1
|
Inaba M. Optogenetic techniques for understanding the gut peristalsis during chicken embryonic development. Biochem Soc Trans 2024; 52:1727-1735. [PMID: 39051133 DOI: 10.1042/bst20231337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Gut peristaltic movements transport ingested materials along the gut axis, which is critical for food digestion and nutrient absorption. While a large amount of studies have been devoted to analyzing the physiological functions of peristalsis in adults, little is known about how the peristaltic system is established during embryogenesis. In recent years, the chicken developing gut has emerged as an excellent model, in which specific sites along the gut axis can be genetically labeled enabling live imaging and optogenetic analyses. This review provides an overview of recent progress in optogenetic studies of gut peristalsis. Analyses with an improved channelrhodopsin-2 variant demonstrated that the peristalsis can artificially be generated in the developing gut. These studies unveiled novel functional coordination between different regions along the gut axis. In addition, imaging with GCaMP6s, a genetically encoded calcium indicator, enabled a fine mapping of developmental changes in the peristaltic patterns as Ca2+ signals. These advanced techniques will broaden our knowledge of how embryonic peristalsis is established at the cellular and molecular level, leading to the understanding of physiological and pathological processes in adult peristalsis.
Collapse
Affiliation(s)
- Masafumi Inaba
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
2
|
Quigley EMM, Noble O, Ansari U. The Suggested Relationships Between Common GI Symptoms and Joint Hypermobility, POTS, and MCAS. Gastroenterol Hepatol (N Y) 2024; 20:479-489. [PMID: 39205953 PMCID: PMC11348541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An increasing number of reports suggest an association between a newly recognized disease cluster and significant and often disabling gastrointestinal (GI) symptoms. This cluster is composed of diagnoses of hypermobility spectrum disorders (HSDs) such as joint hypermobility and hypermobile variant Ehlers-Danlos syndrome (hEDS), postural orthostatic tachycardia syndrome (POTS), and mast cell activation syndrome (MCAS). The diagnosis of these entities remains a challenge, as the pathophysiology of each has not been completely elucidated and the diagnostic criteria continue to evolve. This article describes a cohort of young adult females who shared similar GI symptoms, with intractable nausea and vomiting being most prominent and gastroesophageal reflux disease and constipation also occurring. Most strikingly, these females also exhibited or reported a history of HSD, hEDS, POTS, and/or MCAS. The clinical course of their GI symptoms was remarkable for considerable challenges in management, and artificial nutritional support proved necessary for some. This article describes the clinical features and outcomes of their GI manifestations, examines how these manifestations might be linked to their systemic syndromes, and discusses whether a shared pathophysiology exists. Pending the definition of a common thread between these conditions, this article seeks to raise awareness of their clinical definitions and foster research that will hopefully improve outcomes for these patients.
Collapse
Affiliation(s)
- Eamonn M. M. Quigley
- Division of Gastroenterology and Hepatology, Lynda K. and David M. Under wood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
| | - Oscar Noble
- Division of Gastroenterology and Hepatology, Lynda K. and David M. Under wood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
| | - Usman Ansari
- Division of Gastroenterology and Hepatology, Lynda K. and David M. Under wood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
| |
Collapse
|
3
|
Voss U. Enteric neuroprotection-A matter of balancing redox potentials, limiting inflammation, and boosting resilience. Neurogastroenterol Motil 2024:e14871. [PMID: 39038122 DOI: 10.1111/nmo.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The enteric nervous system (ENS) orchestrates intricate and autonomous functions throughout the gastrointestinal (GI) tract. Disruptions in ENS function are associated GI disorders. This mini review focuses on the past decade's research, utilizing rodent models, with an emphasis on protecting enteric neurons from loss. The review specifically looks at efforts to reduce oxidative stress, limit inflammation, and enhance neuronal resilience. Protective interventions including administration of antioxidants and compounds targeting cellular redox buffer systems, are evaluated for their effectiveness in preventing loss of enteric neurons in the ischemia-reperfusion model and streptozotocin-induced diabetes model. Interventions such as engrafting mesenchymal stem cells and targeting inflammatory signaling pathways in enteric neurons and glial cells are evaluated in inflammatory bowel disease models including the Winnie mouse, DSS-, and DNBS/TNBS-induced colitis models. The review also touches upon neuronal resilience, particularly in the context of Parkinson's disease models. Including estrogen's neuroprotective role, and the influence of metal ions on enteric neuronal protection. Understanding the dynamic interplay within the ENS and its role in disease pathogenesis holds promise for developing targeted therapies to effectively manage and treat various GI ailments.
Collapse
Affiliation(s)
- Ulrikke Voss
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Montalva L, Cheng LS, Kapur R, Langer JC, Berrebi D, Kyrklund K, Pakarinen M, de Blaauw I, Bonnard A, Gosain A. Hirschsprung disease. Nat Rev Dis Primers 2023; 9:54. [PMID: 37828049 DOI: 10.1038/s41572-023-00465-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Hirschsprung disease (HSCR) is a rare congenital intestinal disease that occurs in 1 in 5,000 live births. HSCR is characterized by the absence of ganglion cells in the myenteric and submucosal plexuses of the intestine. Most patients present during the neonatal period with the first meconium passage delayed beyond 24 h, abdominal distension and vomiting. Syndromes associated with HSCR include trisomy 21, Mowat-Wilson syndrome, congenital central hypoventilation syndrome, Shah-Waardenburg syndrome and cartilage-hair hypoplasia. Multiple putative genes are involved in familial and isolated HSCR, of which the most common are the RET proto-oncogene and EDNRB. Diagnosis consists of visualization of a transition zone on contrast enema and confirmation via rectal biopsy. HSCR is typically managed by surgical removal of the aganglionic bowel and reconstruction of the intestinal tract by connecting the normally innervated bowel down to the anus while preserving normal sphincter function. Several procedures, namely Swenson, Soave and Duhamel procedures, can be undertaken and may include a laparoscopically assisted approach. Short-term and long-term comorbidities include persistent obstructive symptoms, enterocolitis and soiling. Continued research and innovation to better understand disease mechanisms holds promise for developing novel techniques for diagnosis and therapy, and improving outcomes in patients.
Collapse
Affiliation(s)
- Louise Montalva
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France.
- Faculty of Health, Paris-Cité University, Paris, France.
- NeuroDiderot, INSERM UMR1141, Paris, France.
| | - Lily S Cheng
- Division of Paediatric Surgery, Texas Children's Hospital, Houston, TX, USA
- Division of Paediatric Surgery, University of Virginia, Charlottesville, VA, USA
| | - Raj Kapur
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jacob C Langer
- Division of Paediatric Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dominique Berrebi
- Department of Pathology, Robert-Debré and Necker Children's University Hospital, Paris, France
| | - Kristiina Kyrklund
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Mikko Pakarinen
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Ivo de Blaauw
- Department of Surgery, Division of Paediatric Surgery, Radboudumc-Amalia Children's Hospital, Nijmegen, Netherlands
| | - Arnaud Bonnard
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France
- Faculty of Health, Paris-Cité University, Paris, France
- NeuroDiderot, INSERM UMR1141, Paris, France
| | - Ankush Gosain
- Department of Paediatric Surgery, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
5
|
Yang Q, Wang F, Wang Z, Guo J, Chang T, Dalielihan B, Yang G, Lei C, Dang R. mRNA sequencing provides new insights into the pathogenesis of Hirschsprung's disease in mice. Pediatr Surg Int 2023; 39:268. [PMID: 37676292 DOI: 10.1007/s00383-023-05544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE The aim of this study is to use RNA sequencing and RT-qPCR to identify the main susceptibility genes linked to the occurrence and development of Hirschsprung disease in the colonic tissues of EDNRBm1yzcm and wild mice. METHODS RNA was extracted from colon tissues of 3 mutant homozygous mice and 3 wild mice. RNA degradation, contamination concentration, and integrity were then measured. The extracted RNA was then sequenced using the Illumina platform. The obtained sequence data are filtered to ensure data quality and compared to the reference genome for further analysis. DESeq2 was used for gene expression analysis of the raw data. In addition, graphene oxide enrichment analysis and RT-qPCR validation were also performed. RESULTS This study identified 8354 differentially expressed genes in EDNRBm1yzcm and wild mouse colon tissues by RNA sequencing, including 4346 upregulated genes and 4005 downregulated genes. Correspondingly, the results of RT-qPCR analysis showed good correlation with the transcriptome data. In addition, GO and KEGG enrichment results suggested that there were 8103 terms and 320 pathways in all DEGs. When P < 0.05, 1081 GO terms and 320 KEGG pathways reached a significant level. Finally, through the existing studies and the enrichment results of differentially expressed genes, it was determined that axon guidance and the focal adhesion pathway may be closely related to the occurrence of HSCR. CONCLUSIONS This study analyzed and identified the differential genes in colonic tissues between EDNRBm1yzcm mice and wild mice, which provided new insight for further mining the potential pathogenic genes of Hirschsprung's disease.
Collapse
Affiliation(s)
- Qiwen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Jiajun Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Tingjin Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Baligen Dalielihan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China.
| |
Collapse
|
6
|
Stavely R, Hotta R, Guyer RA, Picard N, Rahman AA, Omer M, Soos A, Szocs E, Mueller J, Goldstein AM, Nagy N. A distinct transcriptome characterizes neural crest-derived cells at the migratory wavefront during enteric nervous system development. Development 2023; 150:dev201090. [PMID: 36779913 PMCID: PMC10108706 DOI: 10.1242/dev.201090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/03/2023] [Indexed: 02/14/2023]
Abstract
Enteric nervous system development relies on intestinal colonization by enteric neural crest-derived cells (ENCDCs). This is driven by a population of highly migratory and proliferative ENCDCs at the wavefront, but the molecular characteristics of these cells are unknown. ENCDCs from the wavefront and the trailing region were isolated and subjected to RNA-seq. Wavefront-ENCDCs were transcriptionally distinct from trailing ENCDCs, and temporal modelling confirmed their relative immaturity. This population of ENCDCs exhibited altered expression of ECM and cytoskeletal genes, consistent with a migratory phenotype. Unlike trailing ENCDCs, the wavefront lacked expression of genes related to neuronal or glial maturation. As wavefront ENCDC genes were associated with migration and developmental immaturity, the genes that remain expressed in later progenitor populations may be particularly pertinent to understanding the maintenance of ENCDC progenitor characteristics. Dusp6 expression was specifically upregulated at the wavefront. Inhibiting DUSP6 activity prevented wavefront colonization of the hindgut, and inhibited the migratory ability of post-colonized ENCDCs from midgut and postnatal neurospheres. These effects were reversed by simultaneous inhibition of ERK signaling, indicating that DUSP6-mediated ERK inhibition is required for ENCDC migration in mouse and chick.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard A. Guyer
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicole Picard
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A. Rahman
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meredith Omer
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Adam Soos
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Emoke Szocs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Jessica Mueller
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| |
Collapse
|
7
|
He S, Wang J, Huang Y, Kong F, Yang R, Zhan Y, Li Z, Ye C, Meng L, Ren Y, Zhou Y, Chen G, Shen Z, Sun S, Zheng S, Dong R. Intestinal fibrosis in aganglionic segment of Hirschsprung's disease revealed by single-cell RNA sequencing. Clin Transl Med 2023; 13:e1193. [PMID: 36738110 PMCID: PMC9898741 DOI: 10.1002/ctm2.1193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a relatively common congenital disability. Accumulating extracellular matrix (ECM) prompts intestinal fibrosis remodelling in the aganglionic segments of HSCR. The contributions of various cellular subsets in the fibrogenesis of HSCR segments are poorly understood. METHODS Single-cell transcriptomics from 8 aganglionic segments and 5 normal segments of 7 HSCR subjects and 26 healthy segments of seven healthy donors were analysed. Fibrotic phenotype and alterations were explored using differential expression analysis and single-cell trajectory analysis. Fibrosis-related transcription factors were inferred through single-cell regulatory network inference. Bulk transcriptomic data, proteomic data, immunohistochemistry (IHC) and real-time polymerase chain reaction were used to validate the alterations in the HSCR intestine. RESULTS Various collagen, fibronectin and laminin protein-coding genes expression were up-regulated in the stromal and glial cells of the HSCR intestine. The number of fibroblasts and myofibroblasts in the aganglionic segments increased, and more myofibroblasts were activated at an earlier stage in HSCR segments, which infers that there is an intestinal fibrosis phenotype in HSCR segments. The fibrotic regulators POSTN, ANXA1 and HSP70 were highly expressed in the ECM-related cellular subsets in the transitional segments and aganglionic segments. The transcription factor regulatory network revealed that fibrosis-related and megacolon-related NR2F1 in the fibroblasts and glial subsets was up-regulated in the aganglionic segment. CONCLUSIONS This work identifies intestinal fibrosis and related regulators in aganglionic segments of HSCR; hence, anti-fibrotic therapy may be considered to prevent HSCR-associated enterocolitis (HAEC), relieve intestinal stricture and improve cell therapy.
Collapse
Affiliation(s)
- Shiwei He
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Junfeng Wang
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Yanlei Huang
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Fanyang Kong
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Ran Yang
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Yong Zhan
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Zifeng Li
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Chunjing Ye
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Lingdu Meng
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Yankang Ren
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Ying Zhou
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Gong Chen
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Zhen Shen
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Song Sun
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Shan Zheng
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| | - Rui Dong
- Department of Pediatric SurgeryShanghai Key Laboratory of Birth DefectChildren's Hospital of Fudan UniversityMinistry of HealthShanghaiChina
| |
Collapse
|
8
|
Chevalier NR. Physical organogenesis of the gut. Development 2022; 149:276365. [DOI: 10.1242/dev.200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The gut has been a central subject of organogenesis since Caspar Friedrich Wolff’s seminal 1769 work ‘De Formatione Intestinorum’. Today, we are moving from a purely genetic understanding of cell specification to a model in which genetics codes for layers of physical–mechanical and electrical properties that drive organogenesis such that organ function and morphogenesis are deeply intertwined. This Review provides an up-to-date survey of the extrinsic and intrinsic mechanical forces acting on the embryonic vertebrate gut during development and of their role in all aspects of intestinal morphogenesis: enteric nervous system formation, epithelium structuring, muscle orientation and differentiation, anisotropic growth and the development of myogenic and neurogenic motility. I outline numerous implications of this biomechanical perspective in the etiology and treatment of pathologies, such as short bowel syndrome, dysmotility, interstitial cells of Cajal-related disorders and Hirschsprung disease.
Collapse
Affiliation(s)
- Nicolas R. Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057 , 10 rue Alice Domon et Léonie Duquet, 75013 Paris , France
| |
Collapse
|
9
|
Chalazonitis A, Rao M, Sulzer D. Similarities and differences between nigral and enteric dopaminergic neurons unravel distinctive involvement in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:50. [PMID: 35459867 PMCID: PMC9033791 DOI: 10.1038/s41531-022-00308-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to the well-known degeneration of midbrain dopaminergic neurons, enteric neurons can also be affected in neurodegenerative disorders such as Parkinson's disease (PD). Dopaminergic neurons have recently been identified in the enteric nervous system (ENS). While ENS dopaminergic neurons have been shown to degenerate in genetic mouse models of PD, analyses of their survival in enteric biopsies of PD patients have provided inconsistent results to date. In this context, this review seeks to highlight the distinctive and shared factors and properties that control the evolution of these two sets of dopaminergic neurons from neuronal precursors to aging neurons. Although their cellular sources and developmental times of origin differ, midbrain and ENS dopaminergic neurons express many transcription factors in common and their respective environments express similar neurotrophic molecules. For example, Foxa2 and Sox6 are expressed by both populations to promote the specification, differentiation, and long-term maintenance of the dopaminergic phenotype. Both populations exhibit sustained patterns of excitability that drive intrinsic vulnerability over time. In disorders such as PD, colon biopsies have revealed aggregation of alpha-synuclein in the submucosal plexus where dopaminergic neurons reside and lack blood barrier protection. Thus, these enteric neurons may be more susceptible to neurotoxic insults and aggregation of α-synuclein that spreads from gut to midbrain. Under sustained stress, inefficient autophagy leads to neurodegeneration, GI motility dysfunction, and PD symptoms. Recent findings suggest that novel neurotrophic factors such as CDNF have the potential to be used as neuroprotective agents to prevent and treat ENS symptoms of PD.
Collapse
Affiliation(s)
- Alcmène Chalazonitis
- Department of Pathology & Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Division of Molecular Therapeutics, New York State Psychiatry Institute, Columbia University, New York, NY, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
10
|
Delalande JM, Nagy N, McCann CJ, Natarajan D, Cooper JE, Carreno G, Dora D, Campbell A, Laurent N, Kemos P, Thomas S, Alby C, Attié-Bitach T, Lyonnet S, Logan MP, Goldstein AM, Davey MG, Hofstra RMW, Thapar N, Burns AJ. TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human. Front Mol Neurosci 2022; 14:757646. [PMID: 35002618 PMCID: PMC8733242 DOI: 10.3389/fnmol.2021.757646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning.
Collapse
Affiliation(s)
- Jean Marie Delalande
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Julie E Cooper
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gabriela Carreno
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Alison Campbell
- Department of Paediatric Surgery, Christchurch Hospital, Christchurch, New Zealand
| | - Nicole Laurent
- Génétique et Anomalies du Développement, Université de Bourgogne, Service d'Anatomie Pathologique, Dijon, France
| | - Polychronis Kemos
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France
| | - Caroline Alby
- Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Malcolm P Logan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Division of Neurogastroenterology and Motility, Department of Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Inc., Cambridge, MA, United States
| |
Collapse
|
11
|
Lai FPL, Li Z, Zhou T, Leung AOW, Lau ST, Lui KNC, Wong WYM, Sham PC, Hui CC, Ngan ESW. Ciliary protein Kif7 regulates Gli and Ezh2 for initiating the neuronal differentiation of enteric neural crest cells during development. SCIENCE ADVANCES 2021; 7:eabf7472. [PMID: 34644112 PMCID: PMC8514102 DOI: 10.1126/sciadv.abf7472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gastrointestinal motility disorders occur frequently in patients with ciliopathy, but the underlying genetic link is unclear. The ciliary protein Kif7 can positively or negatively regulate Hedgehog signaling in different cellular contexts. Mice with neural crest cell (NCC)–specific Kif7 deficiency show a marked reduction of enteric NOS+ inhibitory neurons. Malformation of enteric nervous system (ENS) causes growth retardation and gut motility defect in mice. Mechanistically, Kif7 inhibits Gli2 in enteric NCCs (ENCCs), where Gli2 positively regulates the expression of Ezh2 by inhibiting the miR124-mediated suppression. In developing ENCCs, Ezh2 is a master regulator of 102 core genes underlying ENCC differentiation. Deletion of Gli2 or inhibition of Ezh2 favors the neurogenic lineage differentiation of mouse and human ENCCs and rescues the ENS defects of Kif7 mutants. In summary, Hedgehog signal, via Kif7-Gli-Ezh2, controls the timely expressions of the core genes to mediate the differentiation of ENCCs.
Collapse
Affiliation(s)
- Frank Pui-Ling Lai
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Zhixin Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Tingwen Zhou
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Adrian On Wah Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Sin-Ting Lau
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Kathy Nga-Chu Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - William Yu-Ming Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Pak-Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G1L7, Canada
| | - Elly Sau-Wai Ngan
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
- Corresponding author.
| |
Collapse
|
12
|
A Rare Case of Dorsal Agenesis of Pancreas, Choledochal Cyst, and Hirschsprung Disease in a Young Patient. ACG Case Rep J 2021; 8:e00561. [PMID: 33928176 PMCID: PMC8078483 DOI: 10.14309/crj.0000000000000561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022] Open
Abstract
Dorsal pancreatic agenesis is a rare congenital pancreatic malformation. There is just 1 reported case associating it with choledochal cyst. However, no cases have reported yet with both coexisting with Hirschsprung disease. We report a case of a 23-year-old man, presenting with on and off epigastric pain, sometimes radiating to the back. His medical records showed he had Hirschsprung disease as a neonate, for which he underwent Duhamel procedure. Ultrasound imaging revealed a choledochal cyst and a nonvisualized distal portion of the pancreas. Further cross-sectional imaging confirmed the findings—a type 1 choledochal cyst and a dorsal agenesis of the pancreas in a patient with Hirschsprung disease.
Collapse
|
13
|
Mutation in the Ciliary Protein C2CD3 Reveals Organ-Specific Mechanisms of Hedgehog Signal Transduction in Avian Embryos. J Dev Biol 2021; 9:jdb9020012. [PMID: 33805906 PMCID: PMC8103285 DOI: 10.3390/jdb9020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Primary cilia are ubiquitous microtubule-based organelles that serve as signaling hubs for numerous developmental pathways, most notably the Hedgehog (Hh) pathway. Defects in the structure or function of primary cilia result in a class of diseases called ciliopathies. It is well known that primary cilia participate in transducing a Hh signal, and as such ciliopathies frequently present with phenotypes indicative of aberrant Hh function. Interestingly, the exact mechanisms of cilia-dependent Hh signaling transduction are unclear as some ciliopathic animal models simultaneously present with gain-of-Hh phenotypes in one organ system and loss-of-Hh phenotypes in another. To better understand how Hh signaling is perturbed across different tissues in ciliopathic conditions, we examined four distinct Hh-dependent signaling centers in the naturally occurring avian ciliopathic mutant talpid2 (ta2). In addition to the well-known and previously reported limb and craniofacial malformations, we observed dorsal-ventral patterning defects in the neural tube, and a shortened gastrointestinal tract. Molecular analyses for elements of the Hh pathway revealed that the loss of cilia impact transduction of an Hh signal in a tissue-specific manner at variable levels of the pathway. These studies will provide increased knowledge into how impaired ciliogenesis differentially regulates Hh signaling across tissues and will provide potential avenues for future targeted therapeutic treatments.
Collapse
|
14
|
Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021; 148:148/3/dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.
Collapse
Affiliation(s)
- Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
15
|
Pawolski V, Schmidt MHH. Neuron-Glia Interaction in the Developing and Adult Enteric Nervous System. Cells 2020; 10:E47. [PMID: 33396231 PMCID: PMC7823798 DOI: 10.3390/cells10010047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022] Open
Abstract
The enteric nervous system (ENS) constitutes the largest part of the peripheral nervous system. In recent years, ENS development and its neurogenetic capacity in homeostasis and allostasishave gained increasing attention. Developmentally, the neural precursors of the ENS are mainly derived from vagal and sacral neural crest cell portions. Furthermore, Schwann cell precursors, as well as endodermal pancreatic progenitors, participate in ENS formation. Neural precursorsenherite three subpopulations: a bipotent neuron-glia, a neuronal-fated and a glial-fated subpopulation. Typically, enteric neural precursors migrate along the entire bowel to the anal end, chemoattracted by glial cell-derived neurotrophic factor (GDNF) and endothelin 3 (EDN3) molecules. During migration, a fraction undergoes differentiation into neurons and glial cells. Differentiation is regulated by bone morphogenetic proteins (BMP), Hedgehog and Notch signalling. The fully formed adult ENS may react to injury and damage with neurogenesis and gliogenesis. Nevertheless, the origin of differentiating cells is currently under debate. Putative candidates are an embryonic-like enteric neural progenitor population, Schwann cell precursors and transdifferentiating glial cells. These cells can be isolated and propagated in culture as adult ENS progenitors and may be used for cell transplantation therapies for treating enteric aganglionosis in Chagas and Hirschsprung's diseases.
Collapse
Affiliation(s)
| | - Mirko H. H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01307 Dresden, Germany;
| |
Collapse
|
16
|
Nagy N, Guyer RA, Hotta R, Zhang D, Newgreen DF, Halasy V, Kovacs T, Goldstein AM. RET overactivation leads to concurrent Hirschsprung disease and intestinal ganglioneuromas. Development 2020; 147:dev190900. [PMID: 32994173 PMCID: PMC7657479 DOI: 10.1242/dev.190900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Appropriately balanced RET signaling is of crucial importance during embryonic neural crest cell migration, proliferation and differentiation. RET deficiency, for example, leads to intestinal aganglionosis (Hirschsprung disease), whereas overactive RET can lead to multiple endocrine neoplasia (MEN) syndromes. Some RET mutations are associated with both intestinal aganglionosis and MEN-associated tumors. This seemingly paradoxical occurrence has led to speculation of a 'Janus mutation' in RET that causes overactivation or impairment of RET activity depending on the cellular context. Using an intestinal catenary culture system to test the effects of GDNF-mediated RET activation, we demonstrate the concurrent development of distal colonic aganglionosis and intestinal ganglioneuromas. Interestingly, the tumors induced by GDNF stimulation contain enteric neuronal progenitors capable of reconstituting an enteric nervous system when transplanted into a normal developmental environment. These results suggest that a Janus mutation may not be required to explain co-existing Hirschsprung disease and MEN-associated tumors, but rather that RET overstimulation alone is enough to cause both phenotypes. The results also suggest that reprogramming tumor cells toward non-pathological fates may represent a possible therapeutic avenue for MEN-associated neoplasms.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dongcheng Zhang
- Neural Crest Group, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Donald F Newgreen
- Neural Crest Group, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Viktoria Halasy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
17
|
Zhang S, Lee JM, Ashok AA, Jung HS. Action of Actomyosin Contraction With Shh Modulation Drive Epithelial Folding in the Circumvallate Papilla. Front Physiol 2020; 11:936. [PMID: 32848868 PMCID: PMC7411262 DOI: 10.3389/fphys.2020.00936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
The mouse tongue possesses three types of gustatory papillae: large circumvallate papillae (CVP), foliate papillae (FOP) and fungiform papillae (FFP). Although CVP is the largest papilla and contain a high density of taste buds, little is known about CVP development. Their transition from placode to dome-shape is particularly ambiguous. Understanding this phase is crucial since dome-shaped morphology is essential for proper localization of the imminent nerve fibers and taste buds. Here, we report actomyosin-dependent apical and basal constriction of epithelial cells during dynamic epithelial folding. Furthermore, actomyosin-dependent basal constriction requires focal adhesion kinase to guide dome-shape formation. Sonic hedgehog (Shh) is closely associated with the differentiation or survival of the neurons in CVP ganglion and cytoskeletal alteration in trench epithelial cells which regulate CVP morphogenesis. Our results demonstrate the CVP morphogenesis mechanism from placode to dome-shape by actomyosin-dependent cell shape change and suggest roles that Shh may play in trench and stromal core formation during CVP development.
Collapse
Affiliation(s)
- Sushan Zhang
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Adpaikar Anish Ashok
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| |
Collapse
|
18
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
19
|
Toomer KA, Yu M, Fulmer D, Guo L, Moore KS, Moore R, Drayton KD, Glover J, Peterson N, Ramos-Ortiz S, Drohan A, Catching BJ, Stairley R, Wessels A, Lipschutz JH, Delling FN, Jeunemaitre X, Dina C, Collins RL, Brand H, Talkowski ME, Del Monte F, Mukherjee R, Awgulewitsch A, Body S, Hardiman G, Hazard ES, da Silveira WA, Wang B, Leyne M, Durst R, Markwald RR, Le Scouarnec S, Hagege A, Le Tourneau T, Kohl P, Rog-Zielinska EA, Ellinor PT, Levine RA, Milan DJ, Schott JJ, Bouatia-Naji N, Slaugenhaupt SA, Norris RA. Primary cilia defects causing mitral valve prolapse. Sci Transl Med 2020; 11:11/493/eaax0290. [PMID: 31118289 PMCID: PMC7331025 DOI: 10.1126/scitranslmed.aax0290] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Mitral valve prolapse (MVP) affects 1 in 40 people and is the most common indication for mitral valve surgery. MVP can cause arrhythmias, heart failure, and sudden cardiac death, and to date, the causes of this disease are poorly understood. We now demonstrate that defects in primary cilia genes and their regulated pathways can cause MVP in familial and sporadic nonsyndromic MVP cases. Our expression studies and genetic ablation experiments confirmed a role for primary cilia in regulating ECM deposition during cardiac development. Loss of primary cilia during development resulted in progressive myxomatous degeneration and profound mitral valve pathology in the adult setting. Analysis of a large family with inherited, autosomal dominant nonsyndromic MVP identified a deleterious missense mutation in a cilia gene, DZIP1 A mouse model harboring this variant confirmed the pathogenicity of this mutation and revealed impaired ciliogenesis during development, which progressed to adult myxomatous valve disease and functional MVP. Relevance of primary cilia in common forms of MVP was tested using pathway enrichment in a large population of patients with MVP and controls from previously generated genome-wide association studies (GWAS), which confirmed the involvement of primary cilia genes in MVP. Together, our studies establish a developmental basis for MVP through altered cilia-dependent regulation of ECM and suggest that defects in primary cilia genes can be causative to disease phenotype in some patients with MVP.
Collapse
Affiliation(s)
- Katelynn A Toomer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Mengyao Yu
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France
| | - Diana Fulmer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Lilong Guo
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Kelsey S Moore
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Reece Moore
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Ka'la D Drayton
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Janiece Glover
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Neal Peterson
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Sandra Ramos-Ortiz
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Alex Drohan
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Breiona J Catching
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Rebecca Stairley
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Andy Wessels
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Francesca N Delling
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xavier Jeunemaitre
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Christian Dina
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Ryan L Collins
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Harrison Brand
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Federica Del Monte
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rupak Mukherjee
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Awgulewitsch
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Simon Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gary Hardiman
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA.,Faculty of Medicine, Health and Life Sciences School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - E Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA
| | - Willian A da Silveira
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Maire Leyne
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Ronen Durst
- Cardiology Division, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| | - Roger R Markwald
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | | - Albert Hagege
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris, Department of Cardiology, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Thierry Le Tourneau
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Peter Kohl
- University Heart Center Freiburg, Bad Krozingen and Faculty of Medicine of the Albert-Ludwigs University Freiburg, Institute for Experimental Cardiovascular Medicine, Elsässerstr 2Q, 79110 Freiburg, Germany
| | - Eva A Rog-Zielinska
- University Heart Center Freiburg, Bad Krozingen and Faculty of Medicine of the Albert-Ludwigs University Freiburg, Institute for Experimental Cardiovascular Medicine, Elsässerstr 2Q, 79110 Freiburg, Germany
| | - Patrick T Ellinor
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - David J Milan
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.,Leducq Foundation, 265 Franklin Street, Suite 1902, Boston, MA, 02110, USA
| | - Jean-Jacques Schott
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Nabila Bouatia-Naji
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Russell A Norris
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
20
|
Huycke TR, Miller BM, Gill HK, Nerurkar NL, Sprinzak D, Mahadevan L, Tabin CJ. Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell 2020; 179:90-105.e21. [PMID: 31539501 DOI: 10.1016/j.cell.2019.08.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 11/30/2022]
Abstract
The gastrointestinal tract is enveloped by concentric and orthogonally aligned layers of smooth muscle; however, an understanding of the mechanisms by which these muscles become patterned and aligned in the embryo has been lacking. We find that Hedgehog acts through Bmp to delineate the position of the circumferentially oriented inner muscle layer, whereas localized Bmp inhibition is critical for allowing formation of the later-forming, longitudinally oriented outer layer. Because the layers form at different developmental stages, the muscle cells are exposed to unique mechanical stimuli that direct their alignments. Differential growth within the early gut tube generates residual strains that orient the first layer circumferentially, and when formed, the spontaneous contractions of this layer align the second layer longitudinally. Our data link morphogen-based patterning to mechanically controlled smooth muscle cell alignment and provide a mechanistic context for potentially understanding smooth muscle organization in a wide variety of tubular organs.
Collapse
Affiliation(s)
- Tyler R Huycke
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bess M Miller
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hasreet K Gill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA; Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Le TL, Sribudiani Y, Dong X, Huber C, Kois C, Baujat G, Gordon CT, Mayne V, Galmiche L, Serre V, Goudin N, Zarhrate M, Bole-Feysot C, Masson C, Nitschké P, Verheijen FW, Pais L, Pelet A, Sadedin S, Pugh JA, Shur N, White SM, El Chehadeh S, Christodoulou J, Cormier-Daire V, Hofstra RMW, Lyonnet S, Tan TY, Attié-Bitach T, Kerstjens-Frederikse WS, Amiel J, Thomas S. Bi-allelic Variations of SMO in Humans Cause a Broad Spectrum of Developmental Anomalies Due to Abnormal Hedgehog Signaling. Am J Hum Genet 2020; 106:779-792. [PMID: 32413283 DOI: 10.1016/j.ajhg.2020.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved hedgehog (Hh) pathway is essential for organogenesis and plays critical roles in postnatal tissue maintenance and renewal. A unique feature of the vertebrate Hh pathway is that signal transduction requires the primary cilium (PC) where major pathway components are dynamically enriched. These factors include smoothened (SMO) and patched, which constitute the core reception system for sonic hedgehog (SHH) as well as GLI transcription factors, the key mediators of the pathway. Here, we report bi-allelic loss-of-function variations in SMO in seven individuals from five independent families; these variations cause a wide phenotypic spectrum of developmental anomalies affecting the brain (hypothalamic hamartoma and microcephaly), heart (atrioventricular septal defect), skeleton (postaxial polydactyly, narrow chest, and shortening of long bones), and enteric nervous system (aganglionosis). Cells derived from affected individuals showed normal ciliogenesis but severely altered Hh-signal transduction as a result of either altered PC trafficking or abnormal activation of the pathway downstream of SMO. In addition, Hh-independent GLI2 accumulation at the PC tip in cells from the affected individuals suggests a potential function of SMO in regulating basal ciliary trafficking of GLI2 when the pathway is off. Thus, loss of SMO function results in abnormal PC dynamics of key components of the Hh signaling pathway and leads to a large continuum of malformations in humans.
Collapse
Affiliation(s)
- Thuy-Linh Le
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Yunia Sribudiani
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, the Netherlands; Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Xiaomin Dong
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Céline Huber
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, 75015 Paris, France
| | - Chelsea Kois
- Albany Medical Center, 43 New Scotland Ave, Albany, NY 12208, USA
| | - Geneviève Baujat
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, 75015 Paris, France; Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Christopher T Gordon
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Valerie Mayne
- Department of Medical Imaging, Royal Children's Hospital, Melbourne, Australia 3052
| | - Louise Galmiche
- Department of Pathology, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Valérie Serre
- Université de Paris, Institut Jacques Monod, UMR7592 CNRS, 15 Rue Hélène Brion, 75013 Paris, France
| | - Nicolas Goudin
- Université de Paris, Imagine Institute, Cell Imaging, INSERM UMR 1163, 75015 Paris, France
| | - Mohammed Zarhrate
- Université de Paris, Imagine Institute, Structure Fédérative de Recherche Necker, Genomic Platform, INSERM UMR 1163 and INSERM US24, Centre National de la Recherche Scientifique UMS3633, 75015 Paris, France
| | - Christine Bole-Feysot
- Université de Paris, Imagine Institute, Structure Fédérative de Recherche Necker, Genomic Platform, INSERM UMR 1163 and INSERM US24, Centre National de la Recherche Scientifique UMS3633, 75015 Paris, France
| | - Cécile Masson
- Université de Paris, Imagine Institute, Bioinformatics Platform, INSERM UMR 1163, 75015 Paris, France
| | - Patrick Nitschké
- Université de Paris, Imagine Institute, Bioinformatics Platform, INSERM UMR 1163, 75015 Paris, France
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA
| | - Anna Pelet
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Simon Sadedin
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - John A Pugh
- Albany Medical Center, 43 New Scotland Ave, Albany, NY 12208, USA
| | - Natasha Shur
- Children's National, 111 Michigan Ave NW, Washington, D.C. 20010, USA
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Melbourne, Australia 3052
| | - Salima El Chehadeh
- Service de Génétique Médicale, Hôpital de Hautepierre, 67098 Strasbourg, France
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Valérie Cormier-Daire
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, 75015 Paris, France; Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - R M W Hofstra
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Stanislas Lyonnet
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France; Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Melbourne, Australia 3052
| | - Tania Attié-Bitach
- Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France; Université de Paris, Imagine Institute, Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR 1163, 75015 Paris, France
| | | | - Jeanne Amiel
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France; Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Sophie Thomas
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France.
| |
Collapse
|
22
|
Margarido AS, Le Guen L, Falco A, Faure S, Chauvet N, de Santa Barbara P. PROX1 is a specific and dynamic marker of sacral neural crest cells in the chicken intestine. J Comp Neurol 2019; 528:879-889. [PMID: 31658363 DOI: 10.1002/cne.24801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/31/2019] [Accepted: 10/16/2019] [Indexed: 01/29/2023]
Abstract
The enteric nervous system (ENS) is a complex network constituted of neurons and glial cells that ensures the intrinsic innervation of the gastrointestinal tract. ENS cells originate from vagal and sacral neural crest cells that are initially located at the border of the neural tube. In birds, sacral neural crest cells (sNCCs) first give rise to an extramural ganglionated structure (the so-called Nerve of Remak [NoR]) and to the pelvic plexus. Later, sNCCs enter the colon mesenchyme to colonize and contribute to the intrinsic innervation of the caudal part of the gut. However, no specific sNCC marker has been described. Here, we report the expression pattern of prospero-related homeobox 1 (PROX1) in the developing chick colon. PROX1 is a homeobox domain transcription factor that plays a role in cell type specification in various tissues. Using in situ hybridization and immunofluorescence techniques, we showed that PROX1 is expressed in sNCCs localized in the NoR and in the pelvic plexus. Then, using real-time quantitative PCR we found that PROX1 displays a strong and highly dynamic expression pattern during NoR development. Moreover, we demonstrated using in vivo cell tracing, that sNCCs are the source of the PROX1-positive cells within the NoR. Our results indicate that PROX1 is the first marker that specifically identifies sNCCs. This might help to better identify the role of the different neural crest cell populations in distal gut innervation, and consequently to improve the diagnosis of diseases linked to incomplete ENS formation, such as Hirschsprung's disease.
Collapse
Affiliation(s)
| | - Ludovic Le Guen
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Amandine Falco
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Sandrine Faure
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Norbert Chauvet
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | | |
Collapse
|
23
|
Neri T, Hiriart E, van Vliet PP, Faure E, Norris RA, Farhat B, Jagla B, Lefrancois J, Sugi Y, Moore-Morris T, Zaffran S, Faustino RS, Zambon AC, Desvignes JP, Salgado D, Levine RA, de la Pompa JL, Terzic A, Evans SM, Markwald R, Pucéat M. Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. Nat Commun 2019; 10:1929. [PMID: 31028265 PMCID: PMC6486645 DOI: 10.1038/s41467-019-09459-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/04/2019] [Indexed: 01/24/2023] Open
Abstract
Genetically modified mice have advanced our understanding of valve development and disease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we report that, by combining single cell sequencing and in vivo approaches, a population of human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells. HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC) endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal transition and express markers of valve interstitial cells of different valvular layers, demonstrating cell specificity. Extending this model to patient-specific induced pluripotent stem cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus providing a putative therapeutic target. In summary, we report a human cell model of valvulogenesis that faithfully recapitulates valve disease in a dish. There are few human models that can recapitulate valve development in vitro. Here, the authors derive human pre-valvular endocardial cells (HPVCs) from iPSCs and show they can recapitulate early valvulogenesis, and patient derived HPVCs have features of mitral valve prolapse and identified SHH dysregulation.
Collapse
Affiliation(s)
- Tui Neri
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,Istituto di Ricerca Genetica e Biomedica, UOS di Milano, CNR, Rozzano, 20138, Italy
| | - Emilye Hiriart
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Patrick P van Vliet
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92092 92093, USA.,Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, H7G 4W7, QC, Canada.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Emilie Faure
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Russell A Norris
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Batoul Farhat
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Bernd Jagla
- Institut Pasteur - Cytometry and Biomarkers Unit of Technology and Service, Center for Translational Science and Bioinformatics and Biostatistics Hub - C3BI, USR, 3756 IP CNRS, 75015, Paris, France
| | - Julie Lefrancois
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Yukiko Sugi
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Thomas Moore-Morris
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Stéphane Zaffran
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | | | - Alexander C Zambon
- Department of Biopharmaceutical Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - David Salgado
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, MA, 02111, USA
| | - Jose Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, E-28029, Spain
| | - André Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55901, USA
| | - Sylvia M Evans
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92092 92093, USA
| | - Roger Markwald
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Michel Pucéat
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France. .,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France. .,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada.
| |
Collapse
|
24
|
Huycke TR, Tabin CJ. Chick midgut morphogenesis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 62:109-119. [PMID: 29616718 DOI: 10.1387/ijdb.170325ct] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The gastrointestinal tract is an essential system of organs required for nutrient absorption. As a simple tube early in development, the primitive gut is patterned along its anterior-posterior axis into discrete compartments with unique morphologies relevant to their functions in the digestive process. These morphologies are acquired gradually through development as the gut is patterned by tissue interactions, both molecular and mechanical in nature, involving all three germ layers. With a focus on midgut morphogenesis, we review work in the chick embryo demonstrating how these molecular signals and mechanical forces sculpt the developing gut tube into its mature form. In particular, we highlight two mechanisms by which the midgut increases its absorptive surface area: looping and villification. Additionally, we review the differentiation and patterning of the intestinal mesoderm into the layers of smooth muscle that mechanically drive peristalsis and the villification process itself. Where relevant, we discuss the mechanisms of chick midgut morphogenesis in the context of experimental data from other model systems.
Collapse
Affiliation(s)
- Tyler R Huycke
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
25
|
Jia X, Min L, Zhu S, Zhang S, Huang X. Loss of sonic hedgehog gene leads to muscle development disorder and megaesophagus in mice. FASEB J 2018; 32:5703-5715. [DOI: 10.1096/fj.201701581r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xueting Jia
- Department of GastroenterologyNational Clinical Research Center for Digestive Diseases, Beijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive Diseases
- Department of StomatologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Li Min
- Department of GastroenterologyNational Clinical Research Center for Digestive Diseases, Beijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive Diseases
| | - Shengtao Zhu
- Department of GastroenterologyNational Clinical Research Center for Digestive Diseases, Beijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive Diseases
| | - Shutian Zhang
- Department of GastroenterologyNational Clinical Research Center for Digestive Diseases, Beijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive Diseases
| | - Xiaofeng Huang
- Department of StomatologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
26
|
Nagy N, Barad C, Hotta R, Bhave S, Arciero E, Dora D, Goldstein AM. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development. Development 2018; 145:dev.160317. [PMID: 29678817 DOI: 10.1242/dev.160317] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Csilla Barad
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Ryo Hotta
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emily Arciero
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
27
|
Liu W, Pan J, Gao J, Shuai X, Tang S, Wang G, Tao K, Wu C. Gli family zinc finger 1 is associated with endothelin receptor type B in Hirschsprung disease. Mol Med Rep 2018; 17:5844-5850. [PMID: 29484400 PMCID: PMC5866029 DOI: 10.3892/mmr.2018.8612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/23/2017] [Indexed: 11/07/2022] Open
Abstract
Hirschsprung disease (HSCR) is a newborn colorectal disease characterized by an absence of ganglia in the distal gut. Hedgehog (Hh) and endothelin signaling serve important roles in gastrointestinal tract formation. Alterations in the signaling pathways disrupt the development of enteric neural crest cells (ENCCs). It is not known whether there is any coordination between these pathways in the pathogenesis of HSCR. In the present study, tissue samples from 35 patients with HSCR, including stenotic aganglionosis gut and normal ganglionic gut, were obtained. The expression of Gli family zinc finger 1 (Gli1) and endothelin receptor type B (EDNRB) was determined using reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blotting. In addition, the SK-N-SH cell line was used to investigate the association between Hh signaling and the expression of EDNRB. The results revealed aberrant expression of Gli1 in the aganglionic segments, as well as decreased expression of Gli1 in tissues from 7 patients with HSCR exhibited, whereas tissues from 9 patients with HSCR exhibited increased Gli1 expression compared with the expression in the normal tissues. There was a negative association between EDNRB expression and Gli1 expression in the same sample. Knockdown of Gli1 by small interfering RNA and inhibition of Hh signaling by Vismodegib in SK-N-SH cells increased EDNRB expression. By contrast, upregulation of Gli1 expression by plasmids and activation of Hh signaling by Purmorphamine decreased EDNRB expression. Furthermore, premature enteric ganglia were observed in 4 patients with HSCR with decreased Gli1 expression. Thus, the results of the present study suggest that altered Gli1 expression negatively regulates EDNRB expression in patients with HSCR. The increased expression of EDNRB induced by decreased Gli1 expression may represent a novel mechanism in HSCR.
Collapse
Affiliation(s)
- Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Juan Pan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaoming Shuai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaotao Tang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
28
|
Eicher AK, Berns HM, Wells JM. Translating Developmental Principles to Generate Human Gastric Organoids. Cell Mol Gastroenterol Hepatol 2018; 5:353-363. [PMID: 29552623 PMCID: PMC5852324 DOI: 10.1016/j.jcmgh.2017.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022]
Abstract
Gastric diseases, including peptic ulcer disease and gastric cancer, are highly prevalent in human beings. Despite this, the cellular biology of the stomach remains poorly understood relative to other gastrointestinal organs such as the liver, intestine, and colon. In particular, little is known about the molecular basis of stomach development and the differentiation of gastric lineages. Although animal models are useful for studying gastric development, function, and disease, there are major structural and physiological differences in human stomachs that render these models insufficient. To look at gastric development, function, and disease in a human context, a model system of the human stomach is imperative. This review details how this was achieved through the directed differentiation of human pluripotent stem cells in a 3-dimensional environment into human gastric organoids (HGOs). Similar to previous work that has generated human intestine, colon, and lung tissue in vitro, HGOs were generated in vitro through a step-wise differentiation designed to mimic the temporal-spatial signaling dynamics that control stomach development in vivo. HGOs can be used for a variety of purposes, including genetic modeling, drug screening, and potentially even in future patient transplantation. Moreover, HGOs are well suited to study the development and interactions of nonepithelial cell types, such as endothelial, neuronal, and mesenchymal, which remain almost completely unstudied. This review discusses the basics of stomach morphology, function, and developmental pathways involved in generating HGOs. We also highlight important gaps in our understanding of how epithelial and mesenchymal interactions are essential for the development and overall function of the human stomach.
Collapse
Key Words
- 3-D, 3-dimensional
- BMP, bone morphogenetic protein
- Directed Differentiation
- ECL, enterochromaffin-like
- ENCC, enteric neural crest cell
- ENS, enteric nervous system
- Endoderm
- GI, gastrointestinal
- Gastric Development
- HDGC, hereditary diffuse gastric cancer
- HGO, human gastric organoid
- Organoids
- PSC, pluripotent stem cell
- Pluripotent Stem Cells
- Shh, Sonic hedgehog
- e, embryonic day
- hPSC, human pluripotent stem cell
Collapse
Affiliation(s)
- Alexandra K. Eicher
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - H. Matthew Berns
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Correspondence Address correspondence to: James M. Wells, PhD, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229. fax: (513) 636-4317.Cincinnati Children's Hospital Medical Center3333 Burnet AvenueCincinnatiOhio 45229
| |
Collapse
|
29
|
Saied-Santiago K, Bülow HE. Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 2018; 247:54-74. [PMID: 28736980 PMCID: PMC5866094 DOI: 10.1002/dvdy.24555] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
The nervous system coordinates the functions of most multicellular organisms and their response to the surrounding environment. Its development involves concerted cellular interactions, including migration, axon guidance, and synapse formation. These processes depend on the molecular constituents and structure of the extracellular matrices (ECM). An essential component of ECMs are proteoglycans, i.e., proteins containing unbranched glycan chains known as glycosaminoglycans (GAGs). A defining characteristic of GAGs is their enormous molecular diversity, created by extensive modifications of the glycans during their biosynthesis. GAGs are widely expressed, and their loss can lead to catastrophic neuronal defects. Despite their importance, we are just beginning to understand the function and mechanisms of GAGs in neuronal development. In this review, we discuss recent evidence suggesting GAGs have specific roles in neuronal patterning and synaptogenesis. We examine the function played by the complex modifications present on GAG glycans and their roles in regulating different aspects of neuronal patterning. Moreover, the review considers the function of proteoglycan core proteins in these processes, stressing their likely role as co-receptors of different signaling pathways in a redundant and context-dependent manner. We conclude by discussing challenges and future directions toward a better understanding of these fascinating molecules during neuronal development. Developmental Dynamics 247:54-74, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
30
|
Kugler MC, Loomis CA, Zhao Z, Cushman JC, Liu L, Munger JS. Sonic Hedgehog Signaling Regulates Myofibroblast Function during Alveolar Septum Formation in Murine Postnatal Lung. Am J Respir Cell Mol Biol 2017; 57:280-293. [PMID: 28379718 DOI: 10.1165/rcmb.2016-0268oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sonic Hedgehog (Shh) signaling regulates mesenchymal proliferation and differentiation during embryonic lung development. In the adult lung, Shh signaling maintains mesenchymal quiescence and is dysregulated in diseases such as idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. Our previous data implicated a role for Shh in postnatal lung development. Here, we report a detailed analysis of Shh signaling during murine postnatal lung development. We show that Shh pathway expression and activity during alveolarization (postnatal day [P] 0-P14) are distinct from those during maturation (P14-P24). This biphasic pattern is paralleled by the transient presence of Gli1+;α-smooth muscle actin (α-SMA)+ myofibroblasts in the growing alveolar septal tips. Carefully timed inhibition of Hedgehog (Hh) signaling during alveolarization defined mechanisms by which Shh influences the mesenchymal compartment. First, interruption of Hh signaling at earlier time points results in increased lung compliance and wall structure defects of increasing severity, ranging from moderately enlarged alveolar airspaces to markedly enlarged airspaces and fewer secondary septa. Second, Shh signaling is required for myofibroblast differentiation: Hh inhibition during early alveolarization almost completely eliminates Gli1+;α-SMA+ cells at the septal tips, and Gli1-lineage tracing revealed that Gli1+ cells do not undergo apoptosis after Hh inhibition but remain in the alveolar septa and are unable to express α-SMA. Third, Shh signaling is vital to mesenchymal proliferation during alveolarization, as Hh inhibition decreased proliferation of Gli1+ cells and their progeny. Our study establishes Shh as a new alveolarization-promoting factor that might be affected in perinatal lung diseases that are associated with impaired alveolarization.
Collapse
Affiliation(s)
| | - Cynthia A Loomis
- 2 Department of Cell Biology.,3 Department of Pathology.,4 Department of Dermatology, New York University School of Medicine, New York, New York; and
| | | | | | - Li Liu
- 1 Division of Pulmonary, Critical Care and Sleep Medicine
| | - John S Munger
- 1 Division of Pulmonary, Critical Care and Sleep Medicine.,2 Department of Cell Biology
| |
Collapse
|
31
|
Cheng LS, Hotta R, Graham HK, Belkind-Gerson J, Nagy N, Goldstein AM. Postnatal human enteric neuronal progenitors can migrate, differentiate, and proliferate in embryonic and postnatal aganglionic gut environments. Pediatr Res 2017; 81:838-846. [PMID: 28060794 PMCID: PMC5769482 DOI: 10.1038/pr.2017.4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/30/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Enteric neural stem/progenitor cells (ENSCs) offer an innovative approach to treating Hirschsprung disease (HSCR) and other enteric neuropathies. However, postnatal-derived human ENSCs have not been thoroughly characterized and their behavior in the embryonic and postnatal intestinal environment is unknown. METHODS ENSCs were isolated from the intestines of 25 patients undergoing bowel resection, including 7 children with HSCR. Neuronal differentiation and proliferation of ENSCs from submucosal and myenteric plexuses from patients with and without HSCR were characterized. ENSC migration and differentiation were studied following transplantation into embryonic chick neural crest, embryonic chick hindgut, and postnatal mouse aganglionic colon. RESULTS The proliferative and neurogenic potential of ENSCs from HSCR intestine is equivalent to that of non-HSCR controls. Similarly, no difference was observed between myenteric- and submucosal-derived ENSCs. Postnatal ENSCs transplanted to embryonic neural crest pathways and to aneural hindgut migrate normally and differentiate into appropriate neural crest-derived cell types. ENSCs in postnatal mouse aganglionic colon differentiate into neurons and glia both ex vivo and in vivo. CONCLUSIONS ENSCs isolated from the postnatal intestine of patients with and without HSCR can behave like embryonic neural crest-derived cells. These results support the feasibility of cell-based therapy for future treatment of neurointestinal disease.
Collapse
Affiliation(s)
- Lily S. Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah K. Graham
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaime Belkind-Gerson
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Roy-Carson S, Natukunda K, Chou HC, Pal N, Farris C, Schneider SQ, Kuhlman JA. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment. BMC Genomics 2017; 18:290. [PMID: 28403821 PMCID: PMC5389105 DOI: 10.1186/s12864-017-3653-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Motility and the coordination of moving food through the gastrointestinal tract rely on a complex network of neurons known as the enteric nervous system (ENS). Despite its critical function, many of the molecular mechanisms that direct the development of the ENS and the elaboration of neural network connections remain unknown. The goal of this study was to transcriptionally identify molecular pathways and candidate genes that drive specification, differentiation and the neural circuitry of specific neural progenitors, the phox2b expressing ENS cell lineage, during normal enteric nervous system development. Because ENS development is tightly linked to its environment, the transcriptional landscape of the cellular environment of the intestine was also analyzed. RESULTS Thousands of zebrafish intestines were manually dissected from a transgenic line expressing green fluorescent protein under the phox2b regulatory elements [Tg(phox2b:EGFP) w37 ]. Fluorescence-activated cell sorting was used to separate GFP-positive phox2b expressing ENS progenitor and derivatives from GFP-negative intestinal cells. RNA-seq was performed to obtain accurate, reproducible transcriptional profiles and the unbiased detection of low level transcripts. Analysis revealed genes and pathways that may function in ENS cell determination, genes that may be identifiers of different ENS subtypes, and genes that define the non-neural cellular microenvironment of the ENS. Differential expression analysis between the two cell populations revealed the expected neuronal nature of the phox2b expressing lineage including the enrichment for genes required for neurogenesis and synaptogenesis, and identified many novel genes not previously associated with ENS development. Pathway analysis pointed to a high level of G-protein coupled pathway activation, and identified novel roles for candidate pathways such as the Nogo/Reticulon axon guidance pathway in ENS development. CONCLUSION We report the comprehensive gene expression profiles of a lineage-specific population of enteric progenitors, their derivatives, and their microenvironment during normal enteric nervous system development. Our results confirm previously implicated genes and pathways required for ENS development, and also identify scores of novel candidate genes and pathways. Thus, our dataset suggests various potential mechanisms that drive ENS development facilitating characterization and discovery of novel therapeutic strategies to improve gastrointestinal disorders.
Collapse
Affiliation(s)
- Sweta Roy-Carson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kevin Natukunda
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hsien-Chao Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present Address: National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Narinder Pal
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present address: North Central Regional Plant Introduction Station, 1305 State Ave, Ames, IA, 50014, USA
| | - Caitlin Farris
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present address: Pioneer Hi-Bred International, Johnson, IA, 50131, USA
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Julie A Kuhlman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,642 Science II, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
33
|
Dóra D, Fejszák N, Goldstein AM, Minkó K, Nagy N. Ontogeny of ramified CD45 cells in chicken embryo and their contribution to bursal secretory dendritic cells. Cell Tissue Res 2017; 368:353-370. [DOI: 10.1007/s00441-017-2595-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
|
34
|
Graham HK, Maina I, Goldstein AM, Nagy N. Intestinal smooth muscle is required for patterning the enteric nervous system. J Anat 2017; 230:567-574. [PMID: 28116763 DOI: 10.1111/joa.12583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 12/14/2022] Open
Abstract
The development of the enteric nervous system (ENS) and intestinal smooth muscle occurs in a spatially and temporally correlated manner, but how they influence each other is unknown. In the developing mid-gut of the chick embryo, we find that α-smooth muscle actin expression, indicating early muscle differentiation, occurs after the arrival of migrating enteric neural crest-derived cells (ENCCs). In contrast, hindgut smooth muscle develops prior to ENCC arrival. Smooth muscle development is normal in experimentally aganglionic hindguts, suggesting that proper development and patterning of the muscle layers does not rely on the ENS. However, inhibiting early smooth muscle development severely disrupts ENS patterning without affecting ENCC proliferation or apoptosis. Our results demonstrate that early intestinal smooth muscle differentiation is required for patterning the developing ENS.
Collapse
Affiliation(s)
- Hannah K Graham
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivy Maina
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
35
|
Nagy N, Goldstein AM. Enteric nervous system development: A crest cell's journey from neural tube to colon. Semin Cell Dev Biol 2017; 66:94-106. [PMID: 28087321 DOI: 10.1016/j.semcdb.2017.01.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) is comprised of a network of neurons and glial cells that are responsible for coordinating many aspects of gastrointestinal (GI) function. These cells arise from the neural crest, migrate to the gut, and then continue their journey to colonize the entire length of the GI tract. Our understanding of the molecular and cellular events that regulate these processes has advanced significantly over the past several decades, in large part facilitated by the use of rodents, avians, and zebrafish as model systems to dissect the signals and pathways involved. These studies have highlighted the highly dynamic nature of ENS development and the importance of carefully balancing migration, proliferation, and differentiation of enteric neural crest-derived cells (ENCCs). Proliferation, in particular, is critically important as it drives cell density and speed of migration, both of which are important for ensuring complete colonization of the gut. However, proliferation must be tempered by differentiation among cells that have reached their final destination and are ready to send axonal extensions, connect to effector cells, and begin to produce neurotransmitters or other signals. Abnormalities in the normal processes guiding ENCC development can lead to failure of ENS formation, as occurs in Hirschsprung disease, in which the distal intestine remains aganglionic. This review summarizes our current understanding of the factors involved in early development of the ENS and discusses areas in need of further investigation.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States; Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
36
|
Heuckeroth RO, Schäfer KH. Gene-environment interactions and the enteric nervous system: Neural plasticity and Hirschsprung disease prevention. Dev Biol 2016; 417:188-97. [PMID: 26997034 PMCID: PMC5026873 DOI: 10.1016/j.ydbio.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
Intestinal function is primarily controlled by an intrinsic nervous system of the bowel called the enteric nervous system (ENS). The cells of the ENS are neural crest derivatives that migrate into and through the bowel during early stages of organogenesis before differentiating into a wide variety of neurons and glia. Although genetic factors critically underlie ENS development, it is now clear that many non-genetic factors may influence the number of enteric neurons, types of enteric neurons, and ratio of neurons to glia. These non-genetic influences include dietary nutrients and medicines that may impact ENS structure and function before or after birth. This review summarizes current data about gene-environment interactions that affect ENS development and suggests that these factors may contribute to human intestinal motility disorders like Hirschsprung disease or irritable bowel syndrome.
Collapse
Affiliation(s)
- Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, USA; The Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Karl-Herbert Schäfer
- ENS Group, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany; University of Heidelberg, Paediatric Surgery Mannheim, Germany
| |
Collapse
|
37
|
Heanue TA, Shepherd IT, Burns AJ. Enteric nervous system development in avian and zebrafish models. Dev Biol 2016; 417:129-38. [PMID: 27235814 DOI: 10.1016/j.ydbio.2016.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
Abstract
Our current understanding of the developmental biology of the enteric nervous system (ENS) and the genesis of ENS diseases is founded almost entirely on studies using model systems. Although genetic studies in the mouse have been at the forefront of this field over the last 20 years or so, historically it was the easy accessibility of the chick embryo for experimental manipulations that allowed the first descriptions of the neural crest origins of the ENS in the 1950s. More recently, studies in the chick and other non-mammalian model systems, notably zebrafish, have continued to advance our understanding of the basic biology of ENS development, with each animal model providing unique experimental advantages. Here we review the basic biology of ENS development in chick and zebrafish, highlighting conserved and unique features, and emphasising novel contributions to our general understanding of ENS development due to technical or biological features.
Collapse
Affiliation(s)
| | | | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
38
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
39
|
Goldstein AM, Thapar N, Karunaratne TB, De Giorgio R. Clinical aspects of neurointestinal disease: Pathophysiology, diagnosis, and treatment. Dev Biol 2016; 417:217-28. [PMID: 27059882 DOI: 10.1016/j.ydbio.2016.03.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 02/07/2023]
Abstract
The enteric nervous system (ENS) is involved in the regulation of virtually all gut functions. Conditions referred to as enteric neuropathies are the result of various mechanisms including abnormal development, degeneration or loss of enteric neurons that affect the structure and functional integrity of the ENS. In the past decade, clinical and molecular research has led to important conceptual advances in our knowledge of the pathogenetic mechanisms of these disorders. In this review we consider ENS disorders from a clinical perspective and highlight the advancing knowledge regarding their pathophysiology. We also review current therapies for these diseases and present potential novel reparative approaches for their treatment.
Collapse
Affiliation(s)
- Allan M Goldstein
- Department of Pediatric Surgery, Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Nikhil Thapar
- Division of Neurogastroenterology and Motility, Department of Gastroenterology, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Tennekoon Buddhika Karunaratne
- Department of Medical and Surgical Sciences and Gastrointestinal System, University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy; Centro di Ricerca BioMedica Applicata (C.R.B.A.), University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Roberto De Giorgio
- Department of Medical and Surgical Sciences and Gastrointestinal System, University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy; Centro di Ricerca BioMedica Applicata (C.R.B.A.), University of Bologna and St. Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
40
|
Nagy N, Barad C, Graham HK, Hotta R, Cheng LS, Fejszak N, Goldstein AM. Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix. J Cell Sci 2016. [DOI: 10.1242/jcs.186429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|