1
|
Wengryn P, Fenrich F, Silveira KDC, Oborn C, Mizumoto S, Beke A, Soltys CL, Yamada S, Kannu P. Integrative analysis of Lunatic Fringe variants associated with spondylocostal dysostosis type-III. FASEB J 2024; 38:e23753. [PMID: 38924591 DOI: 10.1096/fj.202302651rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Lunatic Fringe (LFNG) is required for spinal development. Biallelic pathogenic variants cause spondylocostal dysostosis type-III (SCD3), a rare disease generally characterized by malformed, asymmetrical, and attenuated development of the vertebral column and ribs. However, a variety of SCD3 cases reported have presented with additional features such as auditory alterations and digit abnormalities. There has yet to be a single, comprehensive, functional evaluation of causative LFNG variants and such analyses could unveil molecular mechanisms for phenotypic variability in SCD3. Therefore, nine LFNG missense variants associated with SCD3, c.564C>A, c.583T>C, c.842C>A, c.467T>G, c.856C>T, c.601G>A, c.446C>T, c.521G>A, and c.766G>A, were assessed in vitro for subcellular localization and protein processing. Glycosyltransferase activity was quantified for the first time in the c.583T>C, c.842C>A, and c.446C>T variants. Primarily, our results are the first to satisfy American College of Medical Genetics and Genomics PS3 criteria (functional evidence via well-established assay) for the pathogenicity of c.583T>C, c.842C>A, and c.446C>T, and replicate this evidence for the remaining six variants. Secondly, this work indicates that all variants that prevent Golgi localization also lead to impaired protein processing. It appears that the FRINGE domain is responsible for this phenomenon. Thirdly, our data suggests that variant proximity to the catalytic residue may influence whether LFNG is improperly trafficked and/or enzymatically dysfunctional. Finally, the phenotype of the axial skeleton, but not elsewhere, may be modulated in a variant-specific fashion. More reports are needed to continue testing this hypothesis. We anticipate our data will be used as a basis for discussion of genotype-phenotype correlations in SCD3.
Collapse
Affiliation(s)
- Parker Wengryn
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Felicity Fenrich
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
- Department of Molecular and Cellular Biology, University of Guelf, Guelf, Ontario, Canada
| | | | - Connor Oborn
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Meijo University, Nagoya, Aichi, Japan
| | - Alexander Beke
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Carrie-Lynn Soltys
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Shuhei Yamada
- Department of Pathobiochemistry, Meijo University, Nagoya, Aichi, Japan
| | - Peter Kannu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Ramesh PS, Chu LF. Species-specific roles of the Notch ligands, receptors, and targets orchestrating the signaling landscape of the segmentation clock. Front Cell Dev Biol 2024; 11:1327227. [PMID: 38348091 PMCID: PMC10859470 DOI: 10.3389/fcell.2023.1327227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024] Open
Abstract
Somitogenesis is a hallmark feature of all vertebrates and some invertebrate species that involves the periodic formation of block-like structures called somites. Somites are transient embryonic segments that eventually establish the entire vertebral column. A highly conserved molecular oscillator called the segmentation clock underlies this periodic event and the pace of this clock regulates the pace of somite formation. Although conserved signaling pathways govern the clock in most vertebrates, the mechanisms underlying the species-specific divergence in various clock characteristics remain elusive. For example, the segmentation clock in classical model species such as zebrafish, chick, and mouse embryos tick with a periodicity of ∼30, ∼90, and ∼120 min respectively. This enables them to form the species-specific number of vertebrae during their overall timespan of somitogenesis. Here, we perform a systematic review of the species-specific features of the segmentation clock with a keen focus on mouse embryos. We perform this review using three different perspectives: Notch-responsive clock genes, ligand-receptor dynamics, and synchronization between neighboring oscillators. We further review reports that use non-classical model organisms and in vitro model systems that complement our current understanding of the segmentation clock. Our review highlights the importance of comparative developmental biology to further our understanding of this essential developmental process.
Collapse
Affiliation(s)
- Pranav S. Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
3
|
Wengryn P, Silveira KDC, Oborn C, Soltys CL, Beke A, Chacon-Fonseca I, Damseh N, Rodriguez MQ, Badilla-Porras R, Kannu P. Functional Characterization of Novel Lunatic Fringe Variants in Spondylocostal Dysostosis Type-III with Scoliosis. Hum Mutat 2023; 2023:5989733. [PMID: 40225152 PMCID: PMC11919168 DOI: 10.1155/2023/5989733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/10/2023] [Accepted: 06/21/2023] [Indexed: 04/15/2025]
Abstract
Scoliosis affects over four million Americans, with most cases having an idiopathic cause. Pathogenic variants in the LUNATIC FRINGE (LFNG) gene can cause spondylocostal dysostosis type-III (SCD3), which is a rare skeletal dysplasia characterized by the absence, fusion, or partial development of vertebrae and ribs. Acute restrictive lung disease and scoliosis may also be present in some cases. The variability in symptoms suggests that there may be other underlying pathological mechanisms that are yet to be discovered. We conducted an analysis of two novel LFNG variants, c.766G>A (p.G256S) and c.521G>A (p.R174H), that were observed in a patient with SCD3 phenotype and scoliosis. Characterizing these variants can help us better understand the relationship between genotype and phenotype. We assessed both variants for impaired glycosyltransferase activity, subcellular mislocalization, and aberrant pre-proprotein processing. Our results indicate that the p.G256S variant is enzymatically nonfunctional, while the p.R174H variant is functionally less effective. Both variants were correctly localized and processed. Our findings suggest that the hypomorphic variant (p.R174H) may have partially improved the patient's stature, as evidenced by a lower arm span-to-height ratio, increased height, and more vertebrae. However, this variant did not appear to have any effect on the severity of vertebral malformations, including scoliosis. Further research is necessary to determine the extent to which variations in LFNG activity affect the presentation of SCD3.
Collapse
Affiliation(s)
- Parker Wengryn
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
| | - Karina da Costa Silveira
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
| | - Connor Oborn
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
| | - Carrie-Lynn Soltys
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
| | - Alexander Beke
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Inara Chacon-Fonseca
- Department of Medical Genetics, University of Toronto, Toronto, Canada
- Lakeridge Health Oshawa, Oshawa, Canada
| | - Nadirah Damseh
- Department of Medical Genetics, University of Toronto, Toronto, Canada
| | | | | | - Peter Kannu
- Department of Medical Genetics, University of Alberta, 8-39 Medical Sciences Building 8614-114 Street, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Carraco G, Martins-Jesus AP, Andrade RP. The vertebrate Embryo Clock: Common players dancing to a different beat. Front Cell Dev Biol 2022; 10:944016. [PMID: 36036002 PMCID: PMC9403190 DOI: 10.3389/fcell.2022.944016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Vertebrate embryo somitogenesis is the earliest morphological manifestation of the characteristic patterned structure of the adult axial skeleton. Pairs of somites flanking the neural tube are formed periodically during early development, and the molecular mechanisms in temporal control of this early patterning event have been thoroughly studied. The discovery of a molecular Embryo Clock (EC) underlying the periodicity of somite formation shed light on the importance of gene expression dynamics for pattern formation. The EC is now known to be present in all vertebrate organisms studied and this mechanism was also described in limb development and stem cell differentiation. An outstanding question, however, remains unanswered: what sets the different EC paces observed in different organisms and tissues? This review aims to summarize the available knowledge regarding the pace of the EC, its regulation and experimental manipulation and to expose new questions that might help shed light on what is still to unveil.
Collapse
Affiliation(s)
- Gil Carraco
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | | | - Raquel P. Andrade
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
- *Correspondence: Raquel P. Andrade,
| |
Collapse
|
5
|
Seiler CL, Song JUM, Kotandeniya D, Chen J, Kono TJY, Han Q, Colwell M, Auch B, Sarver AL, Upadhyaya P, Ren Y, Faulk C, De Flora S, La Maestra S, Chen Y, Kassie F, Tretyakova NY. Inhalation exposure to cigarette smoke and inflammatory agents induces epigenetic changes in the lung. Sci Rep 2020; 10:11290. [PMID: 32647312 PMCID: PMC7347915 DOI: 10.1038/s41598-020-67502-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
Smoking-related lung tumors are characterized by profound epigenetic changes including scrambled patterns of DNA methylation, deregulated histone acetylation, altered gene expression levels, distorted microRNA profiles, and a global loss of cytosine hydroxymethylation marks. Here, we employed an enhanced version of bisulfite sequencing (RRBS/oxRRBS) followed by next generation sequencing to separately map DNA epigenetic marks 5-methyl-dC and 5-hydroxymethyl-dC in genomic DNA isolated from lungs of A/J mice exposed whole-body to environmental cigarette smoke for 10 weeks. Exposure to cigarette smoke significantly affected the patterns of cytosine methylation and hydroxymethylation in the lungs. Differentially hydroxymethylated regions were associated with inflammatory response/disease, organismal injury, and respiratory diseases and were involved in regulation of cellular development, function, growth, and proliferation. To identify epigenetic changes in the lung associated with exposure to tobacco carcinogens and inflammation, A/J mice were intranasally treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the inflammatory agent lipopolysaccharide (LPS), or both. NNK alone caused minimal epigenetic alterations, while exposure either to LPS or NNK/LPS in combination led to increased levels of global cytosine methylation and formylation, reduced cytosine hydroxymethylation, decreased histone acetylation, and altered expression levels of multiple genes. Our results suggest that inflammatory processes are responsible for epigenetic changes contributing to lung cancer development.
Collapse
Affiliation(s)
- Christopher L Seiler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - J Ung Min Song
- Department of Veterinary Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Delshanee Kotandeniya
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Jianji Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thomas J Y Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Qiyuan Han
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mathia Colwell
- Department of Animal Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Benjamin Auch
- Genomics Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Aaron L Sarver
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Yanan Ren
- Biostatistics Core, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | | | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fekadu Kassie
- Department of Veterinary Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA.
| |
Collapse
|
6
|
Tietz KT, Gallagher TL, Mannings MC, Morrow ZT, Derr NL, Amacher SL. Pumilio response and AU-rich elements drive rapid decay of Pnrc2-regulated cyclic gene transcripts. Dev Biol 2020; 462:129-140. [PMID: 32246943 DOI: 10.1016/j.ydbio.2020.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate segmentation is regulated by the segmentation clock, a biological oscillator that controls periodic formation of somites, or embryonic segments, which give rise to many mesodermal tissue types. This molecular oscillator generates cyclic gene expression with the same periodicity as somite formation in the presomitic mesoderm (PSM), an area of mesenchymal cells that give rise to mature somites. Molecular components of the clock include the Hes/her family of genes that encode transcriptional repressors, but additional genes cycle. Cyclic gene transcripts are cleared rapidly, and clearance depends upon the pnrc2 (proline-rich nuclear receptor co-activator 2) gene that encodes an mRNA decay adaptor. Previously, we showed that the her1 3'UTR confers instability to otherwise stable transcripts in a Pnrc2-dependent manner, however, the molecular mechanism(s) by which cyclic gene transcripts are cleared remained largely unknown. To identify features of the her1 3'UTR that are critical for Pnrc2-mediated decay, we developed an array of transgenic inducible reporter lines carrying different regions of the 3'UTR. We find that the terminal 179 nucleotides (nts) of the her1 3'UTR are necessary and sufficient to confer rapid instability. Additionally, we show that the 3'UTR of another cyclic gene, deltaC (dlc), also confers Pnrc2-dependent instability. Motif analysis reveals that both her1 and dlc 3'UTRs contain terminally-located Pumilio response elements (PREs) and AU-rich elements (AREs), and we show that the PRE and ARE in the last 179 nts of the her1 3'UTR drive rapid turnover of reporter mRNA. Finally, we show that mutation of Pnrc2 residues and domains that are known to facilitate interaction of human PNRC2 with decay factors DCP1A and UPF1 reduce the ability of Pnrc2 to restore normal cyclic gene expression in pnrc2 mutant embryos. Our findings suggest that Pnrc2 interacts with decay machinery components and cooperates with Pumilio (Pum) proteins and ARE-binding proteins to promote rapid turnover of cyclic gene transcripts during somitogenesis.
Collapse
Affiliation(s)
- Kiel T Tietz
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Thomas L Gallagher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Monica C Mannings
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zachary T Morrow
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicolas L Derr
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Coupling delay controls synchronized oscillation in the segmentation clock. Nature 2020; 580:119-123. [PMID: 31915376 DOI: 10.1038/s41586-019-1882-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/05/2019] [Indexed: 11/08/2022]
Abstract
Individual cellular activities fluctuate but are constantly coordinated at the population level via cell-cell coupling. A notable example is the somite segmentation clock, in which the expression of clock genes (such as Hes7) oscillates in synchrony between the cells that comprise the presomitic mesoderm (PSM)1,2. This synchronization depends on the Notch signalling pathway; inhibiting this pathway desynchronizes oscillations, leading to somite fusion3-7. However, how Notch signalling regulates the synchronicity of HES7 oscillations is unknown. Here we establish a live-imaging system using a new fluorescent reporter (Achilles), which we fuse with HES7 to monitor synchronous oscillations in HES7 expression in the mouse PSM at a single-cell resolution. Wild-type cells can rapidly correct for phase fluctuations in HES7 oscillations, whereas the absence of the Notch modulator gene lunatic fringe (Lfng) leads to a loss of synchrony between PSM cells. Furthermore, HES7 oscillations are severely dampened in individual cells of Lfng-null PSM. However, when Lfng-null PSM cells were completely dissociated, the amplitude and periodicity of HES7 oscillations were almost normal, which suggests that LFNG is involved mostly in cell-cell coupling. Mixed cultures of control and Lfng-null PSM cells, and an optogenetic Notch signalling reporter assay, revealed that LFNG delays the signal-sending process of intercellular Notch signalling transmission. These results-together with mathematical modelling-raised the possibility that Lfng-null PSM cells shorten the coupling delay, thereby approaching a condition known as the oscillation or amplitude death of coupled oscillators8. Indeed, a small compound that lengthens the coupling delay partially rescues the amplitude and synchrony of HES7 oscillations in Lfng-null PSM cells. Our study reveals a delay control mechanism of the oscillatory networks involved in somite segmentation, and indicates that intercellular coupling with the correct delay is essential for synchronized oscillation.
Collapse
|
8
|
Kadur Lakshminarasimha Murthy P, Srinivasan T, Bochter MS, Xi R, Varanko AK, Tung KL, Semerci F, Xu K, Maletic-Savatic M, Cole SE, Shen X. Radical and lunatic fringes modulate notch ligands to support mammalian intestinal homeostasis. eLife 2018; 7:e35710. [PMID: 29629872 PMCID: PMC5896954 DOI: 10.7554/elife.35710] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Notch signalling maintains stem cell regeneration at the mouse intestinal crypt base and balances the absorptive and secretory lineages in the upper crypt and villus. Here we report the role of Fringe family of glycosyltransferases in modulating Notch activity in the two compartments. At the crypt base, RFNG is enriched in the Paneth cells and increases cell surface expression of DLL1 and DLL4. This promotes Notch activity in the neighbouring Lgr5+ stem cells assisting their self-renewal. Expressed by various secretory cells in the upper crypt and villus, LFNG promotes DLL surface expression and suppresses the secretory lineage . Hence, in the intestinal epithelium, Fringes are present in the ligand-presenting 'sender' secretory cells and promote Notch activity in the neighbouring 'receiver' cells. Fringes thereby provide for targeted modulation of Notch activity and thus the cell fate in the stem cell zone, or the upper crypt and villus.
Collapse
Affiliation(s)
- Preetish Kadur Lakshminarasimha Murthy
- Center for Genomics and Computational Biology, Department of Biomedical EngineeringDuke UniversityDurhamUnited States
- Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUnited States
| | - Tara Srinivasan
- Mienig School of Biomedical EngineeringCornell UniversityIthacaUnited States
| | - Matthew S Bochter
- Department of Molecular GeneticsOhio State UniversityColumbusUnited States
| | - Rui Xi
- Center for Genomics and Computational Biology, Department of Biomedical EngineeringDuke UniversityDurhamUnited States
| | | | - Kuei-Ling Tung
- Center for Genomics and Computational Biology, Department of Biomedical EngineeringDuke UniversityDurhamUnited States
- Department of Biological and Environmental EngineeringCornell UniversityIthacaUnited States
| | - Fatih Semerci
- Department of PediatricsBaylor College of MedicineHoustonUnited States
| | - Keli Xu
- Department of Neurobiology and Anatomical SciencesUniversity of Mississippi Medical CenterJacksonUnited States
| | | | - Susan E Cole
- Department of Molecular GeneticsOhio State UniversityColumbusUnited States
| | - Xiling Shen
- Center for Genomics and Computational Biology, Department of Biomedical EngineeringDuke UniversityDurhamUnited States
- Mienig School of Biomedical EngineeringCornell UniversityIthacaUnited States
- School of Electrical and Computer EngineeringCornell UniversityIthacaUnited States
| |
Collapse
|
9
|
Boström J, Sramkova Z, Salašová A, Johard H, Mahdessian D, Fedr R, Marks C, Medalová J, Souček K, Lundberg E, Linnarsson S, Bryja V, Sekyrova P, Altun M, Andäng M. Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. PLoS One 2017; 12:e0188772. [PMID: 29228002 PMCID: PMC5724894 DOI: 10.1371/journal.pone.0188772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023] Open
Abstract
The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development.
Collapse
Affiliation(s)
- Johan Boström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Zuzana Sramkova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alena Salašová
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helena Johard
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Diana Mahdessian
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics CAS, v.v.i., Královopolská 135, Brno, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, Brno, Czech Republic
| | - Carolyn Marks
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jiřina Medalová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics CAS, v.v.i., Královopolská 135, Brno, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Emma Lundberg
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Sekyrova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (PS); (MAl); (MAn)
| | - Mikael Altun
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (PS); (MAl); (MAn)
| | - Michael Andäng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (PS); (MAl); (MAn)
| |
Collapse
|
10
|
Wahi K, Friesen S, Coppola V, Cole SE. Putative binding sites for mir-125 family miRNAs in the mouse Lfng 3'UTR affect transcript expression in the segmentation clock, but mir-125a-5p is dispensable for normal somitogenesis. Dev Dyn 2017; 246:740-748. [PMID: 28710810 PMCID: PMC5597482 DOI: 10.1002/dvdy.24552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/21/2017] [Accepted: 07/01/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In vertebrate embryos, a "segmentation clock" times somitogenesis. Clock-linked genes, including Lunatic fringe (Lfng), exhibit cyclic expression in the presomitic mesoderm (PSM), with a period matching the rate of somite formation. The clock period varies widely across species, but the mechanisms that underlie this variability are not clear. The half-lives of clock components are proposed to influence the rate of clock oscillations, and are tightly regulated in the PSM. Interactions between Lfng and mir-125a-5p in the embryonic chicken PSM promote Lfng transcript instability, but the conservation of this mechanism in other vertebrates has not been tested. Here, we examine whether this interaction affects clock activity in a mammalian species. RESULTS Mutation of mir-125 binding sites in the Lfng 3'UTR leads to persistent, nonoscillatory reporter transcript expression in the caudal-most mouse PSM, although dynamic transcript expression recovers in the central PSM. Despite this, expression of endogenous mir-125a-5p is dispensable for mouse somitogenesis. CONCLUSIONS These results suggest that mir-125a sites in the Lfng 3' untranslated region influence transcript turnover in both mouse and chicken embryos, and support the existence of position-dependent regulatory mechanisms in the PSM. They further suggest the existence of compensatory mechanisms that can rescue the loss of mir-125a-5p in mice. Developmental Dynamics 246:740-748, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kanu Wahi
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio
| | - Sophia Friesen
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Susan E Cole
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Pnrc2 regulates 3'UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation. Dev Biol 2017. [PMID: 28648842 DOI: 10.1016/j.ydbio.2017.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay.
Collapse
|