1
|
Wang G, Zhang D, He Z, Mao B, Hu X, Chen L, Yang Q, Zhou Z, Zhang Y, Linghu K, Tang C, Xu Z, Liu D, Song J, Wang H, Lin Y, Li R, Lin JW, Chen L. Machine learning-based prediction reveals kinase MAP4K4 regulates neutrophil differentiation through phosphorylating apoptosis-related proteins. PLoS Comput Biol 2025; 21:e1012877. [PMID: 40096134 PMCID: PMC11957395 DOI: 10.1371/journal.pcbi.1012877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/31/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Neutrophils, an essential innate immune cell type with a short lifespan, rely on continuous replenishment from bone marrow (BM) precursors. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the molecular regulators involved in the differentiation process remain poorly understood. Here we developed a random forest-based machine-learning pipeline, NeuRGI (Neutrophil Regulatory Gene Identifier), which utilized Positive-Unlabeled Learning (PU-learning) and neural network-based in silico gene knockout to identify neutrophil regulators. We interrogated features including gene expression dynamics, physiological characteristics, pathological relatedness, and gene conservation for the model training. Our identified pipeline leads to identifying Mitogen-Activated Protein Kinase-4 (MAP4K4) as a novel neutrophil differentiation regulator. The loss of MAP4K4 in hematopoietic stem cells and progenitors in mice induced neutropenia and impeded the differentiation of neutrophils in the bone marrow. By modulating the phosphorylation level of proteins involved in cell apoptosis, such as STAT5A, MAP4K4 delicately regulates cell apoptosis during the process of neutrophil differentiation. Our work presents a novel regulatory mechanism in neutrophil differentiation and provides a robust prediction model that can be applied to other cellular differentiation processes.
Collapse
Affiliation(s)
- Guihua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhifeng He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingxin Yang
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yating Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kepan Linghu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Tang
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zijie Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Defu Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junwei Song
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiying Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yishan Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruihan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing-Wen Lin
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
3
|
Yoon JG, Yu JW, Shim KW, Kim YO, Lee MG. Syndromic craniosynostosis caused by a novel missense variant in MAP4K4: Expanding the genotype-phenotype relationship in RASopathies. Clin Genet 2024; 106:199-203. [PMID: 38679877 DOI: 10.1111/cge.14539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
RASopathies represent a distinct class of neurodevelopmental syndromes caused by germline variants in the Ras/MAPK pathways. Recently, a novel disease-gene association was implicated in MAPK kinase kinase kinase 4 (MAP4K4), which regulates the upstream signals of the MAPK pathways. However, to our knowledge, only two studies have reported the genotype-phenotype relationships in the MAP4K4-related disorder. This study reports on a Korean boy harboring a novel de novo missense variant in MAP4K4 (NM_001242559:c.569G>T, p.Gly190Val), revealed by trio exome sequencing, and located in the hotspot of the protein kinase domain. The patient exhibited various clinical features, including craniofacial dysmorphism, language delay, congenital heart defects, genitourinary anomalies, and sagittal craniosynostosis. Our study expands the phenotypic association of the MAP4K4-related disorder to include syndromic craniosynostosis, thereby providing further insights into the role of the RAS/MAPK pathways in the development of premature fusion of calvarial sutures.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Laboratory Medicine, Yonsei University College of Medicine and Gangnam Severance Hospital, Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Woo Yu
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu Won Shim
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Oock Kim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Ampadu F, Awasthi V, Joshi AD. Role of Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Signaling in Liver and Metabolic Diseases. J Pharmacol Exp Ther 2024; 390:233-239. [PMID: 38844365 PMCID: PMC11264251 DOI: 10.1124/jpet.124.002065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
MAP4K4 is a serine/threonine protein kinase belonging to the germinal center kinase subgroup of sterile 20 protein family of kinases. MAP4K4 has been involved in regulating multiple biologic processes and a plethora of pathologies, including systemic inflammation, cardiovascular diseases, cancers, and metabolic and hepatic diseases. Recently, multiple reports have indicated the upregulation of MAP4K4 expression and signaling in hyperglycemia and liver diseases. This review provides an overview of our current knowledge of MAP4K4 structure and expression, as well as its regulation and signaling, specifically in metabolic and hepatic diseases. Reviewing these promising studies will enrich our understanding of MAP4K4 signaling pathways and, in the future, will help us design innovative therapeutic interventions against metabolic and liver diseases using MAP4K4 as a target. SIGNIFICANCE STATEMENT: Although most studies on the involvement of MAP4K4 in human pathologies are related to cancers, only recently its role in liver and other metabolic diseases is beginning to unravel. This mini review discusses recent advancements in MAP4K4 biology within the context of metabolic dysfunction and comprehensively characterizes MAP4K4 as a clinically relevant therapeutic target against liver and metabolic diseases.
Collapse
Affiliation(s)
- Felix Ampadu
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Aditya D Joshi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
5
|
Juin A, Spence HJ, Machesky LM. Dichotomous role of the serine/threonine kinase MAP4K4 in pancreatic ductal adenocarcinoma onset and metastasis through control of AKT and ERK pathways. J Pathol 2024; 262:454-466. [PMID: 38229581 DOI: 10.1002/path.6248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
MAP4K4 is a serine/threonine kinase of the STE20 family involved in the regulation of actin cytoskeleton dynamics and cell motility. It has been proposed as a target of angiogenesis and inhibitors show potential in cardioprotection. MAP4K4 also mediates cell invasion in vitro, is overexpressed in various types of cancer, and is associated with poor patient prognosis. Recently, MAP4K4 has been shown to be overexpressed in pancreatic cancer, but its role in tumour initiation, progression, and metastasis is unknown. Here, using the KrasG12D Trp53R172H Pdx1-Cre (KPC) mouse model of pancreatic ductal adenocarcinoma (PDAC), we show that deletion of Map4k4 drives tumour initiation and progression. Moreover, we report that the acceleration of tumour onset is also associated with an overactivation of ERK and AKT, two major downstream effectors of KRAS, in vitro and in vivo. In contrast to the accelerated tumour onset caused by loss of MAP4K4, we observed a reduction in metastatic burden with both the KPC model and in an intraperitoneal transplant assay indicating a major role of MAP4K4 in metastatic seeding. In summary, our study sheds light on the dichotomous role of MAP4K4 in the initiation of PDAC onset, progression, and metastatic dissemination. It also identifies MAP4K4 as a possible druggable target against pancreatic cancer spread, but with the caveat that targeting MAP4K4 might accelerate early tumorigenesis. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Laura M Machesky
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Ding L, Jiang L, Xing Z, Dai H, Wei J. Map4k4 is up-regulated and modulates granulosa cell injury and oxidative stress in polycystic ovary syndrome via activating JNK/c-JUN pathway: An experimental study. Int Immunopharmacol 2023; 124:110841. [PMID: 37647682 DOI: 10.1016/j.intimp.2023.110841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
The regulatory mechanism on granulosa cells (GCs) oxidative injury is becoming increasingly important in polycystic ovary syndrome (PCOS) studies. Serine/threonine kinase mitogen-activated protein 4 kinase 4 (Map4k4) is linked with oxidative injury and possibly associated with premature ovarian failure and ovarian dysgenesis. Herein, we investigated the function and mechanism of Map4k4 in a PCOS rat model. A microarray from GEO database identified Map4k4 was up-regulated in the ovarian of PCOS rats, and functional enrichments suggested that oxidative stress-associated changes are involved. We verified the raised Map4k4 expression in an established PCOS rat model and also in the isolated PCOS-GCs, which were consistent with the microarray data. Map4k4 knockdown in vivo contributed to regular estrous cycle, restrained steroid concentrations and ovarian injury in PCOS rats. Both Map4k4 silencing in vivo and in vitro attenuated the PCOS-related GC oxidative stress and apoptosis. Mechanically, Map4k4 activated the JNK/c-JUN signaling pathway. Importantly, a JNK agonist restored the suppressive effects of Map4k4 silencing on PCOS-induced granulosa cell injury and oxidative stress. Besides, Map4k4 may be a target gene of miR-185-5p. In conclusion, Map4k4, a potential target of miR-185-5p, is up-regulated and induces ovarian GC oxidative injury by activating JNK/c-JUN pathway in PCOS. The Map4k4/JNK/c-JUN mechanism may provide a new idea on the treatment of PCOS.
Collapse
Affiliation(s)
- Lifeng Ding
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ze Xing
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huixu Dai
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingzan Wei
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
George N, Bhandari P, Shruptha P, Jayaram P, Chaudhari S, Satyamoorthy K. Multidimensional outlook on the pathophysiology of cervical cancer invasion and metastasis. Mol Cell Biochem 2023; 478:2581-2606. [PMID: 36905477 PMCID: PMC10006576 DOI: 10.1007/s11010-023-04686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Cervical cancer being one of the primary causes of high mortality rates among women is an area of concern, especially with ineffective treatment strategies. Extensive studies are carried out to understand various aspects of cervical cancer initiation, development and progression; however, invasive cervical squamous cell carcinoma has poor outcomes. Moreover, the advanced stages of cervical cancer may involve lymphatic circulation with a high risk of tumor recurrence at distant metastatic sites. Dysregulation of the cervical microbiome by human papillomavirus (HPV) together with immune response modulation and the occurrence of novel mutations that trigger genomic instability causes malignant transformation at the cervix. In this review, we focus on the major risk factors as well as the functionally altered signaling pathways promoting the transformation of cervical intraepithelial neoplasia into invasive squamous cell carcinoma. We further elucidate genetic and epigenetic variations to highlight the complexity of causal factors of cervical cancer as well as the metastatic potential due to the changes in immune response, epigenetic regulation, DNA repair capacity, and cell cycle progression. Our bioinformatics analysis on metastatic and non-metastatic cervical cancer datasets identified various significantly and differentially expressed genes as well as the downregulation of potential tumor suppressor microRNA miR-28-5p. Thus, a comprehensive understanding of the genomic landscape in invasive and metastatic cervical cancer will help in stratifying the patient groups and designing potential therapeutic strategies.
Collapse
Affiliation(s)
- Neena George
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Poonam Bhandari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padival Shruptha
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Huang H, Kuang X, Zou Y, Zeng J, Du H, Tang H, Long C, Mao Y, Yu X, Wen C, Yan J, Shen H. MAP4K4 is involved in the neuronal development of retinal photoreceptors. Exp Eye Res 2023; 233:109524. [PMID: 37290629 DOI: 10.1016/j.exer.2023.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) is a potential regulator of photoreceptor development. To investigate the mechanisms underlying MAP4K4 during the neuronal development of retinal photoreceptors, we generated knockout models of C57BL/6j mice in vivo and 661 W cells in vitro. Our findings revealed homozygous lethality and neural tube malformation in mice subjected to Map4k4 DNA ablation, providing evidence for the involvement of MAP4K4 in early stage embryonic neural formation. Furthermore, our study demonstrated that the ablation of Map4k4 DNA led to the vulnerability of photoreceptor neurites during induced neuronal development. By monitoring transcriptional and protein variations in mitogen-activated protein kinase (MAPK) signaling pathway-related factors, we discovered an imbalance in neurogenesis-related factors in Map4k4 -/- cells. Specifically, MAP4K4 promotes jun proto-oncogene (c-JUN) phosphorylation and recruits other factors related to nerve growth, ultimately leading to the robust formation of photoreceptor neurites. These data suggest that MAP4K4 plays a decisive role in regulating the fate of retinal photoreceptors through molecular modulation and contributes to our understanding of vision formation.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yuxiu Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Han Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Han Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yan Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xinyue Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chaojuan Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Patterson V, Ullah F, Bryant L, Griffin JN, Sidhu A, Saliganan S, Blaile M, Saenz MS, Smith R, Ellingwood S, Grange DK, Hu X, Mireguli M, Luo Y, Shen Y, Mulhern M, Zackai E, Ritter A, Izumi K, Hoefele J, Wagner M, Riedhammer KM, Seitz B, Robin NH, Goodloe D, Mignot C, Keren B, Cox H, Jarvis J, Hempel M, Gibson CF, Tran Mau-Them F, Vitobello A, Bruel AL, Sorlin A, Mehta S, Raymond FL, Gilmore K, Powell BC, Weck K, Li C, Vulto-van Silfhout AT, Giacomini T, Mancardi MM, Accogli A, Salpietro V, Zara F, Vora NL, Davis EE, Burdine R, Bhoj E. Abrogation of MAP4K4 protein function causes congenital anomalies in humans and zebrafish. SCIENCE ADVANCES 2023; 9:eade0631. [PMID: 37126546 PMCID: PMC10132768 DOI: 10.1126/sciadv.ade0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects. Furthermore, MAP4K4 can restrain hyperactive RAS signaling in early embryonic stages. Together, our data demonstrate that MAP4K4 negatively regulates RAS signaling in the early embryo and that variants identified in affected humans abrogate its function, establishing MAP4K4 as a causal locus for individuals with syndromic neurodevelopmental differences.
Collapse
Affiliation(s)
- Victoria Patterson
- Princeton University, Princeton, NJ 08544, USA
- Department of Biology, University of York, York, UK
| | - Farid Ullah
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura Bryant
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John N. Griffin
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alpa Sidhu
- The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | | | - Mackenzie Blaile
- University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Margarita S. Saenz
- University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Rosemarie Smith
- Maine Medical Center, 22 Bramhall St, Portland, ME 04102, USA
| | - Sara Ellingwood
- Maine Medical Center, 22 Bramhall St, Portland, ME 04102, USA
| | - Dorothy K. Grange
- St. Louis Children’s Hospital, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Xuyun Hu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Maimaiti Mireguli
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yanfei Luo
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yiping Shen
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Maternal and Child Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi, Nanning, China
| | - Maureen Mulhern
- Columbia University Irving Medical Center, 630 W. 168th St, New York, NY 10032, USA
| | - Elaine Zackai
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alyssa Ritter
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kosaki Izumi
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Korbinian M. Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Nathaniel H. Robin
- University of Alabama at Birmingham, 1720 University Blvd, Birmingham, AL 35233, USA
| | - Dana Goodloe
- University of Alabama at Birmingham, 1720 University Blvd, Birmingham, AL 35233, USA
| | - Cyril Mignot
- APHP-Sorbonne Université, GH Pitié-Salpêtrière, Paris, France
| | - Boris Keren
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Helen Cox
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Joanna Jarvis
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Maja Hempel
- University Hospital Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | | | | | - Antonio Vitobello
- UMR1231 GAD, Inserm, Université Bourgogne-Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | | | | | | | - Kelly Gilmore
- Department of Ob/Gyn, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bradford C. Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen Weck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chumei Li
- McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | | | - Thea Giacomini
- Unit of Child Neuropsychiatry, University of Genova, EpiCARE Network, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy
| | - Federico Zara
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy
| | - Neeta L. Vora
- Department of Ob/Gyn, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erica E. Davis
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Elizabeth Bhoj
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Singh SK, Roy R, Kumar S, Srivastava P, Jha S, Rana B, Rana A. Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases. Cancers (Basel) 2023; 15:cancers15082272. [PMID: 37190200 PMCID: PMC10136566 DOI: 10.3390/cancers15082272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are crucial in extracellular signal transduction to cellular responses. The classical three-tiered MAPK cascades include signaling through MAP kinase kinase kinase (MAP3K) that activates a MAP kinase kinase (MAP2K), which in turn induces MAPK activation and downstream cellular responses. The upstream activators of MAP3K are often small guanosine-5'-triphosphate (GTP)-binding proteins, but in some pathways, MAP3K can be activated by another kinase, which is known as a MAP kinase kinase kinase kinase (MAP4K). MAP4K4 is one of the widely studied MAP4K members, known to play a significant role in inflammatory, cardiovascular, and malignant diseases. The MAP4K4 signal transduction plays an essential role in cell proliferation, transformation, invasiveness, adhesiveness, inflammation, stress responses, and cell migration. Overexpression of MAP4K4 is frequently reported in many cancers, including glioblastoma, colon, prostate, and pancreatic cancers. Besides its mainstay pro-survival role in various malignancies, MAP4K4 has been implicated in cancer-associated cachexia. In the present review, we discuss the functional role of MAP4K4 in malignant/non-malignant diseases and cancer-associated cachexia and its possible use in targeted therapy.
Collapse
Affiliation(s)
- Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruchi Roy
- UICentre for Drug Discovery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
11
|
MAP4K4 promotes ovarian cancer metastasis through diminishing ADAM10-dependent N-cadherin cleavage. Oncogene 2023; 42:1438-1452. [PMID: 36922678 PMCID: PMC10154218 DOI: 10.1038/s41388-023-02650-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Peritoneal metastasis is a key feature of advanced ovarian cancer, but the critical protein required for ovarian cancer metastasis and progression is yet to be defined. Thus, an unbiased high throughput and in-depth study is warranted to unmask the mechanism. Transcriptomic sequencing of paired primary ovarian tumors and metastases unveiled that MAP4K4, a serine/threonine kinase belongs to the Ste20 family of kinases, was highly expressed in metastatic sites. Increased MAP4K4 expression in metastasis was further validated in other independent patients, with higher MAP4K4 expression associated with poorer survival, higher level of CA125 and more advanced FIGO stage. Down regulation of MAP4K4 inhibited cancer cell adhesion, migration, and invasion. Notably, MAP4K4 was found to stabilize N-cadherin. Further results showed that MAP4K4 mediated phosphorylation of ADAM10 at Ser436 results in suppression of N-cadherin cleavage by ADAM10, leading to N-cadherin stabilization. Pharmacologic inhibition of MAP4K4 abrogated peritoneal metastases. Overall, our data reveal MAP4K4 as a significant promoter in ovarian cancer metastasis. Targeting MAP4K4 may be a potential therapeutic approach for ovarian cancer patients.
Collapse
|
12
|
Integrated exome and transcriptome analysis prioritizes MAP4K4 de novo frameshift variants in autism spectrum disorder as a novel disease-gene association. Hum Genet 2023; 142:343-350. [PMID: 36469137 PMCID: PMC9950172 DOI: 10.1007/s00439-022-02497-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2022]
Abstract
The application of next-generation sequencing (NGS) to clinical practice is still hampered by the ability to interpret the clinical relevance of novel variants and the difficulty of evaluating their effect in specific tissues. Here, we applied integrated genomic approaches for interrogating blood samples of two unrelated individuals with neurodevelopmental disorders and identified a novel neuro-pathogenic role for the Mitogen-Activated Protein Kinase 4 gene (MAP4K4). In particular, we identified two novel frameshift variants in coding exons expressed in the blood and neuronal isoforms. Both variants were predicted to generate non-sense-mediated decay. By transcriptome analysis, we simultaneously demonstrated the deleterious effect of the identified variants on the splicing activity and stability of MAP4K4 mRNA. Therefore, we propose MAP4K4 as a novel causative gene for non-syndromic and syndromic neurodevelopmental disorders. Altogether, we prove the efficacy of an integrated approach of exome and transcriptome sequencing in the resolution of undiagnosed cases by leveraging the analysis of variants in genes expressed in peripheral blood.
Collapse
|
13
|
Jovanovic D, Yan S, Baumgartner M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front Oncol 2022; 12:1059513. [PMID: 36568222 PMCID: PMC9774001 DOI: 10.3389/fonc.2022.1059513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
The finely tuned integration of intra- and extracellular cues by components of the mitogen-activated protein kinase (MAPK) signaling pathways controls the mutually exclusive phenotypic manifestations of uncontrolled growth and tumor cell dissemination. The Ser/Thr kinase MAP4K4 is an upstream integrator of extracellular cues involved in both proliferation and cell motility control. Initially identified as an activator of the c-Jun N-terminal kinase (JNK), the discovery of diverse functions and additional effectors of MAP4K4 beyond JNK signaling has considerably broadened our understanding of this complex kinase. The implication of MAP4K4 in the regulation of cytoskeleton dynamics and cell motility provided essential insights into its role as a pro-metastatic kinase in cancer. However, the more recently revealed role of MAP4K4 as an activator of the Hippo tumor suppressor pathway has complicated the understanding of MAP4K4 as an oncogenic driver kinase. To develop a better understanding of the diverse functions of MAP4K4 and their potential significance in oncogenesis and tumor progression, we have collected and assessed the current evidence of MAP4K4 implication in molecular mechanisms that control proliferation and promote cell motility. A better understanding of these mechanisms is particularly relevant in the brain, where MAP4K4 is highly expressed and under pathological conditions either drives neuronal cell death in neurodegenerative diseases or cell dissemination in malignant tumors. We review established effectors and present novel interactors of MAP4K4, which offer mechanistic insights into MAP4K4 function and may inspire novel intervention strategies. We discuss possible implications of novel interactors in tumor growth and dissemination and evaluate potential therapeutic strategies to selectively repress pro-oncogenic functions of MAP4K4.
Collapse
Affiliation(s)
| | | | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Research, Children’s Research Centre, Division of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
MAP4K4/JNK Signaling Pathway Stimulates Proliferation and Suppresses Apoptosis of Human Spermatogonial Stem Cells and Lower Level of MAP4K4 Is Associated with Male Infertility. Cells 2022; 11:cells11233807. [PMID: 36497065 PMCID: PMC9739186 DOI: 10.3390/cells11233807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Spermatogonial stem cells (SSCs) serve as a foundation for spermatogenesis and they are essential for male fertility. The fate of SSC is determined by genetic and epigenetic regulatory networks. Many molecules that regulate SSC fate determinations have been identified in mice. However, the molecules and signaling pathways underlying human SSCs remain largely unclear. In this study, we have demonstrated that MAP4K4 was predominantly expressed in human UCHL1-positive spermatogonia by double immunocytochemical staining. MAP4K4 knockdown inhibited proliferation of human SSCs and induced their apoptosis. Moreover, MAP4K4 silencing led to inhibition of JNK phosphorylation and MAP4K4 phosphorylation at Ser801. RNA sequencing indicated that MAP4K4 affected the transcription of SPARC, ADAM19, GPX7, GNG2, and COLA1. Interestingly, the phenotype of inhibiting JNK phosphorylation by SP600125 was similar to MAP4K4 knockdown. Notably, MAP4K4 protein was lower in the testes of patients with non-obstructive azoospermia than those with normal spermatogenesis as shown by Western blots and immunohistochemistry. Considered together, our data implicate that MAP4K4/JNK signaling pathway mediates proliferation and apoptosis of human SSCs, which provides a novel insight into molecular mechanisms governing human spermatogenesis and might offer new targets for gene therapy of male infertility.
Collapse
|
15
|
Demarta-Gatsi C, Donini C, Duffy J, Sadler C, Stewart J, Barber JA, Tornesi B. Malarial PI4K inhibitor induced diaphragmatic hernias in rat: Potential link with mammalian kinase inhibition. Birth Defects Res 2022; 114:487-498. [PMID: 35416431 PMCID: PMC9321963 DOI: 10.1002/bdr2.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022]
Abstract
Background MMV390048 is an aminopyridine plasmodial PI4K inhibitor, selected as a Plasmodium blood‐stage schizonticide for a next generation of malaria treatments to overcome resistance to current therapies. MMV390048 showed an acceptable preclinical safety profile and progressed up to Phase 2a clinical trials. However, embryofetal studies revealed adverse developmental toxicity signals, including diaphragmatic hernias and cardiovascular malformations in rats but not rabbits. Methods In vivo exposures of free plasma concentrations of compound in rats were assessed in relation to in vitro human kinase inhibition by MMV390048, using the ADP‐Glo™ Kinase Assay. Results We demonstrate a potential link between the malformations seen in the embryofetal developmental (EFD) studies and inhibition of the mammalian PI4Kβ paralogue, as well as inhibition of the off‐target kinases MAP4K4 and MINK1. PI3Kγ may also play a role in the embryofetal toxicity as its in vitro inhibition is covered by in vivo exposure. The exposures in the rabbit embryofetal development studies did not reach concentrations likely to cause PI4K inhibition. Overall, we hypothesize that the in vivo malformations observed could be due to inhibition of the PI4K target in combination with the off‐targets, MAP4K4 and MINK1. However, these relationships are by association and not mechanistically proven. Conclusions Deciphering if the EFD effects are dependent on PI4K inhibition, and/or via inhibition of other off‐target kinases will require the generation of novel, more potent, and more specific PI4K inhibitors.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Translational Medicine department, Medicines for Malaria Venture, Geneva, Switzerland
| | - Cristina Donini
- Translational Medicine department, Medicines for Malaria Venture, Geneva, Switzerland
| | - James Duffy
- Translational Medicine department, Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | - Belen Tornesi
- Translational Medicine department, Medicines for Malaria Venture, Geneva, Switzerland
| |
Collapse
|
16
|
Malchow S, Korepanova A, Panchal SC, McClure RA, Longenecker KL, Qiu W, Zhao H, Cheng M, Guo J, Klinge KL, Trusk P, Pratt SD, Li T, Kurnick MD, Duan L, Shoemaker AR, Gopalakrishnan SM, Warder SE, Shotwell JB, Lai A, Sun C, Osuma AT, Pappano WN. The HPK1 Inhibitor A-745 Verifies the Potential of Modulating T Cell Kinase Signaling for Immunotherapy. ACS Chem Biol 2022; 17:556-566. [PMID: 35188729 DOI: 10.1021/acschembio.1c00819] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is an MAP4K family member within the Ste20-like serine/threonine branch of the kinome. HPK1 expression is limited to hematopoietic cells and has a predominant role as a negative regulator of T cell function. Because of the central/dominant role in negatively regulating T cell function, HPK1 has long been in the center of interest as a potential pharmacological target for immune therapy. The development of a small molecule HPK1 inhibitor remains challenging because of the need for high specificity relative to other kinases, including additional MAP4K family members, that are required for efficient immune cell activation. Here, we report the identification of the selective and potent HPK1 chemical probe, A-745. In unbiased cellular kinase-binding assays, A-745 demonstrates an excellent cellular selectivity binding profile within pharmacologically relevant concentrations. This HPK1 selectivity translates to an in vitro immune cell activation phenotype reminiscent of Hpk1-deficient and Hpk1-kinase-dead T cells, including augmented proliferation and cytokine production. The results from this work give a path forward for further developmental efforts to generate additional selective and potent small molecule HPK1 inhibitors with the pharmacological properties for immunotherapy.
Collapse
Affiliation(s)
- Sven Malchow
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Alla Korepanova
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Sanjay C. Panchal
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ryan A. McClure
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | | | - Wei Qiu
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Hongyu Zhao
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Min Cheng
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Jun Guo
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Kelly L. Klinge
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Patricia Trusk
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Steven D. Pratt
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Tao Li
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Matthew D. Kurnick
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Lishu Duan
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Alex R. Shoemaker
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | | | - Scott E. Warder
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - J. Brad Shotwell
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Albert Lai
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Chaohong Sun
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Augustine T. Osuma
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - William N. Pappano
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| |
Collapse
|
17
|
Huang H, Han Q, Zheng H, Liu M, Shi S, Zhang T, Yang X, Li Z, Xu Q, Guo H, Lu F, Wang J. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis 2021; 13:13. [PMID: 34930918 PMCID: PMC8688448 DOI: 10.1038/s41419-021-04474-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022]
Abstract
There are nearly 40% of cervical cancer patients showing poor response to neoadjuvant chemotherapy that can be induced by autophagy, however, the underlying mechanism has not yet been fully clarified. We previously found that Sex-determining region of Y-related high-mobility-group box 6 (SOX6), a tumor suppressor gene or oncogene in several cancers, could induce autophagy in cervical cancer. Accordingly, this study aims to investigate the mechanism of SOX6-induced autophagy and its potential significance in the platinum-based chemotherapy of cervical cancer. Firstly, we found that SOX6 could promote autophagy in cervical cancer cells depending on its HMG domain. Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) gene was identified as the direct target gene of SOX6, which was transcriptionally upregulated by binding the HMG domain of SOX6 protein to its double-binding sites within MAP4K4 gene promoter. MAP4K4 mediated the SOX6-induced autophagy through inhibiting PI3K-Akt-mTOR pathway and activating MAPK/ERK pathway. Further, the sensitivity of cervical cancer cells to cisplatin chemotherapy could be reduced by the SOX6-induced autophagy in vitro and in vivo, while such a phenomenon could be turned over by autophagy-specific inhibitor and MAP4K4 inhibitor, respectively. Moreover, cisplatin itself could promote the expression of endogenous SOX6 and subsequently the MAP4K4-mediated autophagy in cervical cancer cells, which might in turn reduce the sensitivity of these cells to cisplatin treatment. These findings uncovered the underlying mechanism and potential significance of SOX6-induced autophagy, and shed new light on the usage of MAP4K4 inhibitor or autophagy-specific inhibitor for sensitizing cervical cancer cells to the platinum-based chemotherapy.
Collapse
Affiliation(s)
- Hongxin Huang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qin Han
- Department of Gynecology and Obstetrics, The Third Hospital of Peking University, Beijing, 100191, China
| | - Han Zheng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Mingchen Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shu Shi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xingwen Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongqing Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qiang Xu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hongyan Guo
- Department of Gynecology and Obstetrics, The Third Hospital of Peking University, Beijing, 100191, China.
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
18
|
Singh SK, Kumar S, Viswakarma N, Principe DR, Das S, Sondarva G, Nair RS, Srivastava P, Sinha SC, Grippo PJ, Thatcher GRJ, Rana B, Rana A. MAP4K4 promotes pancreatic tumorigenesis via phosphorylation and activation of mixed lineage kinase 3. Oncogene 2021; 40:6153-6165. [PMID: 34511598 PMCID: PMC8553609 DOI: 10.1038/s41388-021-02007-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
MAP4K4 is a Ste20 member and reported to play important roles in various pathologies, including in cancer. However, the mechanism by which MAP4K4 promotes pancreatic cancer is not fully understood. It is suggested that MAP4K4 might function as a cancer promoter via specific downstream target(s) in an organ-specific manner. Here we identified MLK3 as a direct downstream target of MAP4K4. The MAP4K4 and MLK3 associates with each other, and MAP4K4 phosphorylates MLK3 on Thr738 and increases MLK3 kinase activity and downstream signaling. The phosphorylation of MLK3 by MAP4K4 promotes pancreatic cancer cell proliferation, migration, and colony formation. Moreover, MAP4K4 is overexpressed in human pancreatic tumors and directly correlates with the disease progression. The MAP4K4-specific pharmacological inhibitor, GNE-495, impedes pancreatic cancer cell growth, migration, induces cell death, and arrests cell cycle progression. Additionally, the GNE-495 reduced the tumor burden and extended survival of the KPC mice with pancreatic cancer. The MAP4K4 inhibitor also reduced MAP4K4 protein expression, tumor stroma, and induced cell death in murine pancreatic tumors. These findings collectively suggest that MLK3 phosphorylation by MAP4K4 promotes pancreatic cancer, and therefore therapies targeting MAP4K4 might alleviate the pancreatic cancer tumor burden in patients.
Collapse
Affiliation(s)
- Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel R Principe
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhasis Das
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Paul J Grippo
- Department of Medicine, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gregory R J Thatcher
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, the University of Illinois at Chicago, Chicago, IL, 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA.
- University of Illinois Hospital & Health Sciences System Cancer Center, the University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
19
|
Li Q, Nirala NK, Chen HJ, Nie Y, Wang W, Zhang B, Czech MP, Wang Q, Xu L, Mao J, Tony Ip Y. The Misshapen subfamily of Ste20 kinases regulate proliferation in the aging mammalian intestinal epithelium. J Cell Physiol 2019; 234:21925-21936. [PMID: 31042012 PMCID: PMC6711781 DOI: 10.1002/jcp.28756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Abstract
The intestinal epithelium has a high rate of cell turn over and is an excellent system to study stem cell-mediated tissue homeostasis. The Misshapen subfamily of the Ste20 kinases in mammals consists of misshapen like kinase 1 (MINK1), mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), and TRAF2 and NCK interacting kinase (TNIK). Recent reports suggest that this subfamily has a novel function equal to the Hippo/MST subfamily as upstream kinases for Warts/Large tumor suppressor kinase (LATS) to suppress tissue growth. To study the in vivo functions of Mink1, Map4k4, and Tnik, we generated a compound knockout of these three genes in the mouse intestinal epithelium. The intestinal epithelia of the mutant animals were phenotypically normal up to approximately 12 months. The older animals then exhibited mildly increased proliferation throughout the lower GI tract. We also observed that the normally spatially organized Paneth cells in the crypt base became dispersed. The expression of one of the YAP pathway target genes Sox9 was increased while other target genes including CTGF did not show a significant change. Therefore, the Misshapen and Hippo subfamilies may have highly redundant functions to regulate growth in the intestinal epithelium, as illustrated in recent tissue culture models.
Collapse
Affiliation(s)
- Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hsi-Ju Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wei Wang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
| | - Biliang Zhang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
20
|
Targeted genomic CRISPR-Cas9 screen identifies MAP4K4 as essential for glioblastoma invasion. Sci Rep 2019; 9:14020. [PMID: 31570734 PMCID: PMC6768851 DOI: 10.1038/s41598-019-50160-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/02/2019] [Indexed: 01/11/2023] Open
Abstract
Among high-grade brain tumors, glioblastoma is particularly difficult to treat, in part due to its highly infiltrative nature which contributes to the malignant phenotype and high mortality in patients. In order to better understand the signaling pathways underlying glioblastoma invasion, we performed the first large-scale CRISPR-Cas9 loss of function screen specifically designed to identify genes that facilitate cell invasion. We tested 4,574 genes predicted to be involved in trafficking and motility. Using a transwell invasion assay, we discovered 33 genes essential for invasion. Of the 11 genes we selected for secondary testing using a wound healing assay, 6 demonstrated a significant decrease in migration. The strongest regulator of invasion was mitogen-activated protein kinase 4 (MAP4K4). Targeting of MAP4K4 with single guide RNAs or a MAP4K4 inhibitor reduced migration and invasion in vitro. This effect was consistent across three additional patient derived glioblastoma cell lines. Analysis of epithelial-mesenchymal transition markers in U138 cells with lack or inhibition of MAP4K4 demonstrated protein expression consistent with a non-invasive state. Importantly, MAP4K4 inhibition limited migration in a subset of human glioma organotypic slice cultures. Our results identify MAP4K4 as a novel potential therapeutic target to limit glioblastoma invasion.
Collapse
|
21
|
Fiedler LR, Chapman K, Xie M, Maifoshie E, Jenkins M, Golforoush PA, Bellahcene M, Noseda M, Faust D, Jarvis A, Newton G, Paiva MA, Harada M, Stuckey DJ, Song W, Habib J, Narasimhan P, Aqil R, Sanmugalingam D, Yan R, Pavanello L, Sano M, Wang SC, Sampson RD, Kanayaganam S, Taffet GE, Michael LH, Entman ML, Tan TH, Harding SE, Low CMR, Tralau-Stewart C, Perrior T, Schneider MD. MAP4K4 Inhibition Promotes Survival of Human Stem Cell-Derived Cardiomyocytes and Reduces Infarct Size In Vivo. Cell Stem Cell 2019; 24:579-591.e12. [PMID: 30853557 PMCID: PMC6458995 DOI: 10.1016/j.stem.2019.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/24/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
Heart disease is a paramount cause of global death and disability. Although cardiomyocyte death plays a causal role and its suppression would be logical, no clinical counter-measures target the responsible intracellular pathways. Therapeutic progress has been hampered by lack of preclinical human validation. Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) is activated in failing human hearts and relevant rodent models. Using human induced-pluripotent-stem-cell-derived cardiomyocytes (hiPSC-CMs) and MAP4K4 gene silencing, we demonstrate that death induced by oxidative stress requires MAP4K4. Consequently, we devised a small-molecule inhibitor, DMX-5804, that rescues cell survival, mitochondrial function, and calcium cycling in hiPSC-CMs. As proof of principle that drug discovery in hiPSC-CMs may predict efficacy in vivo, DMX-5804 reduces ischemia-reperfusion injury in mice by more than 50%. We implicate MAP4K4 as a well-posed target toward suppressing human cardiac cell death and highlight the utility of hiPSC-CMs in drug discovery to enhance cardiomyocyte survival.
Collapse
Affiliation(s)
- Lorna R Fiedler
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Kathryn Chapman
- Drug Discovery Centre, Department of Medicine, Imperial College London, London SW7 2AZ, UK; Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK; Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Min Xie
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Evie Maifoshie
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Micaela Jenkins
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Pelin Arabacilar Golforoush
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Mohamed Bellahcene
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Michela Noseda
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Dörte Faust
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Ashley Jarvis
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Gary Newton
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Marta Abreu Paiva
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Mutsuo Harada
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Daniel J Stuckey
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Weihua Song
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Josef Habib
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Priyanka Narasimhan
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Rehan Aqil
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Devika Sanmugalingam
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Robert Yan
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Lorenzo Pavanello
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Motoaki Sano
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sam C Wang
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert D Sampson
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Sunthar Kanayaganam
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - George E Taffet
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lloyd H Michael
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark L Entman
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sian E Harding
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Caroline M R Low
- Drug Discovery Centre, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | - Trevor Perrior
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
22
|
STRIP1, a core component of STRIPAK complexes, is essential for normal mesoderm migration in the mouse embryo. Proc Natl Acad Sci U S A 2017; 114:E10928-E10936. [PMID: 29203676 PMCID: PMC5754794 DOI: 10.1073/pnas.1713535114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Striatin-interacting phosphatases and kinases (STRIPAK) complexes can regulate the cytoskeleton and cell migration in cell lines, but their roles in vivo in mammals are not known. Here, we show that mouse embryos that lack striatin-interacting protein 1 (STRIP1), a core component of STRIPAK complexes, arrest at midgestation with striking morphological defects. Strip1 mutants lack a trunk, and both paraxial and axial mesoderm fail to elongate along the anterior–posterior body axis. Mesodermal cells from Strip1 mutants have defects in actin organization, focal adhesions, and cell migration that can account for the failure of normal mesoderm migration. The findings demonstrate that STRIPAK is a critical regulator of mammalian cell migration and is likely to have important roles in tumor progression as well as development. Regulated mesoderm migration is necessary for the proper morphogenesis and organ formation during embryonic development. Cell migration and its dependence on the cytoskeleton and signaling machines have been studied extensively in cultured cells; in contrast, remarkably little is known about the mechanisms that regulate mesoderm cell migration in vivo. Here, we report the identification and characterization of a mouse mutation in striatin-interacting protein 1 (Strip1) that disrupts migration of the mesoderm after the gastrulation epithelial-to-mesenchymal transition (EMT). STRIP1 is a core component of the biochemically defined mammalian striatin-interacting phosphatases and kinase (STRIPAK) complexes that appear to act through regulation of protein phosphatase 2A (PP2A), but their functions in mammals in vivo have not been examined. Strip1-null mutants arrest development at midgestation with profound disruptions in the organization of the mesoderm and its derivatives, including a complete failure of the anterior extension of axial mesoderm. Analysis of cultured mesoderm explants and mouse embryonic fibroblasts from null mutants shows that the mesoderm migration defect is correlated with decreased cell spreading, abnormal focal adhesions, changes in the organization of the actin cytoskeleton, and decreased velocity of cell migration. The results show that STRIPAK complexes are essential for cell migration and tissue morphogenesis in vivo.
Collapse
|
23
|
Daimon T, Kosaka T, Kikuchi E, Mikami S, Miyazaki Y, Hashimoto A, Hashimoto S, Mizuno R, Miyajima A, Okada Y, Sabe H, Oya M. Prognostic significance of erythrocyte protein band 4.1-like5 expression in upper urinary tract urothelial carcinoma. Urol Oncol 2017; 35:543.e17-543.e24. [PMID: 28483476 DOI: 10.1016/j.urolonc.2017.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/05/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The erythrocyte protein band 4.1-like5 (EPB4.1L5) regulates E-cadherin in cancer invasion and metastasis inducing epithelial-to-mesenchymal transition. This study aimed to investigate the biological significance of EPB4.1L5 in upper urinary tract urothelial carcinoma (UTUC). METHODS Retrospective analysis of the clinical records of 165 patients with UTUC (Ta-4N0M0) subjected to radical nephroureterectomy and immunohistochemical examination of EPB4.1L5 expression in those tissues. RESULTS The median follow-up period was 62.2 months (interquartile range = 77.0). The score of EPB4.1L5 significantly correlated with tumor grade, pathological T stage, and lymphovascular invasion (all P<0.001). The 5-year Kaplan-Meier recurrence-free survival and cancer-specific survival rates were 54.1% and 59.5% in patients with high EPB4.1L5 expression, compared with 81.6% and 87.2%, (all P<0.001) in their counterparts. Multivariate analyses revealed that high expression of EPB4.1L5 was one of the independent prognostic factors for tumor recurrence (P = 0.022, HR = 2.40) and cancer-specific survival (P = 0.015, HR = 2.94). CONCLUSION High EPB4.1L5 expression was related to worse clinical outcome in patients with UTUC. These results indicated that EPB4.1L5 could provide prognostic information in patients with UTUC regarding epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Tatsuaki Daimon
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan.
| | - Eiji Kikuchi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Shuji Mikami
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Yasumasa Miyazaki
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shigeru Hashimoto
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Miyajima
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
24
|
Gao X, Gao C, Liu G, Hu J. MAP4K4: an emerging therapeutic target in cancer. Cell Biosci 2016; 6:56. [PMID: 27800153 PMCID: PMC5084373 DOI: 10.1186/s13578-016-0121-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
The serine/threonine kinase MAP4K4 is a member of the Ste20p (sterile 20 protein) family. MAP4K4 was initially discovered in 1995 as a key kinase in the mating pathway in Saccharomyces cerevisiae and was later found to be involved in many aspects of cell functions and many biological and pathological processes. The role of MAP4K4 in immunity, inflammation, metabolic and cardiovascular disease has been recognized. Information regarding MAP4K4 in cancers is extremely limited, but increasing evidence suggests that MAP4K4 also plays an important role in cancer and MAP4K4 may represent a novel actionable cancer therapeutic target. This review summarizes our current understanding of MAP4K4 regulation and MAP4K4 in cancer. MAP4K4-specific inhibitors have been recently developed. We hope that this review article would advocate more basic and preclinical research on MAP4K4 in cancer, which could ultimately provide biological and mechanistic justifications for preclinical and clinical test of MAP4K4 inhibitor in cancer patients.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China ; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Guoxiang Liu
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| |
Collapse
|
25
|
Virbasius JV, Czech MP. Map4k4 Signaling Nodes in Metabolic and Cardiovascular Diseases. Trends Endocrinol Metab 2016; 27:484-492. [PMID: 27160798 PMCID: PMC4912878 DOI: 10.1016/j.tem.2016.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
Mitogen-activated kinase kinase kinase kinase 4 (Map4k4), originally identified in small interfering (si)RNA screens and characterized by tissue-specific gene deletions, is emerging as a regulator of glucose homeostasis and cardiovascular health. Recent studies have shown that Map4k4 gene ablation or inhibition of its kinase activity attenuates hyperglycemia and plaque formation in mouse models of insulin resistance and atherosclerosis, and suggest roles for Map4k4 in multiple signaling systems, including NFκB activation, small GTPase regulation, the Hippo cascade, and regulation of cell dynamics by FERM domain proteins. This new and promising area of inquiry raises key questions that need to be addressed, such as defining which of the above or other effectors mediate Map4k4 control of metabolic and vascular functions, and identifying upstream activators of Map4k4.
Collapse
Affiliation(s)
- Joseph V Virbasius
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
26
|
|
27
|
Roth Flach RJ, Skoura A, Matevossian A, Danai LV, Zheng W, Cortes C, Bhattacharya SK, Aouadi M, Hagan N, Yawe JC, Vangala P, Menendez LG, Cooper MP, Fitzgibbons TP, Buckbinder L, Czech MP. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun 2015; 6:8995. [PMID: 26688060 PMCID: PMC4703891 DOI: 10.1038/ncomms9995] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe(-/-) mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe(-/-) and Ldlr(-/-) mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFκB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis.
Collapse
Affiliation(s)
| | - Athanasia Skoura
- Cardiovascular and Metabolic Research Unit, Cambridge, Massachusetts 02139, USA
| | | | - Laura V. Danai
- Program in Molecular Medicine, Worcester, Massachusetts 01605, USA
| | - Wei Zheng
- Cardiovascular and Metabolic Research Unit, Cambridge, Massachusetts 02139, USA
| | - Christian Cortes
- Cardiovascular and Metabolic Research Unit, Cambridge, Massachusetts 02139, USA
| | | | - Myriam Aouadi
- Program in Molecular Medicine, Worcester, Massachusetts 01605, USA
| | - Nana Hagan
- Program in Molecular Medicine, Worcester, Massachusetts 01605, USA
| | - Joseph C. Yawe
- Program in Molecular Medicine, Worcester, Massachusetts 01605, USA
| | - Pranitha Vangala
- Program in Molecular Medicine, Worcester, Massachusetts 01605, USA
| | | | - Marcus P. Cooper
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Timothy P. Fitzgibbons
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Leonard Buckbinder
- Cardiovascular and Metabolic Research Unit, Cambridge, Massachusetts 02139, USA
| | - Michael P. Czech
- Program in Molecular Medicine, Worcester, Massachusetts 01605, USA
| |
Collapse
|
28
|
Novel Mode of Defective Neural Tube Closure in the Non-Obese Diabetic (NOD) Mouse Strain. Sci Rep 2015; 5:16917. [PMID: 26593875 PMCID: PMC4655353 DOI: 10.1038/srep16917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/21/2015] [Indexed: 11/08/2022] Open
Abstract
Failure to close the neural tube results in birth defects, with severity ranging from spina bifida to lethal anencephaly. Few genetic risk factors for neural tube defects are known in humans, highlighting the critical role of environmental risk factors, such as maternal diabetes. Yet, it is not well understood how altered maternal metabolism interferes with embryonic development, and with neurulation in particular. We present evidence from two independent mouse models of diabetic pregnancy that identifies impaired migration of nascent mesodermal cells in the primitive streak as the morphogenetic basis underlying the pathogenesis of neural tube defects. We conclude that perturbed gastrulation not only explains the neurulation defects, but also provides a unifying etiology for the broad spectrum of congenital malformations in diabetic pregnancies.
Collapse
|
29
|
Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster. Exp Cell Res 2015; 339:51-60. [DOI: 10.1016/j.yexcr.2015.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/26/2015] [Accepted: 09/26/2015] [Indexed: 01/15/2023]
|
30
|
Danai LV, Roth Flach RJ, Virbasius JV, Garcia Menendez L, Jung DY, Kim JH, Kim JK, Czech MP. Inducible Deletion of Protein Kinase Map4k4 in Obese Mice Improves Insulin Sensitivity in Liver and Adipose Tissues. Mol Cell Biol 2015; 35:2356-65. [PMID: 25918248 PMCID: PMC4456439 DOI: 10.1128/mcb.00150-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 02/24/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023] Open
Abstract
Studies in vitro suggest that mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) attenuates insulin signaling, but confirmation in vivo is lacking since Map4k4 knockout is lethal during embryogenesis. We thus generated mice with floxed Map4k4 alleles and a tamoxifen-inducible Cre/ERT2 recombinase under the control of the ubiquitin C promoter to induce whole-body Map4k4 deletion after these animals reached maturity. Tamoxifen administration to these mice induced Map4k4 deletion in all tissues examined, causing decreased fasting blood glucose concentrations and enhanced insulin signaling to AKT in adipose tissue and liver but not in skeletal muscle. Surprisingly, however, mice generated with a conditional Map4k4 deletion in adiponectin-positive adipocytes or in albumin-positive hepatocytes displayed no detectable metabolic phenotypes. Instead, mice with Map4k4 deleted in Myf5-positive tissues, including all skeletal muscles tested, were protected from obesity-induced glucose intolerance and insulin resistance. Remarkably, these mice also showed increased insulin sensitivity in adipose tissue but not skeletal muscle, similar to the metabolic phenotypes observed in inducible whole-body knockout mice. Taken together, these results indicate that (i) Map4k4 controls a pathway in Myf5-positive cells that suppresses whole-body insulin sensitivity and (ii) Map4k4 is a potential therapeutic target for improving glucose tolerance and insulin sensitivity in type 2 diabetes.
Collapse
Affiliation(s)
- Laura V. Danai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rachel J. Roth Flach
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Joseph V. Virbasius
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lorena Garcia Menendez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dae Young Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jong Hun Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
31
|
Vitorino P, Yeung S, Crow A, Bakke J, Smyczek T, West K, McNamara E, Eastham-Anderson J, Gould S, Harris SF, Ndubaku C, Ye W. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 2015; 519:425-30. [PMID: 25799996 DOI: 10.1038/nature14323] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/11/2015] [Indexed: 11/09/2022]
Abstract
Cell migration is a stepwise process that coordinates multiple molecular machineries. Using in vitro angiogenesis screens with short interfering RNA and chemical inhibitors, we define here a MAP4K4-moesin-talin-β1-integrin molecular pathway that promotes efficient plasma membrane retraction during endothelial cell migration. Loss of MAP4K4 decreased membrane dynamics, slowed endothelial cell migration, and impaired angiogenesis in vitro and in vivo. In migrating endothelial cells, MAP4K4 phosphorylates moesin in retracting membranes at sites of focal adhesion disassembly. Epistasis analyses indicated that moesin functions downstream of MAP4K4 to inactivate integrin by competing with talin for binding to β1-integrin intracellular domain. Consequently, loss of moesin (encoded by the MSN gene) or MAP4K4 reduced adhesion disassembly rate in endothelial cells. Additionally, α5β1-integrin blockade reversed the membrane retraction defects associated with loss of Map4k4 in vitro and in vivo. Our study uncovers a novel aspect of endothelial cell migration. Finally, loss of MAP4K4 function suppressed pathological angiogenesis in disease models, identifying MAP4K4 as a potential therapeutic target.
Collapse
Affiliation(s)
- Philip Vitorino
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Stacey Yeung
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Ailey Crow
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Jesse Bakke
- Chemical Biology and Therapeutics Department, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Tanya Smyczek
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Kristina West
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Erin McNamara
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | | | - Stephen Gould
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Seth F Harris
- Structural Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Chudi Ndubaku
- Discovery Chemistry Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Weilan Ye
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| |
Collapse
|
32
|
LeClaire LL, Rana M, Baumgartner M, Barber DL. The Nck-interacting kinase NIK increases Arp2/3 complex activity by phosphorylating the Arp2 subunit. J Cell Biol 2015; 208:161-70. [PMID: 25601402 PMCID: PMC4298681 DOI: 10.1083/jcb.201404095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/10/2014] [Indexed: 12/26/2022] Open
Abstract
The nucleating activity of the Arp2/3 complex promotes the assembly of branched actin filaments that drive plasma membrane protrusion in migrating cells. Arp2/3 complex binding to nucleation-promoting factors of the WASP and WAVE families was previously thought to be sufficient to increase nucleating activity. However, phosphorylation of the Arp2 subunit was recently shown to be necessary for Arp2/3 complex activity. We show in mammary carcinoma cells that mutant Arp2 lacking phosphorylation assembled with endogenous subunits and dominantly suppressed actin filament assembly and membrane protrusion. We also report that Nck-interacting kinase (NIK), a MAP4K4, binds and directly phosphorylates the Arp2 subunit, which increases the nucleating activity of the Arp2/3 complex. In cells, NIK kinase activity was necessary for increased Arp2 phosphorylation and plasma membrane protrusion in response to epidermal growth factor. NIK is the first kinase shown to phosphorylate and increase the activity of the Arp2/3 complex, and our findings suggest that it integrates growth factor regulation of actin filament dynamics.
Collapse
Affiliation(s)
- Lawrence L LeClaire
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143 Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688
| | - Manish Rana
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Martin Baumgartner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143 Neuro-Oncology Laboratory, Infectious Diseases and Cancer Research, University of Children's Hospital Zürich, Zürich, Switzerland CH-8008
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
33
|
Yue J, Xie M, Gou X, Lee P, Schneider MD, Wu X. Microtubules regulate focal adhesion dynamics through MAP4K4. Dev Cell 2014; 31:572-85. [PMID: 25490267 PMCID: PMC4261153 DOI: 10.1016/j.devcel.2014.10.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/03/2014] [Accepted: 10/30/2014] [Indexed: 01/17/2023]
Abstract
Disassembly of focal adhesions (FAs) allows cell retraction and integrin detachment from the extracellular matrix, processes critical for cell movement. Growth of microtubules (MTs) can promote FA turnover by serving as tracks to deliver proteins essential for FA disassembly. The molecular nature of this FA "disassembly factor," however, remains elusive. By quantitative proteomics, we identified mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) as an FA regulator that associates with MTs. Knockout of MAP4K4 stabilizes FAs and impairs cell migration. By exploring underlying mechanisms, we further show that MAP4K4 associates with ending binding 2 (EB2) and IQ motif and SEC7 domain-containing protein 1 (IQSEC1), a guanine nucleotide exchange factor specific for Arf6, whose activation promotes integrin internalization. Together, our findings provide critical insight into FA disassembly, suggesting that MTs can deliver MAP4K4 toward FAs through EB2, where MAP4K4 can, in turn, activate Arf6 via IQSEC1 and enhance FA dissolution.
Collapse
Affiliation(s)
- Jiping Yue
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Min Xie
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuewen Gou
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Philbert Lee
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, Imperial College London, Sir Alexander Fleming Building, Room 258, London W12 ONN, UK
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Chuang HC, Sheu WHH, Lin YT, Tsai CY, Yang CY, Cheng YJ, Huang PY, Li JP, Chiu LL, Wang X, Xie M, Schneider MD, Tan TH. HGK/MAP4K4 deficiency induces TRAF2 stabilization and Th17 differentiation leading to insulin resistance. Nat Commun 2014; 5:4602. [PMID: 25098764 PMCID: PMC4143962 DOI: 10.1038/ncomms5602] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Proinflammatory cytokines play important roles in insulin resistance. Here we report that mice with a T-cell-specific conditional knockout of HGK (T-HGK cKO) develop systemic inflammation and insulin resistance. This condition is ameliorated by either IL-6 or IL-17 neutralization. HGK directly phosphorylates TRAF2, leading to its lysosomal degradation and subsequent inhibition of IL-6 production. IL-6-overproducing HGK-deficient T cells accumulate in adipose tissue and further differentiate into IL-6/IL-17 double-positive cells. Moreover, CCL20 neutralization or CCR6 deficiency reduces the Th17 population or insulin resistance in T-HGK cKO mice. In addition, leptin receptor deficiency in T cells inhibits Th17 differentiation and improves the insulin sensitivity in T-HGK cKO mice, which suggests that leptin cooperates with IL-6 to promote Th17 differentiation. Thus, HGK deficiency induces TRAF2/IL-6 upregulation, leading to IL-6/leptin-induced Th17 differentiation in adipose tissue and subsequent insulin resistance. These findings provide insight into the reciprocal regulation between the immune system and the metabolism.
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Wayne H. -H. Sheu
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, 160, Sec. 3, Chung-Kang Road, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yi-Ting Lin
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Ching-Yi Tsai
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Chia-Yu Yang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Yu-Jhen Cheng
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Pau-Yi Huang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Ju-Pi Li
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
| | - Li-Li Chiu
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, 160, Sec. 3, Chung-Kang Road, Taichung 40705, Taiwan
| | - Xiaohong Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Min Xie
- UT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Michael D. Schneider
- Faculty of Medicine, British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Taiwan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
35
|
Herion NJ, Salbaum JM, Kappen C. Traffic jam in the primitive streak: the role of defective mesoderm migration in birth defects. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2014; 100:608-22. [PMID: 25115487 PMCID: PMC9828327 DOI: 10.1002/bdra.23283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023]
Abstract
Gastrulation is the process in which the three germ layers are formed that contribute to the formation of all major tissues in the developing embryo. We here review mouse genetic models in which defective gastrulation leads to mesoderm insufficiencies in the embryo. Depending on severity of the abnormalities, the outcomes range from incompatible with embryonic survival to structural birth defects, such as heart defects, spina bifida, or caudal dysgenesis. The combined evidence from the mutant models supports the notion that these congenital anomalies can originate from perturbations of mesoderm specification, epithelial-mesenchymal transition, and mesodermal cell migration. Knowledge about the molecular pathways involved may help to improve strategies for the prevention of major structural birth defects.
Collapse
Affiliation(s)
- Nils J. Herion
- Pennington Biomedical Research Center, Department of Developmental Biology, Baton Rouge, Louisiana
| | - J. Michael Salbaum
- Pennington Biomedical Research Center, Laboratory for Regulation of Gene Expression, Baton Rouge, Louisiana
| | - Claudia Kappen
- Pennington Biomedical Research Center, Department of Developmental Biology, Baton Rouge, Louisiana,Correspondence to: Claudia Kappen, Pennington Biomedical Research Center, Department of Developmental Biology, 6400 Perkins Road, Baton Rouge, LA 70808.
| |
Collapse
|
36
|
A Novel Interaction between Pyk2 and MAP4K4 Is Integrated with Glioma Cell Migration. JOURNAL OF SIGNAL TRANSDUCTION 2013; 2013:956580. [PMID: 24163766 PMCID: PMC3791834 DOI: 10.1155/2013/956580] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/07/2013] [Accepted: 08/15/2013] [Indexed: 11/30/2022]
Abstract
Glioma cell migration correlates with Pyk2 activity, but the intrinsic mechanism that regulates the activity of Pyk2 is not fully understood. Previous studies have supported a role for the N-terminal FERM domain in the regulation of Pyk2 activity as mutations in the FERM domain inhibit Pyk2 phosphorylation. To search for novel protein-protein interactions mediated by the Pyk2 FERM domain, we utilized a yeast two-hybrid genetic selection to identify the mammalian Ste20 homolog MAP4K4 as a binding partner for the Pyk2 FERM domain. MAP4K4 coimmunoprecipitated with Pyk2 and was a substrate for Pyk2 but did not coimmunoprecipitate with the closely related focal adhesion kinase FAK. Knockdown of MAP4K4 expression inhibited glioma cell migration and effectively blocked Pyk2 stimulation of glioma cell. Increased expression of MAP4K4 stimulated glioma cell migration; however, this stimulation was blocked by knockdown of Pyk2 expression. These data support that the interaction of MAP4K4 and Pyk2 is integrated with glioma cell migration and suggest that inhibition of this interaction may represent a potential therapeutic strategy to limit glioblastoma tumor dispersion.
Collapse
|
37
|
Wang M, Amano SU, Flach RJR, Chawla A, Aouadi M, Czech MP. Identification of Map4k4 as a novel suppressor of skeletal muscle differentiation. Mol Cell Biol 2013; 33:678-87. [PMID: 23207904 PMCID: PMC3571342 DOI: 10.1128/mcb.00618-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/20/2012] [Indexed: 12/19/2022] Open
Abstract
Myoblast differentiation into mature myotubes is a critical step in the development and repair of human skeletal muscle. Here we show that small interfering RNA (siRNA)-based silencing of the Ste20-like mitogen-activated protein 4 kinase 4 (Map4k4) in C2C12 myoblasts markedly enhances expression of myogenic differentiation genes, myoblast fusion, and myotube diameter. In contrast, adenovirus-mediated expression of native Map4k4 in C2C12 cells attenuates each of these processes, indicating that Map4k4 is a negative regulator of myogenic differentiation and hypertrophy. Expression of a Map4k4 kinase-inactive mutant enhances myotube formation, suggesting that the kinase activity of Map4k4 is essential for its inhibition of muscle differentiation. Map4k4 regulation of myogenesis is unlikely to be mediated by classic mitogen-activated protein kinase (MAPK) signaling pathways, because no significant difference in phosphorylation of extracellular signal-regulated kinase (ERK), p38, or c-Jun N-terminal kinase (JNK) is observed in Map4k4-silenced cells. Furthermore, silencing of these other MAPKs does not result in a hypertrophic myotube phenotype like that seen with Map4k4 depletion. Uniquely, Map4k4 silencing upregulates the expression of the myogenic regulatory factor Myf5, whose depletion inhibits myogenesis. Furthermore, Myf5 is required for enhancement of myotube formation in Map4k4-silenced cells, while Myf5 overexpression rescues Map4k4-mediated inhibition of myogenic differentiation. These results demonstrate that Map4k4 is a novel suppressor of skeletal muscle differentiation, acting through a Myf5-dependent mechanism.
Collapse
Affiliation(s)
- Mengxi Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
38
|
Westerman BA, Braat AK, Taub N, Potman M, Vissers JHA, Blom M, Verhoeven E, Stoop H, Gillis A, Velds A, Nijkamp W, Beijersbergen R, Huber LA, Looijenga LHJ, van Lohuizen M. A genome-wide RNAi screen in mouse embryonic stem cells identifies Mp1 as a key mediator of differentiation. ACTA ACUST UNITED AC 2011; 208:2675-89. [PMID: 22143885 PMCID: PMC3244037 DOI: 10.1084/jem.20102037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite intense investigation of intrinsic and extrinsic factors that regulate pluripotency, the process of initial fate commitment of embryonic stem (ES) cells is still poorly understood. We used a genome-wide short hairpin RNA screen in mouse ES cells to identify genes that are essential for initiation of differentiation. Knockdown of the scaffolding protein Mek binding protein 1 (Mp1, also known as Lamtor3 or Map2k1ip1) stimulated self-renewal of ES cells, blocked differentiation, and promoted proliferation. Fibroblast growth factor 4 (FGF4) signaling is required for initial fate commitment of ES cells. Knockdown of Mp1 inhibited FGF4-induced differentiation but did not alter FGF4-driven proliferation. This uncoupling of differentiation and proliferation was also observed when oncogenic Ras isoforms were overexpressed in ES cells. Knockdown of Mp1 redirected FGF4 signaling from differentiation toward pluripotency and up-regulated the pluripotency-related genes Esrrb, Rex1, Tcl1, and Sox2. We also found that human germ cell tumors (GCTs) express low amounts of Mp1 in the invasive embryonic carcinoma and seminoma histologies and higher amounts of Mp1 in the noninvasive carcinoma in situ precursor and differentiated components. Knockdown of Mp1 in invasive GCT cells resulted in resistance to differentiation, thereby showing a functional role for Mp1 both in normal differentiation of ES cells and in germ cell cancer.
Collapse
Affiliation(s)
- Bart A Westerman
- Division of Molecular Genetics, the Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Teulière J, Gally C, Garriga G, Labouesse M, Georges-Labouesse E. MIG-15 and ERM-1 promote growth cone directional migration in parallel to UNC-116 and WVE-1. Development 2011; 138:4475-85. [PMID: 21937599 DOI: 10.1242/dev.061952] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurons require precise targeting of their axons to form a connected network and a functional nervous system. Although many guidance receptors have been identified, much less is known about how these receptors signal to direct growth cone migration. We used Caenorhabditis elegans motoneurons to study growth cone directional migration in response to a repellent UNC-6 (netrin homolog) guidance cue. The evolutionarily conserved kinase MIG-15 [homolog of Nck-interacting kinase (NIK)] regulates motoneuron UNC-6-dependent repulsion through unknown mechanisms. Using genetics and live imaging techniques, we show that motoneuron commissural axon morphology defects in mig-15 mutants result from impaired growth cone motility and subsequent failure to migrate across longitudinal obstacles or retract extra processes. To identify new genes acting with mig-15, we screened for genetic enhancers of the mig-15 commissural phenotype and identified the ezrin/radixin/moesin ortholog ERM-1, the kinesin-1 motor UNC-116 and the actin regulator WVE-1 complex. Genetic analysis indicates that mig-15 and erm-1 act in the same genetic pathway to regulate growth cone migration and that this pathway functions in parallel to the UNC-116/WVE-1 pathway. Further, time-lapse imaging of growth cones in mutants suggests that UNC-116 might be required to stimulate protrusive activity at the leading edge, whereas MIG-15 and ERM-1 maintain low activity at the rear edge. Together, these results support a model in which the MIG-15 kinase and the UNC-116-WVE-1 complex act on opposite sides of the growth cone to promote robust directional migration.
Collapse
Affiliation(s)
- Jérôme Teulière
- IGBMC, CNRS/Université de Strasbourg UMR7104, INSERM U964, 1 rue Laurent Fries, BP10142, Illkirch, 67400 France.
| | | | | | | | | |
Collapse
|
40
|
Lu H, Huang YY, Mehrotra S, Droz-Rosario R, Liu J, Bhaumik M, White E, Shen Z. Essential roles of BCCIP in mouse embryonic development and structural stability of chromosomes. PLoS Genet 2011; 7:e1002291. [PMID: 21966279 PMCID: PMC3178617 DOI: 10.1371/journal.pgen.1002291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 07/30/2011] [Indexed: 11/19/2022] Open
Abstract
BCCIP is a BRCA2- and CDKN1A(p21)-interacting protein that has been implicated in the maintenance of genomic integrity. To understand the in vivo functions of BCCIP, we generated a conditional BCCIP knockdown transgenic mouse model using Cre-LoxP mediated RNA interference. The BCCIP knockdown embryos displayed impaired cellular proliferation and apoptosis at day E7.5. Consistent with these results, the in vitro proliferation of blastocysts and mouse embryonic fibroblasts (MEFs) of BCCIP knockdown mice were impaired considerably. The BCCIP deficient mouse embryos die before E11.5 day. Deletion of the p53 gene could not rescue the embryonic lethality due to BCCIP deficiency, but partially rescues the growth delay of mouse embryonic fibroblasts in vitro. To further understand the cause of development and proliferation defects in BCCIP-deficient mice, MEFs were subjected to chromosome stability analysis. The BCCIP-deficient MEFs displayed significant spontaneous chromosome structural alterations associated with replication stress, including a 3.5-fold induction of chromatid breaks. Remarkably, the BCCIP-deficient MEFs had a ∼20-fold increase in sister chromatid union (SCU), yet the induction of sister chromatid exchanges (SCE) was modestly at 1.5 fold. SCU is a unique type of chromatid aberration that may give rise to chromatin bridges between daughter nuclei in anaphase. In addition, the BCCIP-deficient MEFs have reduced repair of irradiation-induced DNA damage and reductions of Rad51 protein and nuclear foci. Our data suggest a unique function of BCCIP, not only in repair of DNA damage, but also in resolving stalled replication forks and prevention of replication stress. In addition, BCCIP deficiency causes excessive spontaneous chromatin bridges via the formation of SCU, which can subsequently impair chromosome segregations in mitosis and cell division. BCCIP is a BRCA2- and p21-interacting protein. Studies with cell culture systems have suggested an essential role of BCCIP gene in homologous recombination and suppression of replication stress and have suggested that BCCIP defects causes mitotic errors. However, the in vivo function(s) of BCCIP and the mechanistic links between BCCIP's role in suppression of replication stress and mitotic errors are largely unknown. We generated transgenic mouse lines that conditionally express shRNA against the BCCIP, and we found an essential role of BCCIP in embryo development. We demonstrate that BCCIP deficiency causes the formation of a unique type of structural abnormality of chromosomes called sister chromatid union (SCU). It has been noted in the past that impaired homologous recombination and resolution of stalled replication forks can have detrimental consequences in mitosis. However, the physical evidence for this link has not been fully identified. SCU is the product of ligation between sister chromatids, likely formed as a result of unsuccessful attempt(s) to resolve stalled replication forks. Because the SCU will progress into chromatin bridges at anaphase, resulting in mitosis errors, it likely constitutes one of the physical links between S-phase replication stress and mitotic errors.
Collapse
Affiliation(s)
- Huimei Lu
- The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
| | - Yi-Yuan Huang
- The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
| | - Sonam Mehrotra
- The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
| | - Roberto Droz-Rosario
- The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
| | - Jingmei Liu
- The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
| | - Mantu Bhaumik
- The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Pediatrics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
| | - Eileen White
- The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Molecular Biology and Biochemistry, Rutgers – The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Zhiyuan Shen
- The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
The level of TGF-β/bone morphogenetic protein (BMP) signaling through Smad is tightly regulated to ensure proper embryonic patterning and homeostasis. Here we show that Smad activation by TGF-β/BMP is blocked by a highly conserved phosphorylation event in the α-helix 1 region of Smad [T312 in Drosophila Smad1 (MAD)]. α-helix 1 phosphorylation reduces Smad interaction with TGF-β/BMP receptor kinase and affects all receptor-activated Smads except Smad3. Tissue culture and transgenic studies in Drosophila further demonstrate that the biological activity of MAD is repressed by T312 phosphorylation in vivo. Through RNAi screening of the kinome, we have identified Misshapen (Msn) and the mammalian orthologs TNIK, MINK1, and MAP4K4 as the kinases responsible for α-helix 1 phosphorylation. Targeted expression of an active form of Msn in the wing imaginal disk disrupted activation of endogenous MAD by Dpp and expression of the Dpp/MAD target gene. Msn kinases belong to the Ste20 kinase family that has been shown to act as MAP kinase kinase kinase kinase (MAP4K). Our findings thus reveal a function of Msn independent of its impact on MAP kinase cascades. This Smad inhibition mechanism by Msn likely has important implications for development and disease.
Collapse
|
42
|
Flood PM, Qian L, Peterson LJ, Zhang F, Shi JS, Gao HM, Hong JS. Transcriptional Factor NF-κB as a Target for Therapy in Parkinson's Disease. PARKINSONS DISEASE 2011; 2011:216298. [PMID: 21603248 PMCID: PMC3095232 DOI: 10.4061/2011/216298] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/21/2011] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by chronic inflammation. Nuclear factor κB (NF-κB) is a family of inducible transcription factors that are expressed in a wide variety of cells and tissues, including microglia, astrocytes, and neurons, and the classical NF-κB pathway plays a key role in the activation and regulation of inflammatory mediator production during inflammation. Activation of the classical NF-κB pathway is mediated through the activity of the IKK kinase complex, which consists of a heterotrimer of IKKα, IKKβ, and IKKγ subunits. Targeting NF-κB has been proposed as an approach to the treatment of acute and chronic inflammatory conditions, and the use of inhibitors specific for either IKKβ or IKKγ has now been found to inhibit neurodegeneration of TH+ DA-producing neurons in murine and primate models of Parkinson's disease. These studies suggest that targeting the classical pathway of NF-κB through the inhibition of the IKK complex can serve as a useful therapeutic approach to the treatment of PD.
Collapse
Affiliation(s)
- Patrick M Flood
- Department of Periodontology and the Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, NC 27599-7454, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Cobreros-Reguera L, Fernández-Miñán A, Fernández-Espartero CH, López-Schier H, González-Reyes A, Martín-Bermudo MD. The Ste20 kinase misshapen is essential for the invasive behaviour of ovarian epithelial cells in Drosophila. EMBO Rep 2010; 11:943-9. [PMID: 21102643 DOI: 10.1038/embor.2010.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 09/02/2010] [Accepted: 09/10/2010] [Indexed: 01/19/2023] Open
Abstract
Stationary-to-migratory transitions of epithelial cells have a key role in development and tumour progression. Border cell migration is a powerful system in which to investigate this transition in living organisms. Here, we identify the Ste20-like kinase misshapen (msn) as a novel regulator of border-cell migration in Drosophila. Expression of msn in border cells is independent of the transcription factor slow border cells and of inputs from all pathways that are known to control border-cell migration. The msn gene functions to modulate the levels and/or distribution of Drosophila E-cadherin to promote the invasive migratory behaviour of border cells.
Collapse
|
44
|
Ferrer-vaquer A, Viotti M, Hadjantonakis AK. Transitions between epithelial and mesenchymal states and the morphogenesis of the early mouse embryo. Cell Adh Migr 2010; 4:447-57. [PMID: 20200481 PMCID: PMC2958623 DOI: 10.4161/cam.4.3.10771] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/30/2009] [Indexed: 12/19/2022] Open
Abstract
Multicellular organisms arise from the generation of different cell types and the organization of cells into tissues and organs. Cells of metazoa display two main phenotypes, the ancestral epithelial state and the recent mesenchymal derivative. Epithelial cells are usually stationary and reside in two-dimensional sheets. By contrast mesenchymal cells are loosely packed and can move to new positions, thereby providing a vehicle for cell rearrangement, dispersal and novel cell-cell interactions. Transitions between epithelial and mesenchymal states drive key morphogenetic events in the early vertebrate embryo, including gastrulation, germ layer formation and somitogenesis. The cell behaviors and molecular mechanisms promoting transitions between these two states in the early mouse embryo are discussed in this review.
Collapse
Affiliation(s)
- Anna Ferrer-vaquer
- Developmental Biology program; Sloan-Kettering institute; New York, NY USA
| | - Manuel Viotti
- Developmental Biology program; Sloan-Kettering institute; New York, NY USA
- Biochemistry, Cell and Molecular Biology program, weill Graduate School of Medical Sciences of Cornell university, New York, NY USA
| | | |
Collapse
|
45
|
Delpire E. The mammalian family of sterile 20p-like protein kinases. Pflugers Arch 2009; 458:953-67. [PMID: 19399514 DOI: 10.1007/s00424-009-0674-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 04/15/2009] [Indexed: 12/12/2022]
Abstract
Twenty-eight kinases found in mammalian genomes share similarity to the budding yeast kinase Ste20p. This review article examines the biological function of these mammalian Ste20 kinases. Some of them have conserved the Ste20p function of transducing extracellular signals to mitogen-activated kinases. Others affect ion transport, cell cycle, cytoskeleton organization, and program cell death. A number of molecular details involved in the activation of the kinases are discussed including autophosphorylation, substrate recognition, autoinhibition, dimerization, and substrate binding.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, T-4202 MCN 1161 21st Avenue South, Nashville, TN 37232-2520, USA.
| |
Collapse
|
46
|
Arnold SJ, Robertson EJ. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 2009; 10:91-103. [PMID: 19129791 DOI: 10.1038/nrm2618] [Citation(s) in RCA: 591] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic studies have identified the key signalling pathways and developmentally regulated transcription factors that govern cell lineage allocation and axis patterning in the early mammalian embryo. Recent advances have uncovered details of the molecular circuits that tightly control cell growth and differentiation in the mammalian embryo from the blastocyst stage, through the establishment of initial anterior-posterior polarity, to gastrulation, when the germ cells are set aside and the three primary germ layers are specified. Relevant studies in lower vertebrates indicate the conservation and divergence of regulatory mechanisms for cell lineage allocation and axis patterning.
Collapse
Affiliation(s)
- Sebastian J Arnold
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
47
|
Chapman JO, Li H, Lundquist EA. The MIG-15 NIK kinase acts cell-autonomously in neuroblast polarization and migration in C. elegans. Dev Biol 2008; 324:245-57. [PMID: 18840424 PMCID: PMC2642615 DOI: 10.1016/j.ydbio.2008.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/11/2008] [Accepted: 09/12/2008] [Indexed: 11/25/2022]
Abstract
Cell migration is a fundamental process in animal development, including development of the nervous system. In C. elegans, the bilateral QR and QL neuroblasts undergo initial anterior and posterior polarizations and migrations before they divide to produce neurons. A subsequent Wnt signal from the posterior instructs QL descendants to continue their posterior migration. Nck-interacting kinases (NIK kinases) have been implicated in cell and nuclear migration as well as lamellipodia formation. Studies here show that the C. elegans MIG-15 NIK kinase controls multiple aspects of initial Q cell polarization, including the ability of the cells to polarize, to maintain polarity, and to migrate. These data suggest that MIG-15 acts independently of the Wnt signal that controls QL descendant posterior migration. Furthermore, MIG-15 affects the later migrations of neurons generated from Q cell division. Finally, a mosaic analysis indicates that MIG-15 acts cell-autonomously in Q descendant migration.
Collapse
Affiliation(s)
- Jamie O. Chapman
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045-7534
| | | | - Erik A. Lundquist
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045-7534
| |
Collapse
|
48
|
Hirano M, Hashimoto S, Yonemura S, Sabe H, Aizawa S. EPB41L5 functions to post-transcriptionally regulate cadherin and integrin during epithelial-mesenchymal transition. ACTA ACUST UNITED AC 2008; 182:1217-30. [PMID: 18794329 PMCID: PMC2542480 DOI: 10.1083/jcb.200712086] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
EPB41L5 belongs to the band 4.1 superfamily. We investigate here the involvement of EPB41L5 in epithelial-mesenchymal transition (EMT) during mouse gastrulation. EPB41L5 expression is induced during TGFbeta-stimulated EMT, whereas silencing of EPB41L5 by siRNA inhibits this transition. In EPB41L5 mutants, cell-cell adhesion is enhanced, and EMT is greatly impaired during gastrulation. Moreover, cell attachment, spreading, and mobility are greatly reduced by EPB41L5 deficiency. Gene transcription regulation during EMT occurs normally at the mRNA level; EPB41L5 siRNA does not affect either the decrease in E-cadherin or the increase in integrin expression. However, at the protein level, the decrease in E-cadherin and increase in integrin are inhibited in both EPB41L5 siRNA-treated NMuMG cells and mutant mesoderm. We find that EPB41L5 binds p120ctn through its N-terminal FERM domain, inhibiting p120ctn-E-cadherin binding. EPB41L5 overexpression causes E-cadherin relocalization into Rab5-positive vesicles in epithelial cells. At the same time, EPB41L5 binds to paxillin through its C terminus, enhancing integrin/paxillin association, thereby stimulating focal adhesion formation.
Collapse
Affiliation(s)
- Mariko Hirano
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
49
|
Puri V, Virbasius JV, Guilherme A, Czech MP. RNAi screens reveal novel metabolic regulators: RIP140, MAP4k4 and the lipid droplet associated fat specific protein (FSP) 27. Acta Physiol (Oxf) 2008; 192:103-15. [PMID: 18171433 PMCID: PMC2880506 DOI: 10.1111/j.1748-1716.2007.01786.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue modulates whole body metabolism and insulin sensitivity by controlling circulating lipid levels and producing molecules that can regulate fatty acid metabolism in such tissues as muscle and liver. We have developed RNA interference (RNAi) screens to identify genes in cultured adipocytes that regulate insulin signalling and key metabolic pathways. These short interfering RNA (siRNA)-based screens identified the transcriptional corepressor receptor interacting protein 140 (RIP140) (J Clin Invest 116: 125, 2006) and the mitogen-activated protein kinase (MAP4k4) (Proc Natl Acad Sci USA 103: 2087, 2006) as negative regulators of insulin-responsive hexose uptake and oxidative metabolism. Gene expression profiling revealed that RIP140 depletion upregulates the expression of clusters of genes in the pathways of glucose uptake, glycolysis, tricarboxylic acid cycle, fatty acid oxidation, mitochondrial biogenesis and oxidative phosphorylation. RIP140-null mice resist weight gain on a high-fat diet and display enhanced glucose tolerance. MAP4k4 depletion in adipocytes increases many of the RIP140-sensitive genes, increases adipogenesis and mediates some actions of tumour necrosis factor-alpha (TNF-alpha). Remarkably, another hit in our RNAi screens was fat specific protein 27 (FSP27), a highly expressed isoform of Cidea. We discovered that FSP27 unexpectedly associates specifically with lipid droplets and regulates fat storage. We conclude that RIP140, MAP4k4 and the novel lipid droplet protein FSP27 are powerful regulators of adipose tissue metabolism and are potential therapeutic targets for controlling metabolic disease. The discovery of these novel proteins validates the power of RNAi screening for discovery of new therapeutic approaches to type 2 diabetes and obesity.
Collapse
Affiliation(s)
- V Puri
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
50
|
Tesz GJ, Guilherme A, Guntur KVP, Hubbard AC, Tang X, Chawla A, Czech MP. Tumor necrosis factor alpha (TNFalpha) stimulates Map4k4 expression through TNFalpha receptor 1 signaling to c-Jun and activating transcription factor 2. J Biol Chem 2007; 282:19302-12. [PMID: 17500068 DOI: 10.1074/jbc.m700665200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor alpha (TNFalpha) is a cytokine secreted by macrophages and adipocytes that contributes to the low grade inflammation and insulin resistance observed in obesity. TNFalpha signaling decreases peroxisome proliferator-activated receptor gamma and glucose transporter isoform 4 (GLUT4) expression in adipocytes, impairing insulin action, and this is mediated in part by the yeast Ste20 protein kinase ortholog Map4k4. Here we show that Map4k4 expression is selectively up-regulated by TNFalpha, whereas the expression of the protein kinases JNK1/2, ERK1/2, p38 stress-activated protein kinase, and mitogen-activated protein kinase kinases 4/7 shows little or no response. Furthermore, the cytokines interleukin 1beta (IL-1beta) and IL-6 as well as lipopolysaccharide fail to increase Map4k4 mRNA levels in cultured adipocytes under conditions where TNFalpha elicits a 3-fold effect. Using agonistic and antagonistic antibodies and small interfering RNA (siRNA) against TNFalpha receptor 1 (TNFR1) and TNFalpha receptor 2 (TNFR2), we show that TNFR1, but not TNFR2, mediates the increase in Map4k4 expression. TNFR1, but not TNFR2, also mediates a potent effect of TNFalpha on the phosphorylation of JNK1/2 and p38 stress-activated protein kinase and their downstream transcription factor substrates c-Jun and activating transcription factor 2 (ATF2). siRNA-based depletion of c-Jun and ATF2 attenuated TNFalpha action on Map4k4 mRNA expression. Consistent with this concept, the phosphorylation of ATF2 along with the expression and phosphorylation of c-Jun by TNFalpha signaling was more robust and prolonged compared with that of IL-1beta, which failed to modulate Map4k4. These data reveal that TNFalpha selectively stimulates the expression of a key component of its own signaling pathway, Map4k4, through a TNFR1-dependent mechanism that targets the transcription factors c-Jun and ATF2.
Collapse
Affiliation(s)
- Gregory J Tesz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | |
Collapse
|