID: 17492639 DOI: 10.1002/humu.20545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Molecular characterization of chromosomal rearrangements is a powerful resource in identification of genes associated with monogenic disorders. We describe the molecular characterization of a balanced familial chromosomal translocation, t(16;22)(p13.3;q11.2), segregating with congenital lamellar cataract. This led to the discovery of a cluster of lens-derived expressed sequence tags (ESTs) close to the 16p13.3 breakpoint. This region harbors a locus associated with cataract and microphthalmia. Long-range PCR and 16p13.3 breakpoint sequencing identified genomic sequence in a human genome sequence gap, and allowed identification of a novel four-exon gene, designated TMEM114, which encodes a predicted protein of 223 amino acids. The breakpoint lies in the promoter region of TMEM114 and separates the gene from predicted eye-specific upstream transcription factor binding sites. There is sequence conservation among orthologs down to zebrafish. The protein is predicted to contain four transmembrane domains with homology to the lens intrinsic membrane protein, LIM2 (also known as MP20), in the PMP-22/EMP/MP20 family. TMEM114 mutation screening in 130 congenital cataract patients revealed missense mutations leading to the exchange of highly-conserved amino acids in the first extracellular domain of the protein (p.I35T, p.F106L) in two separate patients and their reportedly healthy sibling and mother, respectively. In the lens, Tmem114 shows expression in the lens epithelial cells extending into the transitional zone where early fiber differentiation occurs. Our findings implicate dysregulation of expression of this novel human gene, TMEM114, in mammalian cataract formation.
Collapse
Affiliation(s)
- Robyn V Jamieson
- Academic Unit of Medical Genetics and Regional Genetic Service, University of Manchester, St. Mary's Hospital, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|